more docs
[mcs.git] / mcs / expression.cs
blob7c74928d1b928dbc6962f1a0de26a1503c1cbc6d
1 //
2 // expression.cs: Expression representation for the IL tree.
3 //
4 // Author:
5 // Miguel de Icaza (miguel@ximian.com)
6 // Marek Safar (marek.safar@gmail.com)
7 //
8 // Copyright 2001, 2002, 2003 Ximian, Inc.
9 // Copyright 2003-2008 Novell, Inc.
11 #define USE_OLD
13 namespace Mono.CSharp {
14 using System;
15 using System.Collections;
16 using System.Reflection;
17 using System.Reflection.Emit;
18 using System.Text;
21 // This is an user operator expression, automatically created during
22 // resolve phase
24 public class UserOperatorCall : Expression {
25 public delegate Expression ExpressionTreeExpression (EmitContext ec, MethodGroupExpr mg);
27 protected readonly ArrayList arguments;
28 protected readonly MethodGroupExpr mg;
29 readonly ExpressionTreeExpression expr_tree;
31 public UserOperatorCall (MethodGroupExpr mg, ArrayList args, ExpressionTreeExpression expr_tree, Location loc)
33 this.mg = mg;
34 this.arguments = args;
35 this.expr_tree = expr_tree;
37 type = TypeManager.TypeToCoreType (((MethodInfo) mg).ReturnType);
38 eclass = ExprClass.Value;
39 this.loc = loc;
42 public override Expression CreateExpressionTree (EmitContext ec)
44 if (expr_tree != null)
45 return expr_tree (ec, mg);
47 ArrayList args = new ArrayList (arguments.Count + 1);
48 args.Add (new Argument (new NullLiteral (loc)));
49 args.Add (new Argument (mg.CreateExpressionTree (ec)));
50 foreach (Argument a in arguments) {
51 args.Add (new Argument (a.Expr.CreateExpressionTree (ec)));
54 return CreateExpressionFactoryCall ("Call", args);
57 protected override void CloneTo (CloneContext context, Expression target)
59 // Nothing to clone
62 public override Expression DoResolve (EmitContext ec)
65 // We are born fully resolved
67 return this;
70 public override void Emit (EmitContext ec)
72 mg.EmitCall (ec, arguments);
75 public MethodGroupExpr Method {
76 get { return mg; }
79 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
81 foreach (Argument a in arguments)
82 a.Expr.MutateHoistedGenericType (storey);
84 mg.MutateHoistedGenericType (storey);
88 public class ParenthesizedExpression : Expression
90 public Expression Expr;
92 public ParenthesizedExpression (Expression expr)
94 Expr = expr;
95 loc = expr.Location;
98 public override Expression CreateExpressionTree (EmitContext ec)
100 throw new NotSupportedException ("ET");
103 public override Expression DoResolve (EmitContext ec)
105 Expr = Expr.Resolve (ec);
106 return Expr;
109 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
111 return Expr.DoResolveLValue (ec, right_side);
114 public override void Emit (EmitContext ec)
116 throw new Exception ("Should not happen");
119 protected override void CloneTo (CloneContext clonectx, Expression t)
121 ParenthesizedExpression target = (ParenthesizedExpression) t;
123 target.Expr = Expr.Clone (clonectx);
128 // Unary implements unary expressions.
130 public class Unary : Expression {
131 public enum Operator : byte {
132 UnaryPlus, UnaryNegation, LogicalNot, OnesComplement,
133 AddressOf, TOP
136 static Type [] [] predefined_operators;
138 public readonly Operator Oper;
139 public Expression Expr;
140 Expression enum_conversion;
142 public Unary (Operator op, Expression expr)
144 Oper = op;
145 Expr = expr;
146 loc = expr.Location;
149 // <summary>
150 // This routine will attempt to simplify the unary expression when the
151 // argument is a constant.
152 // </summary>
153 Constant TryReduceConstant (EmitContext ec, Constant e)
155 if (e is EmptyConstantCast)
156 return TryReduceConstant (ec, ((EmptyConstantCast) e).child);
158 if (e is SideEffectConstant) {
159 Constant r = TryReduceConstant (ec, ((SideEffectConstant) e).value);
160 return r == null ? null : new SideEffectConstant (r, e, r.Location);
163 Type expr_type = e.Type;
165 switch (Oper){
166 case Operator.UnaryPlus:
167 // Unary numeric promotions
168 if (expr_type == TypeManager.byte_type)
169 return new IntConstant (((ByteConstant)e).Value, e.Location);
170 if (expr_type == TypeManager.sbyte_type)
171 return new IntConstant (((SByteConstant)e).Value, e.Location);
172 if (expr_type == TypeManager.short_type)
173 return new IntConstant (((ShortConstant)e).Value, e.Location);
174 if (expr_type == TypeManager.ushort_type)
175 return new IntConstant (((UShortConstant)e).Value, e.Location);
176 if (expr_type == TypeManager.char_type)
177 return new IntConstant (((CharConstant)e).Value, e.Location);
179 // Predefined operators
180 if (expr_type == TypeManager.int32_type || expr_type == TypeManager.uint32_type ||
181 expr_type == TypeManager.int64_type || expr_type == TypeManager.uint64_type ||
182 expr_type == TypeManager.float_type || expr_type == TypeManager.double_type ||
183 expr_type == TypeManager.decimal_type) {
184 return e;
187 return null;
189 case Operator.UnaryNegation:
190 // Unary numeric promotions
191 if (expr_type == TypeManager.byte_type)
192 return new IntConstant (-((ByteConstant)e).Value, e.Location);
193 if (expr_type == TypeManager.sbyte_type)
194 return new IntConstant (-((SByteConstant)e).Value, e.Location);
195 if (expr_type == TypeManager.short_type)
196 return new IntConstant (-((ShortConstant)e).Value, e.Location);
197 if (expr_type == TypeManager.ushort_type)
198 return new IntConstant (-((UShortConstant)e).Value, e.Location);
199 if (expr_type == TypeManager.char_type)
200 return new IntConstant (-((CharConstant)e).Value, e.Location);
202 // Predefined operators
203 if (expr_type == TypeManager.int32_type) {
204 int value = ((IntConstant)e).Value;
205 if (value == int.MinValue) {
206 if (ec.ConstantCheckState) {
207 ConstantFold.Error_CompileTimeOverflow (loc);
208 return null;
210 return e;
212 return new IntConstant (-value, e.Location);
214 if (expr_type == TypeManager.int64_type) {
215 long value = ((LongConstant)e).Value;
216 if (value == long.MinValue) {
217 if (ec.ConstantCheckState) {
218 ConstantFold.Error_CompileTimeOverflow (loc);
219 return null;
221 return e;
223 return new LongConstant (-value, e.Location);
226 if (expr_type == TypeManager.uint32_type) {
227 UIntLiteral uil = e as UIntLiteral;
228 if (uil != null) {
229 if (uil.Value == 2147483648)
230 return new IntLiteral (int.MinValue, e.Location);
231 return new LongLiteral (-uil.Value, e.Location);
233 return new LongConstant (-((UIntConstant)e).Value, e.Location);
236 if (expr_type == TypeManager.uint64_type) {
237 ULongLiteral ull = e as ULongLiteral;
238 if (ull != null && ull.Value == 9223372036854775808)
239 return new LongLiteral (long.MinValue, e.Location);
240 return null;
243 if (expr_type == TypeManager.float_type) {
244 FloatLiteral fl = e as FloatLiteral;
245 // For better error reporting
246 if (fl != null) {
247 fl.Value = -fl.Value;
248 return fl;
250 return new FloatConstant (-((FloatConstant)e).Value, e.Location);
252 if (expr_type == TypeManager.double_type) {
253 DoubleLiteral dl = e as DoubleLiteral;
254 // For better error reporting
255 if (dl != null) {
256 dl.Value = -dl.Value;
257 return dl;
260 return new DoubleConstant (-((DoubleConstant)e).Value, e.Location);
262 if (expr_type == TypeManager.decimal_type)
263 return new DecimalConstant (-((DecimalConstant)e).Value, e.Location);
265 return null;
267 case Operator.LogicalNot:
268 if (expr_type != TypeManager.bool_type)
269 return null;
271 bool b = (bool)e.GetValue ();
272 return new BoolConstant (!b, e.Location);
274 case Operator.OnesComplement:
275 // Unary numeric promotions
276 if (expr_type == TypeManager.byte_type)
277 return new IntConstant (~((ByteConstant)e).Value, e.Location);
278 if (expr_type == TypeManager.sbyte_type)
279 return new IntConstant (~((SByteConstant)e).Value, e.Location);
280 if (expr_type == TypeManager.short_type)
281 return new IntConstant (~((ShortConstant)e).Value, e.Location);
282 if (expr_type == TypeManager.ushort_type)
283 return new IntConstant (~((UShortConstant)e).Value, e.Location);
284 if (expr_type == TypeManager.char_type)
285 return new IntConstant (~((CharConstant)e).Value, e.Location);
287 // Predefined operators
288 if (expr_type == TypeManager.int32_type)
289 return new IntConstant (~((IntConstant)e).Value, e.Location);
290 if (expr_type == TypeManager.uint32_type)
291 return new UIntConstant (~((UIntConstant)e).Value, e.Location);
292 if (expr_type == TypeManager.int64_type)
293 return new LongConstant (~((LongConstant)e).Value, e.Location);
294 if (expr_type == TypeManager.uint64_type){
295 return new ULongConstant (~((ULongConstant)e).Value, e.Location);
297 if (e is EnumConstant) {
298 e = TryReduceConstant (ec, ((EnumConstant)e).Child);
299 if (e != null)
300 e = new EnumConstant (e, expr_type);
301 return e;
303 return null;
305 throw new Exception ("Can not constant fold: " + Oper.ToString());
308 protected Expression ResolveOperator (EmitContext ec, Expression expr)
310 eclass = ExprClass.Value;
312 if (predefined_operators == null)
313 CreatePredefinedOperatorsTable ();
315 Type expr_type = expr.Type;
316 Expression best_expr;
319 // Primitive types first
321 if (TypeManager.IsPrimitiveType (expr_type)) {
322 best_expr = ResolvePrimitivePredefinedType (expr);
323 if (best_expr == null)
324 return null;
326 type = best_expr.Type;
327 Expr = best_expr;
328 return this;
332 // E operator ~(E x);
334 if (Oper == Operator.OnesComplement && TypeManager.IsEnumType (expr_type))
335 return ResolveEnumOperator (ec, expr);
337 return ResolveUserType (ec, expr);
340 protected virtual Expression ResolveEnumOperator (EmitContext ec, Expression expr)
342 Type underlying_type = TypeManager.GetEnumUnderlyingType (expr.Type);
343 Expression best_expr = ResolvePrimitivePredefinedType (EmptyCast.Create (expr, underlying_type));
344 if (best_expr == null)
345 return null;
347 Expr = best_expr;
348 enum_conversion = Convert.ExplicitNumericConversion (new EmptyExpression (best_expr.Type), underlying_type);
349 type = expr.Type;
350 return EmptyCast.Create (this, type);
353 public override Expression CreateExpressionTree (EmitContext ec)
355 return CreateExpressionTree (ec, null);
358 Expression CreateExpressionTree (EmitContext ec, MethodGroupExpr user_op)
360 string method_name;
361 switch (Oper) {
362 case Operator.AddressOf:
363 Error_PointerInsideExpressionTree ();
364 return null;
365 case Operator.UnaryNegation:
366 if (ec.CheckState && user_op == null && !IsFloat (type))
367 method_name = "NegateChecked";
368 else
369 method_name = "Negate";
370 break;
371 case Operator.OnesComplement:
372 case Operator.LogicalNot:
373 method_name = "Not";
374 break;
375 case Operator.UnaryPlus:
376 method_name = "UnaryPlus";
377 break;
378 default:
379 throw new InternalErrorException ("Unknown unary operator " + Oper.ToString ());
382 ArrayList args = new ArrayList (2);
383 args.Add (new Argument (Expr.CreateExpressionTree (ec)));
384 if (user_op != null)
385 args.Add (new Argument (user_op.CreateExpressionTree (ec)));
386 return CreateExpressionFactoryCall (method_name, args);
389 static void CreatePredefinedOperatorsTable ()
391 predefined_operators = new Type [(int) Operator.TOP] [];
394 // 7.6.1 Unary plus operator
396 predefined_operators [(int) Operator.UnaryPlus] = new Type [] {
397 TypeManager.int32_type, TypeManager.uint32_type,
398 TypeManager.int64_type, TypeManager.uint64_type,
399 TypeManager.float_type, TypeManager.double_type,
400 TypeManager.decimal_type
404 // 7.6.2 Unary minus operator
406 predefined_operators [(int) Operator.UnaryNegation] = new Type [] {
407 TypeManager.int32_type,
408 TypeManager.int64_type,
409 TypeManager.float_type, TypeManager.double_type,
410 TypeManager.decimal_type
414 // 7.6.3 Logical negation operator
416 predefined_operators [(int) Operator.LogicalNot] = new Type [] {
417 TypeManager.bool_type
421 // 7.6.4 Bitwise complement operator
423 predefined_operators [(int) Operator.OnesComplement] = new Type [] {
424 TypeManager.int32_type, TypeManager.uint32_type,
425 TypeManager.int64_type, TypeManager.uint64_type
430 // Unary numeric promotions
432 static Expression DoNumericPromotion (Operator op, Expression expr)
434 Type expr_type = expr.Type;
435 if ((op == Operator.UnaryPlus || op == Operator.UnaryNegation || op == Operator.OnesComplement) &&
436 expr_type == TypeManager.byte_type || expr_type == TypeManager.sbyte_type ||
437 expr_type == TypeManager.short_type || expr_type == TypeManager.ushort_type ||
438 expr_type == TypeManager.char_type)
439 return Convert.ImplicitNumericConversion (expr, TypeManager.int32_type);
441 if (op == Operator.UnaryNegation && expr_type == TypeManager.uint32_type)
442 return Convert.ImplicitNumericConversion (expr, TypeManager.int64_type);
444 return expr;
447 public override Expression DoResolve (EmitContext ec)
449 if (Oper == Operator.AddressOf) {
450 return ResolveAddressOf (ec);
453 Expr = Expr.Resolve (ec);
454 if (Expr == null)
455 return null;
457 if (TypeManager.IsNullableValueType (Expr.Type))
458 return new Nullable.LiftedUnaryOperator (Oper, Expr).Resolve (ec);
461 // Attempt to use a constant folding operation.
463 Constant cexpr = Expr as Constant;
464 if (cexpr != null) {
465 cexpr = TryReduceConstant (ec, cexpr);
466 if (cexpr != null)
467 return cexpr;
470 Expression expr = ResolveOperator (ec, Expr);
471 if (expr == null)
472 Error_OperatorCannotBeApplied (loc, OperName (Oper), Expr.Type);
475 // Reduce unary operator on predefined types
477 if (expr == this && Oper == Operator.UnaryPlus)
478 return Expr;
480 return expr;
483 public override Expression DoResolveLValue (EmitContext ec, Expression right)
485 return null;
488 public override void Emit (EmitContext ec)
490 EmitOperator (ec, type);
493 protected void EmitOperator (EmitContext ec, Type type)
495 ILGenerator ig = ec.ig;
497 switch (Oper) {
498 case Operator.UnaryPlus:
499 Expr.Emit (ec);
500 break;
502 case Operator.UnaryNegation:
503 if (ec.CheckState && !IsFloat (type)) {
504 ig.Emit (OpCodes.Ldc_I4_0);
505 if (type == TypeManager.int64_type)
506 ig.Emit (OpCodes.Conv_U8);
507 Expr.Emit (ec);
508 ig.Emit (OpCodes.Sub_Ovf);
509 } else {
510 Expr.Emit (ec);
511 ig.Emit (OpCodes.Neg);
514 break;
516 case Operator.LogicalNot:
517 Expr.Emit (ec);
518 ig.Emit (OpCodes.Ldc_I4_0);
519 ig.Emit (OpCodes.Ceq);
520 break;
522 case Operator.OnesComplement:
523 Expr.Emit (ec);
524 ig.Emit (OpCodes.Not);
525 break;
527 case Operator.AddressOf:
528 ((IMemoryLocation)Expr).AddressOf (ec, AddressOp.LoadStore);
529 break;
531 default:
532 throw new Exception ("This should not happen: Operator = "
533 + Oper.ToString ());
537 // Same trick as in Binary expression
539 if (enum_conversion != null)
540 enum_conversion.Emit (ec);
543 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
545 if (Oper == Operator.LogicalNot)
546 Expr.EmitBranchable (ec, target, !on_true);
547 else
548 base.EmitBranchable (ec, target, on_true);
551 public override void EmitSideEffect (EmitContext ec)
553 Expr.EmitSideEffect (ec);
556 public static void Error_OperatorCannotBeApplied (Location loc, string oper, Type t)
558 Report.Error (23, loc, "The `{0}' operator cannot be applied to operand of type `{1}'",
559 oper, TypeManager.CSharpName (t));
562 static bool IsFloat (Type t)
564 return t == TypeManager.float_type || t == TypeManager.double_type;
568 // Returns a stringified representation of the Operator
570 public static string OperName (Operator oper)
572 switch (oper) {
573 case Operator.UnaryPlus:
574 return "+";
575 case Operator.UnaryNegation:
576 return "-";
577 case Operator.LogicalNot:
578 return "!";
579 case Operator.OnesComplement:
580 return "~";
581 case Operator.AddressOf:
582 return "&";
585 throw new NotImplementedException (oper.ToString ());
588 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
590 type = storey.MutateType (type);
591 Expr.MutateHoistedGenericType (storey);
594 Expression ResolveAddressOf (EmitContext ec)
596 if (!ec.InUnsafe)
597 UnsafeError (loc);
599 Expr = Expr.DoResolveLValue (ec, EmptyExpression.UnaryAddress);
600 if (Expr == null || Expr.eclass != ExprClass.Variable) {
601 Error (211, "Cannot take the address of the given expression");
602 return null;
605 if (!TypeManager.VerifyUnManaged (Expr.Type, loc)) {
606 return null;
609 IVariableReference vr = Expr as IVariableReference;
610 bool is_fixed;
611 if (vr != null) {
612 VariableInfo vi = vr.VariableInfo;
613 if (vi != null) {
614 if (vi.LocalInfo != null)
615 vi.LocalInfo.Used = true;
618 // A variable is considered definitely assigned if you take its address.
620 vi.SetAssigned (ec);
623 is_fixed = vr.IsFixed;
624 vr.SetHasAddressTaken ();
626 if (vr.IsHoisted) {
627 AnonymousMethodExpression.Error_AddressOfCapturedVar (vr, loc);
629 } else {
630 IFixedExpression fe = Expr as IFixedExpression;
631 is_fixed = fe != null && fe.IsFixed;
634 if (!is_fixed && !ec.InFixedInitializer) {
635 Error (212, "You can only take the address of unfixed expression inside of a fixed statement initializer");
638 type = TypeManager.GetPointerType (Expr.Type);
639 eclass = ExprClass.Value;
640 return this;
643 Expression ResolvePrimitivePredefinedType (Expression expr)
645 expr = DoNumericPromotion (Oper, expr);
646 Type expr_type = expr.Type;
647 Type[] predefined = predefined_operators [(int) Oper];
648 foreach (Type t in predefined) {
649 if (t == expr_type)
650 return expr;
652 return null;
656 // Perform user-operator overload resolution
658 protected virtual Expression ResolveUserOperator (EmitContext ec, Expression expr)
660 CSharp.Operator.OpType op_type;
661 switch (Oper) {
662 case Operator.LogicalNot:
663 op_type = CSharp.Operator.OpType.LogicalNot; break;
664 case Operator.OnesComplement:
665 op_type = CSharp.Operator.OpType.OnesComplement; break;
666 case Operator.UnaryNegation:
667 op_type = CSharp.Operator.OpType.UnaryNegation; break;
668 case Operator.UnaryPlus:
669 op_type = CSharp.Operator.OpType.UnaryPlus; break;
670 default:
671 throw new InternalErrorException (Oper.ToString ());
674 string op_name = CSharp.Operator.GetMetadataName (op_type);
675 MethodGroupExpr user_op = MemberLookup (ec.ContainerType, expr.Type, op_name, MemberTypes.Method, AllBindingFlags, expr.Location) as MethodGroupExpr;
676 if (user_op == null)
677 return null;
679 ArrayList args = new ArrayList (1);
680 args.Add (new Argument (expr));
681 user_op = user_op.OverloadResolve (ec, ref args, false, expr.Location);
683 if (user_op == null)
684 return null;
686 Expr = ((Argument) args [0]).Expr;
687 return new UserOperatorCall (user_op, args, CreateExpressionTree, expr.Location);
691 // Unary user type overload resolution
693 Expression ResolveUserType (EmitContext ec, Expression expr)
695 Expression best_expr = ResolveUserOperator (ec, expr);
696 if (best_expr != null)
697 return best_expr;
699 Type[] predefined = predefined_operators [(int) Oper];
700 foreach (Type t in predefined) {
701 Expression oper_expr = Convert.UserDefinedConversion (ec, expr, t, expr.Location, false);
702 if (oper_expr == null)
703 continue;
706 // decimal type is predefined but has user-operators
708 if (oper_expr.Type == TypeManager.decimal_type)
709 oper_expr = ResolveUserType (ec, oper_expr);
710 else
711 oper_expr = ResolvePrimitivePredefinedType (oper_expr);
713 if (oper_expr == null)
714 continue;
716 if (best_expr == null) {
717 best_expr = oper_expr;
718 continue;
721 int result = MethodGroupExpr.BetterTypeConversion (ec, best_expr.Type, t);
722 if (result == 0) {
723 Report.Error (35, loc, "Operator `{0}' is ambiguous on an operand of type `{1}'",
724 OperName (Oper), TypeManager.CSharpName (expr.Type));
725 break;
728 if (result == 2)
729 best_expr = oper_expr;
732 if (best_expr == null)
733 return null;
736 // HACK: Decimal user-operator is included in standard operators
738 if (best_expr.Type == TypeManager.decimal_type)
739 return best_expr;
741 Expr = best_expr;
742 type = best_expr.Type;
743 return this;
746 protected override void CloneTo (CloneContext clonectx, Expression t)
748 Unary target = (Unary) t;
750 target.Expr = Expr.Clone (clonectx);
755 // Unary operators are turned into Indirection expressions
756 // after semantic analysis (this is so we can take the address
757 // of an indirection).
759 public class Indirection : Expression, IMemoryLocation, IAssignMethod, IFixedExpression {
760 Expression expr;
761 LocalTemporary temporary;
762 bool prepared;
764 public Indirection (Expression expr, Location l)
766 this.expr = expr;
767 loc = l;
770 public override Expression CreateExpressionTree (EmitContext ec)
772 Error_PointerInsideExpressionTree ();
773 return null;
776 protected override void CloneTo (CloneContext clonectx, Expression t)
778 Indirection target = (Indirection) t;
779 target.expr = expr.Clone (clonectx);
782 public override void Emit (EmitContext ec)
784 if (!prepared)
785 expr.Emit (ec);
787 LoadFromPtr (ec.ig, Type);
790 public void Emit (EmitContext ec, bool leave_copy)
792 Emit (ec);
793 if (leave_copy) {
794 ec.ig.Emit (OpCodes.Dup);
795 temporary = new LocalTemporary (expr.Type);
796 temporary.Store (ec);
800 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
802 prepared = prepare_for_load;
804 expr.Emit (ec);
806 if (prepare_for_load)
807 ec.ig.Emit (OpCodes.Dup);
809 source.Emit (ec);
810 if (leave_copy) {
811 ec.ig.Emit (OpCodes.Dup);
812 temporary = new LocalTemporary (expr.Type);
813 temporary.Store (ec);
816 StoreFromPtr (ec.ig, type);
818 if (temporary != null) {
819 temporary.Emit (ec);
820 temporary.Release (ec);
824 public void AddressOf (EmitContext ec, AddressOp Mode)
826 expr.Emit (ec);
829 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
831 return DoResolve (ec);
834 public override Expression DoResolve (EmitContext ec)
836 expr = expr.Resolve (ec);
837 if (expr == null)
838 return null;
840 if (!ec.InUnsafe)
841 UnsafeError (loc);
843 if (!expr.Type.IsPointer) {
844 Error (193, "The * or -> operator must be applied to a pointer");
845 return null;
848 if (expr.Type == TypeManager.void_ptr_type) {
849 Error (242, "The operation in question is undefined on void pointers");
850 return null;
853 type = TypeManager.GetElementType (expr.Type);
854 eclass = ExprClass.Variable;
855 return this;
858 public bool IsFixed {
859 get { return true; }
862 public override string ToString ()
864 return "*(" + expr + ")";
868 /// <summary>
869 /// Unary Mutator expressions (pre and post ++ and --)
870 /// </summary>
872 /// <remarks>
873 /// UnaryMutator implements ++ and -- expressions. It derives from
874 /// ExpressionStatement becuase the pre/post increment/decrement
875 /// operators can be used in a statement context.
877 /// FIXME: Idea, we could split this up in two classes, one simpler
878 /// for the common case, and one with the extra fields for more complex
879 /// classes (indexers require temporary access; overloaded require method)
881 /// </remarks>
882 public class UnaryMutator : ExpressionStatement {
883 [Flags]
884 public enum Mode : byte {
885 IsIncrement = 0,
886 IsDecrement = 1,
887 IsPre = 0,
888 IsPost = 2,
890 PreIncrement = 0,
891 PreDecrement = IsDecrement,
892 PostIncrement = IsPost,
893 PostDecrement = IsPost | IsDecrement
896 Mode mode;
897 bool is_expr = false;
898 bool recurse = false;
900 Expression expr;
903 // This is expensive for the simplest case.
905 UserOperatorCall method;
907 public UnaryMutator (Mode m, Expression e)
909 mode = m;
910 loc = e.Location;
911 expr = e;
914 static string OperName (Mode mode)
916 return (mode == Mode.PreIncrement || mode == Mode.PostIncrement) ?
917 "++" : "--";
920 /// <summary>
921 /// Returns whether an object of type `t' can be incremented
922 /// or decremented with add/sub (ie, basically whether we can
923 /// use pre-post incr-decr operations on it, but it is not a
924 /// System.Decimal, which we require operator overloading to catch)
925 /// </summary>
926 static bool IsIncrementableNumber (Type t)
928 return (t == TypeManager.sbyte_type) ||
929 (t == TypeManager.byte_type) ||
930 (t == TypeManager.short_type) ||
931 (t == TypeManager.ushort_type) ||
932 (t == TypeManager.int32_type) ||
933 (t == TypeManager.uint32_type) ||
934 (t == TypeManager.int64_type) ||
935 (t == TypeManager.uint64_type) ||
936 (t == TypeManager.char_type) ||
937 (TypeManager.IsSubclassOf (t, TypeManager.enum_type)) ||
938 (t == TypeManager.float_type) ||
939 (t == TypeManager.double_type) ||
940 (t.IsPointer && t != TypeManager.void_ptr_type);
943 Expression ResolveOperator (EmitContext ec)
945 type = expr.Type;
948 // The operand of the prefix/postfix increment decrement operators
949 // should be an expression that is classified as a variable,
950 // a property access or an indexer access
952 if (expr.eclass == ExprClass.Variable || expr.eclass == ExprClass.IndexerAccess || expr.eclass == ExprClass.PropertyAccess) {
953 expr = expr.ResolveLValue (ec, expr, Location);
954 } else {
955 Report.Error (1059, loc, "The operand of an increment or decrement operator must be a variable, property or indexer");
959 // Step 1: Perform Operator Overload location
961 MethodGroupExpr mg;
962 string op_name;
964 if (mode == Mode.PreIncrement || mode == Mode.PostIncrement)
965 op_name = Operator.GetMetadataName (Operator.OpType.Increment);
966 else
967 op_name = Operator.GetMetadataName (Operator.OpType.Decrement);
969 mg = MemberLookup (ec.ContainerType, type, op_name, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
971 if (mg != null) {
972 ArrayList args = new ArrayList (1);
973 args.Add (new Argument (expr, Argument.AType.Expression));
974 mg = mg.OverloadResolve (ec, ref args, false, loc);
975 if (mg == null)
976 return null;
978 method = new UserOperatorCall (mg, args, null, loc);
979 Convert.ImplicitConversionRequired (ec, method, type, loc);
980 return this;
983 if (!IsIncrementableNumber (type)) {
984 Error (187, "No such operator '" + OperName (mode) + "' defined for type '" +
985 TypeManager.CSharpName (type) + "'");
986 return null;
989 return this;
992 public override Expression CreateExpressionTree (EmitContext ec)
994 return new SimpleAssign (this, this).CreateExpressionTree (ec);
997 public override Expression DoResolve (EmitContext ec)
999 expr = expr.Resolve (ec);
1001 if (expr == null)
1002 return null;
1004 eclass = ExprClass.Value;
1006 #if GMCS_SOURCE
1007 if (TypeManager.IsNullableValueType (expr.Type))
1008 return new Nullable.LiftedUnaryMutator (mode, expr, loc).Resolve (ec);
1009 #endif
1011 return ResolveOperator (ec);
1015 // Loads the proper "1" into the stack based on the type, then it emits the
1016 // opcode for the operation requested
1018 void LoadOneAndEmitOp (EmitContext ec, Type t)
1021 // Measure if getting the typecode and using that is more/less efficient
1022 // that comparing types. t.GetTypeCode() is an internal call.
1024 ILGenerator ig = ec.ig;
1026 if (t == TypeManager.uint64_type || t == TypeManager.int64_type)
1027 LongConstant.EmitLong (ig, 1);
1028 else if (t == TypeManager.double_type)
1029 ig.Emit (OpCodes.Ldc_R8, 1.0);
1030 else if (t == TypeManager.float_type)
1031 ig.Emit (OpCodes.Ldc_R4, 1.0F);
1032 else if (t.IsPointer){
1033 Type et = TypeManager.GetElementType (t);
1034 int n = GetTypeSize (et);
1036 if (n == 0)
1037 ig.Emit (OpCodes.Sizeof, et);
1038 else {
1039 IntConstant.EmitInt (ig, n);
1040 ig.Emit (OpCodes.Conv_I);
1042 } else
1043 ig.Emit (OpCodes.Ldc_I4_1);
1046 // Now emit the operation
1049 Binary.Operator op = (mode & Mode.IsDecrement) != 0 ? Binary.Operator.Subtraction : Binary.Operator.Addition;
1050 Binary.EmitOperatorOpcode (ec, op, t);
1052 if (t == TypeManager.sbyte_type){
1053 if (ec.CheckState)
1054 ig.Emit (OpCodes.Conv_Ovf_I1);
1055 else
1056 ig.Emit (OpCodes.Conv_I1);
1057 } else if (t == TypeManager.byte_type){
1058 if (ec.CheckState)
1059 ig.Emit (OpCodes.Conv_Ovf_U1);
1060 else
1061 ig.Emit (OpCodes.Conv_U1);
1062 } else if (t == TypeManager.short_type){
1063 if (ec.CheckState)
1064 ig.Emit (OpCodes.Conv_Ovf_I2);
1065 else
1066 ig.Emit (OpCodes.Conv_I2);
1067 } else if (t == TypeManager.ushort_type || t == TypeManager.char_type){
1068 if (ec.CheckState)
1069 ig.Emit (OpCodes.Conv_Ovf_U2);
1070 else
1071 ig.Emit (OpCodes.Conv_U2);
1076 void EmitCode (EmitContext ec, bool is_expr)
1078 recurse = true;
1079 this.is_expr = is_expr;
1080 ((IAssignMethod) expr).EmitAssign (ec, this, is_expr && (mode == Mode.PreIncrement || mode == Mode.PreDecrement), true);
1083 public override void Emit (EmitContext ec)
1086 // We use recurse to allow ourselfs to be the source
1087 // of an assignment. This little hack prevents us from
1088 // having to allocate another expression
1090 if (recurse) {
1091 ((IAssignMethod) expr).Emit (ec, is_expr && (mode == Mode.PostIncrement || mode == Mode.PostDecrement));
1092 if (method == null)
1093 LoadOneAndEmitOp (ec, expr.Type);
1094 else
1095 ec.ig.Emit (OpCodes.Call, (MethodInfo)method.Method);
1096 recurse = false;
1097 return;
1100 EmitCode (ec, true);
1103 public override void EmitStatement (EmitContext ec)
1105 EmitCode (ec, false);
1108 protected override void CloneTo (CloneContext clonectx, Expression t)
1110 UnaryMutator target = (UnaryMutator) t;
1112 target.expr = expr.Clone (clonectx);
1116 /// <summary>
1117 /// Base class for the `Is' and `As' classes.
1118 /// </summary>
1120 /// <remarks>
1121 /// FIXME: Split this in two, and we get to save the `Operator' Oper
1122 /// size.
1123 /// </remarks>
1124 public abstract class Probe : Expression {
1125 public Expression ProbeType;
1126 protected Expression expr;
1127 protected TypeExpr probe_type_expr;
1129 public Probe (Expression expr, Expression probe_type, Location l)
1131 ProbeType = probe_type;
1132 loc = l;
1133 this.expr = expr;
1136 public Expression Expr {
1137 get {
1138 return expr;
1142 public override Expression DoResolve (EmitContext ec)
1144 probe_type_expr = ProbeType.ResolveAsTypeTerminal (ec, false);
1145 if (probe_type_expr == null)
1146 return null;
1148 expr = expr.Resolve (ec);
1149 if (expr == null)
1150 return null;
1152 if ((probe_type_expr.Type.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
1153 Report.Error (-244, loc, "The `{0}' operator cannot be applied to an operand of a static type",
1154 OperatorName);
1157 if (expr.Type.IsPointer || probe_type_expr.Type.IsPointer) {
1158 Report.Error (244, loc, "The `{0}' operator cannot be applied to an operand of pointer type",
1159 OperatorName);
1160 return null;
1163 if (expr.Type == TypeManager.anonymous_method_type) {
1164 Report.Error (837, loc, "The `{0}' operator cannot be applied to a lambda expression or anonymous method",
1165 OperatorName);
1166 return null;
1169 return this;
1172 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1174 expr.MutateHoistedGenericType (storey);
1175 probe_type_expr.MutateHoistedGenericType (storey);
1178 protected abstract string OperatorName { get; }
1180 protected override void CloneTo (CloneContext clonectx, Expression t)
1182 Probe target = (Probe) t;
1184 target.expr = expr.Clone (clonectx);
1185 target.ProbeType = ProbeType.Clone (clonectx);
1190 /// <summary>
1191 /// Implementation of the `is' operator.
1192 /// </summary>
1193 public class Is : Probe {
1194 Nullable.Unwrap expr_unwrap;
1196 public Is (Expression expr, Expression probe_type, Location l)
1197 : base (expr, probe_type, l)
1201 public override Expression CreateExpressionTree (EmitContext ec)
1203 ArrayList args = new ArrayList (2);
1204 args.Add (new Argument (expr.CreateExpressionTree (ec)));
1205 args.Add (new Argument (new TypeOf (probe_type_expr, loc)));
1206 return CreateExpressionFactoryCall ("TypeIs", args);
1209 public override void Emit (EmitContext ec)
1211 ILGenerator ig = ec.ig;
1212 if (expr_unwrap != null) {
1213 expr_unwrap.EmitCheck (ec);
1214 return;
1217 expr.Emit (ec);
1218 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1219 ig.Emit (OpCodes.Ldnull);
1220 ig.Emit (OpCodes.Cgt_Un);
1223 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
1225 ILGenerator ig = ec.ig;
1226 if (expr_unwrap != null) {
1227 expr_unwrap.EmitCheck (ec);
1228 } else {
1229 expr.Emit (ec);
1230 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1232 ig.Emit (on_true ? OpCodes.Brtrue : OpCodes.Brfalse, target);
1235 Expression CreateConstantResult (bool result)
1237 if (result)
1238 Report.Warning (183, 1, loc, "The given expression is always of the provided (`{0}') type",
1239 TypeManager.CSharpName (probe_type_expr.Type));
1240 else
1241 Report.Warning (184, 1, loc, "The given expression is never of the provided (`{0}') type",
1242 TypeManager.CSharpName (probe_type_expr.Type));
1244 return ReducedExpression.Create (new BoolConstant (result, loc), this);
1247 public override Expression DoResolve (EmitContext ec)
1249 if (base.DoResolve (ec) == null)
1250 return null;
1252 Type d = expr.Type;
1253 bool d_is_nullable = false;
1256 // If E is a method group or the null literal, or if the type of E is a reference
1257 // type or a nullable type and the value of E is null, the result is false
1259 if (expr.IsNull || expr.eclass == ExprClass.MethodGroup)
1260 return CreateConstantResult (false);
1262 if (TypeManager.IsNullableType (d) && !TypeManager.ContainsGenericParameters (d)) {
1263 d = TypeManager.GetTypeArguments (d) [0];
1264 d_is_nullable = true;
1267 type = TypeManager.bool_type;
1268 eclass = ExprClass.Value;
1269 Type t = probe_type_expr.Type;
1270 bool t_is_nullable = false;
1271 if (TypeManager.IsNullableType (t) && !TypeManager.ContainsGenericParameters (t)) {
1272 t = TypeManager.GetTypeArguments (t) [0];
1273 t_is_nullable = true;
1276 if (t.IsValueType) {
1277 if (d == t) {
1279 // D and T are the same value types but D can be null
1281 if (d_is_nullable && !t_is_nullable) {
1282 expr_unwrap = Nullable.Unwrap.Create (expr, ec);
1283 return this;
1287 // The result is true if D and T are the same value types
1289 return CreateConstantResult (true);
1292 if (TypeManager.IsGenericParameter (d))
1293 return ResolveGenericParameter (t, d);
1296 // An unboxing conversion exists
1298 if (Convert.ExplicitReferenceConversionExists (d, t))
1299 return this;
1300 } else {
1301 if (TypeManager.IsGenericParameter (t))
1302 return ResolveGenericParameter (d, t);
1304 if (d.IsValueType) {
1305 bool temp;
1306 if (Convert.ImplicitBoxingConversionExists (expr, t, out temp))
1307 return CreateConstantResult (true);
1308 } else {
1309 if (TypeManager.IsGenericParameter (d))
1310 return ResolveGenericParameter (t, d);
1312 if (TypeManager.ContainsGenericParameters (d))
1313 return this;
1315 if (Convert.ImplicitReferenceConversionExists (expr, t) ||
1316 Convert.ExplicitReferenceConversionExists (d, t)) {
1317 return this;
1322 return CreateConstantResult (false);
1325 Expression ResolveGenericParameter (Type d, Type t)
1327 #if GMCS_SOURCE
1328 GenericConstraints constraints = TypeManager.GetTypeParameterConstraints (t);
1329 if (constraints != null) {
1330 if (constraints.IsReferenceType && d.IsValueType)
1331 return CreateConstantResult (false);
1333 if (constraints.IsValueType && !d.IsValueType)
1334 return CreateConstantResult (TypeManager.IsEqual (d, t));
1337 if (!TypeManager.IsReferenceType (expr.Type))
1338 expr = new BoxedCast (expr, d);
1340 return this;
1341 #else
1342 return null;
1343 #endif
1346 protected override string OperatorName {
1347 get { return "is"; }
1351 /// <summary>
1352 /// Implementation of the `as' operator.
1353 /// </summary>
1354 public class As : Probe {
1355 bool do_isinst;
1356 Expression resolved_type;
1358 public As (Expression expr, Expression probe_type, Location l)
1359 : base (expr, probe_type, l)
1363 public override Expression CreateExpressionTree (EmitContext ec)
1365 ArrayList args = new ArrayList (2);
1366 args.Add (new Argument (expr.CreateExpressionTree (ec)));
1367 args.Add (new Argument (new TypeOf (probe_type_expr, loc)));
1368 return CreateExpressionFactoryCall ("TypeAs", args);
1371 public override void Emit (EmitContext ec)
1373 ILGenerator ig = ec.ig;
1375 expr.Emit (ec);
1377 if (do_isinst)
1378 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1380 #if GMCS_SOURCE
1381 if (TypeManager.IsNullableType (type))
1382 ig.Emit (OpCodes.Unbox_Any, type);
1383 #endif
1386 public override Expression DoResolve (EmitContext ec)
1388 // Because expr is modified
1389 if (eclass != ExprClass.Invalid)
1390 return this;
1392 if (resolved_type == null) {
1393 resolved_type = base.DoResolve (ec);
1395 if (resolved_type == null)
1396 return null;
1399 type = probe_type_expr.Type;
1400 eclass = ExprClass.Value;
1401 Type etype = expr.Type;
1403 if (!TypeManager.IsReferenceType (type) && !TypeManager.IsNullableType (type)) {
1404 if (probe_type_expr is TypeParameterExpr) {
1405 Report.Error (413, loc,
1406 "The `as' operator cannot be used with a non-reference type parameter `{0}'. Consider adding `class' or a reference type constraint",
1407 probe_type_expr.GetSignatureForError ());
1408 } else {
1409 Report.Error (77, loc,
1410 "The `as' operator cannot be used with a non-nullable value type `{0}'",
1411 TypeManager.CSharpName (type));
1413 return null;
1416 if (expr.IsNull && TypeManager.IsNullableType (type)) {
1417 return Nullable.LiftedNull.CreateFromExpression (this);
1420 Expression e = Convert.ImplicitConversion (ec, expr, type, loc);
1421 if (e != null){
1422 expr = e;
1423 do_isinst = false;
1424 return this;
1427 if (Convert.ExplicitReferenceConversionExists (etype, type)){
1428 if (TypeManager.IsGenericParameter (etype))
1429 expr = new BoxedCast (expr, etype);
1431 do_isinst = true;
1432 return this;
1435 if (TypeManager.ContainsGenericParameters (etype) ||
1436 TypeManager.ContainsGenericParameters (type)) {
1437 expr = new BoxedCast (expr, etype);
1438 do_isinst = true;
1439 return this;
1442 Report.Error (39, loc, "Cannot convert type `{0}' to `{1}' via a built-in conversion",
1443 TypeManager.CSharpName (etype), TypeManager.CSharpName (type));
1445 return null;
1448 protected override string OperatorName {
1449 get { return "as"; }
1452 public override bool GetAttributableValue (EmitContext ec, Type value_type, out object value)
1454 return expr.GetAttributableValue (ec, value_type, out value);
1458 /// <summary>
1459 /// This represents a typecast in the source language.
1461 /// FIXME: Cast expressions have an unusual set of parsing
1462 /// rules, we need to figure those out.
1463 /// </summary>
1464 public class Cast : Expression {
1465 Expression target_type;
1466 Expression expr;
1468 public Cast (Expression cast_type, Expression expr)
1469 : this (cast_type, expr, cast_type.Location)
1473 public Cast (Expression cast_type, Expression expr, Location loc)
1475 this.target_type = cast_type;
1476 this.expr = expr;
1477 this.loc = loc;
1480 public Expression TargetType {
1481 get { return target_type; }
1484 public Expression Expr {
1485 get { return expr; }
1488 public override Expression CreateExpressionTree (EmitContext ec)
1490 throw new NotSupportedException ("ET");
1493 public override Expression DoResolve (EmitContext ec)
1495 expr = expr.Resolve (ec);
1496 if (expr == null)
1497 return null;
1499 TypeExpr target = target_type.ResolveAsTypeTerminal (ec, false);
1500 if (target == null)
1501 return null;
1503 type = target.Type;
1505 if (type.IsAbstract && type.IsSealed) {
1506 Report.Error (716, loc, "Cannot convert to static type `{0}'", TypeManager.CSharpName (type));
1507 return null;
1510 eclass = ExprClass.Value;
1512 Constant c = expr as Constant;
1513 if (c != null) {
1514 c = c.TryReduce (ec, type, loc);
1515 if (c != null)
1516 return c;
1519 if (type.IsPointer && !ec.InUnsafe) {
1520 UnsafeError (loc);
1521 return null;
1523 expr = Convert.ExplicitConversion (ec, expr, type, loc);
1524 return expr;
1527 public override void Emit (EmitContext ec)
1529 throw new Exception ("Should not happen");
1532 protected override void CloneTo (CloneContext clonectx, Expression t)
1534 Cast target = (Cast) t;
1536 target.target_type = target_type.Clone (clonectx);
1537 target.expr = expr.Clone (clonectx);
1542 // C# 2.0 Default value expression
1544 public class DefaultValueExpression : Expression
1546 Expression expr;
1548 public DefaultValueExpression (Expression expr, Location loc)
1550 this.expr = expr;
1551 this.loc = loc;
1554 public override Expression CreateExpressionTree (EmitContext ec)
1556 ArrayList args = new ArrayList (2);
1557 args.Add (new Argument (this));
1558 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
1559 return CreateExpressionFactoryCall ("Constant", args);
1562 public override Expression DoResolve (EmitContext ec)
1564 TypeExpr texpr = expr.ResolveAsTypeTerminal (ec, false);
1565 if (texpr == null)
1566 return null;
1568 type = texpr.Type;
1570 if ((type.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
1571 Report.Error (-244, loc, "The `default value' operator cannot be applied to an operand of a static type");
1574 if (type.IsPointer)
1575 return new NullLiteral (Location).ConvertImplicitly (type);
1577 if (TypeManager.IsReferenceType (type)) {
1578 return new EmptyConstantCast (new NullLiteral (Location), type);
1580 // TODO: ET needs
1581 // return ReducedExpression.Create (new NullLiteral (Location), this);
1584 Constant c = New.Constantify (type);
1585 if (c != null)
1586 return c;
1588 eclass = ExprClass.Variable;
1589 return this;
1592 public override void Emit (EmitContext ec)
1594 LocalTemporary temp_storage = new LocalTemporary(type);
1596 temp_storage.AddressOf(ec, AddressOp.LoadStore);
1597 ec.ig.Emit(OpCodes.Initobj, type);
1598 temp_storage.Emit(ec);
1601 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1603 type = storey.MutateType (type);
1606 protected override void CloneTo (CloneContext clonectx, Expression t)
1608 DefaultValueExpression target = (DefaultValueExpression) t;
1610 target.expr = expr.Clone (clonectx);
1614 /// <summary>
1615 /// Binary operators
1616 /// </summary>
1617 public class Binary : Expression {
1619 protected class PredefinedOperator {
1620 protected readonly Type left;
1621 protected readonly Type right;
1622 public readonly Operator OperatorsMask;
1623 public Type ReturnType;
1625 public PredefinedOperator (Type ltype, Type rtype, Operator op_mask)
1626 : this (ltype, rtype, op_mask, ltype)
1630 public PredefinedOperator (Type type, Operator op_mask, Type return_type)
1631 : this (type, type, op_mask, return_type)
1635 public PredefinedOperator (Type type, Operator op_mask)
1636 : this (type, type, op_mask, type)
1640 public PredefinedOperator (Type ltype, Type rtype, Operator op_mask, Type return_type)
1642 if ((op_mask & Operator.ValuesOnlyMask) != 0)
1643 throw new InternalErrorException ("Only masked values can be used");
1645 this.left = ltype;
1646 this.right = rtype;
1647 this.OperatorsMask = op_mask;
1648 this.ReturnType = return_type;
1651 public virtual Expression ConvertResult (EmitContext ec, Binary b)
1653 b.type = ReturnType;
1655 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1656 b.right = Convert.ImplicitConversion (ec, b.right, right, b.right.Location);
1659 // A user operators does not support multiple user conversions, but decimal type
1660 // is considered to be predefined type therefore we apply predefined operators rules
1661 // and then look for decimal user-operator implementation
1663 if (left == TypeManager.decimal_type)
1664 return b.ResolveUserOperator (ec, b.left.Type, b.right.Type);
1666 return b;
1669 public bool IsPrimitiveApplicable (Type ltype, Type rtype)
1672 // We are dealing with primitive types only
1674 return left == ltype && ltype == rtype;
1677 public virtual bool IsApplicable (EmitContext ec, Expression lexpr, Expression rexpr)
1679 if (TypeManager.IsEqual (left, lexpr.Type) &&
1680 TypeManager.IsEqual (right, rexpr.Type))
1681 return true;
1683 return Convert.ImplicitConversionExists (ec, lexpr, left) &&
1684 Convert.ImplicitConversionExists (ec, rexpr, right);
1687 public PredefinedOperator ResolveBetterOperator (EmitContext ec, PredefinedOperator best_operator)
1689 int result = 0;
1690 if (left != null && best_operator.left != null) {
1691 result = MethodGroupExpr.BetterTypeConversion (ec, best_operator.left, left);
1695 // When second arguments are same as the first one, the result is same
1697 if (right != null && (left != right || best_operator.left != best_operator.right)) {
1698 result |= MethodGroupExpr.BetterTypeConversion (ec, best_operator.right, right);
1701 if (result == 0 || result > 2)
1702 return null;
1704 return result == 1 ? best_operator : this;
1708 class PredefinedStringOperator : PredefinedOperator {
1709 public PredefinedStringOperator (Type type, Operator op_mask)
1710 : base (type, op_mask, type)
1712 ReturnType = TypeManager.string_type;
1715 public PredefinedStringOperator (Type ltype, Type rtype, Operator op_mask)
1716 : base (ltype, rtype, op_mask)
1718 ReturnType = TypeManager.string_type;
1721 public override Expression ConvertResult (EmitContext ec, Binary b)
1724 // Use original expression for nullable arguments
1726 Nullable.Unwrap unwrap = b.left as Nullable.Unwrap;
1727 if (unwrap != null)
1728 b.left = unwrap.Original;
1730 unwrap = b.right as Nullable.Unwrap;
1731 if (unwrap != null)
1732 b.right = unwrap.Original;
1734 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1735 b.right = Convert.ImplicitConversion (ec, b.right, right, b.right.Location);
1738 // Start a new concat expression using converted expression
1740 return new StringConcat (ec, b.loc, b.left, b.right).Resolve (ec);
1744 class PredefinedShiftOperator : PredefinedOperator {
1745 public PredefinedShiftOperator (Type ltype, Operator op_mask) :
1746 base (ltype, TypeManager.int32_type, op_mask)
1750 public override Expression ConvertResult (EmitContext ec, Binary b)
1752 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1754 Expression expr_tree_expr = EmptyCast.Create (b.right, TypeManager.int32_type);
1756 int right_mask = left == TypeManager.int32_type || left == TypeManager.uint32_type ? 0x1f : 0x3f;
1759 // b = b.left >> b.right & (0x1f|0x3f)
1761 b.right = new Binary (Operator.BitwiseAnd,
1762 b.right, new IntConstant (right_mask, b.right.Location)).Resolve (ec);
1765 // Expression tree representation does not use & mask
1767 b.right = ReducedExpression.Create (b.right, expr_tree_expr).Resolve (ec);
1768 b.type = ReturnType;
1769 return b;
1773 class PredefinedPointerOperator : PredefinedOperator {
1774 public PredefinedPointerOperator (Type ltype, Type rtype, Operator op_mask)
1775 : base (ltype, rtype, op_mask)
1779 public PredefinedPointerOperator (Type ltype, Type rtype, Operator op_mask, Type retType)
1780 : base (ltype, rtype, op_mask, retType)
1784 public PredefinedPointerOperator (Type type, Operator op_mask, Type return_type)
1785 : base (type, op_mask, return_type)
1789 public override bool IsApplicable (EmitContext ec, Expression lexpr, Expression rexpr)
1791 if (left == null) {
1792 if (!lexpr.Type.IsPointer)
1793 return false;
1794 } else {
1795 if (!Convert.ImplicitConversionExists (ec, lexpr, left))
1796 return false;
1799 if (right == null) {
1800 if (!rexpr.Type.IsPointer)
1801 return false;
1802 } else {
1803 if (!Convert.ImplicitConversionExists (ec, rexpr, right))
1804 return false;
1807 return true;
1810 public override Expression ConvertResult (EmitContext ec, Binary b)
1812 if (left != null) {
1813 b.left = EmptyCast.Create (b.left, left);
1814 } else if (right != null) {
1815 b.right = EmptyCast.Create (b.right, right);
1818 Type r_type = ReturnType;
1819 Expression left_arg, right_arg;
1820 if (r_type == null) {
1821 if (left == null) {
1822 left_arg = b.left;
1823 right_arg = b.right;
1824 r_type = b.left.Type;
1825 } else {
1826 left_arg = b.right;
1827 right_arg = b.left;
1828 r_type = b.right.Type;
1830 } else {
1831 left_arg = b.left;
1832 right_arg = b.right;
1835 return new PointerArithmetic (b.oper, left_arg, right_arg, r_type, b.loc).Resolve (ec);
1839 [Flags]
1840 public enum Operator {
1841 Multiply = 0 | ArithmeticMask,
1842 Division = 1 | ArithmeticMask,
1843 Modulus = 2 | ArithmeticMask,
1844 Addition = 3 | ArithmeticMask | AdditionMask,
1845 Subtraction = 4 | ArithmeticMask | SubtractionMask,
1847 LeftShift = 5 | ShiftMask,
1848 RightShift = 6 | ShiftMask,
1850 LessThan = 7 | ComparisonMask | RelationalMask,
1851 GreaterThan = 8 | ComparisonMask | RelationalMask,
1852 LessThanOrEqual = 9 | ComparisonMask | RelationalMask,
1853 GreaterThanOrEqual = 10 | ComparisonMask | RelationalMask,
1854 Equality = 11 | ComparisonMask | EqualityMask,
1855 Inequality = 12 | ComparisonMask | EqualityMask,
1857 BitwiseAnd = 13 | BitwiseMask,
1858 ExclusiveOr = 14 | BitwiseMask,
1859 BitwiseOr = 15 | BitwiseMask,
1861 LogicalAnd = 16 | LogicalMask,
1862 LogicalOr = 17 | LogicalMask,
1865 // Operator masks
1867 ValuesOnlyMask = ArithmeticMask - 1,
1868 ArithmeticMask = 1 << 5,
1869 ShiftMask = 1 << 6,
1870 ComparisonMask = 1 << 7,
1871 EqualityMask = 1 << 8,
1872 BitwiseMask = 1 << 9,
1873 LogicalMask = 1 << 10,
1874 AdditionMask = 1 << 11,
1875 SubtractionMask = 1 << 12,
1876 RelationalMask = 1 << 13
1879 readonly Operator oper;
1880 protected Expression left, right;
1881 readonly bool is_compound;
1882 Expression enum_conversion;
1884 static PredefinedOperator [] standard_operators;
1885 static PredefinedOperator [] pointer_operators;
1887 public Binary (Operator oper, Expression left, Expression right, bool isCompound)
1888 : this (oper, left, right)
1890 this.is_compound = isCompound;
1893 public Binary (Operator oper, Expression left, Expression right)
1895 this.oper = oper;
1896 this.left = left;
1897 this.right = right;
1898 this.loc = left.Location;
1901 public Operator Oper {
1902 get {
1903 return oper;
1907 /// <summary>
1908 /// Returns a stringified representation of the Operator
1909 /// </summary>
1910 string OperName (Operator oper)
1912 string s;
1913 switch (oper){
1914 case Operator.Multiply:
1915 s = "*";
1916 break;
1917 case Operator.Division:
1918 s = "/";
1919 break;
1920 case Operator.Modulus:
1921 s = "%";
1922 break;
1923 case Operator.Addition:
1924 s = "+";
1925 break;
1926 case Operator.Subtraction:
1927 s = "-";
1928 break;
1929 case Operator.LeftShift:
1930 s = "<<";
1931 break;
1932 case Operator.RightShift:
1933 s = ">>";
1934 break;
1935 case Operator.LessThan:
1936 s = "<";
1937 break;
1938 case Operator.GreaterThan:
1939 s = ">";
1940 break;
1941 case Operator.LessThanOrEqual:
1942 s = "<=";
1943 break;
1944 case Operator.GreaterThanOrEqual:
1945 s = ">=";
1946 break;
1947 case Operator.Equality:
1948 s = "==";
1949 break;
1950 case Operator.Inequality:
1951 s = "!=";
1952 break;
1953 case Operator.BitwiseAnd:
1954 s = "&";
1955 break;
1956 case Operator.BitwiseOr:
1957 s = "|";
1958 break;
1959 case Operator.ExclusiveOr:
1960 s = "^";
1961 break;
1962 case Operator.LogicalOr:
1963 s = "||";
1964 break;
1965 case Operator.LogicalAnd:
1966 s = "&&";
1967 break;
1968 default:
1969 s = oper.ToString ();
1970 break;
1973 if (is_compound)
1974 return s + "=";
1976 return s;
1979 public static void Error_OperatorCannotBeApplied (Expression left, Expression right, Operator oper, Location loc)
1981 new Binary (oper, left, right).Error_OperatorCannotBeApplied (left, right);
1984 public static void Error_OperatorCannotBeApplied (Expression left, Expression right, string oper, Location loc)
1986 string l, r;
1987 // TODO: This should be handled as Type of method group in CSharpName
1988 if (left.eclass == ExprClass.MethodGroup)
1989 l = left.ExprClassName;
1990 else
1991 l = TypeManager.CSharpName (left.Type);
1993 if (right.eclass == ExprClass.MethodGroup)
1994 r = right.ExprClassName;
1995 else
1996 r = TypeManager.CSharpName (right.Type);
1998 Report.Error (19, loc, "Operator `{0}' cannot be applied to operands of type `{1}' and `{2}'",
1999 oper, l, r);
2002 protected void Error_OperatorCannotBeApplied (Expression left, Expression right)
2004 Error_OperatorCannotBeApplied (left, right, OperName (oper), loc);
2007 static string GetOperatorMetadataName (Operator op)
2009 CSharp.Operator.OpType op_type;
2010 switch (op) {
2011 case Operator.Addition:
2012 op_type = CSharp.Operator.OpType.Addition; break;
2013 case Operator.BitwiseAnd:
2014 op_type = CSharp.Operator.OpType.BitwiseAnd; break;
2015 case Operator.BitwiseOr:
2016 op_type = CSharp.Operator.OpType.BitwiseOr; break;
2017 case Operator.Division:
2018 op_type = CSharp.Operator.OpType.Division; break;
2019 case Operator.Equality:
2020 op_type = CSharp.Operator.OpType.Equality; break;
2021 case Operator.ExclusiveOr:
2022 op_type = CSharp.Operator.OpType.ExclusiveOr; break;
2023 case Operator.GreaterThan:
2024 op_type = CSharp.Operator.OpType.GreaterThan; break;
2025 case Operator.GreaterThanOrEqual:
2026 op_type = CSharp.Operator.OpType.GreaterThanOrEqual; break;
2027 case Operator.Inequality:
2028 op_type = CSharp.Operator.OpType.Inequality; break;
2029 case Operator.LeftShift:
2030 op_type = CSharp.Operator.OpType.LeftShift; break;
2031 case Operator.LessThan:
2032 op_type = CSharp.Operator.OpType.LessThan; break;
2033 case Operator.LessThanOrEqual:
2034 op_type = CSharp.Operator.OpType.LessThanOrEqual; break;
2035 case Operator.Modulus:
2036 op_type = CSharp.Operator.OpType.Modulus; break;
2037 case Operator.Multiply:
2038 op_type = CSharp.Operator.OpType.Multiply; break;
2039 case Operator.RightShift:
2040 op_type = CSharp.Operator.OpType.RightShift; break;
2041 case Operator.Subtraction:
2042 op_type = CSharp.Operator.OpType.Subtraction; break;
2043 default:
2044 throw new InternalErrorException (op.ToString ());
2047 return CSharp.Operator.GetMetadataName (op_type);
2050 public static void EmitOperatorOpcode (EmitContext ec, Operator oper, Type l)
2052 OpCode opcode;
2053 ILGenerator ig = ec.ig;
2055 switch (oper){
2056 case Operator.Multiply:
2057 if (ec.CheckState){
2058 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2059 opcode = OpCodes.Mul_Ovf;
2060 else if (!IsFloat (l))
2061 opcode = OpCodes.Mul_Ovf_Un;
2062 else
2063 opcode = OpCodes.Mul;
2064 } else
2065 opcode = OpCodes.Mul;
2067 break;
2069 case Operator.Division:
2070 if (IsUnsigned (l))
2071 opcode = OpCodes.Div_Un;
2072 else
2073 opcode = OpCodes.Div;
2074 break;
2076 case Operator.Modulus:
2077 if (IsUnsigned (l))
2078 opcode = OpCodes.Rem_Un;
2079 else
2080 opcode = OpCodes.Rem;
2081 break;
2083 case Operator.Addition:
2084 if (ec.CheckState){
2085 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2086 opcode = OpCodes.Add_Ovf;
2087 else if (!IsFloat (l))
2088 opcode = OpCodes.Add_Ovf_Un;
2089 else
2090 opcode = OpCodes.Add;
2091 } else
2092 opcode = OpCodes.Add;
2093 break;
2095 case Operator.Subtraction:
2096 if (ec.CheckState){
2097 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2098 opcode = OpCodes.Sub_Ovf;
2099 else if (!IsFloat (l))
2100 opcode = OpCodes.Sub_Ovf_Un;
2101 else
2102 opcode = OpCodes.Sub;
2103 } else
2104 opcode = OpCodes.Sub;
2105 break;
2107 case Operator.RightShift:
2108 if (IsUnsigned (l))
2109 opcode = OpCodes.Shr_Un;
2110 else
2111 opcode = OpCodes.Shr;
2112 break;
2114 case Operator.LeftShift:
2115 opcode = OpCodes.Shl;
2116 break;
2118 case Operator.Equality:
2119 opcode = OpCodes.Ceq;
2120 break;
2122 case Operator.Inequality:
2123 ig.Emit (OpCodes.Ceq);
2124 ig.Emit (OpCodes.Ldc_I4_0);
2126 opcode = OpCodes.Ceq;
2127 break;
2129 case Operator.LessThan:
2130 if (IsUnsigned (l))
2131 opcode = OpCodes.Clt_Un;
2132 else
2133 opcode = OpCodes.Clt;
2134 break;
2136 case Operator.GreaterThan:
2137 if (IsUnsigned (l))
2138 opcode = OpCodes.Cgt_Un;
2139 else
2140 opcode = OpCodes.Cgt;
2141 break;
2143 case Operator.LessThanOrEqual:
2144 if (IsUnsigned (l) || IsFloat (l))
2145 ig.Emit (OpCodes.Cgt_Un);
2146 else
2147 ig.Emit (OpCodes.Cgt);
2148 ig.Emit (OpCodes.Ldc_I4_0);
2150 opcode = OpCodes.Ceq;
2151 break;
2153 case Operator.GreaterThanOrEqual:
2154 if (IsUnsigned (l) || IsFloat (l))
2155 ig.Emit (OpCodes.Clt_Un);
2156 else
2157 ig.Emit (OpCodes.Clt);
2159 ig.Emit (OpCodes.Ldc_I4_0);
2161 opcode = OpCodes.Ceq;
2162 break;
2164 case Operator.BitwiseOr:
2165 opcode = OpCodes.Or;
2166 break;
2168 case Operator.BitwiseAnd:
2169 opcode = OpCodes.And;
2170 break;
2172 case Operator.ExclusiveOr:
2173 opcode = OpCodes.Xor;
2174 break;
2176 default:
2177 throw new InternalErrorException (oper.ToString ());
2180 ig.Emit (opcode);
2183 static bool IsUnsigned (Type t)
2185 if (t.IsPointer)
2186 return true;
2188 return (t == TypeManager.uint32_type || t == TypeManager.uint64_type ||
2189 t == TypeManager.ushort_type || t == TypeManager.byte_type);
2192 static bool IsFloat (Type t)
2194 return t == TypeManager.float_type || t == TypeManager.double_type;
2197 Expression ResolveOperator (EmitContext ec)
2199 Type l = left.Type;
2200 Type r = right.Type;
2201 Expression expr;
2202 bool primitives_only = false;
2204 if (standard_operators == null)
2205 CreateStandardOperatorsTable ();
2208 // Handles predefined primitive types
2210 if (TypeManager.IsPrimitiveType (l) && TypeManager.IsPrimitiveType (r)) {
2211 if ((oper & Operator.ShiftMask) == 0) {
2212 if (l != TypeManager.bool_type && !DoBinaryOperatorPromotion (ec))
2213 return null;
2215 primitives_only = true;
2217 } else {
2218 // Pointers
2219 if (l.IsPointer || r.IsPointer)
2220 return ResolveOperatorPointer (ec, l, r);
2222 // Enums
2223 bool lenum = TypeManager.IsEnumType (l);
2224 bool renum = TypeManager.IsEnumType (r);
2225 if (lenum || renum) {
2226 expr = ResolveOperatorEnum (ec, lenum, renum, l, r);
2228 // TODO: Can this be ambiguous
2229 if (expr != null)
2230 return expr;
2233 // Delegates
2234 if ((oper == Operator.Addition || oper == Operator.Subtraction || (oper & Operator.EqualityMask) != 0) &&
2235 (TypeManager.IsDelegateType (l) || TypeManager.IsDelegateType (r))) {
2237 expr = ResolveOperatorDelegate (ec, l, r);
2239 // TODO: Can this be ambiguous
2240 if (expr != null)
2241 return expr;
2244 // User operators
2245 expr = ResolveUserOperator (ec, l, r);
2246 if (expr != null)
2247 return expr;
2249 // Predefined reference types equality
2250 if ((oper & Operator.EqualityMask) != 0) {
2251 expr = ResolveOperatorEqualityRerefence (ec, l, r);
2252 if (expr != null)
2253 return expr;
2257 return ResolveOperatorPredefined (ec, standard_operators, primitives_only, null);
2260 // at least one of 'left' or 'right' is an enumeration constant (EnumConstant or SideEffectConstant or ...)
2261 // if 'left' is not an enumeration constant, create one from the type of 'right'
2262 Constant EnumLiftUp (EmitContext ec, Constant left, Constant right, Location loc)
2264 switch (oper) {
2265 case Operator.BitwiseOr:
2266 case Operator.BitwiseAnd:
2267 case Operator.ExclusiveOr:
2268 case Operator.Equality:
2269 case Operator.Inequality:
2270 case Operator.LessThan:
2271 case Operator.LessThanOrEqual:
2272 case Operator.GreaterThan:
2273 case Operator.GreaterThanOrEqual:
2274 if (TypeManager.IsEnumType (left.Type))
2275 return left;
2277 if (left.IsZeroInteger)
2278 return left.TryReduce (ec, right.Type, loc);
2280 break;
2282 case Operator.Addition:
2283 case Operator.Subtraction:
2284 return left;
2286 case Operator.Multiply:
2287 case Operator.Division:
2288 case Operator.Modulus:
2289 case Operator.LeftShift:
2290 case Operator.RightShift:
2291 if (TypeManager.IsEnumType (right.Type) || TypeManager.IsEnumType (left.Type))
2292 break;
2293 return left;
2295 Error_OperatorCannotBeApplied (this.left, this.right);
2296 return null;
2300 // The `|' operator used on types which were extended is dangerous
2302 void CheckBitwiseOrOnSignExtended ()
2304 OpcodeCast lcast = left as OpcodeCast;
2305 if (lcast != null) {
2306 if (IsUnsigned (lcast.UnderlyingType))
2307 lcast = null;
2310 OpcodeCast rcast = right as OpcodeCast;
2311 if (rcast != null) {
2312 if (IsUnsigned (rcast.UnderlyingType))
2313 rcast = null;
2316 if (lcast == null && rcast == null)
2317 return;
2319 // FIXME: consider constants
2321 Report.Warning (675, 3, loc,
2322 "The operator `|' used on the sign-extended type `{0}'. Consider casting to a smaller unsigned type first",
2323 TypeManager.CSharpName (lcast != null ? lcast.UnderlyingType : rcast.UnderlyingType));
2326 static void CreatePointerOperatorsTable ()
2328 ArrayList temp = new ArrayList ();
2331 // Pointer arithmetic:
2333 // T* operator + (T* x, int y); T* operator - (T* x, int y);
2334 // T* operator + (T* x, uint y); T* operator - (T* x, uint y);
2335 // T* operator + (T* x, long y); T* operator - (T* x, long y);
2336 // T* operator + (T* x, ulong y); T* operator - (T* x, ulong y);
2338 temp.Add (new PredefinedPointerOperator (null, TypeManager.int32_type, Operator.AdditionMask | Operator.SubtractionMask));
2339 temp.Add (new PredefinedPointerOperator (null, TypeManager.uint32_type, Operator.AdditionMask | Operator.SubtractionMask));
2340 temp.Add (new PredefinedPointerOperator (null, TypeManager.int64_type, Operator.AdditionMask | Operator.SubtractionMask));
2341 temp.Add (new PredefinedPointerOperator (null, TypeManager.uint64_type, Operator.AdditionMask | Operator.SubtractionMask));
2344 // T* operator + (int y, T* x);
2345 // T* operator + (uint y, T *x);
2346 // T* operator + (long y, T *x);
2347 // T* operator + (ulong y, T *x);
2349 temp.Add (new PredefinedPointerOperator (TypeManager.int32_type, null, Operator.AdditionMask, null));
2350 temp.Add (new PredefinedPointerOperator (TypeManager.uint32_type, null, Operator.AdditionMask, null));
2351 temp.Add (new PredefinedPointerOperator (TypeManager.int64_type, null, Operator.AdditionMask, null));
2352 temp.Add (new PredefinedPointerOperator (TypeManager.uint64_type, null, Operator.AdditionMask, null));
2355 // long operator - (T* x, T *y)
2357 temp.Add (new PredefinedPointerOperator (null, Operator.SubtractionMask, TypeManager.int64_type));
2359 pointer_operators = (PredefinedOperator []) temp.ToArray (typeof (PredefinedOperator));
2362 static void CreateStandardOperatorsTable ()
2364 ArrayList temp = new ArrayList ();
2365 Type bool_type = TypeManager.bool_type;
2367 temp.Add (new PredefinedOperator (TypeManager.int32_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2368 temp.Add (new PredefinedOperator (TypeManager.uint32_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2369 temp.Add (new PredefinedOperator (TypeManager.int64_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2370 temp.Add (new PredefinedOperator (TypeManager.uint64_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2371 temp.Add (new PredefinedOperator (TypeManager.float_type, Operator.ArithmeticMask));
2372 temp.Add (new PredefinedOperator (TypeManager.double_type, Operator.ArithmeticMask));
2373 temp.Add (new PredefinedOperator (TypeManager.decimal_type, Operator.ArithmeticMask));
2375 temp.Add (new PredefinedOperator (TypeManager.int32_type, Operator.ComparisonMask, bool_type));
2376 temp.Add (new PredefinedOperator (TypeManager.uint32_type, Operator.ComparisonMask, bool_type));
2377 temp.Add (new PredefinedOperator (TypeManager.int64_type, Operator.ComparisonMask, bool_type));
2378 temp.Add (new PredefinedOperator (TypeManager.uint64_type, Operator.ComparisonMask, bool_type));
2379 temp.Add (new PredefinedOperator (TypeManager.float_type, Operator.ComparisonMask, bool_type));
2380 temp.Add (new PredefinedOperator (TypeManager.double_type, Operator.ComparisonMask, bool_type));
2381 temp.Add (new PredefinedOperator (TypeManager.decimal_type, Operator.ComparisonMask, bool_type));
2383 temp.Add (new PredefinedOperator (TypeManager.string_type, Operator.EqualityMask, bool_type));
2385 temp.Add (new PredefinedStringOperator (TypeManager.string_type, Operator.AdditionMask));
2386 temp.Add (new PredefinedStringOperator (TypeManager.string_type, TypeManager.object_type, Operator.AdditionMask));
2387 temp.Add (new PredefinedStringOperator (TypeManager.object_type, TypeManager.string_type, Operator.AdditionMask));
2389 temp.Add (new PredefinedOperator (bool_type,
2390 Operator.BitwiseMask | Operator.LogicalMask | Operator.EqualityMask, bool_type));
2392 temp.Add (new PredefinedShiftOperator (TypeManager.int32_type, Operator.ShiftMask));
2393 temp.Add (new PredefinedShiftOperator (TypeManager.uint32_type, Operator.ShiftMask));
2394 temp.Add (new PredefinedShiftOperator (TypeManager.int64_type, Operator.ShiftMask));
2395 temp.Add (new PredefinedShiftOperator (TypeManager.uint64_type, Operator.ShiftMask));
2397 standard_operators = (PredefinedOperator []) temp.ToArray (typeof (PredefinedOperator));
2401 // Rules used during binary numeric promotion
2403 static bool DoNumericPromotion (ref Expression prim_expr, ref Expression second_expr, Type type)
2405 Expression temp;
2406 Type etype;
2408 Constant c = prim_expr as Constant;
2409 if (c != null) {
2410 temp = c.ConvertImplicitly (type);
2411 if (temp != null) {
2412 prim_expr = temp;
2413 return true;
2417 if (type == TypeManager.uint32_type) {
2418 etype = prim_expr.Type;
2419 if (etype == TypeManager.int32_type || etype == TypeManager.short_type || etype == TypeManager.sbyte_type) {
2420 type = TypeManager.int64_type;
2422 if (type != second_expr.Type) {
2423 c = second_expr as Constant;
2424 if (c != null)
2425 temp = c.ConvertImplicitly (type);
2426 else
2427 temp = Convert.ImplicitNumericConversion (second_expr, type);
2428 if (temp == null)
2429 return false;
2430 second_expr = temp;
2433 } else if (type == TypeManager.uint64_type) {
2435 // A compile-time error occurs if the other operand is of type sbyte, short, int, or long
2437 if (type == TypeManager.int32_type || type == TypeManager.int64_type ||
2438 type == TypeManager.sbyte_type || type == TypeManager.sbyte_type)
2439 return false;
2442 temp = Convert.ImplicitNumericConversion (prim_expr, type);
2443 if (temp == null)
2444 return false;
2446 prim_expr = temp;
2447 return true;
2451 // 7.2.6.2 Binary numeric promotions
2453 public bool DoBinaryOperatorPromotion (EmitContext ec)
2455 Type ltype = left.Type;
2456 Type rtype = right.Type;
2457 Expression temp;
2459 foreach (Type t in ConstantFold.binary_promotions) {
2460 if (t == ltype)
2461 return t == rtype || DoNumericPromotion (ref right, ref left, t);
2463 if (t == rtype)
2464 return t == ltype || DoNumericPromotion (ref left, ref right, t);
2467 Type int32 = TypeManager.int32_type;
2468 if (ltype != int32) {
2469 Constant c = left as Constant;
2470 if (c != null)
2471 temp = c.ConvertImplicitly (int32);
2472 else
2473 temp = Convert.ImplicitNumericConversion (left, int32);
2475 if (temp == null)
2476 return false;
2477 left = temp;
2480 if (rtype != int32) {
2481 Constant c = right as Constant;
2482 if (c != null)
2483 temp = c.ConvertImplicitly (int32);
2484 else
2485 temp = Convert.ImplicitNumericConversion (right, int32);
2487 if (temp == null)
2488 return false;
2489 right = temp;
2492 return true;
2495 public override Expression DoResolve (EmitContext ec)
2497 if (left == null)
2498 return null;
2500 if ((oper == Operator.Subtraction) && (left is ParenthesizedExpression)) {
2501 left = ((ParenthesizedExpression) left).Expr;
2502 left = left.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.Type);
2503 if (left == null)
2504 return null;
2506 if (left.eclass == ExprClass.Type) {
2507 Report.Error (75, loc, "To cast a negative value, you must enclose the value in parentheses");
2508 return null;
2510 } else
2511 left = left.Resolve (ec);
2513 if (left == null)
2514 return null;
2516 Constant lc = left as Constant;
2518 if (lc != null && lc.Type == TypeManager.bool_type &&
2519 ((oper == Operator.LogicalAnd && lc.IsDefaultValue) ||
2520 (oper == Operator.LogicalOr && !lc.IsDefaultValue))) {
2522 // FIXME: resolve right expression as unreachable
2523 // right.Resolve (ec);
2525 Report.Warning (429, 4, loc, "Unreachable expression code detected");
2526 return left;
2529 right = right.Resolve (ec);
2530 if (right == null)
2531 return null;
2533 eclass = ExprClass.Value;
2534 Constant rc = right as Constant;
2536 // The conversion rules are ignored in enum context but why
2537 if (!ec.InEnumContext && lc != null && rc != null && (TypeManager.IsEnumType (left.Type) || TypeManager.IsEnumType (right.Type))) {
2538 left = lc = EnumLiftUp (ec, lc, rc, loc);
2539 if (lc == null)
2540 return null;
2542 right = rc = EnumLiftUp (ec, rc, lc, loc);
2543 if (rc == null)
2544 return null;
2547 if (rc != null && lc != null) {
2548 int prev_e = Report.Errors;
2549 Expression e = ConstantFold.BinaryFold (
2550 ec, oper, lc, rc, loc);
2551 if (e != null || Report.Errors != prev_e)
2552 return e;
2553 } else {
2554 if ((oper == Operator.BitwiseAnd || oper == Operator.LogicalAnd) &&
2555 ((lc != null && lc.IsDefaultValue) || (rc != null && rc.IsDefaultValue))) {
2557 if ((ResolveOperator (ec)) == null) {
2558 Error_OperatorCannotBeApplied (left, right);
2559 return null;
2563 // The result is a constant with side-effect
2565 Constant side_effect = rc == null ?
2566 new SideEffectConstant (lc, right, loc) :
2567 new SideEffectConstant (rc, left, loc);
2569 return ReducedExpression.Create (side_effect, this);
2573 // Comparison warnings
2574 if ((oper & Operator.ComparisonMask) != 0) {
2575 if (left.Equals (right)) {
2576 Report.Warning (1718, 3, loc, "A comparison made to same variable. Did you mean to compare something else?");
2578 CheckUselessComparison (lc, right.Type);
2579 CheckUselessComparison (rc, left.Type);
2582 if (RootContext.Version >= LanguageVersion.ISO_2 &&
2583 ((TypeManager.IsNullableType (left.Type) && (right is NullLiteral || TypeManager.IsNullableType (right.Type) || TypeManager.IsValueType (right.Type))) ||
2584 (left.Type.IsValueType && right is NullLiteral) ||
2585 (TypeManager.IsNullableType (right.Type) && (left is NullLiteral || TypeManager.IsNullableType (left.Type) || TypeManager.IsValueType (left.Type))) ||
2586 (right.Type.IsValueType && left is NullLiteral)))
2587 return new Nullable.LiftedBinaryOperator (oper, left, right, loc).Resolve (ec);
2589 return DoResolveCore (ec, left, right);
2592 protected Expression DoResolveCore (EmitContext ec, Expression left_orig, Expression right_orig)
2594 Expression expr = ResolveOperator (ec);
2595 if (expr == null)
2596 Error_OperatorCannotBeApplied (left_orig, right_orig);
2598 if (left == null || right == null)
2599 throw new InternalErrorException ("Invalid conversion");
2601 if (oper == Operator.BitwiseOr)
2602 CheckBitwiseOrOnSignExtended ();
2604 return expr;
2607 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2609 left.MutateHoistedGenericType (storey);
2610 right.MutateHoistedGenericType (storey);
2614 // D operator + (D x, D y)
2615 // D operator - (D x, D y)
2616 // bool operator == (D x, D y)
2617 // bool operator != (D x, D y)
2619 Expression ResolveOperatorDelegate (EmitContext ec, Type l, Type r)
2621 bool is_equality = (oper & Operator.EqualityMask) != 0;
2622 if (!TypeManager.IsEqual (l, r)) {
2623 Expression tmp;
2624 if (right.eclass == ExprClass.MethodGroup || (r == TypeManager.anonymous_method_type && !is_equality)) {
2625 tmp = Convert.ImplicitConversionRequired (ec, right, l, loc);
2626 if (tmp == null)
2627 return null;
2628 right = tmp;
2629 r = right.Type;
2630 } else if (left.eclass == ExprClass.MethodGroup || (l == TypeManager.anonymous_method_type && !is_equality)) {
2631 tmp = Convert.ImplicitConversionRequired (ec, left, r, loc);
2632 if (tmp == null)
2633 return null;
2634 left = tmp;
2635 l = left.Type;
2636 } else {
2637 return null;
2642 // Resolve delegate equality as a user operator
2644 if (is_equality)
2645 return ResolveUserOperator (ec, l, r);
2647 MethodInfo method;
2648 ArrayList args = new ArrayList (2);
2649 args.Add (new Argument (left, Argument.AType.Expression));
2650 args.Add (new Argument (right, Argument.AType.Expression));
2652 if (oper == Operator.Addition) {
2653 if (TypeManager.delegate_combine_delegate_delegate == null) {
2654 TypeManager.delegate_combine_delegate_delegate = TypeManager.GetPredefinedMethod (
2655 TypeManager.delegate_type, "Combine", loc, TypeManager.delegate_type, TypeManager.delegate_type);
2658 method = TypeManager.delegate_combine_delegate_delegate;
2659 } else {
2660 if (TypeManager.delegate_remove_delegate_delegate == null) {
2661 TypeManager.delegate_remove_delegate_delegate = TypeManager.GetPredefinedMethod (
2662 TypeManager.delegate_type, "Remove", loc, TypeManager.delegate_type, TypeManager.delegate_type);
2665 method = TypeManager.delegate_remove_delegate_delegate;
2668 MethodGroupExpr mg = new MethodGroupExpr (new MemberInfo [] { method }, TypeManager.delegate_type, loc);
2669 mg = mg.OverloadResolve (ec, ref args, false, loc);
2671 return new ClassCast (new UserOperatorCall (mg, args, CreateExpressionTree, loc), l);
2675 // Enumeration operators
2677 Expression ResolveOperatorEnum (EmitContext ec, bool lenum, bool renum, Type ltype, Type rtype)
2680 // bool operator == (E x, E y);
2681 // bool operator != (E x, E y);
2682 // bool operator < (E x, E y);
2683 // bool operator > (E x, E y);
2684 // bool operator <= (E x, E y);
2685 // bool operator >= (E x, E y);
2687 // E operator & (E x, E y);
2688 // E operator | (E x, E y);
2689 // E operator ^ (E x, E y);
2691 // U operator - (E e, E f)
2692 // E operator - (E e, U x)
2694 // E operator + (U x, E e)
2695 // E operator + (E e, U x)
2697 if (!((oper & (Operator.ComparisonMask | Operator.BitwiseMask)) != 0 ||
2698 (oper == Operator.Subtraction && lenum) || (oper == Operator.Addition && lenum != renum)))
2699 return null;
2701 Expression ltemp = left;
2702 Expression rtemp = right;
2703 Type underlying_type;
2704 Expression expr;
2706 if ((oper & Operator.ComparisonMask | Operator.BitwiseMask) != 0) {
2707 if (renum) {
2708 expr = Convert.ImplicitConversion (ec, left, rtype, loc);
2709 if (expr != null) {
2710 left = expr;
2711 ltype = expr.Type;
2713 } else if (lenum) {
2714 expr = Convert.ImplicitConversion (ec, right, ltype, loc);
2715 if (expr != null) {
2716 right = expr;
2717 rtype = expr.Type;
2722 if (TypeManager.IsEqual (ltype, rtype)) {
2723 underlying_type = TypeManager.GetEnumUnderlyingType (ltype);
2725 if (left is Constant)
2726 left = ((Constant) left).ConvertExplicitly (false, underlying_type);
2727 else
2728 left = EmptyCast.Create (left, underlying_type);
2730 if (right is Constant)
2731 right = ((Constant) right).ConvertExplicitly (false, underlying_type);
2732 else
2733 right = EmptyCast.Create (right, underlying_type);
2734 } else if (lenum) {
2735 underlying_type = TypeManager.GetEnumUnderlyingType (ltype);
2737 if (oper != Operator.Subtraction && oper != Operator.Addition) {
2738 Constant c = right as Constant;
2739 if (c == null || !c.IsDefaultValue)
2740 return null;
2741 } else {
2742 if (!Convert.ImplicitStandardConversionExists (right, underlying_type))
2743 return null;
2745 right = Convert.ImplicitConversionStandard (ec, right, underlying_type, right.Location);
2748 if (left is Constant)
2749 left = ((Constant) left).ConvertExplicitly (false, underlying_type);
2750 else
2751 left = EmptyCast.Create (left, underlying_type);
2753 } else if (renum) {
2754 underlying_type = TypeManager.GetEnumUnderlyingType (rtype);
2756 if (oper != Operator.Addition) {
2757 Constant c = left as Constant;
2758 if (c == null || !c.IsDefaultValue)
2759 return null;
2760 } else {
2761 if (!Convert.ImplicitStandardConversionExists (left, underlying_type))
2762 return null;
2764 left = Convert.ImplicitConversionStandard (ec, left, underlying_type, left.Location);
2767 if (right is Constant)
2768 right = ((Constant) right).ConvertExplicitly (false, underlying_type);
2769 else
2770 right = EmptyCast.Create (right, underlying_type);
2772 } else {
2773 return null;
2777 // C# specification uses explicit cast syntax which means binary promotion
2778 // should happen, however it seems that csc does not do that
2780 if (!DoBinaryOperatorPromotion (ec)) {
2781 left = ltemp;
2782 right = rtemp;
2783 return null;
2786 Type res_type = null;
2787 if ((oper & Operator.BitwiseMask) != 0 || oper == Operator.Subtraction || oper == Operator.Addition) {
2788 Type promoted_type = lenum ? left.Type : right.Type;
2789 enum_conversion = Convert.ExplicitNumericConversion (
2790 new EmptyExpression (promoted_type), underlying_type);
2792 if (oper == Operator.Subtraction && renum && lenum)
2793 res_type = underlying_type;
2794 else if (oper == Operator.Addition && renum)
2795 res_type = rtype;
2796 else
2797 res_type = ltype;
2800 expr = ResolveOperatorPredefined (ec, standard_operators, true, res_type);
2801 if (!is_compound || expr == null)
2802 return expr;
2805 // TODO: Need to corectly implemented Coumpound Assigment for all operators
2806 // Section: 7.16.2
2808 if (Convert.ImplicitConversionExists (ec, left, rtype))
2809 return expr;
2811 if (!Convert.ImplicitConversionExists (ec, ltemp, rtype))
2812 return null;
2814 expr = Convert.ExplicitConversion (ec, expr, rtype, loc);
2815 return expr;
2819 // 7.9.6 Reference type equality operators
2821 Binary ResolveOperatorEqualityRerefence (EmitContext ec, Type l, Type r)
2824 // operator != (object a, object b)
2825 // operator == (object a, object b)
2828 // TODO: this method is almost equivalent to Convert.ImplicitReferenceConversion
2830 if (left.eclass == ExprClass.MethodGroup || right.eclass == ExprClass.MethodGroup)
2831 return null;
2833 type = TypeManager.bool_type;
2834 GenericConstraints constraints;
2836 bool lgen = TypeManager.IsGenericParameter (l);
2838 if (TypeManager.IsEqual (l, r)) {
2839 if (lgen) {
2841 // Only allow to compare same reference type parameter
2843 constraints = TypeManager.GetTypeParameterConstraints (l);
2844 if (constraints != null && constraints.IsReferenceType)
2845 return this;
2847 return null;
2850 if (l == TypeManager.anonymous_method_type)
2851 return null;
2853 if (TypeManager.IsValueType (l))
2854 return null;
2856 return this;
2859 bool rgen = TypeManager.IsGenericParameter (r);
2862 // a, Both operands are reference-type values or the value null
2863 // b, One operand is a value of type T where T is a type-parameter and
2864 // the other operand is the value null. Furthermore T does not have the
2865 // value type constrain
2867 if (left is NullLiteral || right is NullLiteral) {
2868 if (lgen) {
2869 constraints = TypeManager.GetTypeParameterConstraints (l);
2870 if (constraints != null && constraints.HasValueTypeConstraint)
2871 return null;
2873 left = new BoxedCast (left, TypeManager.object_type);
2874 return this;
2877 if (rgen) {
2878 constraints = TypeManager.GetTypeParameterConstraints (r);
2879 if (constraints != null && constraints.HasValueTypeConstraint)
2880 return null;
2882 right = new BoxedCast (right, TypeManager.object_type);
2883 return this;
2888 // An interface is converted to the object before the
2889 // standard conversion is applied. It's not clear from the
2890 // standard but it looks like it works like that.
2892 if (lgen) {
2893 constraints = TypeManager.GetTypeParameterConstraints (l);
2894 if (constraints == null || constraints.IsReferenceType)
2895 return null;
2896 } else if (l.IsInterface) {
2897 l = TypeManager.object_type;
2898 } else if (l.IsValueType) {
2899 return null;
2902 if (rgen) {
2903 constraints = TypeManager.GetTypeParameterConstraints (r);
2904 if (constraints == null || constraints.IsReferenceType)
2905 return null;
2906 } else if (r.IsInterface) {
2907 r = TypeManager.object_type;
2908 } else if (r.IsValueType) {
2909 return null;
2913 const string ref_comparison = "Possible unintended reference comparison. " +
2914 "Consider casting the {0} side of the expression to `string' to compare the values";
2917 // A standard implicit conversion exists from the type of either
2918 // operand to the type of the other operand
2920 if (Convert.ImplicitReferenceConversionExists (left, r)) {
2921 if (l == TypeManager.string_type)
2922 Report.Warning (253, 2, loc, ref_comparison, "right");
2924 return this;
2927 if (Convert.ImplicitReferenceConversionExists (right, l)) {
2928 if (r == TypeManager.string_type)
2929 Report.Warning (252, 2, loc, ref_comparison, "left");
2931 return this;
2934 return null;
2938 Expression ResolveOperatorPointer (EmitContext ec, Type l, Type r)
2941 // bool operator == (void* x, void* y);
2942 // bool operator != (void* x, void* y);
2943 // bool operator < (void* x, void* y);
2944 // bool operator > (void* x, void* y);
2945 // bool operator <= (void* x, void* y);
2946 // bool operator >= (void* x, void* y);
2948 if ((oper & Operator.ComparisonMask) != 0) {
2949 Expression temp;
2950 if (!l.IsPointer) {
2951 temp = Convert.ImplicitConversion (ec, left, r, left.Location);
2952 if (temp == null)
2953 return null;
2954 left = temp;
2957 if (!r.IsPointer) {
2958 temp = Convert.ImplicitConversion (ec, right, l, right.Location);
2959 if (temp == null)
2960 return null;
2961 right = temp;
2964 type = TypeManager.bool_type;
2965 return this;
2968 if (pointer_operators == null)
2969 CreatePointerOperatorsTable ();
2971 return ResolveOperatorPredefined (ec, pointer_operators, false, null);
2975 // Build-in operators method overloading
2977 protected virtual Expression ResolveOperatorPredefined (EmitContext ec, PredefinedOperator [] operators, bool primitives_only, Type enum_type)
2979 PredefinedOperator best_operator = null;
2980 Type l = left.Type;
2981 Type r = right.Type;
2982 Operator oper_mask = oper & ~Operator.ValuesOnlyMask;
2984 foreach (PredefinedOperator po in operators) {
2985 if ((po.OperatorsMask & oper_mask) == 0)
2986 continue;
2988 if (primitives_only) {
2989 if (!po.IsPrimitiveApplicable (l, r))
2990 continue;
2991 } else {
2992 if (!po.IsApplicable (ec, left, right))
2993 continue;
2996 if (best_operator == null) {
2997 best_operator = po;
2998 if (primitives_only)
2999 break;
3001 continue;
3004 best_operator = po.ResolveBetterOperator (ec, best_operator);
3006 if (best_operator == null) {
3007 Report.Error (34, loc, "Operator `{0}' is ambiguous on operands of type `{1}' and `{2}'",
3008 OperName (oper), left.GetSignatureForError (), right.GetSignatureForError ());
3010 best_operator = po;
3011 break;
3015 if (best_operator == null)
3016 return null;
3018 Expression expr = best_operator.ConvertResult (ec, this);
3019 if (enum_type == null)
3020 return expr;
3023 // HACK: required by enum_conversion
3025 expr.Type = enum_type;
3026 return EmptyCast.Create (expr, enum_type);
3030 // Performs user-operator overloading
3032 protected virtual Expression ResolveUserOperator (EmitContext ec, Type l, Type r)
3034 Operator user_oper;
3035 if (oper == Operator.LogicalAnd)
3036 user_oper = Operator.BitwiseAnd;
3037 else if (oper == Operator.LogicalOr)
3038 user_oper = Operator.BitwiseOr;
3039 else
3040 user_oper = oper;
3042 string op = GetOperatorMetadataName (user_oper);
3044 MethodGroupExpr left_operators = MemberLookup (ec.ContainerType, l, op, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
3045 MethodGroupExpr right_operators = null;
3047 if (!TypeManager.IsEqual (r, l)) {
3048 right_operators = MemberLookup (ec.ContainerType, r, op, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
3049 if (right_operators == null && left_operators == null)
3050 return null;
3051 } else if (left_operators == null) {
3052 return null;
3055 ArrayList args = new ArrayList (2);
3056 Argument larg = new Argument (left);
3057 args.Add (larg);
3058 Argument rarg = new Argument (right);
3059 args.Add (rarg);
3061 MethodGroupExpr union;
3064 // User-defined operator implementations always take precedence
3065 // over predefined operator implementations
3067 if (left_operators != null && right_operators != null) {
3068 if (IsPredefinedUserOperator (l, user_oper)) {
3069 union = right_operators.OverloadResolve (ec, ref args, true, loc);
3070 if (union == null)
3071 union = left_operators;
3072 } else if (IsPredefinedUserOperator (r, user_oper)) {
3073 union = left_operators.OverloadResolve (ec, ref args, true, loc);
3074 if (union == null)
3075 union = right_operators;
3076 } else {
3077 union = MethodGroupExpr.MakeUnionSet (left_operators, right_operators, loc);
3079 } else if (left_operators != null) {
3080 union = left_operators;
3081 } else {
3082 union = right_operators;
3085 union = union.OverloadResolve (ec, ref args, true, loc);
3086 if (union == null)
3087 return null;
3089 Expression oper_expr;
3091 // TODO: CreateExpressionTree is allocated every time
3092 if (user_oper != oper) {
3093 oper_expr = new ConditionalLogicalOperator (union, args, CreateExpressionTree,
3094 oper == Operator.LogicalAnd, loc).Resolve (ec);
3095 } else {
3096 oper_expr = new UserOperatorCall (union, args, CreateExpressionTree, loc);
3099 // This is used to check if a test 'x == null' can be optimized to a reference equals,
3100 // and not invoke user operator
3102 if ((oper & Operator.EqualityMask) != 0) {
3103 if ((left is NullLiteral && IsBuildInEqualityOperator (r)) ||
3104 (right is NullLiteral && IsBuildInEqualityOperator (l))) {
3105 type = TypeManager.bool_type;
3106 if (left is NullLiteral || right is NullLiteral)
3107 oper_expr = ReducedExpression.Create (this, oper_expr).Resolve (ec);
3108 } else if (union.DeclaringType == TypeManager.delegate_type && l != r) {
3110 // Two System.Delegate(s) are never equal
3112 return null;
3117 left = larg.Expr;
3118 right = rarg.Expr;
3119 return oper_expr;
3122 public override TypeExpr ResolveAsTypeTerminal (IResolveContext ec, bool silent)
3124 return null;
3127 private void CheckUselessComparison (Constant c, Type type)
3129 if (c == null || !IsTypeIntegral (type)
3130 || c is StringConstant
3131 || c is BoolConstant
3132 || c is FloatConstant
3133 || c is DoubleConstant
3134 || c is DecimalConstant
3136 return;
3138 long value = 0;
3140 if (c is ULongConstant) {
3141 ulong uvalue = ((ULongConstant) c).Value;
3142 if (uvalue > long.MaxValue) {
3143 if (type == TypeManager.byte_type ||
3144 type == TypeManager.sbyte_type ||
3145 type == TypeManager.short_type ||
3146 type == TypeManager.ushort_type ||
3147 type == TypeManager.int32_type ||
3148 type == TypeManager.uint32_type ||
3149 type == TypeManager.int64_type ||
3150 type == TypeManager.char_type)
3151 WarnUselessComparison (type);
3152 return;
3154 value = (long) uvalue;
3156 else if (c is ByteConstant)
3157 value = ((ByteConstant) c).Value;
3158 else if (c is SByteConstant)
3159 value = ((SByteConstant) c).Value;
3160 else if (c is ShortConstant)
3161 value = ((ShortConstant) c).Value;
3162 else if (c is UShortConstant)
3163 value = ((UShortConstant) c).Value;
3164 else if (c is IntConstant)
3165 value = ((IntConstant) c).Value;
3166 else if (c is UIntConstant)
3167 value = ((UIntConstant) c).Value;
3168 else if (c is LongConstant)
3169 value = ((LongConstant) c).Value;
3170 else if (c is CharConstant)
3171 value = ((CharConstant)c).Value;
3173 if (value == 0)
3174 return;
3176 if (IsValueOutOfRange (value, type))
3177 WarnUselessComparison (type);
3180 static bool IsValueOutOfRange (long value, Type type)
3182 if (IsTypeUnsigned (type) && value < 0)
3183 return true;
3184 return type == TypeManager.sbyte_type && (value >= 0x80 || value < -0x80) ||
3185 type == TypeManager.byte_type && value >= 0x100 ||
3186 type == TypeManager.short_type && (value >= 0x8000 || value < -0x8000) ||
3187 type == TypeManager.ushort_type && value >= 0x10000 ||
3188 type == TypeManager.int32_type && (value >= 0x80000000 || value < -0x80000000) ||
3189 type == TypeManager.uint32_type && value >= 0x100000000;
3192 static bool IsBuildInEqualityOperator (Type t)
3194 return t == TypeManager.object_type || t == TypeManager.string_type ||
3195 t == TypeManager.delegate_type || TypeManager.IsDelegateType (t);
3198 static bool IsPredefinedUserOperator (Type t, Operator op)
3201 // Some predefined types have user operators
3203 return (op & Operator.EqualityMask) != 0 && (t == TypeManager.string_type || t == TypeManager.decimal_type);
3206 private static bool IsTypeIntegral (Type type)
3208 return type == TypeManager.uint64_type ||
3209 type == TypeManager.int64_type ||
3210 type == TypeManager.uint32_type ||
3211 type == TypeManager.int32_type ||
3212 type == TypeManager.ushort_type ||
3213 type == TypeManager.short_type ||
3214 type == TypeManager.sbyte_type ||
3215 type == TypeManager.byte_type ||
3216 type == TypeManager.char_type;
3219 private static bool IsTypeUnsigned (Type type)
3221 return type == TypeManager.uint64_type ||
3222 type == TypeManager.uint32_type ||
3223 type == TypeManager.ushort_type ||
3224 type == TypeManager.byte_type ||
3225 type == TypeManager.char_type;
3228 private void WarnUselessComparison (Type type)
3230 Report.Warning (652, 2, loc, "A comparison between a constant and a variable is useless. The constant is out of the range of the variable type `{0}'",
3231 TypeManager.CSharpName (type));
3234 /// <remarks>
3235 /// EmitBranchable is called from Statement.EmitBoolExpression in the
3236 /// context of a conditional bool expression. This function will return
3237 /// false if it is was possible to use EmitBranchable, or true if it was.
3239 /// The expression's code is generated, and we will generate a branch to `target'
3240 /// if the resulting expression value is equal to isTrue
3241 /// </remarks>
3242 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
3244 ILGenerator ig = ec.ig;
3247 // This is more complicated than it looks, but its just to avoid
3248 // duplicated tests: basically, we allow ==, !=, >, <, >= and <=
3249 // but on top of that we want for == and != to use a special path
3250 // if we are comparing against null
3252 if ((oper == Operator.Equality || oper == Operator.Inequality) && (left is Constant || right is Constant)) {
3253 bool my_on_true = oper == Operator.Inequality ? on_true : !on_true;
3256 // put the constant on the rhs, for simplicity
3258 if (left is Constant) {
3259 Expression swap = right;
3260 right = left;
3261 left = swap;
3264 if (((Constant) right).IsZeroInteger) {
3265 left.EmitBranchable (ec, target, my_on_true);
3266 return;
3268 if (right.Type == TypeManager.bool_type) {
3269 // right is a boolean, and it's not 'false' => it is 'true'
3270 left.EmitBranchable (ec, target, !my_on_true);
3271 return;
3274 } else if (oper == Operator.LogicalAnd) {
3276 if (on_true) {
3277 Label tests_end = ig.DefineLabel ();
3279 left.EmitBranchable (ec, tests_end, false);
3280 right.EmitBranchable (ec, target, true);
3281 ig.MarkLabel (tests_end);
3282 } else {
3284 // This optimizes code like this
3285 // if (true && i > 4)
3287 if (!(left is Constant))
3288 left.EmitBranchable (ec, target, false);
3290 if (!(right is Constant))
3291 right.EmitBranchable (ec, target, false);
3294 return;
3296 } else if (oper == Operator.LogicalOr){
3297 if (on_true) {
3298 left.EmitBranchable (ec, target, true);
3299 right.EmitBranchable (ec, target, true);
3301 } else {
3302 Label tests_end = ig.DefineLabel ();
3303 left.EmitBranchable (ec, tests_end, true);
3304 right.EmitBranchable (ec, target, false);
3305 ig.MarkLabel (tests_end);
3308 return;
3310 } else if (!(oper == Operator.LessThan || oper == Operator.GreaterThan ||
3311 oper == Operator.LessThanOrEqual || oper == Operator.GreaterThanOrEqual ||
3312 oper == Operator.Equality || oper == Operator.Inequality)) {
3313 base.EmitBranchable (ec, target, on_true);
3314 return;
3317 left.Emit (ec);
3318 right.Emit (ec);
3320 Type t = left.Type;
3321 bool is_float = IsFloat (t);
3322 bool is_unsigned = is_float || IsUnsigned (t);
3324 switch (oper){
3325 case Operator.Equality:
3326 if (on_true)
3327 ig.Emit (OpCodes.Beq, target);
3328 else
3329 ig.Emit (OpCodes.Bne_Un, target);
3330 break;
3332 case Operator.Inequality:
3333 if (on_true)
3334 ig.Emit (OpCodes.Bne_Un, target);
3335 else
3336 ig.Emit (OpCodes.Beq, target);
3337 break;
3339 case Operator.LessThan:
3340 if (on_true)
3341 if (is_unsigned && !is_float)
3342 ig.Emit (OpCodes.Blt_Un, target);
3343 else
3344 ig.Emit (OpCodes.Blt, target);
3345 else
3346 if (is_unsigned)
3347 ig.Emit (OpCodes.Bge_Un, target);
3348 else
3349 ig.Emit (OpCodes.Bge, target);
3350 break;
3352 case Operator.GreaterThan:
3353 if (on_true)
3354 if (is_unsigned && !is_float)
3355 ig.Emit (OpCodes.Bgt_Un, target);
3356 else
3357 ig.Emit (OpCodes.Bgt, target);
3358 else
3359 if (is_unsigned)
3360 ig.Emit (OpCodes.Ble_Un, target);
3361 else
3362 ig.Emit (OpCodes.Ble, target);
3363 break;
3365 case Operator.LessThanOrEqual:
3366 if (on_true)
3367 if (is_unsigned && !is_float)
3368 ig.Emit (OpCodes.Ble_Un, target);
3369 else
3370 ig.Emit (OpCodes.Ble, target);
3371 else
3372 if (is_unsigned)
3373 ig.Emit (OpCodes.Bgt_Un, target);
3374 else
3375 ig.Emit (OpCodes.Bgt, target);
3376 break;
3379 case Operator.GreaterThanOrEqual:
3380 if (on_true)
3381 if (is_unsigned && !is_float)
3382 ig.Emit (OpCodes.Bge_Un, target);
3383 else
3384 ig.Emit (OpCodes.Bge, target);
3385 else
3386 if (is_unsigned)
3387 ig.Emit (OpCodes.Blt_Un, target);
3388 else
3389 ig.Emit (OpCodes.Blt, target);
3390 break;
3391 default:
3392 throw new InternalErrorException (oper.ToString ());
3396 public override void Emit (EmitContext ec)
3398 EmitOperator (ec, left.Type);
3401 protected virtual void EmitOperator (EmitContext ec, Type l)
3403 ILGenerator ig = ec.ig;
3406 // Handle short-circuit operators differently
3407 // than the rest
3409 if ((oper & Operator.LogicalMask) != 0) {
3410 Label load_result = ig.DefineLabel ();
3411 Label end = ig.DefineLabel ();
3413 bool is_or = oper == Operator.LogicalOr;
3414 left.EmitBranchable (ec, load_result, is_or);
3415 right.Emit (ec);
3416 ig.Emit (OpCodes.Br_S, end);
3418 ig.MarkLabel (load_result);
3419 ig.Emit (is_or ? OpCodes.Ldc_I4_1 : OpCodes.Ldc_I4_0);
3420 ig.MarkLabel (end);
3421 return;
3424 left.Emit (ec);
3427 // Optimize zero-based operations
3429 // TODO: Implement more optimizations, but it should probably go to PredefinedOperators
3431 if ((oper & Operator.ShiftMask) != 0 || oper == Operator.Addition || oper == Operator.Subtraction) {
3432 Constant rc = right as Constant;
3433 if (rc != null && rc.IsDefaultValue) {
3434 return;
3438 right.Emit (ec);
3439 EmitOperatorOpcode (ec, oper, l);
3442 // Nullable enum could require underlying type cast and we cannot simply wrap binary
3443 // expression because that would wrap lifted binary operation
3445 if (enum_conversion != null)
3446 enum_conversion.Emit (ec);
3449 public override void EmitSideEffect (EmitContext ec)
3451 if ((oper & Operator.LogicalMask) != 0 ||
3452 (ec.CheckState && (oper == Operator.Multiply || oper == Operator.Addition || oper == Operator.Subtraction))) {
3453 base.EmitSideEffect (ec);
3454 } else {
3455 left.EmitSideEffect (ec);
3456 right.EmitSideEffect (ec);
3460 protected override void CloneTo (CloneContext clonectx, Expression t)
3462 Binary target = (Binary) t;
3464 target.left = left.Clone (clonectx);
3465 target.right = right.Clone (clonectx);
3468 public override Expression CreateExpressionTree (EmitContext ec)
3470 return CreateExpressionTree (ec, null);
3473 Expression CreateExpressionTree (EmitContext ec, MethodGroupExpr method)
3475 string method_name;
3476 bool lift_arg = false;
3478 switch (oper) {
3479 case Operator.Addition:
3480 if (method == null && ec.CheckState && !IsFloat (type))
3481 method_name = "AddChecked";
3482 else
3483 method_name = "Add";
3484 break;
3485 case Operator.BitwiseAnd:
3486 method_name = "And";
3487 break;
3488 case Operator.BitwiseOr:
3489 method_name = "Or";
3490 break;
3491 case Operator.Division:
3492 method_name = "Divide";
3493 break;
3494 case Operator.Equality:
3495 method_name = "Equal";
3496 lift_arg = true;
3497 break;
3498 case Operator.ExclusiveOr:
3499 method_name = "ExclusiveOr";
3500 break;
3501 case Operator.GreaterThan:
3502 method_name = "GreaterThan";
3503 lift_arg = true;
3504 break;
3505 case Operator.GreaterThanOrEqual:
3506 method_name = "GreaterThanOrEqual";
3507 lift_arg = true;
3508 break;
3509 case Operator.Inequality:
3510 method_name = "NotEqual";
3511 lift_arg = true;
3512 break;
3513 case Operator.LeftShift:
3514 method_name = "LeftShift";
3515 break;
3516 case Operator.LessThan:
3517 method_name = "LessThan";
3518 lift_arg = true;
3519 break;
3520 case Operator.LessThanOrEqual:
3521 method_name = "LessThanOrEqual";
3522 lift_arg = true;
3523 break;
3524 case Operator.LogicalAnd:
3525 method_name = "AndAlso";
3526 break;
3527 case Operator.LogicalOr:
3528 method_name = "OrElse";
3529 break;
3530 case Operator.Modulus:
3531 method_name = "Modulo";
3532 break;
3533 case Operator.Multiply:
3534 if (method == null && ec.CheckState && !IsFloat (type))
3535 method_name = "MultiplyChecked";
3536 else
3537 method_name = "Multiply";
3538 break;
3539 case Operator.RightShift:
3540 method_name = "RightShift";
3541 break;
3542 case Operator.Subtraction:
3543 if (method == null && ec.CheckState && !IsFloat (type))
3544 method_name = "SubtractChecked";
3545 else
3546 method_name = "Subtract";
3547 break;
3549 default:
3550 throw new InternalErrorException ("Unknown expression tree binary operator " + oper);
3553 ArrayList args = new ArrayList (2);
3554 args.Add (new Argument (left.CreateExpressionTree (ec)));
3555 args.Add (new Argument (right.CreateExpressionTree (ec)));
3556 if (method != null) {
3557 if (lift_arg)
3558 args.Add (new Argument (new BoolConstant (false, loc)));
3560 args.Add (new Argument (method.CreateExpressionTree (ec)));
3563 return CreateExpressionFactoryCall (method_name, args);
3568 // Represents the operation a + b [+ c [+ d [+ ...]]], where a is a string
3569 // b, c, d... may be strings or objects.
3571 public class StringConcat : Expression {
3572 ArrayList arguments;
3574 public StringConcat (EmitContext ec, Location loc, Expression left, Expression right)
3576 this.loc = loc;
3577 type = TypeManager.string_type;
3578 eclass = ExprClass.Value;
3580 arguments = new ArrayList (2);
3581 Append (ec, left);
3582 Append (ec, right);
3585 public override Expression CreateExpressionTree (EmitContext ec)
3587 Argument arg = (Argument) arguments [0];
3588 return CreateExpressionAddCall (ec, arg, arg.Expr.CreateExpressionTree (ec), 1);
3592 // Creates nested calls tree from an array of arguments used for IL emit
3594 Expression CreateExpressionAddCall (EmitContext ec, Argument left, Expression left_etree, int pos)
3596 ArrayList concat_args = new ArrayList (2);
3597 ArrayList add_args = new ArrayList (3);
3599 concat_args.Add (left);
3600 add_args.Add (new Argument (left_etree));
3602 concat_args.Add (arguments [pos]);
3603 add_args.Add (new Argument (((Argument) arguments [pos]).Expr.CreateExpressionTree (ec)));
3605 MethodGroupExpr method = CreateConcatMemberExpression ().Resolve (ec) as MethodGroupExpr;
3606 if (method == null)
3607 return null;
3609 method = method.OverloadResolve (ec, ref concat_args, false, loc);
3610 if (method == null)
3611 return null;
3613 add_args.Add (new Argument (method.CreateExpressionTree (ec)));
3615 Expression expr = CreateExpressionFactoryCall ("Add", add_args);
3616 if (++pos == arguments.Count)
3617 return expr;
3619 left = new Argument (new EmptyExpression (method.Type));
3620 return CreateExpressionAddCall (ec, left, expr, pos);
3623 public override Expression DoResolve (EmitContext ec)
3625 return this;
3628 public void Append (EmitContext ec, Expression operand)
3631 // Constant folding
3633 StringConstant sc = operand as StringConstant;
3634 if (sc != null) {
3635 if (arguments.Count != 0) {
3636 Argument last_argument = (Argument) arguments [arguments.Count - 1];
3637 StringConstant last_expr_constant = last_argument.Expr as StringConstant;
3638 if (last_expr_constant != null) {
3639 last_argument.Expr = new StringConstant (
3640 last_expr_constant.Value + sc.Value, sc.Location);
3641 return;
3644 } else {
3646 // Multiple (3+) concatenation are resolved as multiple StringConcat instances
3648 StringConcat concat_oper = operand as StringConcat;
3649 if (concat_oper != null) {
3650 arguments.AddRange (concat_oper.arguments);
3651 return;
3655 arguments.Add (new Argument (operand));
3658 Expression CreateConcatMemberExpression ()
3660 return new MemberAccess (new MemberAccess (new QualifiedAliasMember ("global", "System", loc), "String", loc), "Concat", loc);
3663 public override void Emit (EmitContext ec)
3665 Expression concat = new Invocation (CreateConcatMemberExpression (), arguments, true);
3666 concat = concat.Resolve (ec);
3667 if (concat != null)
3668 concat.Emit (ec);
3671 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3673 foreach (Argument a in arguments)
3674 a.Expr.MutateHoistedGenericType (storey);
3679 // User-defined conditional logical operator
3681 public class ConditionalLogicalOperator : UserOperatorCall {
3682 readonly bool is_and;
3683 Expression oper;
3685 public ConditionalLogicalOperator (MethodGroupExpr oper_method, ArrayList arguments,
3686 ExpressionTreeExpression expr_tree, bool is_and, Location loc)
3687 : base (oper_method, arguments, expr_tree, loc)
3689 this.is_and = is_and;
3692 public override Expression DoResolve (EmitContext ec)
3694 MethodInfo method = (MethodInfo)mg;
3695 type = TypeManager.TypeToCoreType (method.ReturnType);
3696 AParametersCollection pd = TypeManager.GetParameterData (method);
3697 if (!TypeManager.IsEqual (type, type) || !TypeManager.IsEqual (type, pd.Types [0]) || !TypeManager.IsEqual (type, pd.Types [1])) {
3698 Report.Error (217, loc,
3699 "A user-defined operator `{0}' must have parameters and return values of the same type in order to be applicable as a short circuit operator",
3700 TypeManager.CSharpSignature (method));
3701 return null;
3704 Expression left_dup = new EmptyExpression (type);
3705 Expression op_true = GetOperatorTrue (ec, left_dup, loc);
3706 Expression op_false = GetOperatorFalse (ec, left_dup, loc);
3707 if (op_true == null || op_false == null) {
3708 Report.Error (218, loc,
3709 "The type `{0}' must have operator `true' and operator `false' defined when `{1}' is used as a short circuit operator",
3710 TypeManager.CSharpName (type), TypeManager.CSharpSignature (method));
3711 return null;
3714 oper = is_and ? op_false : op_true;
3715 eclass = ExprClass.Value;
3716 return this;
3719 public override void Emit (EmitContext ec)
3721 ILGenerator ig = ec.ig;
3722 Label end_target = ig.DefineLabel ();
3725 // Emit and duplicate left argument
3727 ((Argument)arguments [0]).Expr.Emit (ec);
3728 ig.Emit (OpCodes.Dup);
3729 arguments.RemoveAt (0);
3731 oper.EmitBranchable (ec, end_target, true);
3732 base.Emit (ec);
3733 ig.MarkLabel (end_target);
3737 public class PointerArithmetic : Expression {
3738 Expression left, right;
3739 Binary.Operator op;
3742 // We assume that `l' is always a pointer
3744 public PointerArithmetic (Binary.Operator op, Expression l, Expression r, Type t, Location loc)
3746 type = t;
3747 this.loc = loc;
3748 left = l;
3749 right = r;
3750 this.op = op;
3753 public override Expression CreateExpressionTree (EmitContext ec)
3755 Error_PointerInsideExpressionTree ();
3756 return null;
3759 public override Expression DoResolve (EmitContext ec)
3761 eclass = ExprClass.Variable;
3763 if (left.Type == TypeManager.void_ptr_type) {
3764 Error (242, "The operation in question is undefined on void pointers");
3765 return null;
3768 return this;
3771 public override void Emit (EmitContext ec)
3773 Type op_type = left.Type;
3774 ILGenerator ig = ec.ig;
3776 // It must be either array or fixed buffer
3777 Type element;
3778 if (TypeManager.HasElementType (op_type)) {
3779 element = TypeManager.GetElementType (op_type);
3780 } else {
3781 FieldExpr fe = left as FieldExpr;
3782 if (fe != null)
3783 element = AttributeTester.GetFixedBuffer (fe.FieldInfo).ElementType;
3784 else
3785 element = op_type;
3788 int size = GetTypeSize (element);
3789 Type rtype = right.Type;
3791 if ((op & Binary.Operator.SubtractionMask) != 0 && rtype.IsPointer){
3793 // handle (pointer - pointer)
3795 left.Emit (ec);
3796 right.Emit (ec);
3797 ig.Emit (OpCodes.Sub);
3799 if (size != 1){
3800 if (size == 0)
3801 ig.Emit (OpCodes.Sizeof, element);
3802 else
3803 IntLiteral.EmitInt (ig, size);
3804 ig.Emit (OpCodes.Div);
3806 ig.Emit (OpCodes.Conv_I8);
3807 } else {
3809 // handle + and - on (pointer op int)
3811 Constant left_const = left as Constant;
3812 if (left_const != null) {
3814 // Optimize ((T*)null) pointer operations
3816 if (left_const.IsDefaultValue) {
3817 left = EmptyExpression.Null;
3818 } else {
3819 left_const = null;
3823 left.Emit (ec);
3825 Constant right_const = right as Constant;
3826 if (right_const != null) {
3828 // Optimize 0-based arithmetic
3830 if (right_const.IsDefaultValue)
3831 return;
3833 if (size != 0) {
3834 right = ConstantFold.BinaryFold (ec, Binary.Operator.Multiply, new IntConstant (size, right.Location), right_const, loc);
3835 if (right == null)
3836 return;
3837 } else {
3838 ig.Emit (OpCodes.Sizeof, element);
3839 right = EmptyExpression.Null;
3843 right.Emit (ec);
3844 if (rtype == TypeManager.sbyte_type || rtype == TypeManager.byte_type ||
3845 rtype == TypeManager.short_type || rtype == TypeManager.ushort_type) {
3846 ig.Emit (OpCodes.Conv_I);
3847 } else if (rtype == TypeManager.uint32_type) {
3848 ig.Emit (OpCodes.Conv_U);
3851 if (right_const == null && size != 1){
3852 if (size == 0)
3853 ig.Emit (OpCodes.Sizeof, element);
3854 else
3855 IntLiteral.EmitInt (ig, size);
3856 if (rtype == TypeManager.int64_type || rtype == TypeManager.uint64_type)
3857 ig.Emit (OpCodes.Conv_I8);
3859 Binary.EmitOperatorOpcode (ec, Binary.Operator.Multiply, rtype);
3862 if (left_const == null) {
3863 if (rtype == TypeManager.int64_type)
3864 ig.Emit (OpCodes.Conv_I);
3865 else if (rtype == TypeManager.uint64_type)
3866 ig.Emit (OpCodes.Conv_U);
3868 Binary.EmitOperatorOpcode (ec, op, op_type);
3874 /// <summary>
3875 /// Implements the ternary conditional operator (?:)
3876 /// </summary>
3877 public class Conditional : Expression {
3878 Expression expr, true_expr, false_expr;
3880 public Conditional (Expression expr, Expression true_expr, Expression false_expr)
3882 this.expr = expr;
3883 this.true_expr = true_expr;
3884 this.false_expr = false_expr;
3885 this.loc = expr.Location;
3888 public Expression Expr {
3889 get {
3890 return expr;
3894 public Expression TrueExpr {
3895 get {
3896 return true_expr;
3900 public Expression FalseExpr {
3901 get {
3902 return false_expr;
3906 public override Expression CreateExpressionTree (EmitContext ec)
3908 ArrayList args = new ArrayList (3);
3909 args.Add (new Argument (expr.CreateExpressionTree (ec)));
3910 args.Add (new Argument (true_expr.CreateExpressionTree (ec)));
3911 args.Add (new Argument (false_expr.CreateExpressionTree (ec)));
3912 return CreateExpressionFactoryCall ("Condition", args);
3915 public override Expression DoResolve (EmitContext ec)
3917 expr = expr.Resolve (ec);
3919 if (expr == null)
3920 return null;
3922 if (expr.Type != TypeManager.bool_type){
3923 expr = Expression.ResolveBoolean (
3924 ec, expr, loc);
3926 if (expr == null)
3927 return null;
3930 Assign ass = expr as Assign;
3931 if (ass != null && ass.Source is Constant) {
3932 Report.Warning (665, 3, loc, "Assignment in conditional expression is always constant; did you mean to use == instead of = ?");
3935 true_expr = true_expr.Resolve (ec);
3936 false_expr = false_expr.Resolve (ec);
3938 if (true_expr == null || false_expr == null)
3939 return null;
3941 eclass = ExprClass.Value;
3942 Type true_type = true_expr.Type;
3943 Type false_type = false_expr.Type;
3944 type = true_type;
3947 // First, if an implicit conversion exists from true_expr
3948 // to false_expr, then the result type is of type false_expr.Type
3950 if (!TypeManager.IsEqual (true_type, false_type)) {
3951 Expression conv = Convert.ImplicitConversion (ec, true_expr, false_type, loc);
3952 if (conv != null) {
3954 // Check if both can convert implicitl to each other's type
3956 if (Convert.ImplicitConversion (ec, false_expr, true_type, loc) != null) {
3957 Error (172,
3958 "Can not compute type of conditional expression " +
3959 "as `" + TypeManager.CSharpName (true_expr.Type) +
3960 "' and `" + TypeManager.CSharpName (false_expr.Type) +
3961 "' convert implicitly to each other");
3962 return null;
3964 type = false_type;
3965 true_expr = conv;
3966 } else if ((conv = Convert.ImplicitConversion (ec, false_expr, true_type, loc)) != null) {
3967 false_expr = conv;
3968 } else {
3969 Report.Error (173, loc,
3970 "Type of conditional expression cannot be determined because there is no implicit conversion between `{0}' and `{1}'",
3971 true_expr.GetSignatureForError (), false_expr.GetSignatureForError ());
3972 return null;
3976 // Dead code optimalization
3977 Constant c = expr as Constant;
3978 if (c != null){
3979 bool is_false = c.IsDefaultValue;
3980 Report.Warning (429, 4, is_false ? true_expr.Location : false_expr.Location, "Unreachable expression code detected");
3981 return ReducedExpression.Create (is_false ? false_expr : true_expr, this).Resolve (ec);
3984 return this;
3987 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3989 expr.MutateHoistedGenericType (storey);
3990 true_expr.MutateHoistedGenericType (storey);
3991 false_expr.MutateHoistedGenericType (storey);
3992 type = storey.MutateType (type);
3995 public override TypeExpr ResolveAsTypeTerminal (IResolveContext ec, bool silent)
3997 return null;
4000 public override void Emit (EmitContext ec)
4002 ILGenerator ig = ec.ig;
4003 Label false_target = ig.DefineLabel ();
4004 Label end_target = ig.DefineLabel ();
4006 expr.EmitBranchable (ec, false_target, false);
4007 true_expr.Emit (ec);
4009 if (type.IsInterface) {
4010 LocalBuilder temp = ec.GetTemporaryLocal (type);
4011 ig.Emit (OpCodes.Stloc, temp);
4012 ig.Emit (OpCodes.Ldloc, temp);
4013 ec.FreeTemporaryLocal (temp, type);
4016 ig.Emit (OpCodes.Br, end_target);
4017 ig.MarkLabel (false_target);
4018 false_expr.Emit (ec);
4019 ig.MarkLabel (end_target);
4022 protected override void CloneTo (CloneContext clonectx, Expression t)
4024 Conditional target = (Conditional) t;
4026 target.expr = expr.Clone (clonectx);
4027 target.true_expr = true_expr.Clone (clonectx);
4028 target.false_expr = false_expr.Clone (clonectx);
4032 public abstract class VariableReference : Expression, IAssignMethod, IMemoryLocation, IVariableReference {
4033 LocalTemporary temp;
4035 #region Abstract
4036 public abstract HoistedVariable HoistedVariable { get; }
4037 public abstract bool IsFixed { get; }
4038 public abstract bool IsRef { get; }
4039 public abstract string Name { get; }
4040 public abstract void SetHasAddressTaken ();
4043 // Variable IL data, it has to be protected to encapsulate hoisted variables
4045 protected abstract ILocalVariable Variable { get; }
4048 // Variable flow-analysis data
4050 public abstract VariableInfo VariableInfo { get; }
4051 #endregion
4053 public void AddressOf (EmitContext ec, AddressOp mode)
4055 if (IsHoistedEmitRequired (ec)) {
4056 HoistedVariable.AddressOf (ec, mode);
4057 return;
4060 Variable.EmitAddressOf (ec);
4063 public override void Emit (EmitContext ec)
4065 Emit (ec, false);
4068 public override void EmitSideEffect (EmitContext ec)
4070 // do nothing
4074 // This method is used by parameters that are references, that are
4075 // being passed as references: we only want to pass the pointer (that
4076 // is already stored in the parameter, not the address of the pointer,
4077 // and not the value of the variable).
4079 public void EmitLoad (EmitContext ec)
4081 Variable.Emit (ec);
4084 public void Emit (EmitContext ec, bool leave_copy)
4086 Report.Debug (64, "VARIABLE EMIT", this, Variable, type, IsRef, loc);
4088 if (IsHoistedEmitRequired (ec)) {
4089 HoistedVariable.Emit (ec, leave_copy);
4090 return;
4093 EmitLoad (ec);
4095 if (IsRef) {
4097 // If we are a reference, we loaded on the stack a pointer
4098 // Now lets load the real value
4100 LoadFromPtr (ec.ig, type);
4103 if (leave_copy) {
4104 ec.ig.Emit (OpCodes.Dup);
4106 if (IsRef) {
4107 temp = new LocalTemporary (Type);
4108 temp.Store (ec);
4113 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy,
4114 bool prepare_for_load)
4116 Report.Debug (64, "VARIABLE EMIT ASSIGN", this, Variable, type, IsRef,
4117 source, loc);
4119 if (IsHoistedEmitRequired (ec)) {
4120 HoistedVariable.EmitAssign (ec, source, leave_copy, prepare_for_load);
4121 return;
4124 if (IsRef)
4125 Variable.Emit (ec);
4127 source.Emit (ec);
4129 // HACK: variable is already emitted when source is an initializer
4130 if (source is NewInitialize) {
4131 if (leave_copy) {
4132 Variable.Emit (ec);
4134 return;
4137 if (leave_copy) {
4138 ec.ig.Emit (OpCodes.Dup);
4139 if (IsRef) {
4140 temp = new LocalTemporary (Type);
4141 temp.Store (ec);
4145 if (IsRef)
4146 StoreFromPtr (ec.ig, type);
4147 else
4148 Variable.EmitAssign (ec);
4150 if (temp != null) {
4151 temp.Emit (ec);
4152 temp.Release (ec);
4156 public bool IsHoisted {
4157 get { return HoistedVariable != null; }
4160 protected virtual bool IsHoistedEmitRequired (EmitContext ec)
4163 // Default implementation return true when there is a hosted variable
4165 return HoistedVariable != null;
4168 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
4170 type = storey.MutateType (type);
4174 /// <summary>
4175 /// Local variables
4176 /// </summary>
4177 public class LocalVariableReference : VariableReference {
4178 readonly string name;
4179 public Block Block;
4180 public LocalInfo local_info;
4181 bool is_readonly;
4183 public LocalVariableReference (Block block, string name, Location l)
4185 Block = block;
4186 this.name = name;
4187 loc = l;
4188 eclass = ExprClass.Variable;
4192 // Setting `is_readonly' to false will allow you to create a writable
4193 // reference to a read-only variable. This is used by foreach and using.
4195 public LocalVariableReference (Block block, string name, Location l,
4196 LocalInfo local_info, bool is_readonly)
4197 : this (block, name, l)
4199 this.local_info = local_info;
4200 this.is_readonly = is_readonly;
4203 public override VariableInfo VariableInfo {
4204 get { return local_info.VariableInfo; }
4207 public override HoistedVariable HoistedVariable {
4208 get { return local_info.HoistedVariableReference; }
4212 // A local variable is always fixed
4214 public override bool IsFixed {
4215 get { return true; }
4218 public override bool IsRef {
4219 get { return false; }
4222 public bool IsReadOnly {
4223 get { return is_readonly; }
4226 public override string Name {
4227 get { return name; }
4230 public bool VerifyAssigned (EmitContext ec)
4232 VariableInfo variable_info = local_info.VariableInfo;
4233 return variable_info == null || variable_info.IsAssigned (ec, loc);
4236 void ResolveLocalInfo ()
4238 if (local_info == null) {
4239 local_info = Block.GetLocalInfo (Name);
4240 type = local_info.VariableType;
4241 is_readonly = local_info.ReadOnly;
4245 public override void SetHasAddressTaken ()
4247 local_info.AddressTaken = true;
4250 public override Expression CreateExpressionTree (EmitContext ec)
4252 ArrayList arg = new ArrayList (1);
4253 arg.Add (new Argument (this));
4254 return CreateExpressionFactoryCall ("Constant", arg);
4257 Expression DoResolveBase (EmitContext ec)
4259 type = local_info.VariableType;
4261 Expression e = Block.GetConstantExpression (Name);
4262 if (e != null)
4263 return e.Resolve (ec);
4265 VerifyAssigned (ec);
4268 // If we are referencing a variable from the external block
4269 // flag it for capturing
4271 if (ec.MustCaptureVariable (local_info)) {
4272 if (local_info.AddressTaken)
4273 AnonymousMethodExpression.Error_AddressOfCapturedVar (this, loc);
4275 if (ec.IsVariableCapturingRequired) {
4276 AnonymousMethodStorey storey = local_info.Block.Explicit.CreateAnonymousMethodStorey (ec);
4277 storey.CaptureLocalVariable (ec, local_info);
4281 return this;
4284 public override Expression DoResolve (EmitContext ec)
4286 ResolveLocalInfo ();
4287 local_info.Used = true;
4289 if (type == null && local_info.Type is VarExpr) {
4290 local_info.VariableType = TypeManager.object_type;
4291 Error_VariableIsUsedBeforeItIsDeclared (Name);
4292 return null;
4295 return DoResolveBase (ec);
4298 override public Expression DoResolveLValue (EmitContext ec, Expression right_side)
4300 ResolveLocalInfo ();
4302 // is out param
4303 if (right_side == EmptyExpression.OutAccess)
4304 local_info.Used = true;
4306 // Infer implicitly typed local variable
4307 if (type == null) {
4308 VarExpr ve = local_info.Type as VarExpr;
4309 if (ve != null) {
4310 if (!ve.InferType (ec, right_side))
4311 return null;
4312 type = local_info.VariableType = ve.Type;
4316 if (is_readonly) {
4317 int code;
4318 string msg;
4319 if (right_side == EmptyExpression.OutAccess) {
4320 code = 1657; msg = "Cannot pass `{0}' as a ref or out argument because it is a `{1}'";
4321 } else if (right_side == EmptyExpression.LValueMemberAccess) {
4322 code = 1654; msg = "Cannot assign to members of `{0}' because it is a `{1}'";
4323 } else if (right_side == EmptyExpression.LValueMemberOutAccess) {
4324 code = 1655; msg = "Cannot pass members of `{0}' as ref or out arguments because it is a `{1}'";
4325 } else if (right_side == EmptyExpression.UnaryAddress) {
4326 code = 459; msg = "Cannot take the address of {1} `{0}'";
4327 } else {
4328 code = 1656; msg = "Cannot assign to `{0}' because it is a `{1}'";
4330 Report.Error (code, loc, msg, Name, local_info.GetReadOnlyContext ());
4331 } else if (VariableInfo != null) {
4332 VariableInfo.SetAssigned (ec);
4335 return DoResolveBase (ec);
4338 public override int GetHashCode ()
4340 return Name.GetHashCode ();
4343 public override bool Equals (object obj)
4345 LocalVariableReference lvr = obj as LocalVariableReference;
4346 if (lvr == null)
4347 return false;
4349 return Name == lvr.Name && Block == lvr.Block;
4352 protected override ILocalVariable Variable {
4353 get { return local_info; }
4356 public override string ToString ()
4358 return String.Format ("{0} ({1}:{2})", GetType (), Name, loc);
4361 protected override void CloneTo (CloneContext clonectx, Expression t)
4363 LocalVariableReference target = (LocalVariableReference) t;
4365 target.Block = clonectx.LookupBlock (Block);
4366 if (local_info != null)
4367 target.local_info = clonectx.LookupVariable (local_info);
4371 /// <summary>
4372 /// This represents a reference to a parameter in the intermediate
4373 /// representation.
4374 /// </summary>
4375 public class ParameterReference : VariableReference {
4376 readonly ToplevelParameterInfo pi;
4377 readonly ToplevelBlock referenced;
4379 public ParameterReference (ToplevelBlock referenced, ToplevelParameterInfo pi, Location loc)
4381 this.pi = pi;
4382 this.referenced = referenced;
4383 this.loc = loc;
4386 public override bool IsRef {
4387 get { return (pi.Parameter.ModFlags & Parameter.Modifier.ISBYREF) != 0; }
4390 bool HasOutModifier {
4391 get { return pi.Parameter.ModFlags == Parameter.Modifier.OUT; }
4394 public override HoistedVariable HoistedVariable {
4395 get { return pi.Parameter.HoistedVariableReference; }
4399 // A ref or out parameter is classified as a moveable variable, even
4400 // if the argument given for the parameter is a fixed variable
4402 public override bool IsFixed {
4403 get { return !IsRef; }
4406 public override string Name {
4407 get { return Parameter.Name; }
4410 public Parameter Parameter {
4411 get { return pi.Parameter; }
4414 public override VariableInfo VariableInfo {
4415 get { return pi.VariableInfo; }
4418 protected override ILocalVariable Variable {
4419 get { return Parameter; }
4422 public bool IsAssigned (EmitContext ec, Location loc)
4424 // HACK: Variables are not captured in probing mode
4425 if (ec.IsInProbingMode)
4426 return true;
4428 if (!ec.DoFlowAnalysis || !HasOutModifier || ec.CurrentBranching.IsAssigned (VariableInfo))
4429 return true;
4431 Report.Error (269, loc, "Use of unassigned out parameter `{0}'", Name);
4432 return false;
4435 public override void SetHasAddressTaken ()
4437 Parameter.HasAddressTaken = true;
4440 void SetAssigned (EmitContext ec)
4442 if (HasOutModifier && ec.DoFlowAnalysis)
4443 ec.CurrentBranching.SetAssigned (VariableInfo);
4446 bool DoResolveBase (EmitContext ec)
4448 type = pi.ParameterType;
4449 eclass = ExprClass.Variable;
4451 AnonymousExpression am = ec.CurrentAnonymousMethod;
4452 if (am == null)
4453 return true;
4455 ToplevelBlock declared = pi.Block;
4456 if (declared != referenced) {
4457 if (IsRef) {
4458 Report.Error (1628, loc,
4459 "Parameter `{0}' cannot be used inside `{1}' when using `ref' or `out' modifier",
4460 Name, am.ContainerType);
4461 return false;
4463 } else {
4464 if (!am.IsIterator)
4465 return true;
4468 if (ec.IsVariableCapturingRequired) {
4469 if (pi.Parameter.HasAddressTaken)
4470 AnonymousMethodExpression.Error_AddressOfCapturedVar (this, loc);
4472 AnonymousMethodStorey storey = declared.CreateAnonymousMethodStorey (ec);
4473 storey.CaptureParameter (ec, this);
4476 return true;
4479 public override int GetHashCode ()
4481 return Name.GetHashCode ();
4484 public override bool Equals (object obj)
4486 ParameterReference pr = obj as ParameterReference;
4487 if (pr == null)
4488 return false;
4490 return Name == pr.Name && referenced == pr.referenced;
4493 protected override void CloneTo (CloneContext clonectx, Expression target)
4495 // Nothing to clone
4498 public override Expression CreateExpressionTree (EmitContext ec)
4500 if (IsHoistedEmitRequired (ec))
4501 return HoistedVariable.CreateExpressionTree (ec);
4503 return Parameter.ExpressionTreeVariableReference ();
4507 // Notice that for ref/out parameters, the type exposed is not the
4508 // same type exposed externally.
4510 // for "ref int a":
4511 // externally we expose "int&"
4512 // here we expose "int".
4514 // We record this in "is_ref". This means that the type system can treat
4515 // the type as it is expected, but when we generate the code, we generate
4516 // the alternate kind of code.
4518 public override Expression DoResolve (EmitContext ec)
4520 if (!DoResolveBase (ec))
4521 return null;
4523 if (HasOutModifier && ec.DoFlowAnalysis &&
4524 (!ec.OmitStructFlowAnalysis || !VariableInfo.TypeInfo.IsStruct) && !IsAssigned (ec, loc))
4525 return null;
4527 return this;
4530 override public Expression DoResolveLValue (EmitContext ec, Expression right_side)
4532 if (!DoResolveBase (ec))
4533 return null;
4535 // HACK: parameters are not captured when probing is on
4536 if (!ec.IsInProbingMode)
4537 SetAssigned (ec);
4539 return this;
4542 static public void EmitLdArg (ILGenerator ig, int x)
4544 if (x <= 255){
4545 switch (x){
4546 case 0: ig.Emit (OpCodes.Ldarg_0); break;
4547 case 1: ig.Emit (OpCodes.Ldarg_1); break;
4548 case 2: ig.Emit (OpCodes.Ldarg_2); break;
4549 case 3: ig.Emit (OpCodes.Ldarg_3); break;
4550 default: ig.Emit (OpCodes.Ldarg_S, (byte) x); break;
4552 } else
4553 ig.Emit (OpCodes.Ldarg, x);
4557 /// <summary>
4558 /// Used for arguments to New(), Invocation()
4559 /// </summary>
4560 public class Argument {
4561 public enum AType : byte {
4562 Expression,
4563 Ref,
4564 Out,
4565 ArgList
4568 public static readonly Argument[] Empty = new Argument [0];
4570 public readonly AType ArgType;
4571 public Expression Expr;
4573 public Argument (Expression expr, AType type)
4575 this.Expr = expr;
4576 this.ArgType = type;
4579 public Argument (Expression expr)
4581 this.Expr = expr;
4582 this.ArgType = AType.Expression;
4585 public Type Type {
4586 get { return Expr.Type; }
4589 public Parameter.Modifier Modifier
4591 get {
4592 switch (ArgType) {
4593 case AType.Out:
4594 return Parameter.Modifier.OUT;
4596 case AType.Ref:
4597 return Parameter.Modifier.REF;
4599 default:
4600 return Parameter.Modifier.NONE;
4605 public string GetSignatureForError ()
4607 if (Expr.eclass == ExprClass.MethodGroup)
4608 return Expr.ExprClassName;
4610 return TypeManager.CSharpName (Expr.Type);
4613 public bool ResolveMethodGroup (EmitContext ec)
4615 SimpleName sn = Expr as SimpleName;
4616 if (sn != null)
4617 Expr = sn.GetMethodGroup ();
4619 // FIXME: csc doesn't report any error if you try to use `ref' or
4620 // `out' in a delegate creation expression.
4621 Expr = Expr.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.MethodGroup);
4622 if (Expr == null)
4623 return false;
4625 return true;
4628 public bool Resolve (EmitContext ec, Location loc)
4630 if (Expr == null)
4631 return false;
4633 using (ec.With (EmitContext.Flags.DoFlowAnalysis, true)) {
4634 // Verify that the argument is readable
4635 if (ArgType != AType.Out)
4636 Expr = Expr.Resolve (ec);
4638 // Verify that the argument is writeable
4639 if (Expr != null && (ArgType == AType.Out || ArgType == AType.Ref))
4640 Expr = Expr.ResolveLValue (ec, EmptyExpression.OutAccess, loc);
4642 return Expr != null;
4646 public void Emit (EmitContext ec)
4648 if (ArgType != AType.Ref && ArgType != AType.Out) {
4649 Expr.Emit (ec);
4650 return;
4653 AddressOp mode = AddressOp.Store;
4654 if (ArgType == AType.Ref)
4655 mode |= AddressOp.Load;
4657 IMemoryLocation ml = (IMemoryLocation) Expr;
4658 ParameterReference pr = ml as ParameterReference;
4661 // ParameterReferences might already be references, so we want
4662 // to pass just the value
4664 if (pr != null && pr.IsRef)
4665 pr.EmitLoad (ec);
4666 else
4667 ml.AddressOf (ec, mode);
4670 public Argument Clone (CloneContext clonectx)
4672 return new Argument (Expr.Clone (clonectx), ArgType);
4676 /// <summary>
4677 /// Invocation of methods or delegates.
4678 /// </summary>
4679 public class Invocation : ExpressionStatement {
4680 protected ArrayList Arguments;
4681 protected Expression expr;
4682 protected MethodGroupExpr mg;
4683 bool arguments_resolved;
4686 // arguments is an ArrayList, but we do not want to typecast,
4687 // as it might be null.
4689 public Invocation (Expression expr, ArrayList arguments)
4691 SimpleName sn = expr as SimpleName;
4692 if (sn != null)
4693 this.expr = sn.GetMethodGroup ();
4694 else
4695 this.expr = expr;
4697 Arguments = arguments;
4698 if (expr != null)
4699 loc = expr.Location;
4702 public Invocation (Expression expr, ArrayList arguments, bool arguments_resolved)
4703 : this (expr, arguments)
4705 this.arguments_resolved = arguments_resolved;
4708 public override Expression CreateExpressionTree (EmitContext ec)
4710 ArrayList args;
4713 // Special conversion for nested expression trees
4715 if (TypeManager.DropGenericTypeArguments (type) == TypeManager.expression_type) {
4716 args = new ArrayList (1);
4717 args.Add (new Argument (this));
4718 return CreateExpressionFactoryCall ("Quote", args);
4721 ExtensionMethodGroupExpr emg = mg as ExtensionMethodGroupExpr;
4723 int arg_count = Arguments == null ? 2 : Arguments.Count + 2;
4724 if (emg != null)
4725 ++arg_count;
4726 args = new ArrayList (arg_count);
4728 if (mg.IsInstance)
4729 args.Add (new Argument (mg.InstanceExpression.CreateExpressionTree (ec)));
4730 else
4731 args.Add (new Argument (new NullLiteral (loc)));
4733 args.Add (new Argument (mg.CreateExpressionTree (ec)));
4736 // Use extension argument when exists
4738 if (emg != null) {
4739 Expression e = emg.ExtensionExpression.CreateExpressionTree (ec);
4740 if (e != null)
4741 args.Add (new Argument (e));
4744 if (Arguments != null) {
4745 foreach (Argument a in Arguments) {
4746 Expression e = a.Expr.CreateExpressionTree (ec);
4747 if (e != null)
4748 args.Add (new Argument (e));
4752 if (mg.IsBase)
4753 MemberExpr.Error_BaseAccessInExpressionTree (loc);
4755 return CreateExpressionFactoryCall ("Call", args);
4758 public override Expression DoResolve (EmitContext ec)
4760 // Don't resolve already resolved expression
4761 if (eclass != ExprClass.Invalid)
4762 return this;
4764 Expression expr_resolved = expr.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.MethodGroup);
4765 if (expr_resolved == null)
4766 return null;
4768 mg = expr_resolved as MethodGroupExpr;
4769 if (mg == null) {
4770 Type expr_type = expr_resolved.Type;
4772 if (expr_type != null && TypeManager.IsDelegateType (expr_type)){
4773 return (new DelegateInvocation (
4774 expr_resolved, Arguments, loc)).Resolve (ec);
4777 MemberExpr me = expr_resolved as MemberExpr;
4778 if (me == null) {
4779 expr_resolved.Error_UnexpectedKind (ResolveFlags.MethodGroup, loc);
4780 return null;
4783 mg = ec.TypeContainer.LookupExtensionMethod (me.Type, me.Name, loc);
4784 if (mg == null) {
4785 Report.Error (1955, loc, "The member `{0}' cannot be used as method or delegate",
4786 expr_resolved.GetSignatureForError ());
4787 return null;
4790 ((ExtensionMethodGroupExpr)mg).ExtensionExpression = me.InstanceExpression;
4794 // Next, evaluate all the expressions in the argument list
4796 if (Arguments != null && !arguments_resolved) {
4797 for (int i = 0; i < Arguments.Count; ++i)
4799 if (!((Argument)Arguments[i]).Resolve(ec, loc))
4800 return null;
4804 mg = DoResolveOverload (ec);
4805 if (mg == null)
4806 return null;
4808 MethodInfo method = (MethodInfo)mg;
4809 if (method != null) {
4810 type = TypeManager.TypeToCoreType (method.ReturnType);
4812 // TODO: this is a copy of mg.ResolveMemberAccess method
4813 Expression iexpr = mg.InstanceExpression;
4814 if (method.IsStatic) {
4815 if (iexpr == null ||
4816 iexpr is This || iexpr is EmptyExpression ||
4817 mg.IdenticalTypeName) {
4818 mg.InstanceExpression = null;
4819 } else {
4820 MemberExpr.error176 (loc, mg.GetSignatureForError ());
4821 return null;
4823 } else {
4824 if (iexpr == null) {
4825 SimpleName.Error_ObjectRefRequired (ec, loc, mg.GetSignatureForError ());
4830 if (type.IsPointer){
4831 if (!ec.InUnsafe){
4832 UnsafeError (loc);
4833 return null;
4838 // Only base will allow this invocation to happen.
4840 if (mg.IsBase && method.IsAbstract){
4841 Error_CannotCallAbstractBase (TypeManager.CSharpSignature (method));
4842 return null;
4845 if (Arguments == null && method.DeclaringType == TypeManager.object_type && method.Name == "Finalize") {
4846 if (mg.IsBase)
4847 Report.Error (250, loc, "Do not directly call your base class Finalize method. It is called automatically from your destructor");
4848 else
4849 Report.Error (245, loc, "Destructors and object.Finalize cannot be called directly. Consider calling IDisposable.Dispose if available");
4850 return null;
4853 IsSpecialMethodInvocation (method, loc);
4855 if (mg.InstanceExpression != null)
4856 mg.InstanceExpression.CheckMarshalByRefAccess (ec);
4858 eclass = ExprClass.Value;
4859 return this;
4862 protected virtual MethodGroupExpr DoResolveOverload (EmitContext ec)
4864 return mg.OverloadResolve (ec, ref Arguments, false, loc);
4867 public static bool IsSpecialMethodInvocation (MethodBase method, Location loc)
4869 if (!TypeManager.IsSpecialMethod (method))
4870 return false;
4872 Report.SymbolRelatedToPreviousError (method);
4873 Report.Error (571, loc, "`{0}': cannot explicitly call operator or accessor",
4874 TypeManager.CSharpSignature (method, true));
4876 return true;
4879 /// <summary>
4880 /// Emits a list of resolved Arguments that are in the arguments
4881 /// ArrayList.
4882 ///
4883 /// The MethodBase argument might be null if the
4884 /// emission of the arguments is known not to contain
4885 /// a `params' field (for example in constructors or other routines
4886 /// that keep their arguments in this structure)
4887 ///
4888 /// if `dup_args' is true, a copy of the arguments will be left
4889 /// on the stack. If `dup_args' is true, you can specify `this_arg'
4890 /// which will be duplicated before any other args. Only EmitCall
4891 /// should be using this interface.
4892 /// </summary>
4893 public static void EmitArguments (EmitContext ec, ArrayList arguments, bool dup_args, LocalTemporary this_arg)
4895 if (arguments == null)
4896 return;
4898 int top = arguments.Count;
4899 LocalTemporary [] temps = null;
4901 if (dup_args && top != 0)
4902 temps = new LocalTemporary [top];
4904 int argument_index = 0;
4905 Argument a;
4906 for (int i = 0; i < top; i++) {
4907 a = (Argument) arguments [argument_index++];
4908 a.Emit (ec);
4909 if (dup_args) {
4910 ec.ig.Emit (OpCodes.Dup);
4911 (temps [i] = new LocalTemporary (a.Type)).Store (ec);
4915 if (dup_args) {
4916 if (this_arg != null)
4917 this_arg.Emit (ec);
4919 for (int i = 0; i < top; i ++) {
4920 temps [i].Emit (ec);
4921 temps [i].Release (ec);
4926 static Type[] GetVarargsTypes (MethodBase mb, ArrayList arguments)
4928 AParametersCollection pd = TypeManager.GetParameterData (mb);
4930 Argument a = (Argument) arguments [pd.Count - 1];
4931 Arglist list = (Arglist) a.Expr;
4933 return list.ArgumentTypes;
4936 /// <summary>
4937 /// This checks the ConditionalAttribute on the method
4938 /// </summary>
4939 public static bool IsMethodExcluded (MethodBase method, Location loc)
4941 if (method.IsConstructor)
4942 return false;
4944 method = TypeManager.DropGenericMethodArguments (method);
4945 if (method.DeclaringType.Module == CodeGen.Module.Builder) {
4946 IMethodData md = TypeManager.GetMethod (method);
4947 if (md != null)
4948 return md.IsExcluded ();
4950 // For some methods (generated by delegate class) GetMethod returns null
4951 // because they are not included in builder_to_method table
4952 return false;
4955 return AttributeTester.IsConditionalMethodExcluded (method, loc);
4958 /// <remarks>
4959 /// is_base tells whether we want to force the use of the `call'
4960 /// opcode instead of using callvirt. Call is required to call
4961 /// a specific method, while callvirt will always use the most
4962 /// recent method in the vtable.
4964 /// is_static tells whether this is an invocation on a static method
4966 /// instance_expr is an expression that represents the instance
4967 /// it must be non-null if is_static is false.
4969 /// method is the method to invoke.
4971 /// Arguments is the list of arguments to pass to the method or constructor.
4972 /// </remarks>
4973 public static void EmitCall (EmitContext ec, bool is_base,
4974 Expression instance_expr,
4975 MethodBase method, ArrayList Arguments, Location loc)
4977 EmitCall (ec, is_base, instance_expr, method, Arguments, loc, false, false);
4980 // `dup_args' leaves an extra copy of the arguments on the stack
4981 // `omit_args' does not leave any arguments at all.
4982 // So, basically, you could make one call with `dup_args' set to true,
4983 // and then another with `omit_args' set to true, and the two calls
4984 // would have the same set of arguments. However, each argument would
4985 // only have been evaluated once.
4986 public static void EmitCall (EmitContext ec, bool is_base,
4987 Expression instance_expr,
4988 MethodBase method, ArrayList Arguments, Location loc,
4989 bool dup_args, bool omit_args)
4991 ILGenerator ig = ec.ig;
4992 bool struct_call = false;
4993 bool this_call = false;
4994 LocalTemporary this_arg = null;
4996 Type decl_type = method.DeclaringType;
4998 if (IsMethodExcluded (method, loc))
4999 return;
5001 bool is_static = method.IsStatic;
5002 if (!is_static){
5003 this_call = instance_expr is This;
5004 if (decl_type.IsValueType || (!this_call && instance_expr.Type.IsValueType))
5005 struct_call = true;
5008 // If this is ourselves, push "this"
5010 if (!omit_args) {
5011 Type t = null;
5012 Type iexpr_type = instance_expr.Type;
5015 // Push the instance expression
5017 if (TypeManager.IsValueType (iexpr_type)) {
5019 // Special case: calls to a function declared in a
5020 // reference-type with a value-type argument need
5021 // to have their value boxed.
5022 if (decl_type.IsValueType ||
5023 TypeManager.IsGenericParameter (iexpr_type)) {
5025 // If the expression implements IMemoryLocation, then
5026 // we can optimize and use AddressOf on the
5027 // return.
5029 // If not we have to use some temporary storage for
5030 // it.
5031 if (instance_expr is IMemoryLocation) {
5032 ((IMemoryLocation)instance_expr).
5033 AddressOf (ec, AddressOp.LoadStore);
5034 } else {
5035 LocalTemporary temp = new LocalTemporary (iexpr_type);
5036 instance_expr.Emit (ec);
5037 temp.Store (ec);
5038 temp.AddressOf (ec, AddressOp.Load);
5041 // avoid the overhead of doing this all the time.
5042 if (dup_args)
5043 t = TypeManager.GetReferenceType (iexpr_type);
5044 } else {
5045 instance_expr.Emit (ec);
5046 ig.Emit (OpCodes.Box, instance_expr.Type);
5047 t = TypeManager.object_type;
5049 } else {
5050 instance_expr.Emit (ec);
5051 t = instance_expr.Type;
5054 if (dup_args) {
5055 ig.Emit (OpCodes.Dup);
5056 if (Arguments != null && Arguments.Count != 0) {
5057 this_arg = new LocalTemporary (t);
5058 this_arg.Store (ec);
5064 if (!omit_args)
5065 EmitArguments (ec, Arguments, dup_args, this_arg);
5067 #if GMCS_SOURCE
5068 if ((instance_expr != null) && (instance_expr.Type.IsGenericParameter))
5069 ig.Emit (OpCodes.Constrained, instance_expr.Type);
5070 #endif
5072 OpCode call_op;
5073 if (is_static || struct_call || is_base || (this_call && !method.IsVirtual))
5074 call_op = OpCodes.Call;
5075 else
5076 call_op = OpCodes.Callvirt;
5078 if ((method.CallingConvention & CallingConventions.VarArgs) != 0) {
5079 Type[] varargs_types = GetVarargsTypes (method, Arguments);
5080 ig.EmitCall (call_op, (MethodInfo) method, varargs_types);
5081 return;
5085 // If you have:
5086 // this.DoFoo ();
5087 // and DoFoo is not virtual, you can omit the callvirt,
5088 // because you don't need the null checking behavior.
5090 if (method is MethodInfo)
5091 ig.Emit (call_op, (MethodInfo) method);
5092 else
5093 ig.Emit (call_op, (ConstructorInfo) method);
5096 public override void Emit (EmitContext ec)
5098 mg.EmitCall (ec, Arguments);
5101 public override void EmitStatement (EmitContext ec)
5103 Emit (ec);
5106 // Pop the return value if there is one
5108 if (TypeManager.TypeToCoreType (type) != TypeManager.void_type)
5109 ec.ig.Emit (OpCodes.Pop);
5112 protected override void CloneTo (CloneContext clonectx, Expression t)
5114 Invocation target = (Invocation) t;
5116 if (Arguments != null) {
5117 target.Arguments = new ArrayList (Arguments.Count);
5118 foreach (Argument a in Arguments)
5119 target.Arguments.Add (a.Clone (clonectx));
5122 target.expr = expr.Clone (clonectx);
5125 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5127 mg.MutateHoistedGenericType (storey);
5128 if (Arguments != null) {
5129 foreach (Argument a in Arguments)
5130 a.Expr.MutateHoistedGenericType (storey);
5136 // It's either a cast or delegate invocation
5138 public class InvocationOrCast : ExpressionStatement
5140 Expression expr;
5141 Expression argument;
5143 public InvocationOrCast (Expression expr, Expression argument)
5145 this.expr = expr;
5146 this.argument = argument;
5147 this.loc = expr.Location;
5150 public override Expression CreateExpressionTree (EmitContext ec)
5152 throw new NotSupportedException ("ET");
5155 public override Expression DoResolve (EmitContext ec)
5157 Expression e = ResolveCore (ec);
5158 if (e == null)
5159 return null;
5161 return e.Resolve (ec);
5164 Expression ResolveCore (EmitContext ec)
5167 // First try to resolve it as a cast.
5169 TypeExpr te = expr.ResolveAsBaseTerminal (ec, true);
5170 if (te != null) {
5171 return new Cast (te, argument, loc);
5175 // This can either be a type or a delegate invocation.
5176 // Let's just resolve it and see what we'll get.
5178 expr = expr.Resolve (ec, ResolveFlags.Type | ResolveFlags.VariableOrValue);
5179 if (expr == null)
5180 return null;
5183 // Ok, so it's a Cast.
5185 if (expr.eclass == ExprClass.Type || expr.eclass == ExprClass.TypeParameter) {
5186 return new Cast (expr, argument, loc);
5189 if (expr.eclass == ExprClass.Namespace) {
5190 expr.Error_UnexpectedKind (null, "type", loc);
5191 return null;
5195 // It's a delegate invocation.
5197 if (!TypeManager.IsDelegateType (expr.Type)) {
5198 Error (149, "Method name expected");
5199 return null;
5202 ArrayList args = new ArrayList (1);
5203 args.Add (new Argument (argument, Argument.AType.Expression));
5204 return new DelegateInvocation (expr, args, loc);
5207 public override ExpressionStatement ResolveStatement (EmitContext ec)
5209 Expression e = ResolveCore (ec);
5210 if (e == null)
5211 return null;
5213 ExpressionStatement s = e as ExpressionStatement;
5214 if (s == null) {
5215 Error_InvalidExpressionStatement ();
5216 return null;
5219 return s.ResolveStatement (ec);
5222 public override void Emit (EmitContext ec)
5224 throw new Exception ("Cannot happen");
5227 public override void EmitStatement (EmitContext ec)
5229 throw new Exception ("Cannot happen");
5232 protected override void CloneTo (CloneContext clonectx, Expression t)
5234 InvocationOrCast target = (InvocationOrCast) t;
5236 target.expr = expr.Clone (clonectx);
5237 target.argument = argument.Clone (clonectx);
5243 // This class is used to "disable" the code generation for the
5244 // temporary variable when initializing value types.
5246 sealed class EmptyAddressOf : EmptyExpression, IMemoryLocation {
5247 public void AddressOf (EmitContext ec, AddressOp Mode)
5249 // nothing
5253 /// <summary>
5254 /// Implements the new expression
5255 /// </summary>
5256 public class New : ExpressionStatement, IMemoryLocation {
5257 ArrayList Arguments;
5260 // During bootstrap, it contains the RequestedType,
5261 // but if `type' is not null, it *might* contain a NewDelegate
5262 // (because of field multi-initialization)
5264 public Expression RequestedType;
5266 MethodGroupExpr method;
5269 // If set, the new expression is for a value_target, and
5270 // we will not leave anything on the stack.
5272 protected Expression value_target;
5273 protected bool value_target_set;
5274 bool is_type_parameter = false;
5276 public New (Expression requested_type, ArrayList arguments, Location l)
5278 RequestedType = requested_type;
5279 Arguments = arguments;
5280 loc = l;
5283 public bool SetTargetVariable (Expression value)
5285 value_target = value;
5286 value_target_set = true;
5287 if (!(value_target is IMemoryLocation)){
5288 Error_UnexpectedKind (null, "variable", loc);
5289 return false;
5291 return true;
5295 // This function is used to disable the following code sequence for
5296 // value type initialization:
5298 // AddressOf (temporary)
5299 // Construct/Init
5300 // LoadTemporary
5302 // Instead the provide will have provided us with the address on the
5303 // stack to store the results.
5305 static Expression MyEmptyExpression;
5307 public void DisableTemporaryValueType ()
5309 if (MyEmptyExpression == null)
5310 MyEmptyExpression = new EmptyAddressOf ();
5313 // To enable this, look into:
5314 // test-34 and test-89 and self bootstrapping.
5316 // For instance, we can avoid a copy by using `newobj'
5317 // instead of Call + Push-temp on value types.
5318 // value_target = MyEmptyExpression;
5322 /// <summary>
5323 /// Converts complex core type syntax like 'new int ()' to simple constant
5324 /// </summary>
5325 public static Constant Constantify (Type t)
5327 if (t == TypeManager.int32_type)
5328 return new IntConstant (0, Location.Null);
5329 if (t == TypeManager.uint32_type)
5330 return new UIntConstant (0, Location.Null);
5331 if (t == TypeManager.int64_type)
5332 return new LongConstant (0, Location.Null);
5333 if (t == TypeManager.uint64_type)
5334 return new ULongConstant (0, Location.Null);
5335 if (t == TypeManager.float_type)
5336 return new FloatConstant (0, Location.Null);
5337 if (t == TypeManager.double_type)
5338 return new DoubleConstant (0, Location.Null);
5339 if (t == TypeManager.short_type)
5340 return new ShortConstant (0, Location.Null);
5341 if (t == TypeManager.ushort_type)
5342 return new UShortConstant (0, Location.Null);
5343 if (t == TypeManager.sbyte_type)
5344 return new SByteConstant (0, Location.Null);
5345 if (t == TypeManager.byte_type)
5346 return new ByteConstant (0, Location.Null);
5347 if (t == TypeManager.char_type)
5348 return new CharConstant ('\0', Location.Null);
5349 if (t == TypeManager.bool_type)
5350 return new BoolConstant (false, Location.Null);
5351 if (t == TypeManager.decimal_type)
5352 return new DecimalConstant (0, Location.Null);
5353 if (TypeManager.IsEnumType (t))
5354 return new EnumConstant (Constantify (TypeManager.GetEnumUnderlyingType (t)), t);
5356 return null;
5360 // Checks whether the type is an interface that has the
5361 // [ComImport, CoClass] attributes and must be treated
5362 // specially
5364 public Expression CheckComImport (EmitContext ec)
5366 if (!type.IsInterface)
5367 return null;
5370 // Turn the call into:
5371 // (the-interface-stated) (new class-referenced-in-coclassattribute ())
5373 Type real_class = AttributeTester.GetCoClassAttribute (type);
5374 if (real_class == null)
5375 return null;
5377 New proxy = new New (new TypeExpression (real_class, loc), Arguments, loc);
5378 Cast cast = new Cast (new TypeExpression (type, loc), proxy, loc);
5379 return cast.Resolve (ec);
5382 public override Expression CreateExpressionTree (EmitContext ec)
5384 ArrayList args = Arguments == null ?
5385 new ArrayList (1) : new ArrayList (Arguments.Count + 1);
5387 if (method == null) {
5388 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
5389 } else {
5390 args.Add (new Argument (method.CreateExpressionTree (ec)));
5391 if (Arguments != null) {
5392 Expression expr;
5393 foreach (Argument a in Arguments) {
5394 expr = a.Expr.CreateExpressionTree (ec);
5395 if (expr != null)
5396 args.Add (new Argument (expr));
5401 return CreateExpressionFactoryCall ("New", args);
5404 public override Expression DoResolve (EmitContext ec)
5407 // The New DoResolve might be called twice when initializing field
5408 // expressions (see EmitFieldInitializers, the call to
5409 // GetInitializerExpression will perform a resolve on the expression,
5410 // and later the assign will trigger another resolution
5412 // This leads to bugs (#37014)
5414 if (type != null){
5415 if (RequestedType is NewDelegate)
5416 return RequestedType;
5417 return this;
5420 TypeExpr texpr = RequestedType.ResolveAsTypeTerminal (ec, false);
5421 if (texpr == null)
5422 return null;
5424 type = texpr.Type;
5426 if (type.IsPointer) {
5427 Report.Error (1919, loc, "Unsafe type `{0}' cannot be used in an object creation expression",
5428 TypeManager.CSharpName (type));
5429 return null;
5432 if (Arguments == null) {
5433 Constant c = Constantify (type);
5434 if (c != null)
5435 return ReducedExpression.Create (c, this);
5438 if (TypeManager.IsDelegateType (type)) {
5439 return (new NewDelegate (type, Arguments, loc)).Resolve (ec);
5442 #if GMCS_SOURCE
5443 if (type.IsGenericParameter) {
5444 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (type);
5446 if ((gc == null) || (!gc.HasConstructorConstraint && !gc.IsValueType)) {
5447 Error (304, String.Format (
5448 "Cannot create an instance of the " +
5449 "variable type '{0}' because it " +
5450 "doesn't have the new() constraint",
5451 type));
5452 return null;
5455 if ((Arguments != null) && (Arguments.Count != 0)) {
5456 Error (417, String.Format (
5457 "`{0}': cannot provide arguments " +
5458 "when creating an instance of a " +
5459 "variable type.", type));
5460 return null;
5463 if (TypeManager.activator_create_instance == null) {
5464 Type activator_type = TypeManager.CoreLookupType ("System", "Activator", Kind.Class, true);
5465 if (activator_type != null) {
5466 TypeManager.activator_create_instance = TypeManager.GetPredefinedMethod (
5467 activator_type, "CreateInstance", loc, Type.EmptyTypes);
5471 is_type_parameter = true;
5472 eclass = ExprClass.Value;
5473 return this;
5475 #endif
5477 if (type.IsAbstract && type.IsSealed) {
5478 Report.SymbolRelatedToPreviousError (type);
5479 Report.Error (712, loc, "Cannot create an instance of the static class `{0}'", TypeManager.CSharpName (type));
5480 return null;
5483 if (type.IsInterface || type.IsAbstract){
5484 if (!TypeManager.IsGenericType (type)) {
5485 RequestedType = CheckComImport (ec);
5486 if (RequestedType != null)
5487 return RequestedType;
5490 Report.SymbolRelatedToPreviousError (type);
5491 Report.Error (144, loc, "Cannot create an instance of the abstract class or interface `{0}'", TypeManager.CSharpName (type));
5492 return null;
5495 bool is_struct = type.IsValueType;
5496 eclass = ExprClass.Value;
5499 // SRE returns a match for .ctor () on structs (the object constructor),
5500 // so we have to manually ignore it.
5502 if (is_struct && Arguments == null)
5503 return this;
5505 // For member-lookup, treat 'new Foo (bar)' as call to 'foo.ctor (bar)', where 'foo' is of type 'Foo'.
5506 Expression ml = MemberLookupFinal (ec, type, type, ".ctor",
5507 MemberTypes.Constructor, AllBindingFlags | BindingFlags.DeclaredOnly, loc);
5509 if (Arguments != null){
5510 foreach (Argument a in Arguments){
5511 if (!a.Resolve (ec, loc))
5512 return null;
5516 if (ml == null)
5517 return null;
5519 method = ml as MethodGroupExpr;
5520 if (method == null) {
5521 ml.Error_UnexpectedKind (ec.DeclContainer, "method group", loc);
5522 return null;
5525 method = method.OverloadResolve (ec, ref Arguments, false, loc);
5526 if (method == null)
5527 return null;
5529 return this;
5532 bool DoEmitTypeParameter (EmitContext ec)
5534 #if GMCS_SOURCE
5535 ILGenerator ig = ec.ig;
5536 // IMemoryLocation ml;
5538 MethodInfo ci = TypeManager.activator_create_instance.MakeGenericMethod (
5539 new Type [] { type });
5541 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (type);
5542 if (gc.HasReferenceTypeConstraint || gc.HasClassConstraint) {
5543 ig.Emit (OpCodes.Call, ci);
5544 return true;
5547 // Allow DoEmit() to be called multiple times.
5548 // We need to create a new LocalTemporary each time since
5549 // you can't share LocalBuilders among ILGeneators.
5550 LocalTemporary temp = new LocalTemporary (type);
5552 Label label_activator = ig.DefineLabel ();
5553 Label label_end = ig.DefineLabel ();
5555 temp.AddressOf (ec, AddressOp.Store);
5556 ig.Emit (OpCodes.Initobj, type);
5558 temp.Emit (ec);
5559 ig.Emit (OpCodes.Box, type);
5560 ig.Emit (OpCodes.Brfalse, label_activator);
5562 temp.AddressOf (ec, AddressOp.Store);
5563 ig.Emit (OpCodes.Initobj, type);
5564 temp.Emit (ec);
5565 ig.Emit (OpCodes.Br, label_end);
5567 ig.MarkLabel (label_activator);
5569 ig.Emit (OpCodes.Call, ci);
5570 ig.MarkLabel (label_end);
5571 return true;
5572 #else
5573 throw new InternalErrorException ();
5574 #endif
5578 // This DoEmit can be invoked in two contexts:
5579 // * As a mechanism that will leave a value on the stack (new object)
5580 // * As one that wont (init struct)
5582 // You can control whether a value is required on the stack by passing
5583 // need_value_on_stack. The code *might* leave a value on the stack
5584 // so it must be popped manually
5586 // If we are dealing with a ValueType, we have a few
5587 // situations to deal with:
5589 // * The target is a ValueType, and we have been provided
5590 // the instance (this is easy, we are being assigned).
5592 // * The target of New is being passed as an argument,
5593 // to a boxing operation or a function that takes a
5594 // ValueType.
5596 // In this case, we need to create a temporary variable
5597 // that is the argument of New.
5599 // Returns whether a value is left on the stack
5601 bool DoEmit (EmitContext ec, bool need_value_on_stack)
5603 bool is_value_type = TypeManager.IsValueType (type);
5604 ILGenerator ig = ec.ig;
5606 if (is_value_type){
5607 IMemoryLocation ml;
5609 // Allow DoEmit() to be called multiple times.
5610 // We need to create a new LocalTemporary each time since
5611 // you can't share LocalBuilders among ILGeneators.
5612 if (!value_target_set)
5613 value_target = new LocalTemporary (type);
5615 ml = (IMemoryLocation) value_target;
5616 ml.AddressOf (ec, AddressOp.Store);
5619 if (method != null)
5620 method.EmitArguments (ec, Arguments);
5622 if (is_value_type){
5623 if (method == null)
5624 ig.Emit (OpCodes.Initobj, type);
5625 else
5626 ig.Emit (OpCodes.Call, (ConstructorInfo) method);
5627 if (need_value_on_stack){
5628 value_target.Emit (ec);
5629 return true;
5631 return false;
5632 } else {
5633 ConstructorInfo ci = (ConstructorInfo) method;
5634 #if MS_COMPATIBLE
5635 if (TypeManager.IsGenericType (type))
5636 ci = TypeBuilder.GetConstructor (type, ci);
5637 #endif
5638 ig.Emit (OpCodes.Newobj, ci);
5639 return true;
5643 public override void Emit (EmitContext ec)
5645 if (is_type_parameter)
5646 DoEmitTypeParameter (ec);
5647 else
5648 DoEmit (ec, true);
5651 public override void EmitStatement (EmitContext ec)
5653 bool value_on_stack;
5655 if (is_type_parameter)
5656 value_on_stack = DoEmitTypeParameter (ec);
5657 else
5658 value_on_stack = DoEmit (ec, false);
5660 if (value_on_stack)
5661 ec.ig.Emit (OpCodes.Pop);
5665 public virtual bool HasInitializer {
5666 get {
5667 return false;
5671 public void AddressOf (EmitContext ec, AddressOp Mode)
5673 if (is_type_parameter) {
5674 LocalTemporary temp = new LocalTemporary (type);
5675 DoEmitTypeParameter (ec);
5676 temp.Store (ec);
5677 temp.AddressOf (ec, Mode);
5678 return;
5681 if (!type.IsValueType){
5683 // We throw an exception. So far, I believe we only need to support
5684 // value types:
5685 // foreach (int j in new StructType ())
5686 // see bug 42390
5688 throw new Exception ("AddressOf should not be used for classes");
5691 if (!value_target_set)
5692 value_target = new LocalTemporary (type);
5693 IMemoryLocation ml = (IMemoryLocation) value_target;
5695 ml.AddressOf (ec, AddressOp.Store);
5696 if (method == null) {
5697 ec.ig.Emit (OpCodes.Initobj, type);
5698 } else {
5699 method.EmitArguments (ec, Arguments);
5700 ec.ig.Emit (OpCodes.Call, (ConstructorInfo) method);
5703 ((IMemoryLocation) value_target).AddressOf (ec, Mode);
5706 protected override void CloneTo (CloneContext clonectx, Expression t)
5708 New target = (New) t;
5710 target.RequestedType = RequestedType.Clone (clonectx);
5711 if (Arguments != null){
5712 target.Arguments = new ArrayList ();
5713 foreach (Argument a in Arguments){
5714 target.Arguments.Add (a.Clone (clonectx));
5719 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5721 if (method != null) {
5722 method.MutateHoistedGenericType (storey);
5723 if (Arguments != null) {
5724 foreach (Argument a in Arguments)
5725 a.Expr.MutateHoistedGenericType (storey);
5729 type = storey.MutateType (type);
5733 /// <summary>
5734 /// 14.5.10.2: Represents an array creation expression.
5735 /// </summary>
5737 /// <remarks>
5738 /// There are two possible scenarios here: one is an array creation
5739 /// expression that specifies the dimensions and optionally the
5740 /// initialization data and the other which does not need dimensions
5741 /// specified but where initialization data is mandatory.
5742 /// </remarks>
5743 public class ArrayCreation : Expression {
5744 FullNamedExpression requested_base_type;
5745 ArrayList initializers;
5748 // The list of Argument types.
5749 // This is used to construct the `newarray' or constructor signature
5751 protected ArrayList arguments;
5753 protected Type array_element_type;
5754 bool expect_initializers = false;
5755 int num_arguments = 0;
5756 protected int dimensions;
5757 protected readonly string rank;
5759 protected ArrayList array_data;
5761 IDictionary bounds;
5763 // The number of constants in array initializers
5764 int const_initializers_count;
5765 bool only_constant_initializers;
5767 public ArrayCreation (FullNamedExpression requested_base_type, ArrayList exprs, string rank, ArrayList initializers, Location l)
5769 this.requested_base_type = requested_base_type;
5770 this.initializers = initializers;
5771 this.rank = rank;
5772 loc = l;
5774 arguments = new ArrayList (exprs.Count);
5776 foreach (Expression e in exprs) {
5777 arguments.Add (new Argument (e, Argument.AType.Expression));
5778 num_arguments++;
5782 public ArrayCreation (FullNamedExpression requested_base_type, string rank, ArrayList initializers, Location l)
5784 this.requested_base_type = requested_base_type;
5785 this.initializers = initializers;
5786 this.rank = rank;
5787 loc = l;
5789 //this.rank = rank.Substring (0, rank.LastIndexOf ('['));
5791 //string tmp = rank.Substring (rank.LastIndexOf ('['));
5793 //dimensions = tmp.Length - 1;
5794 expect_initializers = true;
5797 public static void Error_IncorrectArrayInitializer (Location loc)
5799 Report.Error (178, loc, "Invalid rank specifier: expected `,' or `]'");
5802 protected override void Error_NegativeArrayIndex (Location loc)
5804 Report.Error (248, loc, "Cannot create an array with a negative size");
5807 bool CheckIndices (EmitContext ec, ArrayList probe, int idx, bool specified_dims)
5809 if (specified_dims) {
5810 Argument a = (Argument) arguments [idx];
5812 if (!a.Resolve (ec, loc))
5813 return false;
5815 Constant c = a.Expr as Constant;
5816 if (c != null) {
5817 c = c.ImplicitConversionRequired (ec, TypeManager.int32_type, a.Expr.Location);
5820 if (c == null) {
5821 Report.Error (150, a.Expr.Location, "A constant value is expected");
5822 return false;
5825 int value = (int) c.GetValue ();
5827 if (value != probe.Count) {
5828 Error_IncorrectArrayInitializer (loc);
5829 return false;
5832 bounds [idx] = value;
5835 int child_bounds = -1;
5836 only_constant_initializers = true;
5837 for (int i = 0; i < probe.Count; ++i) {
5838 object o = probe [i];
5839 if (o is ArrayList) {
5840 ArrayList sub_probe = o as ArrayList;
5841 int current_bounds = sub_probe.Count;
5843 if (child_bounds == -1)
5844 child_bounds = current_bounds;
5846 else if (child_bounds != current_bounds){
5847 Error_IncorrectArrayInitializer (loc);
5848 return false;
5850 if (idx + 1 >= dimensions){
5851 Error (623, "Array initializers can only be used in a variable or field initializer. Try using a new expression instead");
5852 return false;
5855 bool ret = CheckIndices (ec, sub_probe, idx + 1, specified_dims);
5856 if (!ret)
5857 return false;
5858 } else {
5859 if (child_bounds != -1){
5860 Error_IncorrectArrayInitializer (loc);
5861 return false;
5864 Expression element = ResolveArrayElement (ec, (Expression) o);
5865 if (element == null)
5866 continue;
5868 // Initializers with the default values can be ignored
5869 Constant c = element as Constant;
5870 if (c != null) {
5871 if (c.IsDefaultInitializer (array_element_type)) {
5872 element = null;
5874 else {
5875 ++const_initializers_count;
5877 } else {
5878 only_constant_initializers = false;
5881 array_data.Add (element);
5885 return true;
5888 public override Expression CreateExpressionTree (EmitContext ec)
5890 ArrayList args;
5892 if (array_data == null) {
5893 args = new ArrayList (arguments.Count + 1);
5894 args.Add (new Argument (new TypeOf (new TypeExpression (array_element_type, loc), loc)));
5895 foreach (Argument a in arguments) {
5896 if (arguments.Count == 1) {
5897 Constant c = a.Expr as Constant;
5898 if (c.IsDefaultValue)
5899 return CreateExpressionFactoryCall ("NewArrayInit", args);
5901 args.Add (new Argument (a.Expr.CreateExpressionTree (ec)));
5904 return CreateExpressionFactoryCall ("NewArrayBounds", args);
5907 if (dimensions > 1) {
5908 Report.Error (838, loc, "An expression tree cannot contain a multidimensional array initializer");
5909 return null;
5912 args = new ArrayList (array_data == null ? 1 : array_data.Count + 1);
5913 args.Add (new Argument (new TypeOf (new TypeExpression (array_element_type, loc), loc)));
5914 if (array_data != null) {
5915 for (int i = 0; i < array_data.Count; ++i) {
5916 Expression e = (Expression) array_data [i];
5917 if (e == null)
5918 e = Convert.ImplicitConversion (ec, (Expression) initializers [i], array_element_type, loc);
5920 args.Add (new Argument (e.CreateExpressionTree (ec)));
5924 return CreateExpressionFactoryCall ("NewArrayInit", args);
5927 public void UpdateIndices ()
5929 int i = 0;
5930 for (ArrayList probe = initializers; probe != null;) {
5931 if (probe.Count > 0 && probe [0] is ArrayList) {
5932 Expression e = new IntConstant (probe.Count, Location.Null);
5933 arguments.Add (new Argument (e, Argument.AType.Expression));
5935 bounds [i++] = probe.Count;
5937 probe = (ArrayList) probe [0];
5939 } else {
5940 Expression e = new IntConstant (probe.Count, Location.Null);
5941 arguments.Add (new Argument (e, Argument.AType.Expression));
5943 bounds [i++] = probe.Count;
5944 return;
5950 Expression first_emit;
5951 LocalTemporary first_emit_temp;
5953 protected virtual Expression ResolveArrayElement (EmitContext ec, Expression element)
5955 element = element.Resolve (ec);
5956 if (element == null)
5957 return null;
5959 if (element is CompoundAssign.TargetExpression) {
5960 if (first_emit != null)
5961 throw new InternalErrorException ("Can only handle one mutator at a time");
5962 first_emit = element;
5963 element = first_emit_temp = new LocalTemporary (element.Type);
5966 return Convert.ImplicitConversionRequired (
5967 ec, element, array_element_type, loc);
5970 protected bool ResolveInitializers (EmitContext ec)
5972 if (initializers == null) {
5973 return !expect_initializers;
5977 // We use this to store all the date values in the order in which we
5978 // will need to store them in the byte blob later
5980 array_data = new ArrayList ();
5981 bounds = new System.Collections.Specialized.HybridDictionary ();
5983 if (arguments != null)
5984 return CheckIndices (ec, initializers, 0, true);
5986 arguments = new ArrayList ();
5988 if (!CheckIndices (ec, initializers, 0, false))
5989 return false;
5991 UpdateIndices ();
5993 return true;
5997 // Resolved the type of the array
5999 bool ResolveArrayType (EmitContext ec)
6001 if (requested_base_type == null) {
6002 Report.Error (622, loc, "Can only use array initializer expressions to assign to array types. Try using a new expression instead");
6003 return false;
6006 if (requested_base_type is VarExpr) {
6007 Report.Error (820, loc, "An implicitly typed local variable declarator cannot use an array initializer");
6008 return false;
6011 StringBuilder array_qualifier = new StringBuilder (rank);
6014 // `In the first form allocates an array instace of the type that results
6015 // from deleting each of the individual expression from the expression list'
6017 if (num_arguments > 0) {
6018 array_qualifier.Append ("[");
6019 for (int i = num_arguments-1; i > 0; i--)
6020 array_qualifier.Append (",");
6021 array_qualifier.Append ("]");
6025 // Lookup the type
6027 TypeExpr array_type_expr;
6028 array_type_expr = new ComposedCast (requested_base_type, array_qualifier.ToString (), loc);
6029 array_type_expr = array_type_expr.ResolveAsTypeTerminal (ec, false);
6030 if (array_type_expr == null)
6031 return false;
6033 type = array_type_expr.Type;
6034 array_element_type = TypeManager.GetElementType (type);
6035 dimensions = type.GetArrayRank ();
6037 return true;
6040 public override Expression DoResolve (EmitContext ec)
6042 if (type != null)
6043 return this;
6045 if (!ResolveArrayType (ec))
6046 return null;
6049 // First step is to validate the initializers and fill
6050 // in any missing bits
6052 if (!ResolveInitializers (ec))
6053 return null;
6055 if (arguments.Count != dimensions) {
6056 Error_IncorrectArrayInitializer (loc);
6059 foreach (Argument a in arguments){
6060 if (!a.Resolve (ec, loc))
6061 continue;
6063 a.Expr = ConvertExpressionToArrayIndex (ec, a.Expr);
6066 eclass = ExprClass.Value;
6067 return this;
6070 MethodInfo GetArrayMethod (int arguments)
6072 ModuleBuilder mb = CodeGen.Module.Builder;
6074 Type[] arg_types = new Type[arguments];
6075 for (int i = 0; i < arguments; i++)
6076 arg_types[i] = TypeManager.int32_type;
6078 MethodInfo mi = mb.GetArrayMethod (type, ".ctor", CallingConventions.HasThis, null,
6079 arg_types);
6081 if (mi == null) {
6082 Report.Error (-6, "New invocation: Can not find a constructor for " +
6083 "this argument list");
6084 return null;
6087 return mi;
6090 byte [] MakeByteBlob ()
6092 int factor;
6093 byte [] data;
6094 byte [] element;
6095 int count = array_data.Count;
6097 if (TypeManager.IsEnumType (array_element_type))
6098 array_element_type = TypeManager.GetEnumUnderlyingType (array_element_type);
6100 factor = GetTypeSize (array_element_type);
6101 if (factor == 0)
6102 throw new Exception ("unrecognized type in MakeByteBlob: " + array_element_type);
6104 data = new byte [(count * factor + 3) & ~3];
6105 int idx = 0;
6107 for (int i = 0; i < count; ++i) {
6108 object v = array_data [i];
6110 if (v is EnumConstant)
6111 v = ((EnumConstant) v).Child;
6113 if (v is Constant && !(v is StringConstant))
6114 v = ((Constant) v).GetValue ();
6115 else {
6116 idx += factor;
6117 continue;
6120 if (array_element_type == TypeManager.int64_type){
6121 if (!(v is Expression)){
6122 long val = (long) v;
6124 for (int j = 0; j < factor; ++j) {
6125 data [idx + j] = (byte) (val & 0xFF);
6126 val = (val >> 8);
6129 } else if (array_element_type == TypeManager.uint64_type){
6130 if (!(v is Expression)){
6131 ulong val = (ulong) v;
6133 for (int j = 0; j < factor; ++j) {
6134 data [idx + j] = (byte) (val & 0xFF);
6135 val = (val >> 8);
6138 } else if (array_element_type == TypeManager.float_type) {
6139 if (!(v is Expression)){
6140 element = BitConverter.GetBytes ((float) v);
6142 for (int j = 0; j < factor; ++j)
6143 data [idx + j] = element [j];
6144 if (!BitConverter.IsLittleEndian)
6145 System.Array.Reverse (data, idx, 4);
6147 } else if (array_element_type == TypeManager.double_type) {
6148 if (!(v is Expression)){
6149 element = BitConverter.GetBytes ((double) v);
6151 for (int j = 0; j < factor; ++j)
6152 data [idx + j] = element [j];
6154 // FIXME: Handle the ARM float format.
6155 if (!BitConverter.IsLittleEndian)
6156 System.Array.Reverse (data, idx, 8);
6158 } else if (array_element_type == TypeManager.char_type){
6159 if (!(v is Expression)){
6160 int val = (int) ((char) v);
6162 data [idx] = (byte) (val & 0xff);
6163 data [idx+1] = (byte) (val >> 8);
6165 } else if (array_element_type == TypeManager.short_type){
6166 if (!(v is Expression)){
6167 int val = (int) ((short) v);
6169 data [idx] = (byte) (val & 0xff);
6170 data [idx+1] = (byte) (val >> 8);
6172 } else if (array_element_type == TypeManager.ushort_type){
6173 if (!(v is Expression)){
6174 int val = (int) ((ushort) v);
6176 data [idx] = (byte) (val & 0xff);
6177 data [idx+1] = (byte) (val >> 8);
6179 } else if (array_element_type == TypeManager.int32_type) {
6180 if (!(v is Expression)){
6181 int val = (int) v;
6183 data [idx] = (byte) (val & 0xff);
6184 data [idx+1] = (byte) ((val >> 8) & 0xff);
6185 data [idx+2] = (byte) ((val >> 16) & 0xff);
6186 data [idx+3] = (byte) (val >> 24);
6188 } else if (array_element_type == TypeManager.uint32_type) {
6189 if (!(v is Expression)){
6190 uint val = (uint) v;
6192 data [idx] = (byte) (val & 0xff);
6193 data [idx+1] = (byte) ((val >> 8) & 0xff);
6194 data [idx+2] = (byte) ((val >> 16) & 0xff);
6195 data [idx+3] = (byte) (val >> 24);
6197 } else if (array_element_type == TypeManager.sbyte_type) {
6198 if (!(v is Expression)){
6199 sbyte val = (sbyte) v;
6200 data [idx] = (byte) val;
6202 } else if (array_element_type == TypeManager.byte_type) {
6203 if (!(v is Expression)){
6204 byte val = (byte) v;
6205 data [idx] = (byte) val;
6207 } else if (array_element_type == TypeManager.bool_type) {
6208 if (!(v is Expression)){
6209 bool val = (bool) v;
6210 data [idx] = (byte) (val ? 1 : 0);
6212 } else if (array_element_type == TypeManager.decimal_type){
6213 if (!(v is Expression)){
6214 int [] bits = Decimal.GetBits ((decimal) v);
6215 int p = idx;
6217 // FIXME: For some reason, this doesn't work on the MS runtime.
6218 int [] nbits = new int [4];
6219 nbits [0] = bits [3];
6220 nbits [1] = bits [2];
6221 nbits [2] = bits [0];
6222 nbits [3] = bits [1];
6224 for (int j = 0; j < 4; j++){
6225 data [p++] = (byte) (nbits [j] & 0xff);
6226 data [p++] = (byte) ((nbits [j] >> 8) & 0xff);
6227 data [p++] = (byte) ((nbits [j] >> 16) & 0xff);
6228 data [p++] = (byte) (nbits [j] >> 24);
6231 } else
6232 throw new Exception ("Unrecognized type in MakeByteBlob: " + array_element_type);
6234 idx += factor;
6237 return data;
6240 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6242 array_element_type = storey.MutateType (array_element_type);
6243 type = storey.MutateType (type);
6244 if (arguments != null) {
6245 foreach (Argument a in arguments)
6246 a.Expr.MutateHoistedGenericType (storey);
6249 if (array_data != null) {
6250 foreach (Expression e in array_data)
6251 e.MutateHoistedGenericType (storey);
6256 // Emits the initializers for the array
6258 void EmitStaticInitializers (EmitContext ec)
6260 // FIXME: This should go to Resolve !
6261 if (TypeManager.void_initializearray_array_fieldhandle == null) {
6262 TypeManager.void_initializearray_array_fieldhandle = TypeManager.GetPredefinedMethod (
6263 TypeManager.runtime_helpers_type, "InitializeArray", loc,
6264 TypeManager.array_type, TypeManager.runtime_field_handle_type);
6265 if (TypeManager.void_initializearray_array_fieldhandle == null)
6266 return;
6270 // First, the static data
6272 FieldBuilder fb;
6273 ILGenerator ig = ec.ig;
6275 byte [] data = MakeByteBlob ();
6277 fb = RootContext.MakeStaticData (data);
6279 ig.Emit (OpCodes.Dup);
6280 ig.Emit (OpCodes.Ldtoken, fb);
6281 ig.Emit (OpCodes.Call,
6282 TypeManager.void_initializearray_array_fieldhandle);
6286 // Emits pieces of the array that can not be computed at compile
6287 // time (variables and string locations).
6289 // This always expect the top value on the stack to be the array
6291 void EmitDynamicInitializers (EmitContext ec, bool emitConstants)
6293 ILGenerator ig = ec.ig;
6294 int dims = bounds.Count;
6295 int [] current_pos = new int [dims];
6297 MethodInfo set = null;
6299 if (dims != 1){
6300 Type [] args = new Type [dims + 1];
6302 for (int j = 0; j < dims; j++)
6303 args [j] = TypeManager.int32_type;
6304 args [dims] = array_element_type;
6306 set = CodeGen.Module.Builder.GetArrayMethod (
6307 type, "Set",
6308 CallingConventions.HasThis | CallingConventions.Standard,
6309 TypeManager.void_type, args);
6312 for (int i = 0; i < array_data.Count; i++){
6314 Expression e = (Expression)array_data [i];
6316 // Constant can be initialized via StaticInitializer
6317 if (e != null && !(!emitConstants && e is Constant)) {
6318 Type etype = e.Type;
6320 ig.Emit (OpCodes.Dup);
6322 for (int idx = 0; idx < dims; idx++)
6323 IntConstant.EmitInt (ig, current_pos [idx]);
6326 // If we are dealing with a struct, get the
6327 // address of it, so we can store it.
6329 if ((dims == 1) && etype.IsValueType &&
6330 (!TypeManager.IsBuiltinOrEnum (etype) ||
6331 etype == TypeManager.decimal_type)) {
6332 if (e is New){
6333 New n = (New) e;
6336 // Let new know that we are providing
6337 // the address where to store the results
6339 n.DisableTemporaryValueType ();
6342 ig.Emit (OpCodes.Ldelema, etype);
6345 e.Emit (ec);
6347 if (dims == 1) {
6348 bool is_stobj, has_type_arg;
6349 OpCode op = ArrayAccess.GetStoreOpcode (etype, out is_stobj, out has_type_arg);
6350 if (is_stobj)
6351 ig.Emit (OpCodes.Stobj, etype);
6352 else if (has_type_arg)
6353 ig.Emit (op, etype);
6354 else
6355 ig.Emit (op);
6356 } else
6357 ig.Emit (OpCodes.Call, set);
6362 // Advance counter
6364 for (int j = dims - 1; j >= 0; j--){
6365 current_pos [j]++;
6366 if (current_pos [j] < (int) bounds [j])
6367 break;
6368 current_pos [j] = 0;
6373 public override void Emit (EmitContext ec)
6375 ILGenerator ig = ec.ig;
6377 if (first_emit != null) {
6378 first_emit.Emit (ec);
6379 first_emit_temp.Store (ec);
6382 foreach (Argument a in arguments)
6383 a.Emit (ec);
6385 if (arguments.Count == 1)
6386 ig.Emit (OpCodes.Newarr, array_element_type);
6387 else {
6388 ig.Emit (OpCodes.Newobj, GetArrayMethod (arguments.Count));
6391 if (initializers == null)
6392 return;
6394 // Emit static initializer for arrays which have contain more than 4 items and
6395 // the static initializer will initialize at least 25% of array values.
6396 // NOTE: const_initializers_count does not contain default constant values.
6397 if (const_initializers_count >= 4 && const_initializers_count * 4 > (array_data.Count) &&
6398 TypeManager.IsPrimitiveType (array_element_type)) {
6399 EmitStaticInitializers (ec);
6401 if (!only_constant_initializers)
6402 EmitDynamicInitializers (ec, false);
6403 } else {
6404 EmitDynamicInitializers (ec, true);
6407 if (first_emit_temp != null)
6408 first_emit_temp.Release (ec);
6411 public override bool GetAttributableValue (EmitContext ec, Type value_type, out object value)
6413 if (arguments.Count != 1) {
6414 // Report.Error (-211, Location, "attribute can not encode multi-dimensional arrays");
6415 return base.GetAttributableValue (ec, null, out value);
6418 if (array_data == null) {
6419 Constant c = (Constant)((Argument)arguments [0]).Expr;
6420 if (c.IsDefaultValue) {
6421 value = Array.CreateInstance (array_element_type, 0);
6422 return true;
6424 // Report.Error (-212, Location, "array should be initialized when passing it to an attribute");
6425 return base.GetAttributableValue (ec, null, out value);
6428 Array ret = Array.CreateInstance (array_element_type, array_data.Count);
6429 object element_value;
6430 for (int i = 0; i < ret.Length; ++i)
6432 Expression e = (Expression)array_data [i];
6434 // Is null when an initializer is optimized (value == predefined value)
6435 if (e == null)
6436 continue;
6438 if (!e.GetAttributableValue (ec, array_element_type, out element_value)) {
6439 value = null;
6440 return false;
6442 ret.SetValue (element_value, i);
6444 value = ret;
6445 return true;
6448 protected override void CloneTo (CloneContext clonectx, Expression t)
6450 ArrayCreation target = (ArrayCreation) t;
6452 if (requested_base_type != null)
6453 target.requested_base_type = (FullNamedExpression)requested_base_type.Clone (clonectx);
6455 if (arguments != null){
6456 target.arguments = new ArrayList (arguments.Count);
6457 foreach (Argument a in arguments)
6458 target.arguments.Add (a.Clone (clonectx));
6461 if (initializers != null){
6462 target.initializers = new ArrayList (initializers.Count);
6463 foreach (object initializer in initializers)
6464 if (initializer is ArrayList) {
6465 ArrayList this_al = (ArrayList)initializer;
6466 ArrayList al = new ArrayList (this_al.Count);
6467 target.initializers.Add (al);
6468 foreach (Expression e in this_al)
6469 al.Add (e.Clone (clonectx));
6470 } else {
6471 target.initializers.Add (((Expression)initializer).Clone (clonectx));
6478 // Represents an implicitly typed array epxression
6480 public class ImplicitlyTypedArrayCreation : ArrayCreation
6482 public ImplicitlyTypedArrayCreation (string rank, ArrayList initializers, Location loc)
6483 : base (null, rank, initializers, loc)
6485 if (RootContext.Version <= LanguageVersion.ISO_2)
6486 Report.FeatureIsNotAvailable (loc, "implicitly typed arrays");
6488 if (rank.Length > 2) {
6489 while (rank [++dimensions] == ',');
6490 } else {
6491 dimensions = 1;
6495 public override Expression DoResolve (EmitContext ec)
6497 if (type != null)
6498 return this;
6500 if (!ResolveInitializers (ec))
6501 return null;
6503 if (array_element_type == null || array_element_type == TypeManager.null_type ||
6504 array_element_type == TypeManager.void_type || array_element_type == TypeManager.anonymous_method_type ||
6505 arguments.Count != dimensions) {
6506 Error_NoBestType ();
6507 return null;
6511 // At this point we found common base type for all initializer elements
6512 // but we have to be sure that all static initializer elements are of
6513 // same type
6515 UnifyInitializerElement (ec);
6517 type = TypeManager.GetConstructedType (array_element_type, rank);
6518 eclass = ExprClass.Value;
6519 return this;
6522 void Error_NoBestType ()
6524 Report.Error (826, loc,
6525 "The type of an implicitly typed array cannot be inferred from the initializer. Try specifying array type explicitly");
6529 // Converts static initializer only
6531 void UnifyInitializerElement (EmitContext ec)
6533 for (int i = 0; i < array_data.Count; ++i) {
6534 Expression e = (Expression)array_data[i];
6535 if (e != null)
6536 array_data [i] = Convert.ImplicitConversion (ec, e, array_element_type, Location.Null);
6540 protected override Expression ResolveArrayElement (EmitContext ec, Expression element)
6542 element = element.Resolve (ec);
6543 if (element == null)
6544 return null;
6546 if (array_element_type == null) {
6547 array_element_type = element.Type;
6548 return element;
6551 if (Convert.ImplicitConversionExists (ec, element, array_element_type)) {
6552 return element;
6555 if (Convert.ImplicitConversionExists (ec, new TypeExpression (array_element_type, loc), element.Type)) {
6556 array_element_type = element.Type;
6557 return element;
6560 Error_NoBestType ();
6561 return null;
6565 public sealed class CompilerGeneratedThis : This
6567 public static This Instance = new CompilerGeneratedThis ();
6569 private CompilerGeneratedThis ()
6570 : base (Location.Null)
6574 public CompilerGeneratedThis (Type type, Location loc)
6575 : base (loc)
6577 this.type = type;
6580 public override Expression DoResolve (EmitContext ec)
6582 eclass = ExprClass.Variable;
6583 if (type == null)
6584 type = ec.ContainerType;
6585 return this;
6588 public override HoistedVariable HoistedVariable {
6589 get { return null; }
6593 /// <summary>
6594 /// Represents the `this' construct
6595 /// </summary>
6597 public class This : VariableReference
6599 sealed class ThisVariable : ILocalVariable
6601 public static readonly ILocalVariable Instance = new ThisVariable ();
6603 public void Emit (EmitContext ec)
6605 ec.ig.Emit (OpCodes.Ldarg_0);
6608 public void EmitAssign (EmitContext ec)
6610 throw new InvalidOperationException ();
6613 public void EmitAddressOf (EmitContext ec)
6615 ec.ig.Emit (OpCodes.Ldarg_0);
6619 Block block;
6620 VariableInfo variable_info;
6621 bool is_struct;
6623 public This (Block block, Location loc)
6625 this.loc = loc;
6626 this.block = block;
6629 public This (Location loc)
6631 this.loc = loc;
6634 public override VariableInfo VariableInfo {
6635 get { return variable_info; }
6638 public override bool IsFixed {
6639 get { return false; }
6642 protected override bool IsHoistedEmitRequired (EmitContext ec)
6645 // Handle 'this' differently, it cannot be assigned hence
6646 // when we are not inside anonymous method we can emit direct access
6648 return ec.CurrentAnonymousMethod != null && base.IsHoistedEmitRequired (ec);
6651 public override HoistedVariable HoistedVariable {
6652 get { return TopToplevelBlock.HoistedThisVariable; }
6655 public override bool IsRef {
6656 get { return is_struct; }
6659 protected override ILocalVariable Variable {
6660 get { return ThisVariable.Instance; }
6663 // TODO: Move to ToplevelBlock
6664 ToplevelBlock TopToplevelBlock {
6665 get {
6666 ToplevelBlock tl = block.Toplevel;
6667 while (tl.Parent != null) tl = tl.Parent.Toplevel;
6668 return tl;
6672 public static bool IsThisAvailable (EmitContext ec)
6674 if (ec.IsStatic || ec.IsInFieldInitializer)
6675 return false;
6677 if (ec.CurrentAnonymousMethod == null)
6678 return true;
6680 if (ec.TypeContainer is Struct && ec.CurrentIterator == null)
6681 return false;
6683 return true;
6686 public bool ResolveBase (EmitContext ec)
6688 if (eclass != ExprClass.Invalid)
6689 return true;
6691 eclass = ExprClass.Variable;
6693 if (ec.TypeContainer.CurrentType != null)
6694 type = ec.TypeContainer.CurrentType;
6695 else
6696 type = ec.ContainerType;
6698 if (!IsThisAvailable (ec)) {
6699 if (ec.IsStatic) {
6700 Error (26, "Keyword `this' is not valid in a static property, static method, or static field initializer");
6701 } else {
6702 Report.Error (1673, loc,
6703 "Anonymous methods inside structs cannot access instance members of `this'. " +
6704 "Consider copying `this' to a local variable outside the anonymous method and using the local instead");
6708 is_struct = ec.TypeContainer is Struct;
6710 if (block != null) {
6711 if (block.Toplevel.ThisVariable != null)
6712 variable_info = block.Toplevel.ThisVariable.VariableInfo;
6714 AnonymousExpression am = ec.CurrentAnonymousMethod;
6715 if (am != null) {
6717 // this is hoisted to very top level block
6719 if (ec.IsVariableCapturingRequired) {
6721 // TODO: it should be optimized, see test-anon-75.cs
6723 // `this' variable has its own scope which is mostly empty
6724 // and causes creation of extraneous storey references.
6725 // Also it's hard to remove `this' dependencies when we Undo
6726 // this access.
6728 AnonymousMethodStorey scope = TopToplevelBlock.Explicit.CreateAnonymousMethodStorey (ec);
6729 if (HoistedVariable == null) {
6730 TopToplevelBlock.HoistedThisVariable = scope.CaptureThis (ec, this);
6736 return true;
6740 // Called from Invocation to check if the invocation is correct
6742 public override void CheckMarshalByRefAccess (EmitContext ec)
6744 if ((variable_info != null) && !(type.IsValueType && ec.OmitStructFlowAnalysis) &&
6745 !variable_info.IsAssigned (ec)) {
6746 Error (188, "The `this' object cannot be used before all of its " +
6747 "fields are assigned to");
6748 variable_info.SetAssigned (ec);
6752 public override Expression CreateExpressionTree (EmitContext ec)
6754 ArrayList args = new ArrayList (1);
6755 args.Add (new Argument (this));
6757 // Use typeless constant for ldarg.0 to save some
6758 // space and avoid problems with anonymous stories
6759 return CreateExpressionFactoryCall ("Constant", args);
6762 public override Expression DoResolve (EmitContext ec)
6764 if (!ResolveBase (ec))
6765 return null;
6768 if (ec.IsInFieldInitializer) {
6769 Error (27, "Keyword `this' is not available in the current context");
6770 return null;
6773 return this;
6776 override public Expression DoResolveLValue (EmitContext ec, Expression right_side)
6778 if (!ResolveBase (ec))
6779 return null;
6781 if (variable_info != null)
6782 variable_info.SetAssigned (ec);
6784 if (ec.TypeContainer is Class){
6785 if (right_side == EmptyExpression.UnaryAddress)
6786 Report.Error (459, loc, "Cannot take the address of `this' because it is read-only");
6787 else if (right_side == EmptyExpression.OutAccess)
6788 Report.Error (1605, loc, "Cannot pass `this' as a ref or out argument because it is read-only");
6789 else
6790 Report.Error (1604, loc, "Cannot assign to `this' because it is read-only");
6793 return this;
6796 public override int GetHashCode()
6798 return block.GetHashCode ();
6801 public override string Name {
6802 get { return "this"; }
6805 public override bool Equals (object obj)
6807 This t = obj as This;
6808 if (t == null)
6809 return false;
6811 return block == t.block;
6814 protected override void CloneTo (CloneContext clonectx, Expression t)
6816 This target = (This) t;
6818 target.block = clonectx.LookupBlock (block);
6821 public void RemoveHoisting ()
6823 TopToplevelBlock.HoistedThisVariable = null;
6826 public override void SetHasAddressTaken ()
6828 // Nothing
6832 /// <summary>
6833 /// Represents the `__arglist' construct
6834 /// </summary>
6835 public class ArglistAccess : Expression
6837 public ArglistAccess (Location loc)
6839 this.loc = loc;
6842 public override Expression CreateExpressionTree (EmitContext ec)
6844 throw new NotSupportedException ("ET");
6847 public override Expression DoResolve (EmitContext ec)
6849 eclass = ExprClass.Variable;
6850 type = TypeManager.runtime_argument_handle_type;
6852 if (ec.IsInFieldInitializer || !ec.CurrentBlock.Toplevel.Parameters.HasArglist)
6854 Error (190, "The __arglist construct is valid only within " +
6855 "a variable argument method");
6856 return null;
6859 return this;
6862 public override void Emit (EmitContext ec)
6864 ec.ig.Emit (OpCodes.Arglist);
6867 protected override void CloneTo (CloneContext clonectx, Expression target)
6869 // nothing.
6873 /// <summary>
6874 /// Represents the `__arglist (....)' construct
6875 /// </summary>
6876 public class Arglist : Expression
6878 Argument[] Arguments;
6880 public Arglist (Location loc)
6881 : this (Argument.Empty, loc)
6885 public Arglist (Argument[] args, Location l)
6887 Arguments = args;
6888 loc = l;
6891 public Type[] ArgumentTypes {
6892 get {
6893 Type[] retval = new Type [Arguments.Length];
6894 for (int i = 0; i < Arguments.Length; i++)
6895 retval [i] = Arguments [i].Type;
6896 return retval;
6900 public override Expression CreateExpressionTree (EmitContext ec)
6902 Report.Error (1952, loc, "An expression tree cannot contain a method with variable arguments");
6903 return null;
6906 public override Expression DoResolve (EmitContext ec)
6908 eclass = ExprClass.Variable;
6909 type = TypeManager.runtime_argument_handle_type;
6911 foreach (Argument arg in Arguments) {
6912 if (!arg.Resolve (ec, loc))
6913 return null;
6916 return this;
6919 public override void Emit (EmitContext ec)
6921 foreach (Argument arg in Arguments)
6922 arg.Emit (ec);
6925 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6927 foreach (Argument arg in Arguments)
6928 arg.Expr.MutateHoistedGenericType (storey);
6931 protected override void CloneTo (CloneContext clonectx, Expression t)
6933 Arglist target = (Arglist) t;
6935 target.Arguments = new Argument [Arguments.Length];
6936 for (int i = 0; i < Arguments.Length; i++)
6937 target.Arguments [i] = Arguments [i].Clone (clonectx);
6941 /// <summary>
6942 /// Implements the typeof operator
6943 /// </summary>
6944 public class TypeOf : Expression {
6945 Expression QueriedType;
6946 protected Type typearg;
6948 public TypeOf (Expression queried_type, Location l)
6950 QueriedType = queried_type;
6951 loc = l;
6954 public override Expression CreateExpressionTree (EmitContext ec)
6956 ArrayList args = new ArrayList (2);
6957 args.Add (new Argument (this));
6958 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
6959 return CreateExpressionFactoryCall ("Constant", args);
6962 public override Expression DoResolve (EmitContext ec)
6964 if (eclass != ExprClass.Invalid)
6965 return this;
6967 TypeExpr texpr = QueriedType.ResolveAsTypeTerminal (ec, false);
6968 if (texpr == null)
6969 return null;
6971 typearg = texpr.Type;
6973 if (typearg == TypeManager.void_type) {
6974 Error (673, "System.Void cannot be used from C#. Use typeof (void) to get the void type object");
6975 return null;
6978 if (typearg.IsPointer && !ec.InUnsafe){
6979 UnsafeError (loc);
6980 return null;
6983 type = TypeManager.type_type;
6985 return DoResolveBase ();
6988 protected Expression DoResolveBase ()
6990 if (TypeManager.system_type_get_type_from_handle == null) {
6991 TypeManager.system_type_get_type_from_handle = TypeManager.GetPredefinedMethod (
6992 TypeManager.type_type, "GetTypeFromHandle", loc, TypeManager.runtime_handle_type);
6995 // Even though what is returned is a type object, it's treated as a value by the compiler.
6996 // In particular, 'typeof (Foo).X' is something totally different from 'Foo.X'.
6997 eclass = ExprClass.Value;
6998 return this;
7001 public override void Emit (EmitContext ec)
7003 ec.ig.Emit (OpCodes.Ldtoken, typearg);
7004 ec.ig.Emit (OpCodes.Call, TypeManager.system_type_get_type_from_handle);
7007 public override bool GetAttributableValue (EmitContext ec, Type value_type, out object value)
7009 if (TypeManager.ContainsGenericParameters (typearg) &&
7010 !TypeManager.IsGenericTypeDefinition (typearg)) {
7011 Report.SymbolRelatedToPreviousError (typearg);
7012 Report.Error (416, loc, "`{0}': an attribute argument cannot use type parameters",
7013 TypeManager.CSharpName (typearg));
7014 value = null;
7015 return false;
7018 if (value_type == TypeManager.object_type) {
7019 value = (object)typearg;
7020 return true;
7022 value = typearg;
7023 return true;
7026 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7028 typearg = storey.MutateType (typearg);
7031 public Type TypeArgument {
7032 get {
7033 return typearg;
7037 protected override void CloneTo (CloneContext clonectx, Expression t)
7039 TypeOf target = (TypeOf) t;
7040 if (QueriedType != null)
7041 target.QueriedType = QueriedType.Clone (clonectx);
7045 /// <summary>
7046 /// Implements the `typeof (void)' operator
7047 /// </summary>
7048 public class TypeOfVoid : TypeOf {
7049 public TypeOfVoid (Location l) : base (null, l)
7051 loc = l;
7054 public override Expression DoResolve (EmitContext ec)
7056 type = TypeManager.type_type;
7057 typearg = TypeManager.void_type;
7059 return DoResolveBase ();
7063 class TypeOfMethodInfo : TypeOfMethod
7065 public TypeOfMethodInfo (MethodBase method, Location loc)
7066 : base (method, loc)
7070 public override Expression DoResolve (EmitContext ec)
7072 type = typeof (MethodInfo);
7073 return base.DoResolve (ec);
7076 public override void Emit (EmitContext ec)
7078 ec.ig.Emit (OpCodes.Ldtoken, (MethodInfo) method);
7079 base.Emit (ec);
7080 ec.ig.Emit (OpCodes.Castclass, type);
7084 class TypeOfConstructorInfo : TypeOfMethod
7086 public TypeOfConstructorInfo (MethodBase method, Location loc)
7087 : base (method, loc)
7091 public override Expression DoResolve (EmitContext ec)
7093 type = typeof (ConstructorInfo);
7094 return base.DoResolve (ec);
7097 public override void Emit (EmitContext ec)
7099 ec.ig.Emit (OpCodes.Ldtoken, (ConstructorInfo) method);
7100 base.Emit (ec);
7101 ec.ig.Emit (OpCodes.Castclass, type);
7105 abstract class TypeOfMethod : Expression
7107 protected readonly MethodBase method;
7109 protected TypeOfMethod (MethodBase method, Location loc)
7111 this.method = method;
7112 this.loc = loc;
7115 public override Expression CreateExpressionTree (EmitContext ec)
7117 ArrayList args = new ArrayList (2);
7118 args.Add (new Argument (this));
7119 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
7120 return CreateExpressionFactoryCall ("Constant", args);
7123 public override Expression DoResolve (EmitContext ec)
7125 bool is_generic = TypeManager.IsGenericType (method.DeclaringType);
7126 MethodInfo mi = is_generic ?
7127 TypeManager.methodbase_get_type_from_handle_generic :
7128 TypeManager.methodbase_get_type_from_handle;
7130 if (mi == null) {
7131 Type t = TypeManager.CoreLookupType ("System.Reflection", "MethodBase", Kind.Class, true);
7132 Type handle_type = TypeManager.CoreLookupType ("System", "RuntimeMethodHandle", Kind.Class, true);
7134 if (t == null || handle_type == null)
7135 return null;
7137 mi = TypeManager.GetPredefinedMethod (t, "GetMethodFromHandle", loc,
7138 is_generic ?
7139 new Type[] { handle_type, TypeManager.runtime_handle_type } :
7140 new Type[] { handle_type } );
7142 if (is_generic)
7143 TypeManager.methodbase_get_type_from_handle_generic = mi;
7144 else
7145 TypeManager.methodbase_get_type_from_handle = mi;
7148 eclass = ExprClass.Value;
7149 return this;
7152 public override void Emit (EmitContext ec)
7154 bool is_generic = TypeManager.IsGenericType (method.DeclaringType);
7155 MethodInfo mi;
7156 if (is_generic) {
7157 mi = TypeManager.methodbase_get_type_from_handle_generic;
7158 ec.ig.Emit (OpCodes.Ldtoken, method.DeclaringType);
7159 } else {
7160 mi = TypeManager.methodbase_get_type_from_handle;
7163 ec.ig.Emit (OpCodes.Call, mi);
7167 internal class TypeOfField : Expression
7169 readonly FieldInfo field;
7171 public TypeOfField (FieldInfo field, Location loc)
7173 this.field = field;
7174 this.loc = loc;
7177 public override Expression CreateExpressionTree (EmitContext ec)
7179 throw new NotSupportedException ("ET");
7182 public override Expression DoResolve (EmitContext ec)
7184 if (TypeManager.fieldinfo_get_field_from_handle == null) {
7185 Type t = TypeManager.CoreLookupType ("System.Reflection", "FieldInfo", Kind.Class, true);
7186 Type handle_type = TypeManager.CoreLookupType ("System", "RuntimeFieldHandle", Kind.Class, true);
7188 if (t != null && handle_type != null)
7189 TypeManager.fieldinfo_get_field_from_handle = TypeManager.GetPredefinedMethod (t,
7190 "GetFieldFromHandle", loc, handle_type);
7193 type = typeof (FieldInfo);
7194 eclass = ExprClass.Value;
7195 return this;
7198 public override void Emit (EmitContext ec)
7200 ec.ig.Emit (OpCodes.Ldtoken, field);
7201 ec.ig.Emit (OpCodes.Call, TypeManager.fieldinfo_get_field_from_handle);
7205 /// <summary>
7206 /// Implements the sizeof expression
7207 /// </summary>
7208 public class SizeOf : Expression {
7209 readonly Expression QueriedType;
7210 Type type_queried;
7212 public SizeOf (Expression queried_type, Location l)
7214 this.QueriedType = queried_type;
7215 loc = l;
7218 public override Expression CreateExpressionTree (EmitContext ec)
7220 Error_PointerInsideExpressionTree ();
7221 return null;
7224 public override Expression DoResolve (EmitContext ec)
7226 TypeExpr texpr = QueriedType.ResolveAsTypeTerminal (ec, false);
7227 if (texpr == null)
7228 return null;
7230 type_queried = texpr.Type;
7231 if (TypeManager.IsEnumType (type_queried))
7232 type_queried = TypeManager.GetEnumUnderlyingType (type_queried);
7234 int size_of = GetTypeSize (type_queried);
7235 if (size_of > 0) {
7236 return new IntConstant (size_of, loc);
7239 if (!TypeManager.VerifyUnManaged (type_queried, loc)){
7240 return null;
7243 if (!ec.InUnsafe) {
7244 Report.Error (233, loc,
7245 "`{0}' does not have a predefined size, therefore sizeof can only be used in an unsafe context (consider using System.Runtime.InteropServices.Marshal.SizeOf)",
7246 TypeManager.CSharpName (type_queried));
7249 type = TypeManager.int32_type;
7250 eclass = ExprClass.Value;
7251 return this;
7254 public override void Emit (EmitContext ec)
7256 int size = GetTypeSize (type_queried);
7258 if (size == 0)
7259 ec.ig.Emit (OpCodes.Sizeof, type_queried);
7260 else
7261 IntConstant.EmitInt (ec.ig, size);
7264 protected override void CloneTo (CloneContext clonectx, Expression t)
7269 /// <summary>
7270 /// Implements the qualified-alias-member (::) expression.
7271 /// </summary>
7272 public class QualifiedAliasMember : MemberAccess
7274 readonly string alias;
7275 public static readonly string GlobalAlias = "global";
7277 public QualifiedAliasMember (string alias, string identifier, TypeArguments targs, Location l)
7278 : base (null, identifier, targs, l)
7280 this.alias = alias;
7283 public QualifiedAliasMember (string alias, string identifier, Location l)
7284 : base (null, identifier, l)
7286 this.alias = alias;
7289 public override FullNamedExpression ResolveAsTypeStep (IResolveContext ec, bool silent)
7291 if (alias == GlobalAlias) {
7292 expr = RootNamespace.Global;
7293 return base.ResolveAsTypeStep (ec, silent);
7296 int errors = Report.Errors;
7297 expr = ec.DeclContainer.NamespaceEntry.LookupAlias (alias);
7298 if (expr == null) {
7299 if (errors == Report.Errors)
7300 Report.Error (432, loc, "Alias `{0}' not found", alias);
7301 return null;
7304 FullNamedExpression fne = base.ResolveAsTypeStep (ec, silent);
7305 if (fne == null)
7306 return null;
7308 if (expr.eclass == ExprClass.Type) {
7309 if (!silent) {
7310 Report.Error (431, loc,
7311 "Alias `{0}' cannot be used with '::' since it denotes a type. Consider replacing '::' with '.'", alias);
7313 return null;
7316 return fne;
7319 public override Expression DoResolve (EmitContext ec)
7321 return ResolveAsTypeStep (ec, false);
7324 protected override void Error_IdentifierNotFound (IResolveContext rc, FullNamedExpression expr_type, string identifier)
7326 Report.Error (687, loc,
7327 "A namespace alias qualifier `{0}' did not resolve to a namespace or a type",
7328 GetSignatureForError ());
7331 public override string GetSignatureForError ()
7333 string name = Name;
7334 if (targs != null) {
7335 name = TypeManager.RemoveGenericArity (Name) + "<" +
7336 targs.GetSignatureForError () + ">";
7339 return alias + "::" + name;
7342 protected override void CloneTo (CloneContext clonectx, Expression t)
7344 // Nothing
7348 /// <summary>
7349 /// Implements the member access expression
7350 /// </summary>
7351 public class MemberAccess : ATypeNameExpression {
7352 protected Expression expr;
7354 public MemberAccess (Expression expr, string id)
7355 : base (id, expr.Location)
7357 this.expr = expr;
7360 public MemberAccess (Expression expr, string identifier, Location loc)
7361 : base (identifier, loc)
7363 this.expr = expr;
7366 public MemberAccess (Expression expr, string identifier, TypeArguments args, Location loc)
7367 : base (identifier, args, loc)
7369 this.expr = expr;
7372 // TODO: this method has very poor performace for Enum fields and
7373 // probably for other constants as well
7374 Expression DoResolve (EmitContext ec, Expression right_side)
7376 if (type != null)
7377 throw new Exception ();
7380 // Resolve the expression with flow analysis turned off, we'll do the definite
7381 // assignment checks later. This is because we don't know yet what the expression
7382 // will resolve to - it may resolve to a FieldExpr and in this case we must do the
7383 // definite assignment check on the actual field and not on the whole struct.
7386 SimpleName original = expr as SimpleName;
7387 Expression expr_resolved = expr.Resolve (ec,
7388 ResolveFlags.VariableOrValue | ResolveFlags.Type |
7389 ResolveFlags.Intermediate | ResolveFlags.DisableStructFlowAnalysis);
7391 if (expr_resolved == null)
7392 return null;
7394 string LookupIdentifier = MemberName.MakeName (Name, targs);
7396 if (expr_resolved is Namespace) {
7397 Namespace ns = (Namespace) expr_resolved;
7398 FullNamedExpression retval = ns.Lookup (ec.DeclContainer, LookupIdentifier, loc);
7399 #if GMCS_SOURCE
7400 if ((retval != null) && (targs != null))
7401 retval = new ConstructedType (retval, targs, loc).ResolveAsTypeStep (ec, false);
7402 #endif
7404 if (retval == null)
7405 ns.Error_NamespaceDoesNotExist (ec.DeclContainer, loc, Name);
7406 return retval;
7409 Type expr_type = expr_resolved.Type;
7410 if (expr_type.IsPointer || expr_type == TypeManager.void_type ||
7411 expr_resolved is NullLiteral || expr_type == TypeManager.anonymous_method_type) {
7412 Unary.Error_OperatorCannotBeApplied (loc, ".", expr_type);
7413 return null;
7416 Constant c = expr_resolved as Constant;
7417 if (c != null && c.GetValue () == null) {
7418 Report.Warning (1720, 1, loc, "Expression will always cause a `{0}'",
7419 "System.NullReferenceException");
7422 if (targs != null) {
7423 if (!targs.Resolve (ec))
7424 return null;
7427 Expression member_lookup;
7428 member_lookup = MemberLookup (
7429 ec.ContainerType, expr_type, expr_type, Name, loc);
7430 #if GMCS_SOURCE
7431 if ((member_lookup == null) && (targs != null)) {
7432 member_lookup = MemberLookup (
7433 ec.ContainerType, expr_type, expr_type, LookupIdentifier, loc);
7435 #endif
7436 if (member_lookup == null) {
7437 ExprClass expr_eclass = expr_resolved.eclass;
7440 // Extension methods are not allowed on all expression types
7442 if (expr_eclass == ExprClass.Value || expr_eclass == ExprClass.Variable ||
7443 expr_eclass == ExprClass.IndexerAccess || expr_eclass == ExprClass.PropertyAccess ||
7444 expr_eclass == ExprClass.EventAccess) {
7445 ExtensionMethodGroupExpr ex_method_lookup = ec.TypeContainer.LookupExtensionMethod (expr_type, Name, loc);
7446 if (ex_method_lookup != null) {
7447 ex_method_lookup.ExtensionExpression = expr_resolved;
7449 if (targs != null) {
7450 ex_method_lookup.SetTypeArguments (targs);
7453 return ex_method_lookup.DoResolve (ec);
7457 expr = expr_resolved;
7458 Error_MemberLookupFailed (
7459 ec.ContainerType, expr_type, expr_type, Name, null,
7460 AllMemberTypes, AllBindingFlags);
7461 return null;
7464 TypeExpr texpr = member_lookup as TypeExpr;
7465 if (texpr != null) {
7466 if (!(expr_resolved is TypeExpr) &&
7467 (original == null || !original.IdenticalNameAndTypeName (ec, expr_resolved, loc))) {
7468 Report.Error (572, loc, "`{0}': cannot reference a type through an expression; try `{1}' instead",
7469 Name, member_lookup.GetSignatureForError ());
7470 return null;
7473 if (!texpr.CheckAccessLevel (ec.DeclContainer)) {
7474 Report.SymbolRelatedToPreviousError (member_lookup.Type);
7475 ErrorIsInaccesible (loc, TypeManager.CSharpName (member_lookup.Type));
7476 return null;
7479 #if GMCS_SOURCE
7480 ConstructedType ct = expr_resolved as ConstructedType;
7481 if (ct != null) {
7483 // When looking up a nested type in a generic instance
7484 // via reflection, we always get a generic type definition
7485 // and not a generic instance - so we have to do this here.
7487 // See gtest-172-lib.cs and gtest-172.cs for an example.
7489 ct = new ConstructedType (
7490 member_lookup.Type, ct.TypeArguments, loc);
7492 return ct.ResolveAsTypeStep (ec, false);
7494 #endif
7495 return member_lookup;
7498 MemberExpr me = (MemberExpr) member_lookup;
7499 me = me.ResolveMemberAccess (ec, expr_resolved, loc, original);
7500 if (me == null)
7501 return null;
7503 if (targs != null) {
7504 me.SetTypeArguments (targs);
7507 if (original != null && !TypeManager.IsValueType (expr_type)) {
7508 if (me.IsInstance) {
7509 LocalVariableReference var = expr_resolved as LocalVariableReference;
7510 if (var != null && !var.VerifyAssigned (ec))
7511 return null;
7515 // The following DoResolve/DoResolveLValue will do the definite assignment
7516 // check.
7518 if (right_side != null)
7519 return me.DoResolveLValue (ec, right_side);
7520 else
7521 return me.DoResolve (ec);
7524 public override Expression DoResolve (EmitContext ec)
7526 return DoResolve (ec, null);
7529 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
7531 return DoResolve (ec, right_side);
7534 public override FullNamedExpression ResolveAsTypeStep (IResolveContext ec, bool silent)
7536 return ResolveNamespaceOrType (ec, silent);
7539 public FullNamedExpression ResolveNamespaceOrType (IResolveContext rc, bool silent)
7541 FullNamedExpression new_expr = expr.ResolveAsTypeStep (rc, silent);
7543 if (new_expr == null)
7544 return null;
7546 string LookupIdentifier = MemberName.MakeName (Name, targs);
7548 if (new_expr is Namespace) {
7549 Namespace ns = (Namespace) new_expr;
7550 FullNamedExpression retval = ns.Lookup (rc.DeclContainer, LookupIdentifier, loc);
7551 #if GMCS_SOURCE
7552 if ((retval != null) && (targs != null))
7553 retval = new ConstructedType (retval, targs, loc).ResolveAsTypeStep (rc, false);
7554 #endif
7555 if (!silent && retval == null)
7556 ns.Error_NamespaceDoesNotExist (rc.DeclContainer, loc, LookupIdentifier);
7557 return retval;
7560 TypeExpr tnew_expr = new_expr.ResolveAsTypeTerminal (rc, false);
7561 if (tnew_expr == null)
7562 return null;
7564 if (tnew_expr is TypeParameterExpr) {
7565 Report.Error (704, loc, "A nested type cannot be specified through a type parameter `{0}'",
7566 tnew_expr.GetSignatureForError ());
7567 return null;
7570 Type expr_type = tnew_expr.Type;
7571 Expression member_lookup = MemberLookup (
7572 rc.DeclContainer.TypeBuilder, expr_type, expr_type, LookupIdentifier,
7573 MemberTypes.NestedType, BindingFlags.Public | BindingFlags.NonPublic, loc);
7574 if (member_lookup == null) {
7575 if (silent)
7576 return null;
7578 Error_IdentifierNotFound (rc, new_expr, LookupIdentifier);
7579 return null;
7582 TypeExpr texpr = member_lookup.ResolveAsTypeTerminal (rc, false);
7583 if (texpr == null)
7584 return null;
7586 #if GMCS_SOURCE
7587 TypeArguments the_args = targs;
7588 Type declaring_type = texpr.Type.DeclaringType;
7589 if (TypeManager.HasGenericArguments (declaring_type)) {
7590 while (!TypeManager.IsEqual (TypeManager.DropGenericTypeArguments (expr_type), declaring_type)) {
7591 expr_type = expr_type.BaseType;
7594 TypeArguments new_args = new TypeArguments (loc);
7595 foreach (Type decl in TypeManager.GetTypeArguments (expr_type))
7596 new_args.Add (new TypeExpression (decl, loc));
7598 if (targs != null)
7599 new_args.Add (targs);
7601 the_args = new_args;
7604 if (the_args != null) {
7605 ConstructedType ctype = new ConstructedType (texpr.Type, the_args, loc);
7606 return ctype.ResolveAsTypeStep (rc, false);
7608 #endif
7610 return texpr;
7613 protected virtual void Error_IdentifierNotFound (IResolveContext rc, FullNamedExpression expr_type, string identifier)
7615 Expression member_lookup = MemberLookup (
7616 rc.DeclContainer.TypeBuilder, expr_type.Type, expr_type.Type, SimpleName.RemoveGenericArity (identifier),
7617 MemberTypes.NestedType, BindingFlags.Public | BindingFlags.NonPublic, loc);
7619 if (member_lookup != null) {
7620 expr_type = member_lookup.ResolveAsTypeTerminal (rc, false);
7621 if (expr_type == null)
7622 return;
7624 Namespace.Error_TypeArgumentsCannotBeUsed (expr_type.Type, loc);
7625 return;
7628 member_lookup = MemberLookup (
7629 rc.DeclContainer.TypeBuilder, expr_type.Type, expr_type.Type, identifier,
7630 MemberTypes.All, BindingFlags.Public | BindingFlags.NonPublic, loc);
7632 if (member_lookup == null) {
7633 Report.Error (426, loc, "The nested type `{0}' does not exist in the type `{1}'",
7634 Name, expr_type.GetSignatureForError ());
7635 } else {
7636 // TODO: Report.SymbolRelatedToPreviousError
7637 member_lookup.Error_UnexpectedKind (null, "type", loc);
7641 protected override void Error_TypeDoesNotContainDefinition (Type type, string name)
7643 if (RootContext.Version > LanguageVersion.ISO_2 &&
7644 ((expr.eclass & (ExprClass.Value | ExprClass.Variable)) != 0)) {
7645 Report.Error (1061, loc, "Type `{0}' does not contain a definition for `{1}' and no " +
7646 "extension method `{1}' of type `{0}' could be found " +
7647 "(are you missing a using directive or an assembly reference?)",
7648 TypeManager.CSharpName (type), name);
7649 return;
7652 base.Error_TypeDoesNotContainDefinition (type, name);
7655 public override string GetSignatureForError ()
7657 return expr.GetSignatureForError () + "." + base.GetSignatureForError ();
7660 protected override void CloneTo (CloneContext clonectx, Expression t)
7662 MemberAccess target = (MemberAccess) t;
7664 target.expr = expr.Clone (clonectx);
7668 /// <summary>
7669 /// Implements checked expressions
7670 /// </summary>
7671 public class CheckedExpr : Expression {
7673 public Expression Expr;
7675 public CheckedExpr (Expression e, Location l)
7677 Expr = e;
7678 loc = l;
7681 public override Expression CreateExpressionTree (EmitContext ec)
7683 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7684 return Expr.CreateExpressionTree (ec);
7687 public override Expression DoResolve (EmitContext ec)
7689 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7690 Expr = Expr.Resolve (ec);
7692 if (Expr == null)
7693 return null;
7695 if (Expr is Constant || Expr is MethodGroupExpr || Expr is AnonymousMethodExpression)
7696 return Expr;
7698 eclass = Expr.eclass;
7699 type = Expr.Type;
7700 return this;
7703 public override void Emit (EmitContext ec)
7705 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7706 Expr.Emit (ec);
7709 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
7711 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7712 Expr.EmitBranchable (ec, target, on_true);
7715 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7717 Expr.MutateHoistedGenericType (storey);
7720 protected override void CloneTo (CloneContext clonectx, Expression t)
7722 CheckedExpr target = (CheckedExpr) t;
7724 target.Expr = Expr.Clone (clonectx);
7728 /// <summary>
7729 /// Implements the unchecked expression
7730 /// </summary>
7731 public class UnCheckedExpr : Expression {
7733 public Expression Expr;
7735 public UnCheckedExpr (Expression e, Location l)
7737 Expr = e;
7738 loc = l;
7741 public override Expression CreateExpressionTree (EmitContext ec)
7743 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7744 return Expr.CreateExpressionTree (ec);
7747 public override Expression DoResolve (EmitContext ec)
7749 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7750 Expr = Expr.Resolve (ec);
7752 if (Expr == null)
7753 return null;
7755 if (Expr is Constant || Expr is MethodGroupExpr || Expr is AnonymousMethodExpression)
7756 return Expr;
7758 eclass = Expr.eclass;
7759 type = Expr.Type;
7760 return this;
7763 public override void Emit (EmitContext ec)
7765 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7766 Expr.Emit (ec);
7769 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
7771 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7772 Expr.EmitBranchable (ec, target, on_true);
7775 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7777 Expr.MutateHoistedGenericType (storey);
7780 protected override void CloneTo (CloneContext clonectx, Expression t)
7782 UnCheckedExpr target = (UnCheckedExpr) t;
7784 target.Expr = Expr.Clone (clonectx);
7788 /// <summary>
7789 /// An Element Access expression.
7791 /// During semantic analysis these are transformed into
7792 /// IndexerAccess, ArrayAccess or a PointerArithmetic.
7793 /// </summary>
7794 public class ElementAccess : Expression {
7795 public ArrayList Arguments;
7796 public Expression Expr;
7798 public ElementAccess (Expression e, ArrayList e_list)
7800 Expr = e;
7801 loc = e.Location;
7803 if (e_list == null)
7804 return;
7806 Arguments = new ArrayList (e_list.Count);
7807 foreach (Expression tmp in e_list)
7808 Arguments.Add (new Argument (tmp, Argument.AType.Expression));
7811 bool CommonResolve (EmitContext ec)
7813 Expr = Expr.Resolve (ec);
7815 if (Arguments == null)
7816 return false;
7818 foreach (Argument a in Arguments){
7819 if (!a.Resolve (ec, loc))
7820 return false;
7823 return Expr != null;
7826 public override Expression CreateExpressionTree (EmitContext ec)
7828 ArrayList args = new ArrayList (Arguments.Count + 1);
7829 args.Add (new Argument (Expr.CreateExpressionTree (ec)));
7830 foreach (Argument a in Arguments)
7831 args.Add (new Argument (a.Expr.CreateExpressionTree (ec)));
7833 return CreateExpressionFactoryCall ("ArrayIndex", args);
7836 Expression MakePointerAccess (EmitContext ec, Type t)
7838 if (Arguments.Count != 1){
7839 Error (196, "A pointer must be indexed by only one value");
7840 return null;
7843 Expression p = new PointerArithmetic (Binary.Operator.Addition, Expr, ((Argument) Arguments [0]).Expr, t, loc).Resolve (ec);
7844 if (p == null)
7845 return null;
7846 return new Indirection (p, loc).Resolve (ec);
7849 public override Expression DoResolve (EmitContext ec)
7851 if (!CommonResolve (ec))
7852 return null;
7855 // We perform some simple tests, and then to "split" the emit and store
7856 // code we create an instance of a different class, and return that.
7858 // I am experimenting with this pattern.
7860 Type t = Expr.Type;
7862 if (t == TypeManager.array_type){
7863 Report.Error (21, loc, "Cannot apply indexing with [] to an expression of type `System.Array'");
7864 return null;
7867 if (t.IsArray)
7868 return (new ArrayAccess (this, loc)).Resolve (ec);
7869 if (t.IsPointer)
7870 return MakePointerAccess (ec, t);
7872 FieldExpr fe = Expr as FieldExpr;
7873 if (fe != null) {
7874 IFixedBuffer ff = AttributeTester.GetFixedBuffer (fe.FieldInfo);
7875 if (ff != null) {
7876 return MakePointerAccess (ec, ff.ElementType);
7879 return (new IndexerAccess (this, loc)).Resolve (ec);
7882 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
7884 if (!CommonResolve (ec))
7885 return null;
7887 type = Expr.Type;
7888 if (type.IsArray)
7889 return (new ArrayAccess (this, loc)).DoResolveLValue (ec, right_side);
7891 if (type.IsPointer)
7892 return MakePointerAccess (ec, type);
7894 if (Expr.eclass != ExprClass.Variable && type.IsValueType)
7895 Error_CannotModifyIntermediateExpressionValue (ec);
7897 return (new IndexerAccess (this, loc)).DoResolveLValue (ec, right_side);
7900 public override void Emit (EmitContext ec)
7902 throw new Exception ("Should never be reached");
7905 public override string GetSignatureForError ()
7907 return Expr.GetSignatureForError ();
7910 protected override void CloneTo (CloneContext clonectx, Expression t)
7912 ElementAccess target = (ElementAccess) t;
7914 target.Expr = Expr.Clone (clonectx);
7915 target.Arguments = new ArrayList (Arguments.Count);
7916 foreach (Argument a in Arguments)
7917 target.Arguments.Add (a.Clone (clonectx));
7921 /// <summary>
7922 /// Implements array access
7923 /// </summary>
7924 public class ArrayAccess : Expression, IAssignMethod, IMemoryLocation {
7926 // Points to our "data" repository
7928 ElementAccess ea;
7930 LocalTemporary temp;
7932 bool prepared;
7934 public ArrayAccess (ElementAccess ea_data, Location l)
7936 ea = ea_data;
7937 loc = l;
7940 public override Expression CreateExpressionTree (EmitContext ec)
7942 return ea.CreateExpressionTree (ec);
7945 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
7947 return DoResolve (ec);
7950 public override Expression DoResolve (EmitContext ec)
7952 #if false
7953 ExprClass eclass = ea.Expr.eclass;
7955 // As long as the type is valid
7956 if (!(eclass == ExprClass.Variable || eclass == ExprClass.PropertyAccess ||
7957 eclass == ExprClass.Value)) {
7958 ea.Expr.Error_UnexpectedKind ("variable or value");
7959 return null;
7961 #endif
7963 if (eclass != ExprClass.Invalid)
7964 return this;
7966 Type t = ea.Expr.Type;
7967 int rank = ea.Arguments.Count;
7968 if (t.GetArrayRank () != rank) {
7969 Report.Error (22, ea.Location, "Wrong number of indexes `{0}' inside [], expected `{1}'",
7970 ea.Arguments.Count.ToString (), t.GetArrayRank ().ToString ());
7971 return null;
7974 type = TypeManager.GetElementType (t);
7975 if (type.IsPointer && !ec.InUnsafe) {
7976 UnsafeError (ea.Location);
7977 return null;
7980 foreach (Argument a in ea.Arguments) {
7981 a.Expr = ConvertExpressionToArrayIndex (ec, a.Expr);
7984 eclass = ExprClass.Variable;
7986 return this;
7989 /// <summary>
7990 /// Emits the right opcode to load an object of Type `t'
7991 /// from an array of T
7992 /// </summary>
7993 void EmitLoadOpcode (ILGenerator ig, Type type, int rank)
7995 if (rank > 1) {
7996 MethodInfo get = FetchGetMethod ();
7997 ig.Emit (OpCodes.Call, get);
7998 return;
8001 if (type == TypeManager.byte_type || type == TypeManager.bool_type)
8002 ig.Emit (OpCodes.Ldelem_U1);
8003 else if (type == TypeManager.sbyte_type)
8004 ig.Emit (OpCodes.Ldelem_I1);
8005 else if (type == TypeManager.short_type)
8006 ig.Emit (OpCodes.Ldelem_I2);
8007 else if (type == TypeManager.ushort_type || type == TypeManager.char_type)
8008 ig.Emit (OpCodes.Ldelem_U2);
8009 else if (type == TypeManager.int32_type)
8010 ig.Emit (OpCodes.Ldelem_I4);
8011 else if (type == TypeManager.uint32_type)
8012 ig.Emit (OpCodes.Ldelem_U4);
8013 else if (type == TypeManager.uint64_type)
8014 ig.Emit (OpCodes.Ldelem_I8);
8015 else if (type == TypeManager.int64_type)
8016 ig.Emit (OpCodes.Ldelem_I8);
8017 else if (type == TypeManager.float_type)
8018 ig.Emit (OpCodes.Ldelem_R4);
8019 else if (type == TypeManager.double_type)
8020 ig.Emit (OpCodes.Ldelem_R8);
8021 else if (type == TypeManager.intptr_type)
8022 ig.Emit (OpCodes.Ldelem_I);
8023 else if (TypeManager.IsEnumType (type)){
8024 EmitLoadOpcode (ig, TypeManager.GetEnumUnderlyingType (type), rank);
8025 } else if (type.IsValueType){
8026 ig.Emit (OpCodes.Ldelema, type);
8027 ig.Emit (OpCodes.Ldobj, type);
8028 #if GMCS_SOURCE
8029 } else if (type.IsGenericParameter) {
8030 ig.Emit (OpCodes.Ldelem, type);
8031 #endif
8032 } else if (type.IsPointer)
8033 ig.Emit (OpCodes.Ldelem_I);
8034 else
8035 ig.Emit (OpCodes.Ldelem_Ref);
8038 protected override void Error_NegativeArrayIndex (Location loc)
8040 Report.Warning (251, 2, loc, "Indexing an array with a negative index (array indices always start at zero)");
8043 /// <summary>
8044 /// Returns the right opcode to store an object of Type `t'
8045 /// from an array of T.
8046 /// </summary>
8047 static public OpCode GetStoreOpcode (Type t, out bool is_stobj, out bool has_type_arg)
8049 //Console.WriteLine (new System.Diagnostics.StackTrace ());
8050 has_type_arg = false; is_stobj = false;
8051 t = TypeManager.TypeToCoreType (t);
8052 if (TypeManager.IsEnumType (t))
8053 t = TypeManager.GetEnumUnderlyingType (t);
8054 if (t == TypeManager.byte_type || t == TypeManager.sbyte_type ||
8055 t == TypeManager.bool_type)
8056 return OpCodes.Stelem_I1;
8057 else if (t == TypeManager.short_type || t == TypeManager.ushort_type ||
8058 t == TypeManager.char_type)
8059 return OpCodes.Stelem_I2;
8060 else if (t == TypeManager.int32_type || t == TypeManager.uint32_type)
8061 return OpCodes.Stelem_I4;
8062 else if (t == TypeManager.int64_type || t == TypeManager.uint64_type)
8063 return OpCodes.Stelem_I8;
8064 else if (t == TypeManager.float_type)
8065 return OpCodes.Stelem_R4;
8066 else if (t == TypeManager.double_type)
8067 return OpCodes.Stelem_R8;
8068 else if (t == TypeManager.intptr_type) {
8069 has_type_arg = true;
8070 is_stobj = true;
8071 return OpCodes.Stobj;
8072 } else if (t.IsValueType) {
8073 has_type_arg = true;
8074 is_stobj = true;
8075 return OpCodes.Stobj;
8076 #if GMCS_SOURCE
8077 } else if (t.IsGenericParameter) {
8078 has_type_arg = true;
8079 return OpCodes.Stelem;
8080 #endif
8082 } else if (t.IsPointer)
8083 return OpCodes.Stelem_I;
8084 else
8085 return OpCodes.Stelem_Ref;
8088 MethodInfo FetchGetMethod ()
8090 ModuleBuilder mb = CodeGen.Module.Builder;
8091 int arg_count = ea.Arguments.Count;
8092 Type [] args = new Type [arg_count];
8093 MethodInfo get;
8095 for (int i = 0; i < arg_count; i++){
8096 //args [i++] = a.Type;
8097 args [i] = TypeManager.int32_type;
8100 get = mb.GetArrayMethod (
8101 ea.Expr.Type, "Get",
8102 CallingConventions.HasThis |
8103 CallingConventions.Standard,
8104 type, args);
8105 return get;
8109 MethodInfo FetchAddressMethod ()
8111 ModuleBuilder mb = CodeGen.Module.Builder;
8112 int arg_count = ea.Arguments.Count;
8113 Type [] args = new Type [arg_count];
8114 MethodInfo address;
8115 Type ret_type;
8117 ret_type = TypeManager.GetReferenceType (type);
8119 for (int i = 0; i < arg_count; i++){
8120 //args [i++] = a.Type;
8121 args [i] = TypeManager.int32_type;
8124 address = mb.GetArrayMethod (
8125 ea.Expr.Type, "Address",
8126 CallingConventions.HasThis |
8127 CallingConventions.Standard,
8128 ret_type, args);
8130 return address;
8134 // Load the array arguments into the stack.
8136 void LoadArrayAndArguments (EmitContext ec)
8138 ea.Expr.Emit (ec);
8140 for (int i = 0; i < ea.Arguments.Count; ++i) {
8141 ((Argument)ea.Arguments [i]).Emit (ec);
8145 public void Emit (EmitContext ec, bool leave_copy)
8147 int rank = ea.Expr.Type.GetArrayRank ();
8148 ILGenerator ig = ec.ig;
8150 if (prepared) {
8151 LoadFromPtr (ig, this.type);
8152 } else {
8153 LoadArrayAndArguments (ec);
8154 EmitLoadOpcode (ig, type, rank);
8157 if (leave_copy) {
8158 ig.Emit (OpCodes.Dup);
8159 temp = new LocalTemporary (this.type);
8160 temp.Store (ec);
8164 public override void Emit (EmitContext ec)
8166 Emit (ec, false);
8169 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
8171 int rank = ea.Expr.Type.GetArrayRank ();
8172 ILGenerator ig = ec.ig;
8173 Type t = source.Type;
8174 prepared = prepare_for_load;
8176 if (prepared) {
8177 AddressOf (ec, AddressOp.LoadStore);
8178 ec.ig.Emit (OpCodes.Dup);
8179 } else {
8180 LoadArrayAndArguments (ec);
8183 if (rank == 1) {
8184 bool is_stobj, has_type_arg;
8185 OpCode op = GetStoreOpcode (t, out is_stobj, out has_type_arg);
8187 if (!prepared) {
8189 // The stobj opcode used by value types will need
8190 // an address on the stack, not really an array/array
8191 // pair
8193 if (is_stobj)
8194 ig.Emit (OpCodes.Ldelema, t);
8197 source.Emit (ec);
8198 if (leave_copy) {
8199 ec.ig.Emit (OpCodes.Dup);
8200 temp = new LocalTemporary (this.type);
8201 temp.Store (ec);
8204 if (prepared)
8205 StoreFromPtr (ig, t);
8206 else if (is_stobj)
8207 ig.Emit (OpCodes.Stobj, t);
8208 else if (has_type_arg)
8209 ig.Emit (op, t);
8210 else
8211 ig.Emit (op);
8212 } else {
8213 source.Emit (ec);
8214 if (leave_copy) {
8215 ec.ig.Emit (OpCodes.Dup);
8216 temp = new LocalTemporary (this.type);
8217 temp.Store (ec);
8220 if (prepared) {
8221 StoreFromPtr (ig, t);
8222 } else {
8223 int arg_count = ea.Arguments.Count;
8224 Type [] args = new Type [arg_count + 1];
8225 for (int i = 0; i < arg_count; i++) {
8226 //args [i++] = a.Type;
8227 args [i] = TypeManager.int32_type;
8229 args [arg_count] = type;
8231 MethodInfo set = CodeGen.Module.Builder.GetArrayMethod (
8232 ea.Expr.Type, "Set",
8233 CallingConventions.HasThis |
8234 CallingConventions.Standard,
8235 TypeManager.void_type, args);
8237 ig.Emit (OpCodes.Call, set);
8241 if (temp != null) {
8242 temp.Emit (ec);
8243 temp.Release (ec);
8247 public void AddressOf (EmitContext ec, AddressOp mode)
8249 int rank = ea.Expr.Type.GetArrayRank ();
8250 ILGenerator ig = ec.ig;
8252 LoadArrayAndArguments (ec);
8254 if (rank == 1){
8255 ig.Emit (OpCodes.Ldelema, type);
8256 } else {
8257 MethodInfo address = FetchAddressMethod ();
8258 ig.Emit (OpCodes.Call, address);
8262 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8264 type = storey.MutateType (type);
8265 ea.Expr.Type = storey.MutateType (ea.Expr.Type);
8269 /// <summary>
8270 /// Expressions that represent an indexer call.
8271 /// </summary>
8272 public class IndexerAccess : Expression, IAssignMethod
8274 class IndexerMethodGroupExpr : MethodGroupExpr
8276 public IndexerMethodGroupExpr (Indexers indexers, Location loc)
8277 : base (null, loc)
8279 Methods = (MethodBase []) indexers.Methods.ToArray (typeof (MethodBase));
8282 public override string Name {
8283 get {
8284 return "this";
8288 protected override int GetApplicableParametersCount (MethodBase method, AParametersCollection parameters)
8291 // Here is the trick, decrease number of arguments by 1 when only
8292 // available property method is setter. This makes overload resolution
8293 // work correctly for indexers.
8296 if (method.Name [0] == 'g')
8297 return parameters.Count;
8299 return parameters.Count - 1;
8303 class Indexers
8305 // Contains either property getter or setter
8306 public ArrayList Methods;
8307 public ArrayList Properties;
8309 Indexers ()
8313 void Append (Type caller_type, MemberInfo [] mi)
8315 if (mi == null)
8316 return;
8318 foreach (PropertyInfo property in mi) {
8319 MethodInfo accessor = property.GetGetMethod (true);
8320 if (accessor == null)
8321 accessor = property.GetSetMethod (true);
8323 if (Methods == null) {
8324 Methods = new ArrayList ();
8325 Properties = new ArrayList ();
8328 Methods.Add (accessor);
8329 Properties.Add (property);
8333 static MemberInfo [] GetIndexersForTypeOrInterface (Type caller_type, Type lookup_type)
8335 string p_name = TypeManager.IndexerPropertyName (lookup_type);
8337 return TypeManager.MemberLookup (
8338 caller_type, caller_type, lookup_type, MemberTypes.Property,
8339 BindingFlags.Public | BindingFlags.Instance |
8340 BindingFlags.DeclaredOnly, p_name, null);
8343 public static Indexers GetIndexersForType (Type caller_type, Type lookup_type)
8345 Indexers ix = new Indexers ();
8347 #if GMCS_SOURCE
8348 if (lookup_type.IsGenericParameter) {
8349 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (lookup_type);
8350 if (gc == null)
8351 return ix;
8353 if (gc.HasClassConstraint)
8354 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, gc.ClassConstraint));
8356 Type[] ifaces = gc.InterfaceConstraints;
8357 foreach (Type itype in ifaces)
8358 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, itype));
8360 return ix;
8362 #endif
8364 Type copy = lookup_type;
8365 while (copy != TypeManager.object_type && copy != null){
8366 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, copy));
8367 copy = copy.BaseType;
8370 if (lookup_type.IsInterface) {
8371 Type [] ifaces = TypeManager.GetInterfaces (lookup_type);
8372 if (ifaces != null) {
8373 foreach (Type itype in ifaces)
8374 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, itype));
8378 return ix;
8382 enum AccessorType
8384 Get,
8389 // Points to our "data" repository
8391 MethodInfo get, set;
8392 bool is_base_indexer;
8393 bool prepared;
8394 LocalTemporary temp;
8395 LocalTemporary prepared_value;
8396 Expression set_expr;
8398 protected Type indexer_type;
8399 protected Type current_type;
8400 protected Expression instance_expr;
8401 protected ArrayList arguments;
8403 public IndexerAccess (ElementAccess ea, Location loc)
8404 : this (ea.Expr, false, loc)
8406 this.arguments = ea.Arguments;
8409 protected IndexerAccess (Expression instance_expr, bool is_base_indexer,
8410 Location loc)
8412 this.instance_expr = instance_expr;
8413 this.is_base_indexer = is_base_indexer;
8414 this.eclass = ExprClass.Value;
8415 this.loc = loc;
8418 static string GetAccessorName (AccessorType at)
8420 if (at == AccessorType.Set)
8421 return "set";
8423 if (at == AccessorType.Get)
8424 return "get";
8426 throw new NotImplementedException (at.ToString ());
8429 public override Expression CreateExpressionTree (EmitContext ec)
8431 ArrayList args = new ArrayList (arguments.Count + 2);
8432 args.Add (new Argument (instance_expr.CreateExpressionTree (ec)));
8433 args.Add (new Argument (new TypeOfMethodInfo (get, loc)));
8434 foreach (Argument a in arguments)
8435 args.Add (new Argument (a.Expr.CreateExpressionTree (ec)));
8437 return CreateExpressionFactoryCall ("Call", args);
8440 protected virtual bool CommonResolve (EmitContext ec)
8442 indexer_type = instance_expr.Type;
8443 current_type = ec.ContainerType;
8445 return true;
8448 public override Expression DoResolve (EmitContext ec)
8450 return ResolveAccessor (ec, AccessorType.Get);
8453 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
8455 if (right_side == EmptyExpression.OutAccess) {
8456 Report.Error (206, loc, "A property or indexer `{0}' may not be passed as an out or ref parameter",
8457 GetSignatureForError ());
8458 return null;
8461 // if the indexer returns a value type, and we try to set a field in it
8462 if (right_side == EmptyExpression.LValueMemberAccess || right_side == EmptyExpression.LValueMemberOutAccess) {
8463 Error_CannotModifyIntermediateExpressionValue (ec);
8466 Expression e = ResolveAccessor (ec, AccessorType.Set);
8467 if (e == null)
8468 return null;
8470 set_expr = Convert.ImplicitConversion (ec, right_side, type, loc);
8471 return e;
8474 Expression ResolveAccessor (EmitContext ec, AccessorType accessorType)
8476 if (!CommonResolve (ec))
8477 return null;
8479 Indexers ilist = Indexers.GetIndexersForType (current_type, indexer_type);
8480 if (ilist.Methods == null) {
8481 Report.Error (21, loc, "Cannot apply indexing with [] to an expression of type `{0}'",
8482 TypeManager.CSharpName (indexer_type));
8483 return null;
8486 MethodGroupExpr mg = new IndexerMethodGroupExpr (ilist, loc);
8487 mg = mg.OverloadResolve (ec, ref arguments, false, loc);
8488 if (mg == null)
8489 return null;
8491 MethodInfo mi = (MethodInfo) mg;
8492 PropertyInfo pi = null;
8493 for (int i = 0; i < ilist.Methods.Count; ++i) {
8494 if (ilist.Methods [i] == mi) {
8495 pi = (PropertyInfo) ilist.Properties [i];
8496 break;
8500 type = TypeManager.TypeToCoreType (pi.PropertyType);
8501 if (type.IsPointer && !ec.InUnsafe)
8502 UnsafeError (loc);
8504 MethodInfo accessor;
8505 if (accessorType == AccessorType.Get) {
8506 accessor = get = pi.GetGetMethod (true);
8507 } else {
8508 accessor = set = pi.GetSetMethod (true);
8509 if (accessor == null && pi.GetGetMethod (true) != null) {
8510 Report.SymbolRelatedToPreviousError (pi);
8511 Report.Error (200, loc, "The read only property or indexer `{0}' cannot be assigned to",
8512 TypeManager.GetFullNameSignature (pi));
8513 return null;
8517 if (accessor == null) {
8518 Report.SymbolRelatedToPreviousError (pi);
8519 Report.Error (154, loc, "The property or indexer `{0}' cannot be used in this context because it lacks a `{1}' accessor",
8520 TypeManager.GetFullNameSignature (pi), GetAccessorName (accessorType));
8521 return null;
8525 // Only base will allow this invocation to happen.
8527 if (accessor.IsAbstract && this is BaseIndexerAccess) {
8528 Error_CannotCallAbstractBase (TypeManager.GetFullNameSignature (pi));
8531 bool must_do_cs1540_check;
8532 if (!IsAccessorAccessible (ec.ContainerType, accessor, out must_do_cs1540_check)) {
8533 if (set == null)
8534 set = pi.GetSetMethod (true);
8535 else
8536 get = pi.GetGetMethod (true);
8538 if (set != null && get != null &&
8539 (set.Attributes & MethodAttributes.MemberAccessMask) != (get.Attributes & MethodAttributes.MemberAccessMask)) {
8540 Report.SymbolRelatedToPreviousError (accessor);
8541 Report.Error (271, loc, "The property or indexer `{0}' cannot be used in this context because a `{1}' accessor is inaccessible",
8542 TypeManager.GetFullNameSignature (pi), GetAccessorName (accessorType));
8543 } else {
8544 Report.SymbolRelatedToPreviousError (pi);
8545 ErrorIsInaccesible (loc, TypeManager.GetFullNameSignature (pi));
8549 instance_expr.CheckMarshalByRefAccess (ec);
8550 eclass = ExprClass.IndexerAccess;
8551 return this;
8554 public void Emit (EmitContext ec, bool leave_copy)
8556 if (prepared) {
8557 prepared_value.Emit (ec);
8558 } else {
8559 Invocation.EmitCall (ec, is_base_indexer, instance_expr, get,
8560 arguments, loc, false, false);
8563 if (leave_copy) {
8564 ec.ig.Emit (OpCodes.Dup);
8565 temp = new LocalTemporary (Type);
8566 temp.Store (ec);
8571 // source is ignored, because we already have a copy of it from the
8572 // LValue resolution and we have already constructed a pre-cached
8573 // version of the arguments (ea.set_arguments);
8575 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
8577 prepared = prepare_for_load;
8578 Expression value = set_expr;
8580 if (prepared) {
8581 Invocation.EmitCall (ec, is_base_indexer, instance_expr, get,
8582 arguments, loc, true, false);
8584 prepared_value = new LocalTemporary (type);
8585 prepared_value.Store (ec);
8586 source.Emit (ec);
8587 prepared_value.Release (ec);
8589 if (leave_copy) {
8590 ec.ig.Emit (OpCodes.Dup);
8591 temp = new LocalTemporary (Type);
8592 temp.Store (ec);
8594 } else if (leave_copy) {
8595 temp = new LocalTemporary (Type);
8596 source.Emit (ec);
8597 temp.Store (ec);
8598 value = temp;
8601 arguments.Add (new Argument (value, Argument.AType.Expression));
8602 Invocation.EmitCall (ec, is_base_indexer, instance_expr, set, arguments, loc, false, prepared);
8604 if (temp != null) {
8605 temp.Emit (ec);
8606 temp.Release (ec);
8610 public override void Emit (EmitContext ec)
8612 Emit (ec, false);
8615 public override string GetSignatureForError ()
8617 return TypeManager.CSharpSignature (get != null ? get : set, false);
8620 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8622 if (get != null)
8623 get = storey.MutateGenericMethod (get);
8624 if (set != null)
8625 set = storey.MutateGenericMethod (set);
8627 instance_expr.MutateHoistedGenericType (storey);
8628 foreach (Argument a in arguments)
8629 a.Expr.MutateHoistedGenericType (storey);
8631 type = storey.MutateType (type);
8634 protected override void CloneTo (CloneContext clonectx, Expression t)
8636 IndexerAccess target = (IndexerAccess) t;
8638 if (arguments != null){
8639 target.arguments = new ArrayList ();
8640 foreach (Argument a in arguments)
8641 target.arguments.Add (a.Clone (clonectx));
8643 if (instance_expr != null)
8644 target.instance_expr = instance_expr.Clone (clonectx);
8648 /// <summary>
8649 /// The base operator for method names
8650 /// </summary>
8651 public class BaseAccess : Expression {
8652 public readonly string Identifier;
8653 TypeArguments args;
8655 public BaseAccess (string member, Location l)
8657 this.Identifier = member;
8658 loc = l;
8661 public BaseAccess (string member, TypeArguments args, Location l)
8662 : this (member, l)
8664 this.args = args;
8667 public override Expression CreateExpressionTree (EmitContext ec)
8669 throw new NotSupportedException ("ET");
8672 public override Expression DoResolve (EmitContext ec)
8674 Expression c = CommonResolve (ec);
8676 if (c == null)
8677 return null;
8680 // MethodGroups use this opportunity to flag an error on lacking ()
8682 if (!(c is MethodGroupExpr))
8683 return c.Resolve (ec);
8684 return c;
8687 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
8689 Expression c = CommonResolve (ec);
8691 if (c == null)
8692 return null;
8695 // MethodGroups use this opportunity to flag an error on lacking ()
8697 if (! (c is MethodGroupExpr))
8698 return c.DoResolveLValue (ec, right_side);
8700 return c;
8703 Expression CommonResolve (EmitContext ec)
8705 Expression member_lookup;
8706 Type current_type = ec.ContainerType;
8707 Type base_type = current_type.BaseType;
8709 if (!This.IsThisAvailable (ec)) {
8710 if (ec.IsStatic) {
8711 Error (1511, "Keyword `base' is not available in a static method");
8712 } else {
8713 Error (1512, "Keyword `base' is not available in the current context");
8715 return null;
8718 member_lookup = MemberLookup (ec.ContainerType, null, base_type, Identifier,
8719 AllMemberTypes, AllBindingFlags, loc);
8720 if (member_lookup == null) {
8721 Error_MemberLookupFailed (ec.ContainerType, base_type, base_type, Identifier,
8722 null, AllMemberTypes, AllBindingFlags);
8723 return null;
8726 Expression left;
8728 if (ec.IsStatic)
8729 left = new TypeExpression (base_type, loc);
8730 else
8731 left = ec.GetThis (loc);
8733 MemberExpr me = (MemberExpr) member_lookup;
8734 me = me.ResolveMemberAccess (ec, left, loc, null);
8735 if (me == null)
8736 return null;
8738 me.IsBase = true;
8739 if (args != null) {
8740 args.Resolve (ec);
8741 me.SetTypeArguments (args);
8744 return me;
8747 public override void Emit (EmitContext ec)
8749 throw new Exception ("Should never be called");
8752 protected override void CloneTo (CloneContext clonectx, Expression t)
8754 BaseAccess target = (BaseAccess) t;
8756 if (args != null)
8757 target.args = args.Clone ();
8761 /// <summary>
8762 /// The base indexer operator
8763 /// </summary>
8764 public class BaseIndexerAccess : IndexerAccess {
8765 public BaseIndexerAccess (ArrayList args, Location loc)
8766 : base (null, true, loc)
8768 arguments = new ArrayList ();
8769 foreach (Expression tmp in args)
8770 arguments.Add (new Argument (tmp, Argument.AType.Expression));
8773 protected override bool CommonResolve (EmitContext ec)
8775 instance_expr = ec.GetThis (loc);
8777 current_type = ec.ContainerType.BaseType;
8778 indexer_type = current_type;
8780 foreach (Argument a in arguments){
8781 if (!a.Resolve (ec, loc))
8782 return false;
8785 return true;
8788 public override Expression CreateExpressionTree (EmitContext ec)
8790 MemberExpr.Error_BaseAccessInExpressionTree (loc);
8791 return base.CreateExpressionTree (ec);
8795 /// <summary>
8796 /// This class exists solely to pass the Type around and to be a dummy
8797 /// that can be passed to the conversion functions (this is used by
8798 /// foreach implementation to typecast the object return value from
8799 /// get_Current into the proper type. All code has been generated and
8800 /// we only care about the side effect conversions to be performed
8802 /// This is also now used as a placeholder where a no-action expression
8803 /// is needed (the `New' class).
8804 /// </summary>
8805 public class EmptyExpression : Expression {
8806 public static readonly Expression Null = new EmptyExpression ();
8808 public static readonly EmptyExpression OutAccess = new EmptyExpression ();
8809 public static readonly EmptyExpression LValueMemberAccess = new EmptyExpression ();
8810 public static readonly EmptyExpression LValueMemberOutAccess = new EmptyExpression ();
8811 public static readonly EmptyExpression UnaryAddress = new EmptyExpression ();
8813 static EmptyExpression temp = new EmptyExpression ();
8814 public static EmptyExpression Grab ()
8816 EmptyExpression retval = temp == null ? new EmptyExpression () : temp;
8817 temp = null;
8818 return retval;
8821 public static void Release (EmptyExpression e)
8823 temp = e;
8826 // TODO: should be protected
8827 public EmptyExpression ()
8829 type = TypeManager.object_type;
8830 eclass = ExprClass.Value;
8831 loc = Location.Null;
8834 public EmptyExpression (Type t)
8836 type = t;
8837 eclass = ExprClass.Value;
8838 loc = Location.Null;
8841 public override Expression CreateExpressionTree (EmitContext ec)
8843 throw new NotSupportedException ("ET");
8846 public override Expression DoResolve (EmitContext ec)
8848 return this;
8851 public override void Emit (EmitContext ec)
8853 // nothing, as we only exist to not do anything.
8856 public override void EmitSideEffect (EmitContext ec)
8861 // This is just because we might want to reuse this bad boy
8862 // instead of creating gazillions of EmptyExpressions.
8863 // (CanImplicitConversion uses it)
8865 public void SetType (Type t)
8867 type = t;
8872 // Empty statement expression
8874 public sealed class EmptyExpressionStatement : ExpressionStatement
8876 public static readonly EmptyExpressionStatement Instance = new EmptyExpressionStatement ();
8878 private EmptyExpressionStatement ()
8880 type = TypeManager.object_type;
8881 eclass = ExprClass.Value;
8882 loc = Location.Null;
8885 public override Expression CreateExpressionTree (EmitContext ec)
8887 return null;
8890 public override void EmitStatement (EmitContext ec)
8892 // Do nothing
8895 public override Expression DoResolve (EmitContext ec)
8897 return this;
8900 public override void Emit (EmitContext ec)
8902 // Do nothing
8906 public class UserCast : Expression {
8907 MethodInfo method;
8908 Expression source;
8910 public UserCast (MethodInfo method, Expression source, Location l)
8912 this.method = method;
8913 this.source = source;
8914 type = TypeManager.TypeToCoreType (method.ReturnType);
8915 loc = l;
8918 public Expression Source {
8919 get {
8920 return source;
8924 public override Expression CreateExpressionTree (EmitContext ec)
8926 ArrayList args = new ArrayList (3);
8927 args.Add (new Argument (source.CreateExpressionTree (ec)));
8928 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
8929 args.Add (new Argument (new TypeOfMethodInfo (method, loc)));
8930 return CreateExpressionFactoryCall ("Convert", args);
8933 public override Expression DoResolve (EmitContext ec)
8935 ObsoleteAttribute oa = AttributeTester.GetMethodObsoleteAttribute (method);
8936 if (oa != null)
8937 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc);
8939 eclass = ExprClass.Value;
8940 return this;
8943 public override void Emit (EmitContext ec)
8945 source.Emit (ec);
8946 ec.ig.Emit (OpCodes.Call, method);
8949 public override string GetSignatureForError ()
8951 return TypeManager.CSharpSignature (method);
8954 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8956 source.MutateHoistedGenericType (storey);
8957 method = storey.MutateGenericMethod (method);
8961 // <summary>
8962 // This class is used to "construct" the type during a typecast
8963 // operation. Since the Type.GetType class in .NET can parse
8964 // the type specification, we just use this to construct the type
8965 // one bit at a time.
8966 // </summary>
8967 public class ComposedCast : TypeExpr {
8968 FullNamedExpression left;
8969 string dim;
8971 public ComposedCast (FullNamedExpression left, string dim)
8972 : this (left, dim, left.Location)
8976 public ComposedCast (FullNamedExpression left, string dim, Location l)
8978 this.left = left;
8979 this.dim = dim;
8980 loc = l;
8983 protected override TypeExpr DoResolveAsTypeStep (IResolveContext ec)
8985 TypeExpr lexpr = left.ResolveAsTypeTerminal (ec, false);
8986 if (lexpr == null)
8987 return null;
8989 Type ltype = lexpr.Type;
8990 #if GMCS_SOURCE
8991 if ((dim.Length > 0) && (dim [0] == '?')) {
8992 TypeExpr nullable = new Nullable.NullableType (left, loc);
8993 if (dim.Length > 1)
8994 nullable = new ComposedCast (nullable, dim.Substring (1), loc);
8995 return nullable.ResolveAsTypeTerminal (ec, false);
8997 #endif
8999 if (dim == "*" && !TypeManager.VerifyUnManaged (ltype, loc))
9000 return null;
9002 if (dim.Length != 0 && dim [0] == '[') {
9003 if (TypeManager.IsSpecialType (ltype)) {
9004 Report.Error (611, loc, "Array elements cannot be of type `{0}'", TypeManager.CSharpName (ltype));
9005 return null;
9008 if ((ltype.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
9009 Report.SymbolRelatedToPreviousError (ltype);
9010 Report.Error (719, loc, "Array elements cannot be of static type `{0}'",
9011 TypeManager.CSharpName (ltype));
9015 if (dim != "")
9016 type = TypeManager.GetConstructedType (ltype, dim);
9017 else
9018 type = ltype;
9020 if (type == null)
9021 throw new InternalErrorException ("Couldn't create computed type " + ltype + dim);
9023 if (type.IsPointer && !ec.IsInUnsafeScope){
9024 UnsafeError (loc);
9027 eclass = ExprClass.Type;
9028 return this;
9031 public override string GetSignatureForError ()
9033 return left.GetSignatureForError () + dim;
9036 protected override void CloneTo (CloneContext clonectx, Expression t)
9038 ComposedCast target = (ComposedCast) t;
9040 target.left = (FullNamedExpression)left.Clone (clonectx);
9043 public override TypeExpr ResolveAsTypeTerminal (IResolveContext ec, bool silent)
9045 return ResolveAsBaseTerminal (ec, silent);
9049 public class FixedBufferPtr : Expression {
9050 Expression array;
9052 public FixedBufferPtr (Expression array, Type array_type, Location l)
9054 this.array = array;
9055 this.loc = l;
9057 type = TypeManager.GetPointerType (array_type);
9058 eclass = ExprClass.Value;
9061 public override Expression CreateExpressionTree (EmitContext ec)
9063 Error_PointerInsideExpressionTree ();
9064 return null;
9067 public override void Emit(EmitContext ec)
9069 array.Emit (ec);
9072 public override Expression DoResolve (EmitContext ec)
9075 // We are born fully resolved
9077 return this;
9083 // This class is used to represent the address of an array, used
9084 // only by the Fixed statement, this generates "&a [0]" construct
9085 // for fixed (char *pa = a)
9087 public class ArrayPtr : FixedBufferPtr {
9088 Type array_type;
9090 public ArrayPtr (Expression array, Type array_type, Location l):
9091 base (array, array_type, l)
9093 this.array_type = array_type;
9096 public override void Emit (EmitContext ec)
9098 base.Emit (ec);
9100 ILGenerator ig = ec.ig;
9101 IntLiteral.EmitInt (ig, 0);
9102 ig.Emit (OpCodes.Ldelema, array_type);
9107 // Encapsulates a conversion rules required for array indexes
9109 public class ArrayIndexCast : TypeCast
9111 public ArrayIndexCast (Expression expr)
9112 : base (expr, expr.Type)
9116 public override Expression CreateExpressionTree (EmitContext ec)
9118 ArrayList args = new ArrayList (2);
9119 args.Add (new Argument (child.CreateExpressionTree (ec)));
9120 args.Add (new Argument (new TypeOf (new TypeExpression (TypeManager.int32_type, loc), loc)));
9121 return CreateExpressionFactoryCall ("ConvertChecked", args);
9124 public override void Emit (EmitContext ec)
9126 child.Emit (ec);
9128 if (type == TypeManager.int32_type)
9129 return;
9131 if (type == TypeManager.uint32_type)
9132 ec.ig.Emit (OpCodes.Conv_U);
9133 else if (type == TypeManager.int64_type)
9134 ec.ig.Emit (OpCodes.Conv_Ovf_I);
9135 else if (type == TypeManager.uint64_type)
9136 ec.ig.Emit (OpCodes.Conv_Ovf_I_Un);
9137 else
9138 throw new InternalErrorException ("Cannot emit cast to unknown array element type", type);
9143 // Implements the `stackalloc' keyword
9145 public class StackAlloc : Expression {
9146 Type otype;
9147 Expression t;
9148 Expression count;
9150 public StackAlloc (Expression type, Expression count, Location l)
9152 t = type;
9153 this.count = count;
9154 loc = l;
9157 public override Expression CreateExpressionTree (EmitContext ec)
9159 throw new NotSupportedException ("ET");
9162 public override Expression DoResolve (EmitContext ec)
9164 count = count.Resolve (ec);
9165 if (count == null)
9166 return null;
9168 if (count.Type != TypeManager.uint32_type){
9169 count = Convert.ImplicitConversionRequired (ec, count, TypeManager.int32_type, loc);
9170 if (count == null)
9171 return null;
9174 Constant c = count as Constant;
9175 if (c != null && c.IsNegative) {
9176 Report.Error (247, loc, "Cannot use a negative size with stackalloc");
9177 return null;
9180 if (ec.InCatch || ec.InFinally) {
9181 Error (255, "Cannot use stackalloc in finally or catch");
9182 return null;
9185 TypeExpr texpr = t.ResolveAsTypeTerminal (ec, false);
9186 if (texpr == null)
9187 return null;
9189 otype = texpr.Type;
9191 if (!TypeManager.VerifyUnManaged (otype, loc))
9192 return null;
9194 type = TypeManager.GetPointerType (otype);
9195 eclass = ExprClass.Value;
9197 return this;
9200 public override void Emit (EmitContext ec)
9202 int size = GetTypeSize (otype);
9203 ILGenerator ig = ec.ig;
9205 count.Emit (ec);
9207 if (size == 0)
9208 ig.Emit (OpCodes.Sizeof, otype);
9209 else
9210 IntConstant.EmitInt (ig, size);
9212 ig.Emit (OpCodes.Mul_Ovf_Un);
9213 ig.Emit (OpCodes.Localloc);
9216 protected override void CloneTo (CloneContext clonectx, Expression t)
9218 StackAlloc target = (StackAlloc) t;
9219 target.count = count.Clone (clonectx);
9220 target.t = t.Clone (clonectx);
9225 // An object initializer expression
9227 public class ElementInitializer : Assign
9229 public readonly string Name;
9231 public ElementInitializer (string name, Expression initializer, Location loc)
9232 : base (null, initializer, loc)
9234 this.Name = name;
9237 protected override void CloneTo (CloneContext clonectx, Expression t)
9239 ElementInitializer target = (ElementInitializer) t;
9240 target.source = source.Clone (clonectx);
9243 public override Expression CreateExpressionTree (EmitContext ec)
9245 ArrayList args = new ArrayList (2);
9246 FieldExpr fe = target as FieldExpr;
9247 if (fe != null)
9248 args.Add (new Argument (fe.CreateTypeOfExpression ()));
9249 else
9250 args.Add (new Argument (((PropertyExpr)target).CreateSetterTypeOfExpression ()));
9252 args.Add (new Argument (source.CreateExpressionTree (ec)));
9253 return CreateExpressionFactoryCall (
9254 source is CollectionOrObjectInitializers ? "ListBind" : "Bind",
9255 args);
9258 public override Expression DoResolve (EmitContext ec)
9260 if (source == null)
9261 return EmptyExpressionStatement.Instance;
9263 MemberExpr me = MemberLookupFinal (ec, ec.CurrentInitializerVariable.Type, ec.CurrentInitializerVariable.Type,
9264 Name, MemberTypes.Field | MemberTypes.Property, BindingFlags.Public | BindingFlags.Instance, loc) as MemberExpr;
9266 if (me == null)
9267 return null;
9269 target = me;
9270 me.InstanceExpression = ec.CurrentInitializerVariable;
9272 if (source is CollectionOrObjectInitializers) {
9273 Expression previous = ec.CurrentInitializerVariable;
9274 ec.CurrentInitializerVariable = target;
9275 source = source.Resolve (ec);
9276 ec.CurrentInitializerVariable = previous;
9277 if (source == null)
9278 return null;
9280 eclass = source.eclass;
9281 type = source.Type;
9282 return this;
9285 Expression expr = base.DoResolve (ec);
9286 if (expr == null)
9287 return null;
9290 // Ignore field initializers with default value
9292 Constant c = source as Constant;
9293 if (c != null && c.IsDefaultInitializer (type) && target.eclass == ExprClass.Variable)
9294 return EmptyExpressionStatement.Instance;
9296 return expr;
9299 protected override Expression Error_MemberLookupFailed (MemberInfo[] members)
9301 MemberInfo member = members [0];
9302 if (member.MemberType != MemberTypes.Property && member.MemberType != MemberTypes.Field)
9303 Report.Error (1913, loc, "Member `{0}' cannot be initialized. An object " +
9304 "initializer may only be used for fields, or properties", TypeManager.GetFullNameSignature (member));
9305 else
9306 Report.Error (1914, loc, " Static field or property `{0}' cannot be assigned in an object initializer",
9307 TypeManager.GetFullNameSignature (member));
9309 return null;
9312 public override void EmitStatement (EmitContext ec)
9314 if (source is CollectionOrObjectInitializers)
9315 source.Emit (ec);
9316 else
9317 base.EmitStatement (ec);
9322 // A collection initializer expression
9324 public class CollectionElementInitializer : Invocation
9326 public class ElementInitializerArgument : Argument
9328 public ElementInitializerArgument (Expression e)
9329 : base (e)
9334 sealed class AddMemberAccess : MemberAccess
9336 public AddMemberAccess (Expression expr, Location loc)
9337 : base (expr, "Add", loc)
9341 protected override void Error_TypeDoesNotContainDefinition (Type type, string name)
9343 if (TypeManager.HasElementType (type))
9344 return;
9346 base.Error_TypeDoesNotContainDefinition (type, name);
9350 public CollectionElementInitializer (Expression argument)
9351 : base (null, new ArrayList (1), true)
9353 Arguments.Add (argument);
9354 this.loc = argument.Location;
9357 public CollectionElementInitializer (ArrayList arguments, Location loc)
9358 : base (null, arguments, true)
9360 this.loc = loc;
9363 public override Expression CreateExpressionTree (EmitContext ec)
9365 ArrayList args = new ArrayList (2);
9366 args.Add (new Argument (mg.CreateExpressionTree (ec)));
9368 ArrayList expr_initializers = new ArrayList (Arguments.Count);
9369 foreach (Argument a in Arguments)
9370 expr_initializers.Add (a.Expr.CreateExpressionTree (ec));
9372 args.Add (new Argument (new ArrayCreation (
9373 CreateExpressionTypeExpression (loc), "[]", expr_initializers, loc)));
9374 return CreateExpressionFactoryCall ("ElementInit", args);
9377 protected override void CloneTo (CloneContext clonectx, Expression t)
9379 CollectionElementInitializer target = (CollectionElementInitializer) t;
9381 target.Arguments = new ArrayList (Arguments.Count);
9382 foreach (Expression e in Arguments)
9383 target.Arguments.Add (e.Clone (clonectx));
9386 public override Expression DoResolve (EmitContext ec)
9388 if (eclass != ExprClass.Invalid)
9389 return this;
9391 // TODO: We could call a constructor which takes element count argument,
9392 // for known types like List<T>, Dictionary<T, U>
9394 for (int i = 0; i < Arguments.Count; ++i) {
9395 Expression expr = Arguments [i] as Expression;
9396 if (expr == null)
9397 return null;
9399 expr = expr.Resolve (ec);
9400 if (expr == null)
9401 return null;
9403 Arguments [i] = new ElementInitializerArgument (expr);
9406 base.expr = new AddMemberAccess (ec.CurrentInitializerVariable, loc);
9408 return base.DoResolve (ec);
9413 // A block of object or collection initializers
9415 public class CollectionOrObjectInitializers : ExpressionStatement
9417 ArrayList initializers;
9419 public static readonly CollectionOrObjectInitializers Empty =
9420 new CollectionOrObjectInitializers (new ArrayList (0), Location.Null);
9422 public CollectionOrObjectInitializers (ArrayList initializers, Location loc)
9424 this.initializers = initializers;
9425 this.loc = loc;
9428 public bool IsEmpty {
9429 get {
9430 return initializers.Count == 0;
9434 public bool IsCollectionInitializer {
9435 get {
9436 return type == typeof (CollectionOrObjectInitializers);
9440 protected override void CloneTo (CloneContext clonectx, Expression target)
9442 CollectionOrObjectInitializers t = (CollectionOrObjectInitializers) target;
9444 t.initializers = new ArrayList (initializers.Count);
9445 foreach (Expression e in initializers)
9446 t.initializers.Add (e.Clone (clonectx));
9449 public override Expression CreateExpressionTree (EmitContext ec)
9451 ArrayList expr_initializers = new ArrayList (initializers.Count);
9452 foreach (Expression e in initializers) {
9453 Expression expr = e.CreateExpressionTree (ec);
9454 if (expr != null)
9455 expr_initializers.Add (expr);
9458 return new ImplicitlyTypedArrayCreation ("[]", expr_initializers, loc);
9461 public override Expression DoResolve (EmitContext ec)
9463 if (eclass != ExprClass.Invalid)
9464 return this;
9466 bool is_collection_initialization = false;
9467 ArrayList element_names = null;
9468 for (int i = 0; i < initializers.Count; ++i) {
9469 Expression initializer = (Expression) initializers [i];
9470 ElementInitializer element_initializer = initializer as ElementInitializer;
9472 if (i == 0) {
9473 if (element_initializer != null) {
9474 element_names = new ArrayList (initializers.Count);
9475 element_names.Add (element_initializer.Name);
9476 } else {
9477 if (!TypeManager.ImplementsInterface (ec.CurrentInitializerVariable.Type,
9478 TypeManager.ienumerable_type)) {
9479 Report.Error (1922, loc, "A field or property `{0}' cannot be initialized with a collection " +
9480 "object initializer because type `{1}' does not implement `{2}' interface",
9481 ec.CurrentInitializerVariable.GetSignatureForError (),
9482 TypeManager.CSharpName (ec.CurrentInitializerVariable.Type),
9483 TypeManager.CSharpName (TypeManager.ienumerable_type));
9484 return null;
9486 is_collection_initialization = true;
9488 } else {
9489 if (is_collection_initialization != (element_initializer == null)) {
9490 Report.Error (747, initializer.Location, "Inconsistent `{0}' member declaration",
9491 is_collection_initialization ? "collection initializer" : "object initializer");
9492 continue;
9495 if (!is_collection_initialization) {
9496 if (element_names.Contains (element_initializer.Name)) {
9497 Report.Error (1912, element_initializer.Location,
9498 "An object initializer includes more than one member `{0}' initialization",
9499 element_initializer.Name);
9500 } else {
9501 element_names.Add (element_initializer.Name);
9506 Expression e = initializer.Resolve (ec);
9507 if (e == EmptyExpressionStatement.Instance)
9508 initializers.RemoveAt (i--);
9509 else
9510 initializers [i] = e;
9513 if (is_collection_initialization) {
9514 if (TypeManager.HasElementType (ec.CurrentInitializerVariable.Type)) {
9515 Report.Error (1925, loc, "Cannot initialize object of type `{0}' with a collection initializer",
9516 TypeManager.CSharpName (ec.CurrentInitializerVariable.Type));
9519 type = typeof (CollectionOrObjectInitializers);
9520 } else {
9521 type = typeof (ElementInitializer);
9524 eclass = ExprClass.Variable;
9525 return this;
9528 public override void Emit (EmitContext ec)
9530 EmitStatement (ec);
9533 public override void EmitStatement (EmitContext ec)
9535 foreach (ExpressionStatement e in initializers)
9536 e.EmitStatement (ec);
9539 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9541 foreach (Expression e in initializers)
9542 e.MutateHoistedGenericType (storey);
9547 // New expression with element/object initializers
9549 public class NewInitialize : New
9552 // This class serves as a proxy for variable initializer target instances.
9553 // A real variable is assigned later when we resolve left side of an
9554 // assignment
9556 sealed class InitializerTargetExpression : Expression, IMemoryLocation
9558 NewInitialize new_instance;
9560 public InitializerTargetExpression (NewInitialize newInstance)
9562 this.type = newInstance.type;
9563 this.loc = newInstance.loc;
9564 this.eclass = newInstance.eclass;
9565 this.new_instance = newInstance;
9568 public override Expression CreateExpressionTree (EmitContext ec)
9570 // Should not be reached
9571 throw new NotSupportedException ("ET");
9574 public override Expression DoResolve (EmitContext ec)
9576 return this;
9579 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
9581 return this;
9584 public override void Emit (EmitContext ec)
9586 new_instance.value_target.Emit (ec);
9589 #region IMemoryLocation Members
9591 public void AddressOf (EmitContext ec, AddressOp mode)
9593 ((IMemoryLocation)new_instance.value_target).AddressOf (ec, mode);
9596 #endregion
9599 CollectionOrObjectInitializers initializers;
9601 public NewInitialize (Expression requested_type, ArrayList arguments, CollectionOrObjectInitializers initializers, Location l)
9602 : base (requested_type, arguments, l)
9604 this.initializers = initializers;
9607 protected override void CloneTo (CloneContext clonectx, Expression t)
9609 base.CloneTo (clonectx, t);
9611 NewInitialize target = (NewInitialize) t;
9612 target.initializers = (CollectionOrObjectInitializers) initializers.Clone (clonectx);
9615 public override Expression CreateExpressionTree (EmitContext ec)
9617 ArrayList args = new ArrayList (2);
9618 args.Add (new Argument (base.CreateExpressionTree (ec)));
9619 if (!initializers.IsEmpty)
9620 args.Add (new Argument (initializers.CreateExpressionTree (ec)));
9622 return CreateExpressionFactoryCall (
9623 initializers.IsCollectionInitializer ? "ListInit" : "MemberInit",
9624 args);
9627 public override Expression DoResolve (EmitContext ec)
9629 if (eclass != ExprClass.Invalid)
9630 return this;
9632 Expression e = base.DoResolve (ec);
9633 if (type == null)
9634 return null;
9636 // Empty initializer can be optimized to simple new
9637 if (initializers.IsEmpty) {
9638 initializers.Resolve (ec);
9639 return ReducedExpression.Create (e, this).Resolve (ec);
9642 Expression previous = ec.CurrentInitializerVariable;
9643 ec.CurrentInitializerVariable = new InitializerTargetExpression (this);
9644 initializers.Resolve (ec);
9645 ec.CurrentInitializerVariable = previous;
9646 return e;
9649 public override void Emit (EmitContext ec)
9651 base.Emit (ec);
9654 // If target is non-hoisted variable, let's use it
9656 VariableReference variable = value_target as VariableReference;
9657 if (variable != null && variable.HoistedVariable == null) {
9658 if (variable.IsRef)
9659 StoreFromPtr (ec.ig, type);
9660 else
9661 variable.EmitAssign (ec, EmptyExpression.Null, false, false);
9662 } else {
9663 variable = null;
9664 if (value_target == null || value_target_set)
9665 value_target = new LocalTemporary (type);
9667 ((LocalTemporary) value_target).Store (ec);
9670 initializers.Emit (ec);
9672 if (variable == null) {
9673 value_target.Emit (ec);
9674 value_target = null;
9678 public override void EmitStatement (EmitContext ec)
9680 if (initializers.IsEmpty) {
9681 base.EmitStatement (ec);
9682 return;
9685 base.Emit (ec);
9687 if (value_target == null) {
9688 LocalTemporary variable = new LocalTemporary (type);
9689 variable.Store (ec);
9690 value_target = variable;
9693 initializers.EmitStatement (ec);
9696 public override bool HasInitializer {
9697 get {
9698 return !initializers.IsEmpty;
9702 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9704 base.MutateHoistedGenericType (storey);
9705 initializers.MutateHoistedGenericType (storey);
9709 public class AnonymousTypeDeclaration : Expression
9711 ArrayList parameters;
9712 readonly TypeContainer parent;
9713 static readonly ArrayList EmptyParameters = new ArrayList (0);
9715 public AnonymousTypeDeclaration (ArrayList parameters, TypeContainer parent, Location loc)
9717 this.parameters = parameters;
9718 this.parent = parent;
9719 this.loc = loc;
9722 protected override void CloneTo (CloneContext clonectx, Expression target)
9724 if (parameters == null)
9725 return;
9727 AnonymousTypeDeclaration t = (AnonymousTypeDeclaration) target;
9728 t.parameters = new ArrayList (parameters.Count);
9729 foreach (AnonymousTypeParameter atp in parameters)
9730 t.parameters.Add (atp.Clone (clonectx));
9733 AnonymousTypeClass CreateAnonymousType (ArrayList parameters)
9735 AnonymousTypeClass type = RootContext.ToplevelTypes.GetAnonymousType (parameters);
9736 if (type != null)
9737 return type;
9739 type = AnonymousTypeClass.Create (parent, parameters, loc);
9740 if (type == null)
9741 return null;
9743 type.DefineType ();
9744 type.Define ();
9745 type.EmitType ();
9746 if (Report.Errors == 0)
9747 type.CloseType ();
9749 RootContext.ToplevelTypes.AddAnonymousType (type);
9750 return type;
9753 public override Expression CreateExpressionTree (EmitContext ec)
9755 throw new NotSupportedException ("ET");
9758 public override Expression DoResolve (EmitContext ec)
9760 AnonymousTypeClass anonymous_type;
9762 if (!ec.IsAnonymousMethodAllowed) {
9763 Report.Error (836, loc, "Anonymous types cannot be used in this expression");
9764 return null;
9767 if (parameters == null) {
9768 anonymous_type = CreateAnonymousType (EmptyParameters);
9769 return new New (new TypeExpression (anonymous_type.TypeBuilder, loc),
9770 null, loc).Resolve (ec);
9773 bool error = false;
9774 ArrayList arguments = new ArrayList (parameters.Count);
9775 TypeExpression [] t_args = new TypeExpression [parameters.Count];
9776 for (int i = 0; i < parameters.Count; ++i) {
9777 Expression e = ((AnonymousTypeParameter) parameters [i]).Resolve (ec);
9778 if (e == null) {
9779 error = true;
9780 continue;
9783 arguments.Add (new Argument (e));
9784 t_args [i] = new TypeExpression (e.Type, e.Location);
9787 if (error)
9788 return null;
9790 anonymous_type = CreateAnonymousType (parameters);
9791 if (anonymous_type == null)
9792 return null;
9794 ConstructedType te = new ConstructedType (anonymous_type.TypeBuilder,
9795 new TypeArguments (loc, t_args), loc);
9797 return new New (te, arguments, loc).Resolve (ec);
9800 public override void Emit (EmitContext ec)
9802 throw new InternalErrorException ("Should not be reached");
9806 public class AnonymousTypeParameter : Expression
9808 public readonly string Name;
9809 Expression initializer;
9811 public AnonymousTypeParameter (Expression initializer, string name, Location loc)
9813 this.Name = name;
9814 this.loc = loc;
9815 this.initializer = initializer;
9818 public AnonymousTypeParameter (Parameter parameter)
9820 this.Name = parameter.Name;
9821 this.loc = parameter.Location;
9822 this.initializer = new SimpleName (Name, loc);
9825 protected override void CloneTo (CloneContext clonectx, Expression target)
9827 AnonymousTypeParameter t = (AnonymousTypeParameter) target;
9828 t.initializer = initializer.Clone (clonectx);
9831 public override Expression CreateExpressionTree (EmitContext ec)
9833 throw new NotSupportedException ("ET");
9836 public override bool Equals (object o)
9838 AnonymousTypeParameter other = o as AnonymousTypeParameter;
9839 return other != null && Name == other.Name;
9842 public override int GetHashCode ()
9844 return Name.GetHashCode ();
9847 public override Expression DoResolve (EmitContext ec)
9849 Expression e = initializer.Resolve (ec);
9850 if (e == null)
9851 return null;
9853 if (e.eclass == ExprClass.MethodGroup) {
9854 Error_InvalidInitializer (e.ExprClassName);
9855 return null;
9858 type = e.Type;
9859 if (type == TypeManager.void_type || type == TypeManager.null_type ||
9860 type == TypeManager.anonymous_method_type || type.IsPointer) {
9861 Error_InvalidInitializer (e.GetSignatureForError ());
9862 return null;
9865 return e;
9868 protected virtual void Error_InvalidInitializer (string initializer)
9870 Report.Error (828, loc, "An anonymous type property `{0}' cannot be initialized with `{1}'",
9871 Name, initializer);
9874 public override void Emit (EmitContext ec)
9876 throw new InternalErrorException ("Should not be reached");