Fix bug #566087.
[mcs.git] / mcs / expression.cs
blob642f49d26a785e675380ba4c950110c5c2b5aea4
1 //
2 // expression.cs: Expression representation for the IL tree.
3 //
4 // Author:
5 // Miguel de Icaza (miguel@ximian.com)
6 // Marek Safar (marek.safar@gmail.com)
7 //
8 // Copyright 2001, 2002, 2003 Ximian, Inc.
9 // Copyright 2003-2008 Novell, Inc.
11 #define USE_OLD
13 namespace Mono.CSharp {
14 using System;
15 using System.Collections.Generic;
16 using System.Reflection;
17 using System.Reflection.Emit;
18 using System.Text;
19 using System.Linq;
20 using SLE = System.Linq.Expressions;
23 // This is an user operator expression, automatically created during
24 // resolve phase
26 public class UserOperatorCall : Expression {
27 public delegate Expression ExpressionTreeExpression (ResolveContext ec, MethodGroupExpr mg);
29 protected readonly Arguments arguments;
30 protected readonly MethodGroupExpr mg;
31 readonly ExpressionTreeExpression expr_tree;
33 public UserOperatorCall (MethodGroupExpr mg, Arguments args, ExpressionTreeExpression expr_tree, Location loc)
35 this.mg = mg;
36 this.arguments = args;
37 this.expr_tree = expr_tree;
39 type = TypeManager.TypeToCoreType (((MethodInfo) mg).ReturnType);
40 eclass = ExprClass.Value;
41 this.loc = loc;
44 public override Expression CreateExpressionTree (ResolveContext ec)
46 if (expr_tree != null)
47 return expr_tree (ec, mg);
49 Arguments args = Arguments.CreateForExpressionTree (ec, arguments,
50 new NullLiteral (loc),
51 mg.CreateExpressionTree (ec));
53 return CreateExpressionFactoryCall (ec, "Call", args);
56 protected override void CloneTo (CloneContext context, Expression target)
58 // Nothing to clone
61 protected override Expression DoResolve (ResolveContext ec)
64 // We are born fully resolved
66 return this;
69 public override void Emit (EmitContext ec)
71 mg.EmitCall (ec, arguments);
74 public override SLE.Expression MakeExpression (BuilderContext ctx)
76 return SLE.Expression.Call ((MethodInfo) mg, Arguments.MakeExpression (arguments, ctx));
79 public MethodGroupExpr Method {
80 get { return mg; }
83 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
85 arguments.MutateHoistedGenericType (storey);
86 mg.MutateHoistedGenericType (storey);
90 public class ParenthesizedExpression : ShimExpression
92 public ParenthesizedExpression (Expression expr)
93 : base (expr)
95 loc = expr.Location;
98 protected override Expression DoResolve (ResolveContext ec)
100 return expr.Resolve (ec);
103 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
105 return expr.DoResolveLValue (ec, right_side);
110 // Unary implements unary expressions.
112 public class Unary : Expression
114 public enum Operator : byte {
115 UnaryPlus, UnaryNegation, LogicalNot, OnesComplement,
116 AddressOf, TOP
119 static Type [] [] predefined_operators;
121 public readonly Operator Oper;
122 public Expression Expr;
123 Expression enum_conversion;
125 public Unary (Operator op, Expression expr)
127 Oper = op;
128 Expr = expr;
129 loc = expr.Location;
132 // <summary>
133 // This routine will attempt to simplify the unary expression when the
134 // argument is a constant.
135 // </summary>
136 Constant TryReduceConstant (ResolveContext ec, Constant e)
138 if (e is EmptyConstantCast)
139 return TryReduceConstant (ec, ((EmptyConstantCast) e).child);
141 if (e is SideEffectConstant) {
142 Constant r = TryReduceConstant (ec, ((SideEffectConstant) e).value);
143 return r == null ? null : new SideEffectConstant (r, e, r.Location);
146 Type expr_type = e.Type;
148 switch (Oper){
149 case Operator.UnaryPlus:
150 // Unary numeric promotions
151 if (expr_type == TypeManager.byte_type)
152 return new IntConstant (((ByteConstant)e).Value, e.Location);
153 if (expr_type == TypeManager.sbyte_type)
154 return new IntConstant (((SByteConstant)e).Value, e.Location);
155 if (expr_type == TypeManager.short_type)
156 return new IntConstant (((ShortConstant)e).Value, e.Location);
157 if (expr_type == TypeManager.ushort_type)
158 return new IntConstant (((UShortConstant)e).Value, e.Location);
159 if (expr_type == TypeManager.char_type)
160 return new IntConstant (((CharConstant)e).Value, e.Location);
162 // Predefined operators
163 if (expr_type == TypeManager.int32_type || expr_type == TypeManager.uint32_type ||
164 expr_type == TypeManager.int64_type || expr_type == TypeManager.uint64_type ||
165 expr_type == TypeManager.float_type || expr_type == TypeManager.double_type ||
166 expr_type == TypeManager.decimal_type) {
167 return e;
170 return null;
172 case Operator.UnaryNegation:
173 // Unary numeric promotions
174 if (expr_type == TypeManager.byte_type)
175 return new IntConstant (-((ByteConstant)e).Value, e.Location);
176 if (expr_type == TypeManager.sbyte_type)
177 return new IntConstant (-((SByteConstant)e).Value, e.Location);
178 if (expr_type == TypeManager.short_type)
179 return new IntConstant (-((ShortConstant)e).Value, e.Location);
180 if (expr_type == TypeManager.ushort_type)
181 return new IntConstant (-((UShortConstant)e).Value, e.Location);
182 if (expr_type == TypeManager.char_type)
183 return new IntConstant (-((CharConstant)e).Value, e.Location);
185 // Predefined operators
186 if (expr_type == TypeManager.int32_type) {
187 int value = ((IntConstant)e).Value;
188 if (value == int.MinValue) {
189 if (ec.ConstantCheckState) {
190 ConstantFold.Error_CompileTimeOverflow (ec, loc);
191 return null;
193 return e;
195 return new IntConstant (-value, e.Location);
197 if (expr_type == TypeManager.int64_type) {
198 long value = ((LongConstant)e).Value;
199 if (value == long.MinValue) {
200 if (ec.ConstantCheckState) {
201 ConstantFold.Error_CompileTimeOverflow (ec, loc);
202 return null;
204 return e;
206 return new LongConstant (-value, e.Location);
209 if (expr_type == TypeManager.uint32_type) {
210 UIntLiteral uil = e as UIntLiteral;
211 if (uil != null) {
212 if (uil.Value == 2147483648)
213 return new IntLiteral (int.MinValue, e.Location);
214 return new LongLiteral (-uil.Value, e.Location);
216 return new LongConstant (-((UIntConstant)e).Value, e.Location);
219 if (expr_type == TypeManager.uint64_type) {
220 ULongLiteral ull = e as ULongLiteral;
221 if (ull != null && ull.Value == 9223372036854775808)
222 return new LongLiteral (long.MinValue, e.Location);
223 return null;
226 if (expr_type == TypeManager.float_type) {
227 FloatLiteral fl = e as FloatLiteral;
228 // For better error reporting
229 if (fl != null)
230 return new FloatLiteral (-fl.Value, e.Location);
232 return new FloatConstant (-((FloatConstant)e).Value, e.Location);
234 if (expr_type == TypeManager.double_type) {
235 DoubleLiteral dl = e as DoubleLiteral;
236 // For better error reporting
237 if (dl != null)
238 return new DoubleLiteral (-dl.Value, e.Location);
240 return new DoubleConstant (-((DoubleConstant)e).Value, e.Location);
242 if (expr_type == TypeManager.decimal_type)
243 return new DecimalConstant (-((DecimalConstant)e).Value, e.Location);
245 return null;
247 case Operator.LogicalNot:
248 if (expr_type != TypeManager.bool_type)
249 return null;
251 bool b = (bool)e.GetValue ();
252 return new BoolConstant (!b, e.Location);
254 case Operator.OnesComplement:
255 // Unary numeric promotions
256 if (expr_type == TypeManager.byte_type)
257 return new IntConstant (~((ByteConstant)e).Value, e.Location);
258 if (expr_type == TypeManager.sbyte_type)
259 return new IntConstant (~((SByteConstant)e).Value, e.Location);
260 if (expr_type == TypeManager.short_type)
261 return new IntConstant (~((ShortConstant)e).Value, e.Location);
262 if (expr_type == TypeManager.ushort_type)
263 return new IntConstant (~((UShortConstant)e).Value, e.Location);
264 if (expr_type == TypeManager.char_type)
265 return new IntConstant (~((CharConstant)e).Value, e.Location);
267 // Predefined operators
268 if (expr_type == TypeManager.int32_type)
269 return new IntConstant (~((IntConstant)e).Value, e.Location);
270 if (expr_type == TypeManager.uint32_type)
271 return new UIntConstant (~((UIntConstant)e).Value, e.Location);
272 if (expr_type == TypeManager.int64_type)
273 return new LongConstant (~((LongConstant)e).Value, e.Location);
274 if (expr_type == TypeManager.uint64_type){
275 return new ULongConstant (~((ULongConstant)e).Value, e.Location);
277 if (e is EnumConstant) {
278 e = TryReduceConstant (ec, ((EnumConstant)e).Child);
279 if (e != null)
280 e = new EnumConstant (e, expr_type);
281 return e;
283 return null;
285 throw new Exception ("Can not constant fold: " + Oper.ToString());
288 protected Expression ResolveOperator (ResolveContext ec, Expression expr)
290 eclass = ExprClass.Value;
292 if (predefined_operators == null)
293 CreatePredefinedOperatorsTable ();
295 Type expr_type = expr.Type;
296 Expression best_expr;
299 // Primitive types first
301 if (TypeManager.IsPrimitiveType (expr_type)) {
302 best_expr = ResolvePrimitivePredefinedType (expr);
303 if (best_expr == null)
304 return null;
306 type = best_expr.Type;
307 Expr = best_expr;
308 return this;
312 // E operator ~(E x);
314 if (Oper == Operator.OnesComplement && TypeManager.IsEnumType (expr_type))
315 return ResolveEnumOperator (ec, expr);
317 return ResolveUserType (ec, expr);
320 protected virtual Expression ResolveEnumOperator (ResolveContext ec, Expression expr)
322 Type underlying_type = TypeManager.GetEnumUnderlyingType (expr.Type);
323 Expression best_expr = ResolvePrimitivePredefinedType (EmptyCast.Create (expr, underlying_type));
324 if (best_expr == null)
325 return null;
327 Expr = best_expr;
328 enum_conversion = Convert.ExplicitNumericConversion (new EmptyExpression (best_expr.Type), underlying_type);
329 type = expr.Type;
330 return EmptyCast.Create (this, type);
333 public override Expression CreateExpressionTree (ResolveContext ec)
335 return CreateExpressionTree (ec, null);
338 Expression CreateExpressionTree (ResolveContext ec, MethodGroupExpr user_op)
340 string method_name;
341 switch (Oper) {
342 case Operator.AddressOf:
343 Error_PointerInsideExpressionTree (ec);
344 return null;
345 case Operator.UnaryNegation:
346 if (ec.HasSet (ResolveContext.Options.CheckedScope) && user_op == null && !IsFloat (type))
347 method_name = "NegateChecked";
348 else
349 method_name = "Negate";
350 break;
351 case Operator.OnesComplement:
352 case Operator.LogicalNot:
353 method_name = "Not";
354 break;
355 case Operator.UnaryPlus:
356 method_name = "UnaryPlus";
357 break;
358 default:
359 throw new InternalErrorException ("Unknown unary operator " + Oper.ToString ());
362 Arguments args = new Arguments (2);
363 args.Add (new Argument (Expr.CreateExpressionTree (ec)));
364 if (user_op != null)
365 args.Add (new Argument (user_op.CreateExpressionTree (ec)));
366 return CreateExpressionFactoryCall (ec, method_name, args);
369 static void CreatePredefinedOperatorsTable ()
371 predefined_operators = new Type [(int) Operator.TOP] [];
374 // 7.6.1 Unary plus operator
376 predefined_operators [(int) Operator.UnaryPlus] = new Type [] {
377 TypeManager.int32_type, TypeManager.uint32_type,
378 TypeManager.int64_type, TypeManager.uint64_type,
379 TypeManager.float_type, TypeManager.double_type,
380 TypeManager.decimal_type
384 // 7.6.2 Unary minus operator
386 predefined_operators [(int) Operator.UnaryNegation] = new Type [] {
387 TypeManager.int32_type,
388 TypeManager.int64_type,
389 TypeManager.float_type, TypeManager.double_type,
390 TypeManager.decimal_type
394 // 7.6.3 Logical negation operator
396 predefined_operators [(int) Operator.LogicalNot] = new Type [] {
397 TypeManager.bool_type
401 // 7.6.4 Bitwise complement operator
403 predefined_operators [(int) Operator.OnesComplement] = new Type [] {
404 TypeManager.int32_type, TypeManager.uint32_type,
405 TypeManager.int64_type, TypeManager.uint64_type
410 // Unary numeric promotions
412 static Expression DoNumericPromotion (Operator op, Expression expr)
414 Type expr_type = expr.Type;
415 if ((op == Operator.UnaryPlus || op == Operator.UnaryNegation || op == Operator.OnesComplement) &&
416 expr_type == TypeManager.byte_type || expr_type == TypeManager.sbyte_type ||
417 expr_type == TypeManager.short_type || expr_type == TypeManager.ushort_type ||
418 expr_type == TypeManager.char_type)
419 return Convert.ImplicitNumericConversion (expr, TypeManager.int32_type);
421 if (op == Operator.UnaryNegation && expr_type == TypeManager.uint32_type)
422 return Convert.ImplicitNumericConversion (expr, TypeManager.int64_type);
424 return expr;
427 protected override Expression DoResolve (ResolveContext ec)
429 if (Oper == Operator.AddressOf) {
430 return ResolveAddressOf (ec);
433 Expr = Expr.Resolve (ec);
434 if (Expr == null)
435 return null;
437 if (TypeManager.IsDynamicType (Expr.Type)) {
438 Arguments args = new Arguments (1);
439 args.Add (new Argument (Expr));
440 return new DynamicUnaryConversion (GetOperatorExpressionTypeName (), args, loc).Resolve (ec);
443 if (TypeManager.IsNullableType (Expr.Type))
444 return new Nullable.LiftedUnaryOperator (Oper, Expr).Resolve (ec);
447 // Attempt to use a constant folding operation.
449 Constant cexpr = Expr as Constant;
450 if (cexpr != null) {
451 cexpr = TryReduceConstant (ec, cexpr);
452 if (cexpr != null)
453 return cexpr.Resolve (ec);
456 Expression expr = ResolveOperator (ec, Expr);
457 if (expr == null)
458 Error_OperatorCannotBeApplied (ec, loc, OperName (Oper), Expr.Type);
461 // Reduce unary operator on predefined types
463 if (expr == this && Oper == Operator.UnaryPlus)
464 return Expr;
466 return expr;
469 public override Expression DoResolveLValue (ResolveContext ec, Expression right)
471 return null;
474 public override void Emit (EmitContext ec)
476 EmitOperator (ec, type);
479 protected void EmitOperator (EmitContext ec, Type type)
481 ILGenerator ig = ec.ig;
483 switch (Oper) {
484 case Operator.UnaryPlus:
485 Expr.Emit (ec);
486 break;
488 case Operator.UnaryNegation:
489 if (ec.HasSet (EmitContext.Options.CheckedScope) && !IsFloat (type)) {
490 ig.Emit (OpCodes.Ldc_I4_0);
491 if (type == TypeManager.int64_type)
492 ig.Emit (OpCodes.Conv_U8);
493 Expr.Emit (ec);
494 ig.Emit (OpCodes.Sub_Ovf);
495 } else {
496 Expr.Emit (ec);
497 ig.Emit (OpCodes.Neg);
500 break;
502 case Operator.LogicalNot:
503 Expr.Emit (ec);
504 ig.Emit (OpCodes.Ldc_I4_0);
505 ig.Emit (OpCodes.Ceq);
506 break;
508 case Operator.OnesComplement:
509 Expr.Emit (ec);
510 ig.Emit (OpCodes.Not);
511 break;
513 case Operator.AddressOf:
514 ((IMemoryLocation)Expr).AddressOf (ec, AddressOp.LoadStore);
515 break;
517 default:
518 throw new Exception ("This should not happen: Operator = "
519 + Oper.ToString ());
523 // Same trick as in Binary expression
525 if (enum_conversion != null)
526 enum_conversion.Emit (ec);
529 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
531 if (Oper == Operator.LogicalNot)
532 Expr.EmitBranchable (ec, target, !on_true);
533 else
534 base.EmitBranchable (ec, target, on_true);
537 public override void EmitSideEffect (EmitContext ec)
539 Expr.EmitSideEffect (ec);
542 public static void Error_OperatorCannotBeApplied (ResolveContext ec, Location loc, string oper, Type t)
544 ec.Report.Error (23, loc, "The `{0}' operator cannot be applied to operand of type `{1}'",
545 oper, TypeManager.CSharpName (t));
549 // Converts operator to System.Linq.Expressions.ExpressionType enum name
551 string GetOperatorExpressionTypeName ()
553 switch (Oper) {
554 case Operator.OnesComplement:
555 return "OnesComplement";
556 case Operator.LogicalNot:
557 return "Not";
558 case Operator.UnaryNegation:
559 return "Negate";
560 case Operator.UnaryPlus:
561 return "UnaryPlus";
562 default:
563 throw new NotImplementedException ("Unknown express type operator " + Oper.ToString ());
567 static bool IsFloat (Type t)
569 return t == TypeManager.float_type || t == TypeManager.double_type;
573 // Returns a stringified representation of the Operator
575 public static string OperName (Operator oper)
577 switch (oper) {
578 case Operator.UnaryPlus:
579 return "+";
580 case Operator.UnaryNegation:
581 return "-";
582 case Operator.LogicalNot:
583 return "!";
584 case Operator.OnesComplement:
585 return "~";
586 case Operator.AddressOf:
587 return "&";
590 throw new NotImplementedException (oper.ToString ());
593 public override SLE.Expression MakeExpression (BuilderContext ctx)
595 var expr = Expr.MakeExpression (ctx);
596 bool is_checked = ctx.HasSet (BuilderContext.Options.CheckedScope);
598 switch (Oper) {
599 case Operator.UnaryNegation:
600 return is_checked ? SLE.Expression.NegateChecked (expr) : SLE.Expression.Negate (expr);
601 case Operator.LogicalNot:
602 return SLE.Expression.Not (expr);
603 #if NET_4_0
604 case Operator.OnesComplement:
605 return SLE.Expression.OnesComplement (expr);
606 #endif
607 default:
608 throw new NotImplementedException (Oper.ToString ());
612 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
614 type = storey.MutateType (type);
615 Expr.MutateHoistedGenericType (storey);
618 Expression ResolveAddressOf (ResolveContext ec)
620 if (!ec.IsUnsafe)
621 UnsafeError (ec, loc);
623 Expr = Expr.DoResolveLValue (ec, EmptyExpression.UnaryAddress);
624 if (Expr == null || Expr.eclass != ExprClass.Variable) {
625 ec.Report.Error (211, loc, "Cannot take the address of the given expression");
626 return null;
629 if (!TypeManager.VerifyUnmanaged (ec.Compiler, Expr.Type, loc)) {
630 return null;
633 IVariableReference vr = Expr as IVariableReference;
634 bool is_fixed;
635 if (vr != null) {
636 VariableInfo vi = vr.VariableInfo;
637 if (vi != null) {
638 if (vi.LocalInfo != null)
639 vi.LocalInfo.Used = true;
642 // A variable is considered definitely assigned if you take its address.
644 vi.SetAssigned (ec);
647 is_fixed = vr.IsFixed;
648 vr.SetHasAddressTaken ();
650 if (vr.IsHoisted) {
651 AnonymousMethodExpression.Error_AddressOfCapturedVar (ec, vr, loc);
653 } else {
654 IFixedExpression fe = Expr as IFixedExpression;
655 is_fixed = fe != null && fe.IsFixed;
658 if (!is_fixed && !ec.HasSet (ResolveContext.Options.FixedInitializerScope)) {
659 ec.Report.Error (212, loc, "You can only take the address of unfixed expression inside of a fixed statement initializer");
662 type = TypeManager.GetPointerType (Expr.Type);
663 eclass = ExprClass.Value;
664 return this;
667 Expression ResolvePrimitivePredefinedType (Expression expr)
669 expr = DoNumericPromotion (Oper, expr);
670 Type expr_type = expr.Type;
671 Type[] predefined = predefined_operators [(int) Oper];
672 foreach (Type t in predefined) {
673 if (t == expr_type)
674 return expr;
676 return null;
680 // Perform user-operator overload resolution
682 protected virtual Expression ResolveUserOperator (ResolveContext ec, Expression expr)
684 CSharp.Operator.OpType op_type;
685 switch (Oper) {
686 case Operator.LogicalNot:
687 op_type = CSharp.Operator.OpType.LogicalNot; break;
688 case Operator.OnesComplement:
689 op_type = CSharp.Operator.OpType.OnesComplement; break;
690 case Operator.UnaryNegation:
691 op_type = CSharp.Operator.OpType.UnaryNegation; break;
692 case Operator.UnaryPlus:
693 op_type = CSharp.Operator.OpType.UnaryPlus; break;
694 default:
695 throw new InternalErrorException (Oper.ToString ());
698 string op_name = CSharp.Operator.GetMetadataName (op_type);
699 MethodGroupExpr user_op = MemberLookup (ec.Compiler, ec.CurrentType, expr.Type, op_name, MemberTypes.Method, AllBindingFlags, expr.Location) as MethodGroupExpr;
700 if (user_op == null)
701 return null;
703 Arguments args = new Arguments (1);
704 args.Add (new Argument (expr));
705 user_op = user_op.OverloadResolve (ec, ref args, false, expr.Location);
707 if (user_op == null)
708 return null;
710 Expr = args [0].Expr;
711 return new UserOperatorCall (user_op, args, CreateExpressionTree, expr.Location);
715 // Unary user type overload resolution
717 Expression ResolveUserType (ResolveContext ec, Expression expr)
719 Expression best_expr = ResolveUserOperator (ec, expr);
720 if (best_expr != null)
721 return best_expr;
723 Type[] predefined = predefined_operators [(int) Oper];
724 foreach (Type t in predefined) {
725 Expression oper_expr = Convert.UserDefinedConversion (ec, expr, t, expr.Location, false, false);
726 if (oper_expr == null)
727 continue;
730 // decimal type is predefined but has user-operators
732 if (oper_expr.Type == TypeManager.decimal_type)
733 oper_expr = ResolveUserType (ec, oper_expr);
734 else
735 oper_expr = ResolvePrimitivePredefinedType (oper_expr);
737 if (oper_expr == null)
738 continue;
740 if (best_expr == null) {
741 best_expr = oper_expr;
742 continue;
745 int result = MethodGroupExpr.BetterTypeConversion (ec, best_expr.Type, t);
746 if (result == 0) {
747 ec.Report.Error (35, loc, "Operator `{0}' is ambiguous on an operand of type `{1}'",
748 OperName (Oper), TypeManager.CSharpName (expr.Type));
749 break;
752 if (result == 2)
753 best_expr = oper_expr;
756 if (best_expr == null)
757 return null;
760 // HACK: Decimal user-operator is included in standard operators
762 if (best_expr.Type == TypeManager.decimal_type)
763 return best_expr;
765 Expr = best_expr;
766 type = best_expr.Type;
767 return this;
770 protected override void CloneTo (CloneContext clonectx, Expression t)
772 Unary target = (Unary) t;
774 target.Expr = Expr.Clone (clonectx);
779 // Unary operators are turned into Indirection expressions
780 // after semantic analysis (this is so we can take the address
781 // of an indirection).
783 public class Indirection : Expression, IMemoryLocation, IAssignMethod, IFixedExpression {
784 Expression expr;
785 LocalTemporary temporary;
786 bool prepared;
788 public Indirection (Expression expr, Location l)
790 this.expr = expr;
791 loc = l;
794 public override Expression CreateExpressionTree (ResolveContext ec)
796 Error_PointerInsideExpressionTree (ec);
797 return null;
800 protected override void CloneTo (CloneContext clonectx, Expression t)
802 Indirection target = (Indirection) t;
803 target.expr = expr.Clone (clonectx);
806 public override void Emit (EmitContext ec)
808 if (!prepared)
809 expr.Emit (ec);
811 LoadFromPtr (ec.ig, Type);
814 public void Emit (EmitContext ec, bool leave_copy)
816 Emit (ec);
817 if (leave_copy) {
818 ec.ig.Emit (OpCodes.Dup);
819 temporary = new LocalTemporary (expr.Type);
820 temporary.Store (ec);
824 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
826 prepared = prepare_for_load;
828 expr.Emit (ec);
830 if (prepare_for_load)
831 ec.ig.Emit (OpCodes.Dup);
833 source.Emit (ec);
834 if (leave_copy) {
835 ec.ig.Emit (OpCodes.Dup);
836 temporary = new LocalTemporary (expr.Type);
837 temporary.Store (ec);
840 StoreFromPtr (ec.ig, type);
842 if (temporary != null) {
843 temporary.Emit (ec);
844 temporary.Release (ec);
848 public void AddressOf (EmitContext ec, AddressOp Mode)
850 expr.Emit (ec);
853 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
855 return DoResolve (ec);
858 protected override Expression DoResolve (ResolveContext ec)
860 expr = expr.Resolve (ec);
861 if (expr == null)
862 return null;
864 if (!ec.IsUnsafe)
865 UnsafeError (ec, loc);
867 if (!expr.Type.IsPointer) {
868 ec.Report.Error (193, loc, "The * or -> operator must be applied to a pointer");
869 return null;
872 if (expr.Type == TypeManager.void_ptr_type) {
873 ec.Report.Error (242, loc, "The operation in question is undefined on void pointers");
874 return null;
877 type = TypeManager.GetElementType (expr.Type);
878 eclass = ExprClass.Variable;
879 return this;
882 public bool IsFixed {
883 get { return true; }
886 public override string ToString ()
888 return "*(" + expr + ")";
892 /// <summary>
893 /// Unary Mutator expressions (pre and post ++ and --)
894 /// </summary>
896 /// <remarks>
897 /// UnaryMutator implements ++ and -- expressions. It derives from
898 /// ExpressionStatement becuase the pre/post increment/decrement
899 /// operators can be used in a statement context.
901 /// FIXME: Idea, we could split this up in two classes, one simpler
902 /// for the common case, and one with the extra fields for more complex
903 /// classes (indexers require temporary access; overloaded require method)
905 /// </remarks>
906 public class UnaryMutator : ExpressionStatement
908 class DynamicPostMutator : Expression, IAssignMethod
910 LocalTemporary temp;
911 Expression expr;
913 public DynamicPostMutator (Expression expr)
915 this.expr = expr;
916 this.type = expr.Type;
917 this.loc = expr.Location;
920 public override Expression CreateExpressionTree (ResolveContext ec)
922 throw new NotImplementedException ("ET");
925 protected override Expression DoResolve (ResolveContext rc)
927 eclass = expr.eclass;
928 return this;
931 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
933 expr.DoResolveLValue (ec, right_side);
934 return DoResolve (ec);
937 public override void Emit (EmitContext ec)
939 temp.Emit (ec);
942 public void Emit (EmitContext ec, bool leave_copy)
944 throw new NotImplementedException ();
948 // Emits target assignment using unmodified source value
950 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
953 // Allocate temporary variable to keep original value before it's modified
955 temp = new LocalTemporary (type);
956 expr.Emit (ec);
957 temp.Store (ec);
959 ((IAssignMethod) expr).EmitAssign (ec, source, false, prepare_for_load);
961 if (leave_copy)
962 Emit (ec);
964 temp.Release (ec);
965 temp = null;
969 [Flags]
970 public enum Mode : byte {
971 IsIncrement = 0,
972 IsDecrement = 1,
973 IsPre = 0,
974 IsPost = 2,
976 PreIncrement = 0,
977 PreDecrement = IsDecrement,
978 PostIncrement = IsPost,
979 PostDecrement = IsPost | IsDecrement
982 Mode mode;
983 bool is_expr, recurse;
985 Expression expr;
987 // Holds the real operation
988 Expression operation;
990 public UnaryMutator (Mode m, Expression e)
992 mode = m;
993 loc = e.Location;
994 expr = e;
997 public override Expression CreateExpressionTree (ResolveContext ec)
999 return new SimpleAssign (this, this).CreateExpressionTree (ec);
1002 protected override Expression DoResolve (ResolveContext ec)
1004 expr = expr.Resolve (ec);
1006 if (expr == null)
1007 return null;
1009 if (TypeManager.IsDynamicType (expr.Type)) {
1011 // Handle postfix unary operators using local
1012 // temporary variable
1014 if ((mode & Mode.IsPost) != 0)
1015 expr = new DynamicPostMutator (expr);
1017 Arguments args = new Arguments (1);
1018 args.Add (new Argument (expr));
1019 return new SimpleAssign (expr, new DynamicUnaryConversion (GetOperatorExpressionTypeName (), args, loc)).Resolve (ec);
1022 if (TypeManager.IsNullableType (expr.Type))
1023 return new Nullable.LiftedUnaryMutator (mode, expr, loc).Resolve (ec);
1025 eclass = ExprClass.Value;
1026 type = expr.Type;
1027 return ResolveOperator (ec);
1030 void EmitCode (EmitContext ec, bool is_expr)
1032 recurse = true;
1033 this.is_expr = is_expr;
1034 ((IAssignMethod) expr).EmitAssign (ec, this, is_expr && (mode == Mode.PreIncrement || mode == Mode.PreDecrement), true);
1037 public override void Emit (EmitContext ec)
1040 // We use recurse to allow ourselfs to be the source
1041 // of an assignment. This little hack prevents us from
1042 // having to allocate another expression
1044 if (recurse) {
1045 ((IAssignMethod) expr).Emit (ec, is_expr && (mode == Mode.PostIncrement || mode == Mode.PostDecrement));
1047 operation.Emit (ec);
1049 recurse = false;
1050 return;
1053 EmitCode (ec, true);
1056 public override void EmitStatement (EmitContext ec)
1058 EmitCode (ec, false);
1062 // Converts operator to System.Linq.Expressions.ExpressionType enum name
1064 string GetOperatorExpressionTypeName ()
1066 return IsDecrement ? "Decrement" : "Increment";
1069 bool IsDecrement {
1070 get { return (mode & Mode.IsDecrement) != 0; }
1074 // Returns whether an object of type `t' can be incremented
1075 // or decremented with add/sub (ie, basically whether we can
1076 // use pre-post incr-decr operations on it, but it is not a
1077 // System.Decimal, which we require operator overloading to catch)
1079 static bool IsPredefinedOperator (Type t)
1081 return (TypeManager.IsPrimitiveType (t) && t != TypeManager.bool_type) ||
1082 TypeManager.IsEnumType (t) ||
1083 t.IsPointer && t != TypeManager.void_ptr_type;
1086 #if NET_4_0
1087 public override SLE.Expression MakeExpression (BuilderContext ctx)
1089 var target = ((RuntimeValueExpression) expr).MetaObject.Expression;
1090 var source = SLE.Expression.Convert (operation.MakeExpression (ctx), target.Type);
1091 return SLE.Expression.Assign (target, source);
1093 #endif
1095 protected override void CloneTo (CloneContext clonectx, Expression t)
1097 UnaryMutator target = (UnaryMutator) t;
1099 target.expr = expr.Clone (clonectx);
1102 Expression ResolveOperator (ResolveContext ec)
1104 if (expr is RuntimeValueExpression) {
1105 operation = expr;
1106 } else {
1107 // Use itself at the top of the stack
1108 operation = new EmptyExpression (type);
1112 // The operand of the prefix/postfix increment decrement operators
1113 // should be an expression that is classified as a variable,
1114 // a property access or an indexer access
1116 if (expr.eclass == ExprClass.Variable || expr.eclass == ExprClass.IndexerAccess || expr.eclass == ExprClass.PropertyAccess) {
1117 expr = expr.ResolveLValue (ec, expr);
1118 } else {
1119 ec.Report.Error (1059, loc, "The operand of an increment or decrement operator must be a variable, property or indexer");
1123 // 1. Check predefined types
1125 if (IsPredefinedOperator (type)) {
1126 // TODO: Move to IntConstant once I get rid of int32_type
1127 var one = new IntConstant (1, loc);
1129 // TODO: Cache this based on type when using EmptyExpression in
1130 // context cache
1131 Binary.Operator op = IsDecrement ? Binary.Operator.Subtraction : Binary.Operator.Addition;
1132 operation = new Binary (op, operation, one);
1133 operation = operation.Resolve (ec);
1134 if (operation != null && operation.Type != type)
1135 operation = Convert.ExplicitNumericConversion (operation, type);
1137 return this;
1141 // Step 2: Perform Operator Overload location
1143 MethodGroupExpr mg;
1144 string op_name;
1146 if (IsDecrement)
1147 op_name = Operator.GetMetadataName (Operator.OpType.Decrement);
1148 else
1149 op_name = Operator.GetMetadataName (Operator.OpType.Increment);
1151 mg = MemberLookup (ec.Compiler, ec.CurrentType, type, op_name, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
1153 if (mg != null) {
1154 Arguments args = new Arguments (1);
1155 args.Add (new Argument (expr));
1156 mg = mg.OverloadResolve (ec, ref args, false, loc);
1157 if (mg == null)
1158 return null;
1160 args[0].Expr = operation;
1161 operation = new UserOperatorCall (mg, args, null, loc);
1162 operation = Convert.ImplicitConversionRequired (ec, operation, type, loc);
1163 return this;
1166 string name = IsDecrement ?
1167 Operator.GetName (Operator.OpType.Decrement) :
1168 Operator.GetName (Operator.OpType.Increment);
1170 Unary.Error_OperatorCannotBeApplied (ec, loc, name, type);
1171 return null;
1175 /// <summary>
1176 /// Base class for the `Is' and `As' classes.
1177 /// </summary>
1179 /// <remarks>
1180 /// FIXME: Split this in two, and we get to save the `Operator' Oper
1181 /// size.
1182 /// </remarks>
1183 public abstract class Probe : Expression {
1184 public Expression ProbeType;
1185 protected Expression expr;
1186 protected TypeExpr probe_type_expr;
1188 public Probe (Expression expr, Expression probe_type, Location l)
1190 ProbeType = probe_type;
1191 loc = l;
1192 this.expr = expr;
1195 public Expression Expr {
1196 get {
1197 return expr;
1201 protected override Expression DoResolve (ResolveContext ec)
1203 probe_type_expr = ProbeType.ResolveAsTypeTerminal (ec, false);
1204 if (probe_type_expr == null)
1205 return null;
1207 expr = expr.Resolve (ec);
1208 if (expr == null)
1209 return null;
1211 if ((probe_type_expr.Type.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
1212 ec.Report.Error (-244, loc, "The `{0}' operator cannot be applied to an operand of a static type",
1213 OperatorName);
1216 if (expr.Type.IsPointer || probe_type_expr.Type.IsPointer) {
1217 ec.Report.Error (244, loc, "The `{0}' operator cannot be applied to an operand of pointer type",
1218 OperatorName);
1219 return null;
1222 if (expr.Type == InternalType.AnonymousMethod) {
1223 ec.Report.Error (837, loc, "The `{0}' operator cannot be applied to a lambda expression or anonymous method",
1224 OperatorName);
1225 return null;
1228 return this;
1231 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1233 expr.MutateHoistedGenericType (storey);
1234 probe_type_expr.MutateHoistedGenericType (storey);
1237 protected abstract string OperatorName { get; }
1239 protected override void CloneTo (CloneContext clonectx, Expression t)
1241 Probe target = (Probe) t;
1243 target.expr = expr.Clone (clonectx);
1244 target.ProbeType = ProbeType.Clone (clonectx);
1249 /// <summary>
1250 /// Implementation of the `is' operator.
1251 /// </summary>
1252 public class Is : Probe {
1253 Nullable.Unwrap expr_unwrap;
1255 public Is (Expression expr, Expression probe_type, Location l)
1256 : base (expr, probe_type, l)
1260 public override Expression CreateExpressionTree (ResolveContext ec)
1262 Arguments args = Arguments.CreateForExpressionTree (ec, null,
1263 expr.CreateExpressionTree (ec),
1264 new TypeOf (probe_type_expr, loc));
1266 return CreateExpressionFactoryCall (ec, "TypeIs", args);
1269 public override void Emit (EmitContext ec)
1271 ILGenerator ig = ec.ig;
1272 if (expr_unwrap != null) {
1273 expr_unwrap.EmitCheck (ec);
1274 return;
1277 expr.Emit (ec);
1278 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1279 ig.Emit (OpCodes.Ldnull);
1280 ig.Emit (OpCodes.Cgt_Un);
1283 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
1285 ILGenerator ig = ec.ig;
1286 if (expr_unwrap != null) {
1287 expr_unwrap.EmitCheck (ec);
1288 } else {
1289 expr.Emit (ec);
1290 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1292 ig.Emit (on_true ? OpCodes.Brtrue : OpCodes.Brfalse, target);
1295 Expression CreateConstantResult (ResolveContext ec, bool result)
1297 if (result)
1298 ec.Report.Warning (183, 1, loc, "The given expression is always of the provided (`{0}') type",
1299 TypeManager.CSharpName (probe_type_expr.Type));
1300 else
1301 ec.Report.Warning (184, 1, loc, "The given expression is never of the provided (`{0}') type",
1302 TypeManager.CSharpName (probe_type_expr.Type));
1304 return ReducedExpression.Create (new BoolConstant (result, loc).Resolve (ec), this);
1307 protected override Expression DoResolve (ResolveContext ec)
1309 if (base.DoResolve (ec) == null)
1310 return null;
1312 Type d = expr.Type;
1313 bool d_is_nullable = false;
1316 // If E is a method group or the null literal, or if the type of E is a reference
1317 // type or a nullable type and the value of E is null, the result is false
1319 if (expr.IsNull || expr.eclass == ExprClass.MethodGroup)
1320 return CreateConstantResult (ec, false);
1322 if (TypeManager.IsNullableType (d) && !TypeManager.ContainsGenericParameters (d)) {
1323 d = TypeManager.TypeToCoreType (TypeManager.GetTypeArguments (d) [0]);
1324 d_is_nullable = true;
1327 type = TypeManager.bool_type;
1328 eclass = ExprClass.Value;
1329 Type t = probe_type_expr.Type;
1330 bool t_is_nullable = false;
1331 if (TypeManager.IsNullableType (t) && !TypeManager.ContainsGenericParameters (t)) {
1332 t = TypeManager.TypeToCoreType (TypeManager.GetTypeArguments (t) [0]);
1333 t_is_nullable = true;
1336 if (TypeManager.IsStruct (t)) {
1337 if (d == t) {
1339 // D and T are the same value types but D can be null
1341 if (d_is_nullable && !t_is_nullable) {
1342 expr_unwrap = Nullable.Unwrap.Create (expr, false);
1343 return this;
1347 // The result is true if D and T are the same value types
1349 return CreateConstantResult (ec, true);
1352 if (TypeManager.IsGenericParameter (d))
1353 return ResolveGenericParameter (ec, t, d);
1356 // An unboxing conversion exists
1358 if (Convert.ExplicitReferenceConversionExists (d, t))
1359 return this;
1360 } else {
1361 if (TypeManager.IsGenericParameter (t))
1362 return ResolveGenericParameter (ec, d, t);
1364 if (TypeManager.IsStruct (d)) {
1365 bool temp;
1366 if (Convert.ImplicitBoxingConversionExists (expr, t, out temp))
1367 return CreateConstantResult (ec, true);
1368 } else {
1369 if (TypeManager.IsGenericParameter (d))
1370 return ResolveGenericParameter (ec, t, d);
1372 if (TypeManager.ContainsGenericParameters (d))
1373 return this;
1375 if (Convert.ImplicitReferenceConversionExists (expr, t) ||
1376 Convert.ExplicitReferenceConversionExists (d, t)) {
1377 return this;
1382 return CreateConstantResult (ec, false);
1385 Expression ResolveGenericParameter (ResolveContext ec, Type d, Type t)
1387 GenericConstraints constraints = TypeManager.GetTypeParameterConstraints (t);
1388 if (constraints != null) {
1389 if (constraints.IsReferenceType && TypeManager.IsStruct (d))
1390 return CreateConstantResult (ec, false);
1393 if (TypeManager.IsGenericParameter (expr.Type)) {
1394 if (constraints != null && constraints.IsValueType && expr.Type == t)
1395 return CreateConstantResult (ec, true);
1397 expr = new BoxedCast (expr, d);
1400 return this;
1403 protected override string OperatorName {
1404 get { return "is"; }
1408 /// <summary>
1409 /// Implementation of the `as' operator.
1410 /// </summary>
1411 public class As : Probe {
1412 bool do_isinst;
1413 Expression resolved_type;
1415 public As (Expression expr, Expression probe_type, Location l)
1416 : base (expr, probe_type, l)
1420 public override Expression CreateExpressionTree (ResolveContext ec)
1422 Arguments args = Arguments.CreateForExpressionTree (ec, null,
1423 expr.CreateExpressionTree (ec),
1424 new TypeOf (probe_type_expr, loc));
1426 return CreateExpressionFactoryCall (ec, "TypeAs", args);
1429 public override void Emit (EmitContext ec)
1431 ILGenerator ig = ec.ig;
1433 expr.Emit (ec);
1435 if (do_isinst)
1436 ig.Emit (OpCodes.Isinst, type);
1438 if (TypeManager.IsGenericParameter (type) || TypeManager.IsNullableType (type))
1439 ig.Emit (OpCodes.Unbox_Any, type);
1442 protected override Expression DoResolve (ResolveContext ec)
1444 if (resolved_type == null) {
1445 resolved_type = base.DoResolve (ec);
1447 if (resolved_type == null)
1448 return null;
1451 type = probe_type_expr.Type;
1452 eclass = ExprClass.Value;
1453 Type etype = expr.Type;
1455 if (!TypeManager.IsReferenceType (type) && !TypeManager.IsNullableType (type)) {
1456 if (TypeManager.IsGenericParameter (type)) {
1457 ec.Report.Error (413, loc,
1458 "The `as' operator cannot be used with a non-reference type parameter `{0}'. Consider adding `class' or a reference type constraint",
1459 probe_type_expr.GetSignatureForError ());
1460 } else {
1461 ec.Report.Error (77, loc,
1462 "The `as' operator cannot be used with a non-nullable value type `{0}'",
1463 TypeManager.CSharpName (type));
1465 return null;
1468 if (expr.IsNull && TypeManager.IsNullableType (type)) {
1469 return Nullable.LiftedNull.CreateFromExpression (ec, this);
1472 Expression e = Convert.ImplicitConversion (ec, expr, type, loc);
1473 if (e != null){
1474 expr = e;
1475 do_isinst = false;
1476 return this;
1479 if (Convert.ExplicitReferenceConversionExists (etype, type)){
1480 if (TypeManager.IsGenericParameter (etype))
1481 expr = new BoxedCast (expr, etype);
1483 do_isinst = true;
1484 return this;
1487 if (TypeManager.ContainsGenericParameters (etype) ||
1488 TypeManager.ContainsGenericParameters (type)) {
1489 expr = new BoxedCast (expr, etype);
1490 do_isinst = true;
1491 return this;
1494 ec.Report.Error (39, loc, "Cannot convert type `{0}' to `{1}' via a built-in conversion",
1495 TypeManager.CSharpName (etype), TypeManager.CSharpName (type));
1497 return null;
1500 protected override string OperatorName {
1501 get { return "as"; }
1504 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1506 type = storey.MutateType (type);
1507 base.MutateHoistedGenericType (storey);
1510 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
1512 return expr.GetAttributableValue (ec, value_type, out value);
1516 /// <summary>
1517 /// This represents a typecast in the source language.
1519 /// FIXME: Cast expressions have an unusual set of parsing
1520 /// rules, we need to figure those out.
1521 /// </summary>
1522 public class Cast : ShimExpression {
1523 Expression target_type;
1525 public Cast (Expression cast_type, Expression expr)
1526 : this (cast_type, expr, cast_type.Location)
1530 public Cast (Expression cast_type, Expression expr, Location loc)
1531 : base (expr)
1533 this.target_type = cast_type;
1534 this.loc = loc;
1537 public Expression TargetType {
1538 get { return target_type; }
1541 protected override Expression DoResolve (ResolveContext ec)
1543 expr = expr.Resolve (ec);
1544 if (expr == null)
1545 return null;
1547 TypeExpr target = target_type.ResolveAsTypeTerminal (ec, false);
1548 if (target == null)
1549 return null;
1551 type = target.Type;
1553 if (type.IsAbstract && type.IsSealed) {
1554 ec.Report.Error (716, loc, "Cannot convert to static type `{0}'", TypeManager.CSharpName (type));
1555 return null;
1558 eclass = ExprClass.Value;
1560 Constant c = expr as Constant;
1561 if (c != null) {
1562 c = c.TryReduce (ec, type, loc);
1563 if (c != null)
1564 return c;
1567 if (type.IsPointer && !ec.IsUnsafe) {
1568 UnsafeError (ec, loc);
1569 } else if (TypeManager.IsDynamicType (expr.Type)) {
1570 Arguments arg = new Arguments (1);
1571 arg.Add (new Argument (expr));
1572 return new DynamicConversion (type, CSharpBinderFlags.ConvertExplicit, arg, loc).Resolve (ec);
1575 expr = Convert.ExplicitConversion (ec, expr, type, loc);
1576 return expr;
1579 protected override void CloneTo (CloneContext clonectx, Expression t)
1581 Cast target = (Cast) t;
1583 target.target_type = target_type.Clone (clonectx);
1584 target.expr = expr.Clone (clonectx);
1588 public class ImplicitCast : ShimExpression
1590 bool arrayAccess;
1592 public ImplicitCast (Expression expr, Type target, bool arrayAccess)
1593 : base (expr)
1595 this.loc = expr.Location;
1596 this.type = target;
1597 this.arrayAccess = arrayAccess;
1600 protected override Expression DoResolve (ResolveContext ec)
1602 expr = expr.Resolve (ec);
1603 if (expr == null)
1604 return null;
1606 if (arrayAccess)
1607 expr = ConvertExpressionToArrayIndex (ec, expr);
1608 else
1609 expr = Convert.ImplicitConversionRequired (ec, expr, type, loc);
1611 return expr;
1616 // C# 2.0 Default value expression
1618 public class DefaultValueExpression : Expression
1620 Expression expr;
1622 public DefaultValueExpression (Expression expr, Location loc)
1624 this.expr = expr;
1625 this.loc = loc;
1628 public override Expression CreateExpressionTree (ResolveContext ec)
1630 Arguments args = new Arguments (2);
1631 args.Add (new Argument (this));
1632 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
1633 return CreateExpressionFactoryCall (ec, "Constant", args);
1636 protected override Expression DoResolve (ResolveContext ec)
1638 TypeExpr texpr = expr.ResolveAsTypeTerminal (ec, false);
1639 if (texpr == null)
1640 return null;
1642 type = texpr.Type;
1644 if ((type.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
1645 ec.Report.Error (-244, loc, "The `default value' operator cannot be applied to an operand of a static type");
1648 if (type.IsPointer)
1649 return new NullLiteral (Location).ConvertImplicitly (ec, type);
1651 if (TypeManager.IsReferenceType (type))
1652 return new NullConstant (type, loc);
1654 Constant c = New.Constantify (type);
1655 if (c != null)
1656 return c.Resolve (ec);
1658 eclass = ExprClass.Variable;
1659 return this;
1662 public override void Emit (EmitContext ec)
1664 LocalTemporary temp_storage = new LocalTemporary(type);
1666 temp_storage.AddressOf(ec, AddressOp.LoadStore);
1667 ec.ig.Emit(OpCodes.Initobj, type);
1668 temp_storage.Emit(ec);
1671 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1673 type = storey.MutateType (type);
1676 protected override void CloneTo (CloneContext clonectx, Expression t)
1678 DefaultValueExpression target = (DefaultValueExpression) t;
1680 target.expr = expr.Clone (clonectx);
1684 /// <summary>
1685 /// Binary operators
1686 /// </summary>
1687 public class Binary : Expression, IDynamicBinder
1690 protected class PredefinedOperator {
1691 protected readonly Type left;
1692 protected readonly Type right;
1693 public readonly Operator OperatorsMask;
1694 public Type ReturnType;
1696 public PredefinedOperator (Type ltype, Type rtype, Operator op_mask)
1697 : this (ltype, rtype, op_mask, ltype)
1701 public PredefinedOperator (Type type, Operator op_mask, Type return_type)
1702 : this (type, type, op_mask, return_type)
1706 public PredefinedOperator (Type type, Operator op_mask)
1707 : this (type, type, op_mask, type)
1711 public PredefinedOperator (Type ltype, Type rtype, Operator op_mask, Type return_type)
1713 if ((op_mask & Operator.ValuesOnlyMask) != 0)
1714 throw new InternalErrorException ("Only masked values can be used");
1716 this.left = ltype;
1717 this.right = rtype;
1718 this.OperatorsMask = op_mask;
1719 this.ReturnType = return_type;
1722 public virtual Expression ConvertResult (ResolveContext ec, Binary b)
1724 b.type = ReturnType;
1726 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1727 b.right = Convert.ImplicitConversion (ec, b.right, right, b.right.Location);
1730 // A user operators does not support multiple user conversions, but decimal type
1731 // is considered to be predefined type therefore we apply predefined operators rules
1732 // and then look for decimal user-operator implementation
1734 if (left == TypeManager.decimal_type)
1735 return b.ResolveUserOperator (ec, b.left.Type, b.right.Type);
1737 var c = b.right as IntegralConstant;
1738 if (c != null) {
1739 if (c.IsDefaultValue && (b.oper == Operator.Addition || b.oper == Operator.BitwiseOr || b.oper == Operator.Subtraction))
1740 return ReducedExpression.Create (b.left, b);
1741 return b;
1744 c = b.left as IntegralConstant;
1745 if (c != null) {
1746 if (c.IsDefaultValue && (b.oper == Operator.Addition || b.oper == Operator.BitwiseOr))
1747 return ReducedExpression.Create (b.right, b);
1748 return b;
1751 return b;
1754 public bool IsPrimitiveApplicable (Type ltype, Type rtype)
1757 // We are dealing with primitive types only
1759 return left == ltype && ltype == rtype;
1762 public virtual bool IsApplicable (ResolveContext ec, Expression lexpr, Expression rexpr)
1764 if (TypeManager.IsEqual (left, lexpr.Type) &&
1765 TypeManager.IsEqual (right, rexpr.Type))
1766 return true;
1768 return Convert.ImplicitConversionExists (ec, lexpr, left) &&
1769 Convert.ImplicitConversionExists (ec, rexpr, right);
1772 public PredefinedOperator ResolveBetterOperator (ResolveContext ec, PredefinedOperator best_operator)
1774 int result = 0;
1775 if (left != null && best_operator.left != null) {
1776 result = MethodGroupExpr.BetterTypeConversion (ec, best_operator.left, left);
1780 // When second arguments are same as the first one, the result is same
1782 if (right != null && (left != right || best_operator.left != best_operator.right)) {
1783 result |= MethodGroupExpr.BetterTypeConversion (ec, best_operator.right, right);
1786 if (result == 0 || result > 2)
1787 return null;
1789 return result == 1 ? best_operator : this;
1793 class PredefinedStringOperator : PredefinedOperator {
1794 public PredefinedStringOperator (Type type, Operator op_mask)
1795 : base (type, op_mask, type)
1797 ReturnType = TypeManager.string_type;
1800 public PredefinedStringOperator (Type ltype, Type rtype, Operator op_mask)
1801 : base (ltype, rtype, op_mask)
1803 ReturnType = TypeManager.string_type;
1806 public override Expression ConvertResult (ResolveContext ec, Binary b)
1809 // Use original expression for nullable arguments
1811 Nullable.Unwrap unwrap = b.left as Nullable.Unwrap;
1812 if (unwrap != null)
1813 b.left = unwrap.Original;
1815 unwrap = b.right as Nullable.Unwrap;
1816 if (unwrap != null)
1817 b.right = unwrap.Original;
1819 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1820 b.right = Convert.ImplicitConversion (ec, b.right, right, b.right.Location);
1823 // Start a new concat expression using converted expression
1825 return StringConcat.Create (ec, b.left, b.right, b.loc);
1829 class PredefinedShiftOperator : PredefinedOperator {
1830 public PredefinedShiftOperator (Type ltype, Operator op_mask) :
1831 base (ltype, TypeManager.int32_type, op_mask)
1835 public override Expression ConvertResult (ResolveContext ec, Binary b)
1837 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1839 Expression expr_tree_expr = Convert.ImplicitConversion (ec, b.right, TypeManager.int32_type, b.right.Location);
1841 int right_mask = left == TypeManager.int32_type || left == TypeManager.uint32_type ? 0x1f : 0x3f;
1844 // b = b.left >> b.right & (0x1f|0x3f)
1846 b.right = new Binary (Operator.BitwiseAnd,
1847 b.right, new IntConstant (right_mask, b.right.Location)).Resolve (ec);
1850 // Expression tree representation does not use & mask
1852 b.right = ReducedExpression.Create (b.right, expr_tree_expr).Resolve (ec);
1853 b.type = ReturnType;
1856 // Optimize shift by 0
1858 var c = b.right as Constant;
1859 if (c != null && c.IsDefaultValue)
1860 return ReducedExpression.Create (b.left, b).Resolve (ec);
1862 return b;
1866 class PredefinedPointerOperator : PredefinedOperator {
1867 public PredefinedPointerOperator (Type ltype, Type rtype, Operator op_mask)
1868 : base (ltype, rtype, op_mask)
1872 public PredefinedPointerOperator (Type ltype, Type rtype, Operator op_mask, Type retType)
1873 : base (ltype, rtype, op_mask, retType)
1877 public PredefinedPointerOperator (Type type, Operator op_mask, Type return_type)
1878 : base (type, op_mask, return_type)
1882 public override bool IsApplicable (ResolveContext ec, Expression lexpr, Expression rexpr)
1884 if (left == null) {
1885 if (!lexpr.Type.IsPointer)
1886 return false;
1887 } else {
1888 if (!Convert.ImplicitConversionExists (ec, lexpr, left))
1889 return false;
1892 if (right == null) {
1893 if (!rexpr.Type.IsPointer)
1894 return false;
1895 } else {
1896 if (!Convert.ImplicitConversionExists (ec, rexpr, right))
1897 return false;
1900 return true;
1903 public override Expression ConvertResult (ResolveContext ec, Binary b)
1905 if (left != null) {
1906 b.left = EmptyCast.Create (b.left, left);
1907 } else if (right != null) {
1908 b.right = EmptyCast.Create (b.right, right);
1911 Type r_type = ReturnType;
1912 Expression left_arg, right_arg;
1913 if (r_type == null) {
1914 if (left == null) {
1915 left_arg = b.left;
1916 right_arg = b.right;
1917 r_type = b.left.Type;
1918 } else {
1919 left_arg = b.right;
1920 right_arg = b.left;
1921 r_type = b.right.Type;
1923 } else {
1924 left_arg = b.left;
1925 right_arg = b.right;
1928 return new PointerArithmetic (b.oper, left_arg, right_arg, r_type, b.loc).Resolve (ec);
1932 [Flags]
1933 public enum Operator {
1934 Multiply = 0 | ArithmeticMask,
1935 Division = 1 | ArithmeticMask,
1936 Modulus = 2 | ArithmeticMask,
1937 Addition = 3 | ArithmeticMask | AdditionMask,
1938 Subtraction = 4 | ArithmeticMask | SubtractionMask,
1940 LeftShift = 5 | ShiftMask,
1941 RightShift = 6 | ShiftMask,
1943 LessThan = 7 | ComparisonMask | RelationalMask,
1944 GreaterThan = 8 | ComparisonMask | RelationalMask,
1945 LessThanOrEqual = 9 | ComparisonMask | RelationalMask,
1946 GreaterThanOrEqual = 10 | ComparisonMask | RelationalMask,
1947 Equality = 11 | ComparisonMask | EqualityMask,
1948 Inequality = 12 | ComparisonMask | EqualityMask,
1950 BitwiseAnd = 13 | BitwiseMask,
1951 ExclusiveOr = 14 | BitwiseMask,
1952 BitwiseOr = 15 | BitwiseMask,
1954 LogicalAnd = 16 | LogicalMask,
1955 LogicalOr = 17 | LogicalMask,
1958 // Operator masks
1960 ValuesOnlyMask = ArithmeticMask - 1,
1961 ArithmeticMask = 1 << 5,
1962 ShiftMask = 1 << 6,
1963 ComparisonMask = 1 << 7,
1964 EqualityMask = 1 << 8,
1965 BitwiseMask = 1 << 9,
1966 LogicalMask = 1 << 10,
1967 AdditionMask = 1 << 11,
1968 SubtractionMask = 1 << 12,
1969 RelationalMask = 1 << 13
1972 readonly Operator oper;
1973 protected Expression left, right;
1974 readonly bool is_compound;
1975 Expression enum_conversion;
1977 static PredefinedOperator [] standard_operators;
1978 static PredefinedOperator [] pointer_operators;
1980 public Binary (Operator oper, Expression left, Expression right, bool isCompound)
1981 : this (oper, left, right)
1983 this.is_compound = isCompound;
1986 public Binary (Operator oper, Expression left, Expression right)
1988 this.oper = oper;
1989 this.left = left;
1990 this.right = right;
1991 this.loc = left.Location;
1994 public Operator Oper {
1995 get {
1996 return oper;
2000 /// <summary>
2001 /// Returns a stringified representation of the Operator
2002 /// </summary>
2003 string OperName (Operator oper)
2005 string s;
2006 switch (oper){
2007 case Operator.Multiply:
2008 s = "*";
2009 break;
2010 case Operator.Division:
2011 s = "/";
2012 break;
2013 case Operator.Modulus:
2014 s = "%";
2015 break;
2016 case Operator.Addition:
2017 s = "+";
2018 break;
2019 case Operator.Subtraction:
2020 s = "-";
2021 break;
2022 case Operator.LeftShift:
2023 s = "<<";
2024 break;
2025 case Operator.RightShift:
2026 s = ">>";
2027 break;
2028 case Operator.LessThan:
2029 s = "<";
2030 break;
2031 case Operator.GreaterThan:
2032 s = ">";
2033 break;
2034 case Operator.LessThanOrEqual:
2035 s = "<=";
2036 break;
2037 case Operator.GreaterThanOrEqual:
2038 s = ">=";
2039 break;
2040 case Operator.Equality:
2041 s = "==";
2042 break;
2043 case Operator.Inequality:
2044 s = "!=";
2045 break;
2046 case Operator.BitwiseAnd:
2047 s = "&";
2048 break;
2049 case Operator.BitwiseOr:
2050 s = "|";
2051 break;
2052 case Operator.ExclusiveOr:
2053 s = "^";
2054 break;
2055 case Operator.LogicalOr:
2056 s = "||";
2057 break;
2058 case Operator.LogicalAnd:
2059 s = "&&";
2060 break;
2061 default:
2062 s = oper.ToString ();
2063 break;
2066 if (is_compound)
2067 return s + "=";
2069 return s;
2072 public static void Error_OperatorCannotBeApplied (ResolveContext ec, Expression left, Expression right, Operator oper, Location loc)
2074 new Binary (oper, left, right).Error_OperatorCannotBeApplied (ec, left, right);
2077 public static void Error_OperatorCannotBeApplied (ResolveContext ec, Expression left, Expression right, string oper, Location loc)
2079 string l, r;
2080 l = TypeManager.CSharpName (left.Type);
2081 r = TypeManager.CSharpName (right.Type);
2083 ec.Report.Error (19, loc, "Operator `{0}' cannot be applied to operands of type `{1}' and `{2}'",
2084 oper, l, r);
2087 protected void Error_OperatorCannotBeApplied (ResolveContext ec, Expression left, Expression right)
2089 Error_OperatorCannotBeApplied (ec, left, right, OperName (oper), loc);
2093 // Converts operator to System.Linq.Expressions.ExpressionType enum name
2095 string GetOperatorExpressionTypeName ()
2097 switch (oper) {
2098 case Operator.Addition:
2099 return is_compound ? "AddAssign" : "Add";
2100 case Operator.BitwiseAnd:
2101 return is_compound ? "AndAssign" : "And";
2102 case Operator.BitwiseOr:
2103 return is_compound ? "OrAssign" : "Or";
2104 case Operator.Division:
2105 return is_compound ? "DivideAssign" : "Divide";
2106 case Operator.ExclusiveOr:
2107 return is_compound ? "ExclusiveOrAssign" : "ExclusiveOr";
2108 case Operator.Equality:
2109 return "Equal";
2110 case Operator.GreaterThan:
2111 return "GreaterThan";
2112 case Operator.GreaterThanOrEqual:
2113 return "GreaterThanOrEqual";
2114 case Operator.Inequality:
2115 return "NotEqual";
2116 case Operator.LeftShift:
2117 return is_compound ? "LeftShiftAssign" : "LeftShift";
2118 case Operator.LessThan:
2119 return "LessThan";
2120 case Operator.LessThanOrEqual:
2121 return "LessThanOrEqual";
2122 case Operator.LogicalAnd:
2123 return "And";
2124 case Operator.LogicalOr:
2125 return "Or";
2126 case Operator.Modulus:
2127 return is_compound ? "ModuloAssign" : "Modulo";
2128 case Operator.Multiply:
2129 return is_compound ? "MultiplyAssign" : "Multiply";
2130 case Operator.RightShift:
2131 return is_compound ? "RightShiftAssign" : "RightShift";
2132 case Operator.Subtraction:
2133 return is_compound ? "SubtractAssign" : "Subtract";
2134 default:
2135 throw new NotImplementedException ("Unknown expression type operator " + oper.ToString ());
2139 static string GetOperatorMetadataName (Operator op)
2141 CSharp.Operator.OpType op_type;
2142 switch (op) {
2143 case Operator.Addition:
2144 op_type = CSharp.Operator.OpType.Addition; break;
2145 case Operator.BitwiseAnd:
2146 op_type = CSharp.Operator.OpType.BitwiseAnd; break;
2147 case Operator.BitwiseOr:
2148 op_type = CSharp.Operator.OpType.BitwiseOr; break;
2149 case Operator.Division:
2150 op_type = CSharp.Operator.OpType.Division; break;
2151 case Operator.Equality:
2152 op_type = CSharp.Operator.OpType.Equality; break;
2153 case Operator.ExclusiveOr:
2154 op_type = CSharp.Operator.OpType.ExclusiveOr; break;
2155 case Operator.GreaterThan:
2156 op_type = CSharp.Operator.OpType.GreaterThan; break;
2157 case Operator.GreaterThanOrEqual:
2158 op_type = CSharp.Operator.OpType.GreaterThanOrEqual; break;
2159 case Operator.Inequality:
2160 op_type = CSharp.Operator.OpType.Inequality; break;
2161 case Operator.LeftShift:
2162 op_type = CSharp.Operator.OpType.LeftShift; break;
2163 case Operator.LessThan:
2164 op_type = CSharp.Operator.OpType.LessThan; break;
2165 case Operator.LessThanOrEqual:
2166 op_type = CSharp.Operator.OpType.LessThanOrEqual; break;
2167 case Operator.Modulus:
2168 op_type = CSharp.Operator.OpType.Modulus; break;
2169 case Operator.Multiply:
2170 op_type = CSharp.Operator.OpType.Multiply; break;
2171 case Operator.RightShift:
2172 op_type = CSharp.Operator.OpType.RightShift; break;
2173 case Operator.Subtraction:
2174 op_type = CSharp.Operator.OpType.Subtraction; break;
2175 default:
2176 throw new InternalErrorException (op.ToString ());
2179 return CSharp.Operator.GetMetadataName (op_type);
2182 public static void EmitOperatorOpcode (EmitContext ec, Operator oper, Type l)
2184 OpCode opcode;
2185 ILGenerator ig = ec.ig;
2187 switch (oper){
2188 case Operator.Multiply:
2189 if (ec.HasSet (EmitContext.Options.CheckedScope)) {
2190 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2191 opcode = OpCodes.Mul_Ovf;
2192 else if (!IsFloat (l))
2193 opcode = OpCodes.Mul_Ovf_Un;
2194 else
2195 opcode = OpCodes.Mul;
2196 } else
2197 opcode = OpCodes.Mul;
2199 break;
2201 case Operator.Division:
2202 if (IsUnsigned (l))
2203 opcode = OpCodes.Div_Un;
2204 else
2205 opcode = OpCodes.Div;
2206 break;
2208 case Operator.Modulus:
2209 if (IsUnsigned (l))
2210 opcode = OpCodes.Rem_Un;
2211 else
2212 opcode = OpCodes.Rem;
2213 break;
2215 case Operator.Addition:
2216 if (ec.HasSet (EmitContext.Options.CheckedScope)) {
2217 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2218 opcode = OpCodes.Add_Ovf;
2219 else if (!IsFloat (l))
2220 opcode = OpCodes.Add_Ovf_Un;
2221 else
2222 opcode = OpCodes.Add;
2223 } else
2224 opcode = OpCodes.Add;
2225 break;
2227 case Operator.Subtraction:
2228 if (ec.HasSet (EmitContext.Options.CheckedScope)) {
2229 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2230 opcode = OpCodes.Sub_Ovf;
2231 else if (!IsFloat (l))
2232 opcode = OpCodes.Sub_Ovf_Un;
2233 else
2234 opcode = OpCodes.Sub;
2235 } else
2236 opcode = OpCodes.Sub;
2237 break;
2239 case Operator.RightShift:
2240 if (IsUnsigned (l))
2241 opcode = OpCodes.Shr_Un;
2242 else
2243 opcode = OpCodes.Shr;
2244 break;
2246 case Operator.LeftShift:
2247 opcode = OpCodes.Shl;
2248 break;
2250 case Operator.Equality:
2251 opcode = OpCodes.Ceq;
2252 break;
2254 case Operator.Inequality:
2255 ig.Emit (OpCodes.Ceq);
2256 ig.Emit (OpCodes.Ldc_I4_0);
2258 opcode = OpCodes.Ceq;
2259 break;
2261 case Operator.LessThan:
2262 if (IsUnsigned (l))
2263 opcode = OpCodes.Clt_Un;
2264 else
2265 opcode = OpCodes.Clt;
2266 break;
2268 case Operator.GreaterThan:
2269 if (IsUnsigned (l))
2270 opcode = OpCodes.Cgt_Un;
2271 else
2272 opcode = OpCodes.Cgt;
2273 break;
2275 case Operator.LessThanOrEqual:
2276 if (IsUnsigned (l) || IsFloat (l))
2277 ig.Emit (OpCodes.Cgt_Un);
2278 else
2279 ig.Emit (OpCodes.Cgt);
2280 ig.Emit (OpCodes.Ldc_I4_0);
2282 opcode = OpCodes.Ceq;
2283 break;
2285 case Operator.GreaterThanOrEqual:
2286 if (IsUnsigned (l) || IsFloat (l))
2287 ig.Emit (OpCodes.Clt_Un);
2288 else
2289 ig.Emit (OpCodes.Clt);
2291 ig.Emit (OpCodes.Ldc_I4_0);
2293 opcode = OpCodes.Ceq;
2294 break;
2296 case Operator.BitwiseOr:
2297 opcode = OpCodes.Or;
2298 break;
2300 case Operator.BitwiseAnd:
2301 opcode = OpCodes.And;
2302 break;
2304 case Operator.ExclusiveOr:
2305 opcode = OpCodes.Xor;
2306 break;
2308 default:
2309 throw new InternalErrorException (oper.ToString ());
2312 ig.Emit (opcode);
2315 static bool IsUnsigned (Type t)
2317 if (t.IsPointer)
2318 return true;
2320 return (t == TypeManager.uint32_type || t == TypeManager.uint64_type ||
2321 t == TypeManager.ushort_type || t == TypeManager.byte_type);
2324 static bool IsFloat (Type t)
2326 return t == TypeManager.float_type || t == TypeManager.double_type;
2329 Expression ResolveOperator (ResolveContext ec)
2331 Type l = left.Type;
2332 Type r = right.Type;
2333 Expression expr;
2334 bool primitives_only = false;
2336 if (standard_operators == null)
2337 CreateStandardOperatorsTable ();
2340 // Handles predefined primitive types
2342 if (TypeManager.IsPrimitiveType (l) && TypeManager.IsPrimitiveType (r)) {
2343 if ((oper & Operator.ShiftMask) == 0) {
2344 if (l != TypeManager.bool_type && !DoBinaryOperatorPromotion (ec))
2345 return null;
2347 primitives_only = true;
2349 } else {
2350 // Pointers
2351 if (l.IsPointer || r.IsPointer)
2352 return ResolveOperatorPointer (ec, l, r);
2354 // Enums
2355 bool lenum = TypeManager.IsEnumType (l);
2356 bool renum = TypeManager.IsEnumType (r);
2357 if (lenum || renum) {
2358 expr = ResolveOperatorEnum (ec, lenum, renum, l, r);
2360 // TODO: Can this be ambiguous
2361 if (expr != null)
2362 return expr;
2365 // Delegates
2366 if ((oper == Operator.Addition || oper == Operator.Subtraction || (oper & Operator.EqualityMask) != 0) &&
2367 (TypeManager.IsDelegateType (l) || TypeManager.IsDelegateType (r))) {
2369 expr = ResolveOperatorDelegate (ec, l, r);
2371 // TODO: Can this be ambiguous
2372 if (expr != null)
2373 return expr;
2376 // User operators
2377 expr = ResolveUserOperator (ec, l, r);
2378 if (expr != null)
2379 return expr;
2381 // Predefined reference types equality
2382 if ((oper & Operator.EqualityMask) != 0) {
2383 expr = ResolveOperatorEqualityRerefence (ec, l, r);
2384 if (expr != null)
2385 return expr;
2389 return ResolveOperatorPredefined (ec, standard_operators, primitives_only, null);
2392 // at least one of 'left' or 'right' is an enumeration constant (EnumConstant or SideEffectConstant or ...)
2393 // if 'left' is not an enumeration constant, create one from the type of 'right'
2394 Constant EnumLiftUp (ResolveContext ec, Constant left, Constant right, Location loc)
2396 switch (oper) {
2397 case Operator.BitwiseOr:
2398 case Operator.BitwiseAnd:
2399 case Operator.ExclusiveOr:
2400 case Operator.Equality:
2401 case Operator.Inequality:
2402 case Operator.LessThan:
2403 case Operator.LessThanOrEqual:
2404 case Operator.GreaterThan:
2405 case Operator.GreaterThanOrEqual:
2406 if (TypeManager.IsEnumType (left.Type))
2407 return left;
2409 if (left.IsZeroInteger)
2410 return left.TryReduce (ec, right.Type, loc);
2412 break;
2414 case Operator.Addition:
2415 case Operator.Subtraction:
2416 return left;
2418 case Operator.Multiply:
2419 case Operator.Division:
2420 case Operator.Modulus:
2421 case Operator.LeftShift:
2422 case Operator.RightShift:
2423 if (TypeManager.IsEnumType (right.Type) || TypeManager.IsEnumType (left.Type))
2424 break;
2425 return left;
2427 Error_OperatorCannotBeApplied (ec, this.left, this.right);
2428 return null;
2432 // The `|' operator used on types which were extended is dangerous
2434 void CheckBitwiseOrOnSignExtended (ResolveContext ec)
2436 OpcodeCast lcast = left as OpcodeCast;
2437 if (lcast != null) {
2438 if (IsUnsigned (lcast.UnderlyingType))
2439 lcast = null;
2442 OpcodeCast rcast = right as OpcodeCast;
2443 if (rcast != null) {
2444 if (IsUnsigned (rcast.UnderlyingType))
2445 rcast = null;
2448 if (lcast == null && rcast == null)
2449 return;
2451 // FIXME: consider constants
2453 ec.Report.Warning (675, 3, loc,
2454 "The operator `|' used on the sign-extended type `{0}'. Consider casting to a smaller unsigned type first",
2455 TypeManager.CSharpName (lcast != null ? lcast.UnderlyingType : rcast.UnderlyingType));
2458 static void CreatePointerOperatorsTable ()
2460 var temp = new List<PredefinedPointerOperator> ();
2463 // Pointer arithmetic:
2465 // T* operator + (T* x, int y); T* operator - (T* x, int y);
2466 // T* operator + (T* x, uint y); T* operator - (T* x, uint y);
2467 // T* operator + (T* x, long y); T* operator - (T* x, long y);
2468 // T* operator + (T* x, ulong y); T* operator - (T* x, ulong y);
2470 temp.Add (new PredefinedPointerOperator (null, TypeManager.int32_type, Operator.AdditionMask | Operator.SubtractionMask));
2471 temp.Add (new PredefinedPointerOperator (null, TypeManager.uint32_type, Operator.AdditionMask | Operator.SubtractionMask));
2472 temp.Add (new PredefinedPointerOperator (null, TypeManager.int64_type, Operator.AdditionMask | Operator.SubtractionMask));
2473 temp.Add (new PredefinedPointerOperator (null, TypeManager.uint64_type, Operator.AdditionMask | Operator.SubtractionMask));
2476 // T* operator + (int y, T* x);
2477 // T* operator + (uint y, T *x);
2478 // T* operator + (long y, T *x);
2479 // T* operator + (ulong y, T *x);
2481 temp.Add (new PredefinedPointerOperator (TypeManager.int32_type, null, Operator.AdditionMask, null));
2482 temp.Add (new PredefinedPointerOperator (TypeManager.uint32_type, null, Operator.AdditionMask, null));
2483 temp.Add (new PredefinedPointerOperator (TypeManager.int64_type, null, Operator.AdditionMask, null));
2484 temp.Add (new PredefinedPointerOperator (TypeManager.uint64_type, null, Operator.AdditionMask, null));
2487 // long operator - (T* x, T *y)
2489 temp.Add (new PredefinedPointerOperator (null, Operator.SubtractionMask, TypeManager.int64_type));
2491 pointer_operators = temp.ToArray ();
2494 static void CreateStandardOperatorsTable ()
2496 var temp = new List<PredefinedOperator> ();
2497 Type bool_type = TypeManager.bool_type;
2499 temp.Add (new PredefinedOperator (TypeManager.int32_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2500 temp.Add (new PredefinedOperator (TypeManager.uint32_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2501 temp.Add (new PredefinedOperator (TypeManager.int64_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2502 temp.Add (new PredefinedOperator (TypeManager.uint64_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2503 temp.Add (new PredefinedOperator (TypeManager.float_type, Operator.ArithmeticMask));
2504 temp.Add (new PredefinedOperator (TypeManager.double_type, Operator.ArithmeticMask));
2505 temp.Add (new PredefinedOperator (TypeManager.decimal_type, Operator.ArithmeticMask));
2507 temp.Add (new PredefinedOperator (TypeManager.int32_type, Operator.ComparisonMask, bool_type));
2508 temp.Add (new PredefinedOperator (TypeManager.uint32_type, Operator.ComparisonMask, bool_type));
2509 temp.Add (new PredefinedOperator (TypeManager.int64_type, Operator.ComparisonMask, bool_type));
2510 temp.Add (new PredefinedOperator (TypeManager.uint64_type, Operator.ComparisonMask, bool_type));
2511 temp.Add (new PredefinedOperator (TypeManager.float_type, Operator.ComparisonMask, bool_type));
2512 temp.Add (new PredefinedOperator (TypeManager.double_type, Operator.ComparisonMask, bool_type));
2513 temp.Add (new PredefinedOperator (TypeManager.decimal_type, Operator.ComparisonMask, bool_type));
2515 temp.Add (new PredefinedOperator (TypeManager.string_type, Operator.EqualityMask, bool_type));
2517 temp.Add (new PredefinedStringOperator (TypeManager.string_type, Operator.AdditionMask));
2518 temp.Add (new PredefinedStringOperator (TypeManager.string_type, TypeManager.object_type, Operator.AdditionMask));
2519 temp.Add (new PredefinedStringOperator (TypeManager.object_type, TypeManager.string_type, Operator.AdditionMask));
2521 temp.Add (new PredefinedOperator (bool_type,
2522 Operator.BitwiseMask | Operator.LogicalMask | Operator.EqualityMask, bool_type));
2524 temp.Add (new PredefinedShiftOperator (TypeManager.int32_type, Operator.ShiftMask));
2525 temp.Add (new PredefinedShiftOperator (TypeManager.uint32_type, Operator.ShiftMask));
2526 temp.Add (new PredefinedShiftOperator (TypeManager.int64_type, Operator.ShiftMask));
2527 temp.Add (new PredefinedShiftOperator (TypeManager.uint64_type, Operator.ShiftMask));
2529 standard_operators = temp.ToArray ();
2533 // Rules used during binary numeric promotion
2535 static bool DoNumericPromotion (ResolveContext rc, ref Expression prim_expr, ref Expression second_expr, Type type)
2537 Expression temp;
2538 Type etype;
2540 Constant c = prim_expr as Constant;
2541 if (c != null) {
2542 temp = c.ConvertImplicitly (rc, type);
2543 if (temp != null) {
2544 prim_expr = temp;
2545 return true;
2549 if (type == TypeManager.uint32_type) {
2550 etype = prim_expr.Type;
2551 if (etype == TypeManager.int32_type || etype == TypeManager.short_type || etype == TypeManager.sbyte_type) {
2552 type = TypeManager.int64_type;
2554 if (type != second_expr.Type) {
2555 c = second_expr as Constant;
2556 if (c != null)
2557 temp = c.ConvertImplicitly (rc, type);
2558 else
2559 temp = Convert.ImplicitNumericConversion (second_expr, type);
2560 if (temp == null)
2561 return false;
2562 second_expr = temp;
2565 } else if (type == TypeManager.uint64_type) {
2567 // A compile-time error occurs if the other operand is of type sbyte, short, int, or long
2569 if (type == TypeManager.int32_type || type == TypeManager.int64_type ||
2570 type == TypeManager.short_type || type == TypeManager.sbyte_type)
2571 return false;
2574 temp = Convert.ImplicitNumericConversion (prim_expr, type);
2575 if (temp == null)
2576 return false;
2578 prim_expr = temp;
2579 return true;
2583 // 7.2.6.2 Binary numeric promotions
2585 public bool DoBinaryOperatorPromotion (ResolveContext ec)
2587 Type ltype = left.Type;
2588 Type rtype = right.Type;
2589 Expression temp;
2591 foreach (Type t in ConstantFold.binary_promotions) {
2592 if (t == ltype)
2593 return t == rtype || DoNumericPromotion (ec, ref right, ref left, t);
2595 if (t == rtype)
2596 return t == ltype || DoNumericPromotion (ec, ref left, ref right, t);
2599 Type int32 = TypeManager.int32_type;
2600 if (ltype != int32) {
2601 Constant c = left as Constant;
2602 if (c != null)
2603 temp = c.ConvertImplicitly (ec, int32);
2604 else
2605 temp = Convert.ImplicitNumericConversion (left, int32);
2607 if (temp == null)
2608 return false;
2609 left = temp;
2612 if (rtype != int32) {
2613 Constant c = right as Constant;
2614 if (c != null)
2615 temp = c.ConvertImplicitly (ec, int32);
2616 else
2617 temp = Convert.ImplicitNumericConversion (right, int32);
2619 if (temp == null)
2620 return false;
2621 right = temp;
2624 return true;
2627 protected override Expression DoResolve (ResolveContext ec)
2629 if (left == null)
2630 return null;
2632 if ((oper == Operator.Subtraction) && (left is ParenthesizedExpression)) {
2633 left = ((ParenthesizedExpression) left).Expr;
2634 left = left.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.Type);
2635 if (left == null)
2636 return null;
2638 if (left.eclass == ExprClass.Type) {
2639 ec.Report.Error (75, loc, "To cast a negative value, you must enclose the value in parentheses");
2640 return null;
2642 } else
2643 left = left.Resolve (ec);
2645 if (left == null)
2646 return null;
2648 Constant lc = left as Constant;
2650 if (lc != null && lc.Type == TypeManager.bool_type &&
2651 ((oper == Operator.LogicalAnd && lc.IsDefaultValue) ||
2652 (oper == Operator.LogicalOr && !lc.IsDefaultValue))) {
2654 // FIXME: resolve right expression as unreachable
2655 // right.Resolve (ec);
2657 ec.Report.Warning (429, 4, loc, "Unreachable expression code detected");
2658 return left;
2661 right = right.Resolve (ec);
2662 if (right == null)
2663 return null;
2665 eclass = ExprClass.Value;
2666 Constant rc = right as Constant;
2668 // The conversion rules are ignored in enum context but why
2669 if (!ec.HasSet (ResolveContext.Options.EnumScope) && lc != null && rc != null && (TypeManager.IsEnumType (left.Type) || TypeManager.IsEnumType (right.Type))) {
2670 lc = EnumLiftUp (ec, lc, rc, loc);
2671 if (lc != null)
2672 rc = EnumLiftUp (ec, rc, lc, loc);
2675 if (rc != null && lc != null) {
2676 int prev_e = ec.Report.Errors;
2677 Expression e = ConstantFold.BinaryFold (ec, oper, lc, rc, loc);
2678 if (e != null)
2679 e = e.Resolve (ec);
2681 if (e != null || ec.Report.Errors != prev_e)
2682 return e;
2685 // Comparison warnings
2686 if ((oper & Operator.ComparisonMask) != 0) {
2687 if (left.Equals (right)) {
2688 ec.Report.Warning (1718, 3, loc, "A comparison made to same variable. Did you mean to compare something else?");
2690 CheckUselessComparison (ec, lc, right.Type);
2691 CheckUselessComparison (ec, rc, left.Type);
2694 if (TypeManager.IsDynamicType (left.Type) || TypeManager.IsDynamicType (right.Type)) {
2695 Arguments args = new Arguments (2);
2696 args.Add (new Argument (left));
2697 args.Add (new Argument (right));
2698 return new DynamicExpressionStatement (this, args, loc).Resolve (ec);
2701 if (RootContext.Version >= LanguageVersion.ISO_2 &&
2702 ((TypeManager.IsNullableType (left.Type) && (right is NullLiteral || TypeManager.IsNullableType (right.Type) || TypeManager.IsValueType (right.Type))) ||
2703 (TypeManager.IsValueType (left.Type) && right is NullLiteral) ||
2704 (TypeManager.IsNullableType (right.Type) && (left is NullLiteral || TypeManager.IsNullableType (left.Type) || TypeManager.IsValueType (left.Type))) ||
2705 (TypeManager.IsValueType (right.Type) && left is NullLiteral)))
2706 return new Nullable.LiftedBinaryOperator (oper, left, right, loc).Resolve (ec);
2708 return DoResolveCore (ec, left, right);
2711 protected Expression DoResolveCore (ResolveContext ec, Expression left_orig, Expression right_orig)
2713 Expression expr = ResolveOperator (ec);
2714 if (expr == null)
2715 Error_OperatorCannotBeApplied (ec, left_orig, right_orig);
2717 if (left == null || right == null)
2718 throw new InternalErrorException ("Invalid conversion");
2720 if (oper == Operator.BitwiseOr)
2721 CheckBitwiseOrOnSignExtended (ec);
2723 return expr;
2726 public override SLE.Expression MakeExpression (BuilderContext ctx)
2728 var le = left.MakeExpression (ctx);
2729 var re = right.MakeExpression (ctx);
2730 bool is_checked = ctx.HasSet (BuilderContext.Options.CheckedScope);
2732 switch (oper) {
2733 case Operator.Addition:
2734 return is_checked ? SLE.Expression.AddChecked (le, re) : SLE.Expression.Add (le, re);
2735 case Operator.BitwiseAnd:
2736 return SLE.Expression.And (le, re);
2737 case Operator.BitwiseOr:
2738 return SLE.Expression.Or (le, re);
2739 case Operator.Division:
2740 return SLE.Expression.Divide (le, re);
2741 case Operator.Equality:
2742 return SLE.Expression.Equal (le, re);
2743 case Operator.ExclusiveOr:
2744 return SLE.Expression.ExclusiveOr (le, re);
2745 case Operator.GreaterThan:
2746 return SLE.Expression.GreaterThan (le, re);
2747 case Operator.GreaterThanOrEqual:
2748 return SLE.Expression.GreaterThanOrEqual (le, re);
2749 case Operator.Inequality:
2750 return SLE.Expression.NotEqual (le, re);
2751 case Operator.LeftShift:
2752 return SLE.Expression.LeftShift (le, re);
2753 case Operator.LessThan:
2754 return SLE.Expression.LessThan (le, re);
2755 case Operator.LessThanOrEqual:
2756 return SLE.Expression.LessThanOrEqual (le, re);
2757 case Operator.LogicalAnd:
2758 return SLE.Expression.AndAlso (le, re);
2759 case Operator.LogicalOr:
2760 return SLE.Expression.OrElse (le, re);
2761 case Operator.Modulus:
2762 return SLE.Expression.Modulo (le, re);
2763 case Operator.Multiply:
2764 return is_checked ? SLE.Expression.MultiplyChecked (le, re) : SLE.Expression.Multiply (le, re);
2765 case Operator.RightShift:
2766 return SLE.Expression.RightShift (le, re);
2767 case Operator.Subtraction:
2768 return is_checked ? SLE.Expression.SubtractChecked (le, re) : SLE.Expression.Subtract (le, re);
2769 default:
2770 throw new NotImplementedException (oper.ToString ());
2774 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2776 left.MutateHoistedGenericType (storey);
2777 right.MutateHoistedGenericType (storey);
2781 // D operator + (D x, D y)
2782 // D operator - (D x, D y)
2783 // bool operator == (D x, D y)
2784 // bool operator != (D x, D y)
2786 Expression ResolveOperatorDelegate (ResolveContext ec, Type l, Type r)
2788 bool is_equality = (oper & Operator.EqualityMask) != 0;
2789 if (!TypeManager.IsEqual (l, r) && !TypeManager.IsVariantOf (r, l)) {
2790 Expression tmp;
2791 if (right.eclass == ExprClass.MethodGroup || (r == InternalType.AnonymousMethod && !is_equality)) {
2792 tmp = Convert.ImplicitConversionRequired (ec, right, l, loc);
2793 if (tmp == null)
2794 return null;
2795 right = tmp;
2796 r = right.Type;
2797 } else if (left.eclass == ExprClass.MethodGroup || (l == InternalType.AnonymousMethod && !is_equality)) {
2798 tmp = Convert.ImplicitConversionRequired (ec, left, r, loc);
2799 if (tmp == null)
2800 return null;
2801 left = tmp;
2802 l = left.Type;
2803 } else {
2804 return null;
2809 // Resolve delegate equality as a user operator
2811 if (is_equality)
2812 return ResolveUserOperator (ec, l, r);
2814 MethodInfo method;
2815 Arguments args = new Arguments (2);
2816 args.Add (new Argument (left));
2817 args.Add (new Argument (right));
2819 if (oper == Operator.Addition) {
2820 if (TypeManager.delegate_combine_delegate_delegate == null) {
2821 TypeManager.delegate_combine_delegate_delegate = TypeManager.GetPredefinedMethod (
2822 TypeManager.delegate_type, "Combine", loc, TypeManager.delegate_type, TypeManager.delegate_type);
2825 method = TypeManager.delegate_combine_delegate_delegate;
2826 } else {
2827 if (TypeManager.delegate_remove_delegate_delegate == null) {
2828 TypeManager.delegate_remove_delegate_delegate = TypeManager.GetPredefinedMethod (
2829 TypeManager.delegate_type, "Remove", loc, TypeManager.delegate_type, TypeManager.delegate_type);
2832 method = TypeManager.delegate_remove_delegate_delegate;
2835 MethodGroupExpr mg = new MethodGroupExpr (new MemberInfo [] { method }, TypeManager.delegate_type, loc);
2836 mg = mg.OverloadResolve (ec, ref args, false, loc);
2838 return new ClassCast (new UserOperatorCall (mg, args, CreateExpressionTree, loc), l);
2842 // Enumeration operators
2844 Expression ResolveOperatorEnum (ResolveContext ec, bool lenum, bool renum, Type ltype, Type rtype)
2847 // bool operator == (E x, E y);
2848 // bool operator != (E x, E y);
2849 // bool operator < (E x, E y);
2850 // bool operator > (E x, E y);
2851 // bool operator <= (E x, E y);
2852 // bool operator >= (E x, E y);
2854 // E operator & (E x, E y);
2855 // E operator | (E x, E y);
2856 // E operator ^ (E x, E y);
2858 // U operator - (E e, E f)
2859 // E operator - (E e, U x)
2861 // E operator + (U x, E e)
2862 // E operator + (E e, U x)
2864 if (!((oper & (Operator.ComparisonMask | Operator.BitwiseMask)) != 0 ||
2865 (oper == Operator.Subtraction && lenum) ||
2866 (oper == Operator.Addition && (lenum != renum || type != null)))) // type != null for lifted null
2867 return null;
2869 Expression ltemp = left;
2870 Expression rtemp = right;
2871 Type underlying_type;
2872 Expression expr;
2874 if ((oper & (Operator.ComparisonMask | Operator.BitwiseMask)) != 0) {
2875 if (renum) {
2876 expr = Convert.ImplicitConversion (ec, left, rtype, loc);
2877 if (expr != null) {
2878 left = expr;
2879 ltype = expr.Type;
2881 } else if (lenum) {
2882 expr = Convert.ImplicitConversion (ec, right, ltype, loc);
2883 if (expr != null) {
2884 right = expr;
2885 rtype = expr.Type;
2890 if (TypeManager.IsEqual (ltype, rtype)) {
2891 underlying_type = TypeManager.GetEnumUnderlyingType (ltype);
2893 if (left is Constant)
2894 left = ((Constant) left).ConvertExplicitly (false, underlying_type).Resolve (ec);
2895 else
2896 left = EmptyCast.Create (left, underlying_type);
2898 if (right is Constant)
2899 right = ((Constant) right).ConvertExplicitly (false, underlying_type).Resolve (ec);
2900 else
2901 right = EmptyCast.Create (right, underlying_type);
2902 } else if (lenum) {
2903 underlying_type = TypeManager.GetEnumUnderlyingType (ltype);
2905 if (oper != Operator.Subtraction && oper != Operator.Addition) {
2906 Constant c = right as Constant;
2907 if (c == null || !c.IsDefaultValue)
2908 return null;
2909 } else {
2910 if (!Convert.ImplicitStandardConversionExists (right, underlying_type))
2911 return null;
2913 right = Convert.ImplicitConversionStandard (ec, right, underlying_type, right.Location);
2916 if (left is Constant)
2917 left = ((Constant) left).ConvertExplicitly (false, underlying_type).Resolve (ec);
2918 else
2919 left = EmptyCast.Create (left, underlying_type);
2921 } else if (renum) {
2922 underlying_type = TypeManager.GetEnumUnderlyingType (rtype);
2924 if (oper != Operator.Addition) {
2925 Constant c = left as Constant;
2926 if (c == null || !c.IsDefaultValue)
2927 return null;
2928 } else {
2929 if (!Convert.ImplicitStandardConversionExists (left, underlying_type))
2930 return null;
2932 left = Convert.ImplicitConversionStandard (ec, left, underlying_type, left.Location);
2935 if (right is Constant)
2936 right = ((Constant) right).ConvertExplicitly (false, underlying_type).Resolve (ec);
2937 else
2938 right = EmptyCast.Create (right, underlying_type);
2940 } else {
2941 return null;
2945 // C# specification uses explicit cast syntax which means binary promotion
2946 // should happen, however it seems that csc does not do that
2948 if (!DoBinaryOperatorPromotion (ec)) {
2949 left = ltemp;
2950 right = rtemp;
2951 return null;
2954 Type res_type = null;
2955 if ((oper & Operator.BitwiseMask) != 0 || oper == Operator.Subtraction || oper == Operator.Addition) {
2956 Type promoted_type = lenum ? left.Type : right.Type;
2957 enum_conversion = Convert.ExplicitNumericConversion (
2958 new EmptyExpression (promoted_type), underlying_type);
2960 if (oper == Operator.Subtraction && renum && lenum)
2961 res_type = underlying_type;
2962 else if (oper == Operator.Addition && renum)
2963 res_type = rtype;
2964 else
2965 res_type = ltype;
2968 expr = ResolveOperatorPredefined (ec, standard_operators, true, res_type);
2969 if (!is_compound || expr == null)
2970 return expr;
2973 // Section: 7.16.2
2977 // If the return type of the selected operator is implicitly convertible to the type of x
2979 if (Convert.ImplicitConversionExists (ec, expr, ltype))
2980 return expr;
2983 // Otherwise, if the selected operator is a predefined operator, if the return type of the
2984 // selected operator is explicitly convertible to the type of x, and if y is implicitly
2985 // convertible to the type of x or the operator is a shift operator, then the operation
2986 // is evaluated as x = (T)(x op y), where T is the type of x
2988 expr = Convert.ExplicitConversion (ec, expr, ltype, loc);
2989 if (expr == null)
2990 return null;
2992 if (Convert.ImplicitConversionExists (ec, ltemp, ltype))
2993 return expr;
2995 return null;
2999 // 7.9.6 Reference type equality operators
3001 Binary ResolveOperatorEqualityRerefence (ResolveContext ec, Type l, Type r)
3004 // operator != (object a, object b)
3005 // operator == (object a, object b)
3008 // TODO: this method is almost equivalent to Convert.ImplicitReferenceConversion
3010 if (left.eclass == ExprClass.MethodGroup || right.eclass == ExprClass.MethodGroup)
3011 return null;
3013 type = TypeManager.bool_type;
3014 GenericConstraints constraints;
3016 bool lgen = TypeManager.IsGenericParameter (l);
3018 if (TypeManager.IsEqual (l, r)) {
3019 if (lgen) {
3021 // Only allow to compare same reference type parameter
3023 if (TypeManager.IsReferenceType (l)) {
3024 left = new BoxedCast (left, TypeManager.object_type);
3025 right = new BoxedCast (right, TypeManager.object_type);
3026 return this;
3029 return null;
3032 if (l == InternalType.AnonymousMethod)
3033 return null;
3035 if (TypeManager.IsValueType (l))
3036 return null;
3038 return this;
3041 bool rgen = TypeManager.IsGenericParameter (r);
3044 // a, Both operands are reference-type values or the value null
3045 // b, One operand is a value of type T where T is a type-parameter and
3046 // the other operand is the value null. Furthermore T does not have the
3047 // value type constrain
3049 if (left is NullLiteral || right is NullLiteral) {
3050 if (lgen) {
3051 constraints = TypeManager.GetTypeParameterConstraints (l);
3052 if (constraints != null && constraints.HasValueTypeConstraint)
3053 return null;
3055 left = new BoxedCast (left, TypeManager.object_type);
3056 return this;
3059 if (rgen) {
3060 constraints = TypeManager.GetTypeParameterConstraints (r);
3061 if (constraints != null && constraints.HasValueTypeConstraint)
3062 return null;
3064 right = new BoxedCast (right, TypeManager.object_type);
3065 return this;
3070 // An interface is converted to the object before the
3071 // standard conversion is applied. It's not clear from the
3072 // standard but it looks like it works like that.
3074 if (lgen) {
3075 if (!TypeManager.IsReferenceType (l))
3076 return null;
3078 l = TypeManager.object_type;
3079 left = new BoxedCast (left, l);
3080 } else if (l.IsInterface) {
3081 l = TypeManager.object_type;
3082 } else if (TypeManager.IsStruct (l)) {
3083 return null;
3086 if (rgen) {
3087 if (!TypeManager.IsReferenceType (r))
3088 return null;
3090 r = TypeManager.object_type;
3091 right = new BoxedCast (right, r);
3092 } else if (r.IsInterface) {
3093 r = TypeManager.object_type;
3094 } else if (TypeManager.IsStruct (r)) {
3095 return null;
3099 const string ref_comparison = "Possible unintended reference comparison. " +
3100 "Consider casting the {0} side of the expression to `string' to compare the values";
3103 // A standard implicit conversion exists from the type of either
3104 // operand to the type of the other operand
3106 if (Convert.ImplicitReferenceConversionExists (left, r)) {
3107 if (l == TypeManager.string_type)
3108 ec.Report.Warning (253, 2, loc, ref_comparison, "right");
3110 return this;
3113 if (Convert.ImplicitReferenceConversionExists (right, l)) {
3114 if (r == TypeManager.string_type)
3115 ec.Report.Warning (252, 2, loc, ref_comparison, "left");
3117 return this;
3120 return null;
3124 Expression ResolveOperatorPointer (ResolveContext ec, Type l, Type r)
3127 // bool operator == (void* x, void* y);
3128 // bool operator != (void* x, void* y);
3129 // bool operator < (void* x, void* y);
3130 // bool operator > (void* x, void* y);
3131 // bool operator <= (void* x, void* y);
3132 // bool operator >= (void* x, void* y);
3134 if ((oper & Operator.ComparisonMask) != 0) {
3135 Expression temp;
3136 if (!l.IsPointer) {
3137 temp = Convert.ImplicitConversion (ec, left, r, left.Location);
3138 if (temp == null)
3139 return null;
3140 left = temp;
3143 if (!r.IsPointer) {
3144 temp = Convert.ImplicitConversion (ec, right, l, right.Location);
3145 if (temp == null)
3146 return null;
3147 right = temp;
3150 type = TypeManager.bool_type;
3151 return this;
3154 if (pointer_operators == null)
3155 CreatePointerOperatorsTable ();
3157 return ResolveOperatorPredefined (ec, pointer_operators, false, null);
3161 // Build-in operators method overloading
3163 protected virtual Expression ResolveOperatorPredefined (ResolveContext ec, PredefinedOperator [] operators, bool primitives_only, Type enum_type)
3165 PredefinedOperator best_operator = null;
3166 Type l = left.Type;
3167 Type r = right.Type;
3168 Operator oper_mask = oper & ~Operator.ValuesOnlyMask;
3170 foreach (PredefinedOperator po in operators) {
3171 if ((po.OperatorsMask & oper_mask) == 0)
3172 continue;
3174 if (primitives_only) {
3175 if (!po.IsPrimitiveApplicable (l, r))
3176 continue;
3177 } else {
3178 if (!po.IsApplicable (ec, left, right))
3179 continue;
3182 if (best_operator == null) {
3183 best_operator = po;
3184 if (primitives_only)
3185 break;
3187 continue;
3190 best_operator = po.ResolveBetterOperator (ec, best_operator);
3192 if (best_operator == null) {
3193 ec.Report.Error (34, loc, "Operator `{0}' is ambiguous on operands of type `{1}' and `{2}'",
3194 OperName (oper), TypeManager.CSharpName (l), TypeManager.CSharpName (r));
3196 best_operator = po;
3197 break;
3201 if (best_operator == null)
3202 return null;
3204 Expression expr = best_operator.ConvertResult (ec, this);
3207 // Optimize &/&& constant expressions with 0 value
3209 if (oper == Operator.BitwiseAnd || oper == Operator.LogicalAnd) {
3210 Constant rc = right as Constant;
3211 Constant lc = left as Constant;
3212 if ((lc != null && lc.IsDefaultValue) || (rc != null && rc.IsDefaultValue)) {
3214 // The result is a constant with side-effect
3216 Constant side_effect = rc == null ?
3217 new SideEffectConstant (lc, right, loc) :
3218 new SideEffectConstant (rc, left, loc);
3220 return ReducedExpression.Create (side_effect.Resolve (ec), expr);
3224 if (enum_type == null)
3225 return expr;
3228 // HACK: required by enum_conversion
3230 expr.Type = enum_type;
3231 return EmptyCast.Create (expr, enum_type);
3235 // Performs user-operator overloading
3237 protected virtual Expression ResolveUserOperator (ResolveContext ec, Type l, Type r)
3239 Operator user_oper;
3240 if (oper == Operator.LogicalAnd)
3241 user_oper = Operator.BitwiseAnd;
3242 else if (oper == Operator.LogicalOr)
3243 user_oper = Operator.BitwiseOr;
3244 else
3245 user_oper = oper;
3247 string op = GetOperatorMetadataName (user_oper);
3249 MethodGroupExpr left_operators = MemberLookup (ec.Compiler, ec.CurrentType, l, op, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
3250 MethodGroupExpr right_operators = null;
3252 if (!TypeManager.IsEqual (r, l)) {
3253 right_operators = MemberLookup (ec.Compiler, ec.CurrentType, r, op, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
3254 if (right_operators == null && left_operators == null)
3255 return null;
3256 } else if (left_operators == null) {
3257 return null;
3260 Arguments args = new Arguments (2);
3261 Argument larg = new Argument (left);
3262 args.Add (larg);
3263 Argument rarg = new Argument (right);
3264 args.Add (rarg);
3266 MethodGroupExpr union;
3269 // User-defined operator implementations always take precedence
3270 // over predefined operator implementations
3272 if (left_operators != null && right_operators != null) {
3273 if (IsPredefinedUserOperator (l, user_oper)) {
3274 union = right_operators.OverloadResolve (ec, ref args, true, loc);
3275 if (union == null)
3276 union = left_operators;
3277 } else if (IsPredefinedUserOperator (r, user_oper)) {
3278 union = left_operators.OverloadResolve (ec, ref args, true, loc);
3279 if (union == null)
3280 union = right_operators;
3281 } else {
3282 union = MethodGroupExpr.MakeUnionSet (left_operators, right_operators, loc);
3284 } else if (left_operators != null) {
3285 union = left_operators;
3286 } else {
3287 union = right_operators;
3290 union = union.OverloadResolve (ec, ref args, true, loc);
3291 if (union == null)
3292 return null;
3294 Expression oper_expr;
3296 // TODO: CreateExpressionTree is allocated every time
3297 if (user_oper != oper) {
3298 oper_expr = new ConditionalLogicalOperator (union, args, CreateExpressionTree,
3299 oper == Operator.LogicalAnd, loc).Resolve (ec);
3300 } else {
3301 oper_expr = new UserOperatorCall (union, args, CreateExpressionTree, loc);
3304 // This is used to check if a test 'x == null' can be optimized to a reference equals,
3305 // and not invoke user operator
3307 if ((oper & Operator.EqualityMask) != 0) {
3308 if ((left is NullLiteral && IsBuildInEqualityOperator (r)) ||
3309 (right is NullLiteral && IsBuildInEqualityOperator (l))) {
3310 type = TypeManager.bool_type;
3311 if (left is NullLiteral || right is NullLiteral)
3312 oper_expr = ReducedExpression.Create (this, oper_expr);
3313 } else if (l != r) {
3314 MethodInfo mi = (MethodInfo) union;
3317 // Two System.Delegate(s) are never equal
3319 if (mi.DeclaringType == TypeManager.multicast_delegate_type)
3320 return null;
3325 left = larg.Expr;
3326 right = rarg.Expr;
3327 return oper_expr;
3330 public override TypeExpr ResolveAsTypeTerminal (IMemberContext ec, bool silent)
3332 return null;
3335 private void CheckUselessComparison (ResolveContext ec, Constant c, Type type)
3337 if (c == null || !IsTypeIntegral (type)
3338 || c is StringConstant
3339 || c is BoolConstant
3340 || c is FloatConstant
3341 || c is DoubleConstant
3342 || c is DecimalConstant
3344 return;
3346 long value = 0;
3348 if (c is ULongConstant) {
3349 ulong uvalue = ((ULongConstant) c).Value;
3350 if (uvalue > long.MaxValue) {
3351 if (type == TypeManager.byte_type ||
3352 type == TypeManager.sbyte_type ||
3353 type == TypeManager.short_type ||
3354 type == TypeManager.ushort_type ||
3355 type == TypeManager.int32_type ||
3356 type == TypeManager.uint32_type ||
3357 type == TypeManager.int64_type ||
3358 type == TypeManager.char_type)
3359 WarnUselessComparison (ec, type);
3360 return;
3362 value = (long) uvalue;
3364 else if (c is ByteConstant)
3365 value = ((ByteConstant) c).Value;
3366 else if (c is SByteConstant)
3367 value = ((SByteConstant) c).Value;
3368 else if (c is ShortConstant)
3369 value = ((ShortConstant) c).Value;
3370 else if (c is UShortConstant)
3371 value = ((UShortConstant) c).Value;
3372 else if (c is IntConstant)
3373 value = ((IntConstant) c).Value;
3374 else if (c is UIntConstant)
3375 value = ((UIntConstant) c).Value;
3376 else if (c is LongConstant)
3377 value = ((LongConstant) c).Value;
3378 else if (c is CharConstant)
3379 value = ((CharConstant)c).Value;
3381 if (value == 0)
3382 return;
3384 if (IsValueOutOfRange (value, type))
3385 WarnUselessComparison (ec, type);
3388 static bool IsValueOutOfRange (long value, Type type)
3390 if (IsTypeUnsigned (type) && value < 0)
3391 return true;
3392 return type == TypeManager.sbyte_type && (value >= 0x80 || value < -0x80) ||
3393 type == TypeManager.byte_type && value >= 0x100 ||
3394 type == TypeManager.short_type && (value >= 0x8000 || value < -0x8000) ||
3395 type == TypeManager.ushort_type && value >= 0x10000 ||
3396 type == TypeManager.int32_type && (value >= 0x80000000 || value < -0x80000000) ||
3397 type == TypeManager.uint32_type && value >= 0x100000000;
3400 static bool IsBuildInEqualityOperator (Type t)
3402 return t == TypeManager.object_type || t == TypeManager.string_type ||
3403 t == TypeManager.delegate_type || TypeManager.IsDelegateType (t);
3406 static bool IsPredefinedUserOperator (Type t, Operator op)
3409 // Some predefined types have user operators
3411 return (op & Operator.EqualityMask) != 0 && (t == TypeManager.string_type || t == TypeManager.decimal_type);
3414 private static bool IsTypeIntegral (Type type)
3416 return type == TypeManager.uint64_type ||
3417 type == TypeManager.int64_type ||
3418 type == TypeManager.uint32_type ||
3419 type == TypeManager.int32_type ||
3420 type == TypeManager.ushort_type ||
3421 type == TypeManager.short_type ||
3422 type == TypeManager.sbyte_type ||
3423 type == TypeManager.byte_type ||
3424 type == TypeManager.char_type;
3427 private static bool IsTypeUnsigned (Type type)
3429 return type == TypeManager.uint64_type ||
3430 type == TypeManager.uint32_type ||
3431 type == TypeManager.ushort_type ||
3432 type == TypeManager.byte_type ||
3433 type == TypeManager.char_type;
3436 private void WarnUselessComparison (ResolveContext ec, Type type)
3438 ec.Report.Warning (652, 2, loc, "A comparison between a constant and a variable is useless. The constant is out of the range of the variable type `{0}'",
3439 TypeManager.CSharpName (type));
3442 /// <remarks>
3443 /// EmitBranchable is called from Statement.EmitBoolExpression in the
3444 /// context of a conditional bool expression. This function will return
3445 /// false if it is was possible to use EmitBranchable, or true if it was.
3447 /// The expression's code is generated, and we will generate a branch to `target'
3448 /// if the resulting expression value is equal to isTrue
3449 /// </remarks>
3450 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
3452 ILGenerator ig = ec.ig;
3455 // This is more complicated than it looks, but its just to avoid
3456 // duplicated tests: basically, we allow ==, !=, >, <, >= and <=
3457 // but on top of that we want for == and != to use a special path
3458 // if we are comparing against null
3460 if ((oper == Operator.Equality || oper == Operator.Inequality) && (left is Constant || right is Constant)) {
3461 bool my_on_true = oper == Operator.Inequality ? on_true : !on_true;
3464 // put the constant on the rhs, for simplicity
3466 if (left is Constant) {
3467 Expression swap = right;
3468 right = left;
3469 left = swap;
3472 if (((Constant) right).IsZeroInteger) {
3473 left.EmitBranchable (ec, target, my_on_true);
3474 return;
3476 if (right.Type == TypeManager.bool_type) {
3477 // right is a boolean, and it's not 'false' => it is 'true'
3478 left.EmitBranchable (ec, target, !my_on_true);
3479 return;
3482 } else if (oper == Operator.LogicalAnd) {
3484 if (on_true) {
3485 Label tests_end = ig.DefineLabel ();
3487 left.EmitBranchable (ec, tests_end, false);
3488 right.EmitBranchable (ec, target, true);
3489 ig.MarkLabel (tests_end);
3490 } else {
3492 // This optimizes code like this
3493 // if (true && i > 4)
3495 if (!(left is Constant))
3496 left.EmitBranchable (ec, target, false);
3498 if (!(right is Constant))
3499 right.EmitBranchable (ec, target, false);
3502 return;
3504 } else if (oper == Operator.LogicalOr){
3505 if (on_true) {
3506 left.EmitBranchable (ec, target, true);
3507 right.EmitBranchable (ec, target, true);
3509 } else {
3510 Label tests_end = ig.DefineLabel ();
3511 left.EmitBranchable (ec, tests_end, true);
3512 right.EmitBranchable (ec, target, false);
3513 ig.MarkLabel (tests_end);
3516 return;
3518 } else if (!(oper == Operator.LessThan || oper == Operator.GreaterThan ||
3519 oper == Operator.LessThanOrEqual || oper == Operator.GreaterThanOrEqual ||
3520 oper == Operator.Equality || oper == Operator.Inequality)) {
3521 base.EmitBranchable (ec, target, on_true);
3522 return;
3525 left.Emit (ec);
3526 right.Emit (ec);
3528 Type t = left.Type;
3529 bool is_float = IsFloat (t);
3530 bool is_unsigned = is_float || IsUnsigned (t);
3532 switch (oper){
3533 case Operator.Equality:
3534 if (on_true)
3535 ig.Emit (OpCodes.Beq, target);
3536 else
3537 ig.Emit (OpCodes.Bne_Un, target);
3538 break;
3540 case Operator.Inequality:
3541 if (on_true)
3542 ig.Emit (OpCodes.Bne_Un, target);
3543 else
3544 ig.Emit (OpCodes.Beq, target);
3545 break;
3547 case Operator.LessThan:
3548 if (on_true)
3549 if (is_unsigned && !is_float)
3550 ig.Emit (OpCodes.Blt_Un, target);
3551 else
3552 ig.Emit (OpCodes.Blt, target);
3553 else
3554 if (is_unsigned)
3555 ig.Emit (OpCodes.Bge_Un, target);
3556 else
3557 ig.Emit (OpCodes.Bge, target);
3558 break;
3560 case Operator.GreaterThan:
3561 if (on_true)
3562 if (is_unsigned && !is_float)
3563 ig.Emit (OpCodes.Bgt_Un, target);
3564 else
3565 ig.Emit (OpCodes.Bgt, target);
3566 else
3567 if (is_unsigned)
3568 ig.Emit (OpCodes.Ble_Un, target);
3569 else
3570 ig.Emit (OpCodes.Ble, target);
3571 break;
3573 case Operator.LessThanOrEqual:
3574 if (on_true)
3575 if (is_unsigned && !is_float)
3576 ig.Emit (OpCodes.Ble_Un, target);
3577 else
3578 ig.Emit (OpCodes.Ble, target);
3579 else
3580 if (is_unsigned)
3581 ig.Emit (OpCodes.Bgt_Un, target);
3582 else
3583 ig.Emit (OpCodes.Bgt, target);
3584 break;
3587 case Operator.GreaterThanOrEqual:
3588 if (on_true)
3589 if (is_unsigned && !is_float)
3590 ig.Emit (OpCodes.Bge_Un, target);
3591 else
3592 ig.Emit (OpCodes.Bge, target);
3593 else
3594 if (is_unsigned)
3595 ig.Emit (OpCodes.Blt_Un, target);
3596 else
3597 ig.Emit (OpCodes.Blt, target);
3598 break;
3599 default:
3600 throw new InternalErrorException (oper.ToString ());
3604 public override void Emit (EmitContext ec)
3606 EmitOperator (ec, left.Type);
3609 protected virtual void EmitOperator (EmitContext ec, Type l)
3611 ILGenerator ig = ec.ig;
3614 // Handle short-circuit operators differently
3615 // than the rest
3617 if ((oper & Operator.LogicalMask) != 0) {
3618 Label load_result = ig.DefineLabel ();
3619 Label end = ig.DefineLabel ();
3621 bool is_or = oper == Operator.LogicalOr;
3622 left.EmitBranchable (ec, load_result, is_or);
3623 right.Emit (ec);
3624 ig.Emit (OpCodes.Br_S, end);
3626 ig.MarkLabel (load_result);
3627 ig.Emit (is_or ? OpCodes.Ldc_I4_1 : OpCodes.Ldc_I4_0);
3628 ig.MarkLabel (end);
3629 return;
3633 // Optimize zero-based operations which cannot be optimized at expression level
3635 if (oper == Operator.Subtraction) {
3636 var lc = left as IntegralConstant;
3637 if (lc != null && lc.IsDefaultValue) {
3638 right.Emit (ec);
3639 ig.Emit (OpCodes.Neg);
3640 return;
3644 left.Emit (ec);
3645 right.Emit (ec);
3646 EmitOperatorOpcode (ec, oper, l);
3649 // Nullable enum could require underlying type cast and we cannot simply wrap binary
3650 // expression because that would wrap lifted binary operation
3652 if (enum_conversion != null)
3653 enum_conversion.Emit (ec);
3656 public override void EmitSideEffect (EmitContext ec)
3658 if ((oper & Operator.LogicalMask) != 0 ||
3659 (ec.HasSet (EmitContext.Options.CheckedScope) && (oper == Operator.Multiply || oper == Operator.Addition || oper == Operator.Subtraction))) {
3660 base.EmitSideEffect (ec);
3661 } else {
3662 left.EmitSideEffect (ec);
3663 right.EmitSideEffect (ec);
3667 protected override void CloneTo (CloneContext clonectx, Expression t)
3669 Binary target = (Binary) t;
3671 target.left = left.Clone (clonectx);
3672 target.right = right.Clone (clonectx);
3675 public Expression CreateCallSiteBinder (ResolveContext ec, Arguments args)
3677 Arguments binder_args = new Arguments (3);
3679 MemberAccess sle = new MemberAccess (new MemberAccess (
3680 new QualifiedAliasMember (QualifiedAliasMember.GlobalAlias, "System", loc), "Linq", loc), "Expressions", loc);
3682 CSharpBinderFlags flags = 0;
3683 if (ec.HasSet (ResolveContext.Options.CheckedScope))
3684 flags = CSharpBinderFlags.CheckedContext;
3686 if ((oper & Operator.LogicalMask) != 0)
3687 flags |= CSharpBinderFlags.BinaryOperationLogical;
3689 binder_args.Add (new Argument (new EnumConstant (new IntLiteral ((int) flags, loc), TypeManager.binder_flags)));
3690 binder_args.Add (new Argument (new MemberAccess (new MemberAccess (sle, "ExpressionType", loc), GetOperatorExpressionTypeName (), loc)));
3691 binder_args.Add (new Argument (new ImplicitlyTypedArrayCreation ("[]", args.CreateDynamicBinderArguments (ec), loc)));
3693 return new Invocation (DynamicExpressionStatement.GetBinder ("BinaryOperation", loc), binder_args);
3696 public override Expression CreateExpressionTree (ResolveContext ec)
3698 return CreateExpressionTree (ec, null);
3701 Expression CreateExpressionTree (ResolveContext ec, MethodGroupExpr method)
3703 string method_name;
3704 bool lift_arg = false;
3706 switch (oper) {
3707 case Operator.Addition:
3708 if (method == null && ec.HasSet (ResolveContext.Options.CheckedScope) && !IsFloat (type))
3709 method_name = "AddChecked";
3710 else
3711 method_name = "Add";
3712 break;
3713 case Operator.BitwiseAnd:
3714 method_name = "And";
3715 break;
3716 case Operator.BitwiseOr:
3717 method_name = "Or";
3718 break;
3719 case Operator.Division:
3720 method_name = "Divide";
3721 break;
3722 case Operator.Equality:
3723 method_name = "Equal";
3724 lift_arg = true;
3725 break;
3726 case Operator.ExclusiveOr:
3727 method_name = "ExclusiveOr";
3728 break;
3729 case Operator.GreaterThan:
3730 method_name = "GreaterThan";
3731 lift_arg = true;
3732 break;
3733 case Operator.GreaterThanOrEqual:
3734 method_name = "GreaterThanOrEqual";
3735 lift_arg = true;
3736 break;
3737 case Operator.Inequality:
3738 method_name = "NotEqual";
3739 lift_arg = true;
3740 break;
3741 case Operator.LeftShift:
3742 method_name = "LeftShift";
3743 break;
3744 case Operator.LessThan:
3745 method_name = "LessThan";
3746 lift_arg = true;
3747 break;
3748 case Operator.LessThanOrEqual:
3749 method_name = "LessThanOrEqual";
3750 lift_arg = true;
3751 break;
3752 case Operator.LogicalAnd:
3753 method_name = "AndAlso";
3754 break;
3755 case Operator.LogicalOr:
3756 method_name = "OrElse";
3757 break;
3758 case Operator.Modulus:
3759 method_name = "Modulo";
3760 break;
3761 case Operator.Multiply:
3762 if (method == null && ec.HasSet (ResolveContext.Options.CheckedScope) && !IsFloat (type))
3763 method_name = "MultiplyChecked";
3764 else
3765 method_name = "Multiply";
3766 break;
3767 case Operator.RightShift:
3768 method_name = "RightShift";
3769 break;
3770 case Operator.Subtraction:
3771 if (method == null && ec.HasSet (ResolveContext.Options.CheckedScope) && !IsFloat (type))
3772 method_name = "SubtractChecked";
3773 else
3774 method_name = "Subtract";
3775 break;
3777 default:
3778 throw new InternalErrorException ("Unknown expression tree binary operator " + oper);
3781 Arguments args = new Arguments (2);
3782 args.Add (new Argument (left.CreateExpressionTree (ec)));
3783 args.Add (new Argument (right.CreateExpressionTree (ec)));
3784 if (method != null) {
3785 if (lift_arg)
3786 args.Add (new Argument (new BoolConstant (false, loc)));
3788 args.Add (new Argument (method.CreateExpressionTree (ec)));
3791 return CreateExpressionFactoryCall (ec, method_name, args);
3796 // Represents the operation a + b [+ c [+ d [+ ...]]], where a is a string
3797 // b, c, d... may be strings or objects.
3799 public class StringConcat : Expression {
3800 Arguments arguments;
3802 public StringConcat (Expression left, Expression right, Location loc)
3804 this.loc = loc;
3805 type = TypeManager.string_type;
3806 eclass = ExprClass.Value;
3808 arguments = new Arguments (2);
3811 public static StringConcat Create (ResolveContext rc, Expression left, Expression right, Location loc)
3813 if (left.eclass == ExprClass.Unresolved || right.eclass == ExprClass.Unresolved)
3814 throw new ArgumentException ();
3816 var s = new StringConcat (left, right, loc);
3817 s.Append (rc, left);
3818 s.Append (rc, right);
3819 return s;
3822 public override Expression CreateExpressionTree (ResolveContext ec)
3824 Argument arg = arguments [0];
3825 return CreateExpressionAddCall (ec, arg, arg.CreateExpressionTree (ec), 1);
3829 // Creates nested calls tree from an array of arguments used for IL emit
3831 Expression CreateExpressionAddCall (ResolveContext ec, Argument left, Expression left_etree, int pos)
3833 Arguments concat_args = new Arguments (2);
3834 Arguments add_args = new Arguments (3);
3836 concat_args.Add (left);
3837 add_args.Add (new Argument (left_etree));
3839 concat_args.Add (arguments [pos]);
3840 add_args.Add (new Argument (arguments [pos].CreateExpressionTree (ec)));
3842 MethodGroupExpr method = CreateConcatMemberExpression ().Resolve (ec) as MethodGroupExpr;
3843 if (method == null)
3844 return null;
3846 method = method.OverloadResolve (ec, ref concat_args, false, loc);
3847 if (method == null)
3848 return null;
3850 add_args.Add (new Argument (method.CreateExpressionTree (ec)));
3852 Expression expr = CreateExpressionFactoryCall (ec, "Add", add_args);
3853 if (++pos == arguments.Count)
3854 return expr;
3856 left = new Argument (new EmptyExpression (((MethodInfo)method).ReturnType));
3857 return CreateExpressionAddCall (ec, left, expr, pos);
3860 protected override Expression DoResolve (ResolveContext ec)
3862 return this;
3865 void Append (ResolveContext rc, Expression operand)
3868 // Constant folding
3870 StringConstant sc = operand as StringConstant;
3871 if (sc != null) {
3872 if (arguments.Count != 0) {
3873 Argument last_argument = arguments [arguments.Count - 1];
3874 StringConstant last_expr_constant = last_argument.Expr as StringConstant;
3875 if (last_expr_constant != null) {
3876 last_argument.Expr = new StringConstant (
3877 last_expr_constant.Value + sc.Value, sc.Location).Resolve (rc);
3878 return;
3881 } else {
3883 // Multiple (3+) concatenation are resolved as multiple StringConcat instances
3885 StringConcat concat_oper = operand as StringConcat;
3886 if (concat_oper != null) {
3887 arguments.AddRange (concat_oper.arguments);
3888 return;
3892 arguments.Add (new Argument (operand));
3895 Expression CreateConcatMemberExpression ()
3897 return new MemberAccess (new MemberAccess (new QualifiedAliasMember ("global", "System", loc), "String", loc), "Concat", loc);
3900 public override void Emit (EmitContext ec)
3902 Expression concat = new Invocation (CreateConcatMemberExpression (), arguments, true);
3903 concat = concat.Resolve (new ResolveContext (ec.MemberContext));
3904 if (concat != null)
3905 concat.Emit (ec);
3908 public override SLE.Expression MakeExpression (BuilderContext ctx)
3910 if (arguments.Count != 2)
3911 throw new NotImplementedException ("arguments.Count != 2");
3913 var concat = TypeManager.string_type.GetMethod ("Concat", new[] { typeof (object), typeof (object) });
3914 return SLE.Expression.Add (arguments[0].Expr.MakeExpression (ctx), arguments[1].Expr.MakeExpression (ctx), concat);
3917 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3919 arguments.MutateHoistedGenericType (storey);
3924 // User-defined conditional logical operator
3926 public class ConditionalLogicalOperator : UserOperatorCall {
3927 readonly bool is_and;
3928 Expression oper;
3930 public ConditionalLogicalOperator (MethodGroupExpr oper_method, Arguments arguments,
3931 ExpressionTreeExpression expr_tree, bool is_and, Location loc)
3932 : base (oper_method, arguments, expr_tree, loc)
3934 this.is_and = is_and;
3935 eclass = ExprClass.Unresolved;
3938 protected override Expression DoResolve (ResolveContext ec)
3940 MethodInfo method = (MethodInfo)mg;
3941 type = TypeManager.TypeToCoreType (method.ReturnType);
3942 AParametersCollection pd = TypeManager.GetParameterData (method);
3943 if (!TypeManager.IsEqual (type, type) || !TypeManager.IsEqual (type, pd.Types [0]) || !TypeManager.IsEqual (type, pd.Types [1])) {
3944 ec.Report.Error (217, loc,
3945 "A user-defined operator `{0}' must have parameters and return values of the same type in order to be applicable as a short circuit operator",
3946 TypeManager.CSharpSignature (method));
3947 return null;
3950 Expression left_dup = new EmptyExpression (type);
3951 Expression op_true = GetOperatorTrue (ec, left_dup, loc);
3952 Expression op_false = GetOperatorFalse (ec, left_dup, loc);
3953 if (op_true == null || op_false == null) {
3954 ec.Report.Error (218, loc,
3955 "The type `{0}' must have operator `true' and operator `false' defined when `{1}' is used as a short circuit operator",
3956 TypeManager.CSharpName (type), TypeManager.CSharpSignature (method));
3957 return null;
3960 oper = is_and ? op_false : op_true;
3961 eclass = ExprClass.Value;
3962 return this;
3965 public override void Emit (EmitContext ec)
3967 ILGenerator ig = ec.ig;
3968 Label end_target = ig.DefineLabel ();
3971 // Emit and duplicate left argument
3973 arguments [0].Expr.Emit (ec);
3974 ig.Emit (OpCodes.Dup);
3975 arguments.RemoveAt (0);
3977 oper.EmitBranchable (ec, end_target, true);
3978 base.Emit (ec);
3979 ig.MarkLabel (end_target);
3983 public class PointerArithmetic : Expression {
3984 Expression left, right;
3985 Binary.Operator op;
3988 // We assume that `l' is always a pointer
3990 public PointerArithmetic (Binary.Operator op, Expression l, Expression r, Type t, Location loc)
3992 type = t;
3993 this.loc = loc;
3994 left = l;
3995 right = r;
3996 this.op = op;
3999 public override Expression CreateExpressionTree (ResolveContext ec)
4001 Error_PointerInsideExpressionTree (ec);
4002 return null;
4005 protected override Expression DoResolve (ResolveContext ec)
4007 eclass = ExprClass.Variable;
4009 if (left.Type == TypeManager.void_ptr_type) {
4010 ec.Report.Error (242, loc, "The operation in question is undefined on void pointers");
4011 return null;
4014 return this;
4017 public override void Emit (EmitContext ec)
4019 Type op_type = left.Type;
4020 ILGenerator ig = ec.ig;
4022 // It must be either array or fixed buffer
4023 Type element;
4024 if (TypeManager.HasElementType (op_type)) {
4025 element = TypeManager.GetElementType (op_type);
4026 } else {
4027 FieldExpr fe = left as FieldExpr;
4028 if (fe != null)
4029 element = AttributeTester.GetFixedBuffer (fe.FieldInfo).ElementType;
4030 else
4031 element = op_type;
4034 int size = GetTypeSize (element);
4035 Type rtype = right.Type;
4037 if ((op & Binary.Operator.SubtractionMask) != 0 && rtype.IsPointer){
4039 // handle (pointer - pointer)
4041 left.Emit (ec);
4042 right.Emit (ec);
4043 ig.Emit (OpCodes.Sub);
4045 if (size != 1){
4046 if (size == 0)
4047 ig.Emit (OpCodes.Sizeof, element);
4048 else
4049 IntLiteral.EmitInt (ig, size);
4050 ig.Emit (OpCodes.Div);
4052 ig.Emit (OpCodes.Conv_I8);
4053 } else {
4055 // handle + and - on (pointer op int)
4057 Constant left_const = left as Constant;
4058 if (left_const != null) {
4060 // Optimize ((T*)null) pointer operations
4062 if (left_const.IsDefaultValue) {
4063 left = EmptyExpression.Null;
4064 } else {
4065 left_const = null;
4069 left.Emit (ec);
4071 Constant right_const = right as Constant;
4072 if (right_const != null) {
4074 // Optimize 0-based arithmetic
4076 if (right_const.IsDefaultValue)
4077 return;
4079 if (size != 0) {
4080 // TODO: Should be the checks resolve context sensitive?
4081 ResolveContext rc = new ResolveContext (ec.MemberContext);
4082 right = ConstantFold.BinaryFold (rc, Binary.Operator.Multiply, new IntConstant (size, right.Location).Resolve (rc), right_const, loc);
4083 if (right == null)
4084 return;
4085 } else {
4086 ig.Emit (OpCodes.Sizeof, element);
4087 right = EmptyExpression.Null;
4091 right.Emit (ec);
4092 if (rtype == TypeManager.sbyte_type || rtype == TypeManager.byte_type ||
4093 rtype == TypeManager.short_type || rtype == TypeManager.ushort_type) {
4094 ig.Emit (OpCodes.Conv_I);
4095 } else if (rtype == TypeManager.uint32_type) {
4096 ig.Emit (OpCodes.Conv_U);
4099 if (right_const == null && size != 1){
4100 if (size == 0)
4101 ig.Emit (OpCodes.Sizeof, element);
4102 else
4103 IntLiteral.EmitInt (ig, size);
4104 if (rtype == TypeManager.int64_type || rtype == TypeManager.uint64_type)
4105 ig.Emit (OpCodes.Conv_I8);
4107 Binary.EmitOperatorOpcode (ec, Binary.Operator.Multiply, rtype);
4110 if (left_const == null) {
4111 if (rtype == TypeManager.int64_type)
4112 ig.Emit (OpCodes.Conv_I);
4113 else if (rtype == TypeManager.uint64_type)
4114 ig.Emit (OpCodes.Conv_U);
4116 Binary.EmitOperatorOpcode (ec, op, op_type);
4123 // A boolean-expression is an expression that yields a result
4124 // of type bool
4126 public class BooleanExpression : ShimExpression
4128 public BooleanExpression (Expression expr)
4129 : base (expr)
4131 this.loc = expr.Location;
4134 public override Expression CreateExpressionTree (ResolveContext ec)
4136 // TODO: We should emit IsTrue (v4) instead of direct user operator
4137 // call but that would break csc compatibility
4138 return base.CreateExpressionTree (ec);
4141 protected override Expression DoResolve (ResolveContext ec)
4143 // A boolean-expression is required to be of a type
4144 // that can be implicitly converted to bool or of
4145 // a type that implements operator true
4147 expr = expr.Resolve (ec);
4148 if (expr == null)
4149 return null;
4151 Assign ass = expr as Assign;
4152 if (ass != null && ass.Source is Constant) {
4153 ec.Report.Warning (665, 3, loc,
4154 "Assignment in conditional expression is always constant. Did you mean to use `==' instead ?");
4157 if (expr.Type == TypeManager.bool_type)
4158 return expr;
4160 if (TypeManager.IsDynamicType (expr.Type)) {
4161 Arguments args = new Arguments (1);
4162 args.Add (new Argument (expr));
4163 return new DynamicUnaryConversion ("IsTrue", args, loc).Resolve (ec);
4166 type = TypeManager.bool_type;
4167 Expression converted = Convert.ImplicitConversion (ec, expr, type, loc);
4168 if (converted != null)
4169 return converted;
4172 // If no implicit conversion to bool exists, try using `operator true'
4174 converted = GetOperatorTrue (ec, expr, loc);
4175 if (converted == null) {
4176 expr.Error_ValueCannotBeConverted (ec, loc, type, false);
4177 return null;
4180 return converted;
4184 /// <summary>
4185 /// Implements the ternary conditional operator (?:)
4186 /// </summary>
4187 public class Conditional : Expression {
4188 Expression expr, true_expr, false_expr;
4190 public Conditional (BooleanExpression expr, Expression true_expr, Expression false_expr)
4192 this.expr = expr;
4193 this.true_expr = true_expr;
4194 this.false_expr = false_expr;
4195 this.loc = expr.Location;
4198 public Expression Expr {
4199 get {
4200 return expr;
4204 public Expression TrueExpr {
4205 get {
4206 return true_expr;
4210 public Expression FalseExpr {
4211 get {
4212 return false_expr;
4216 public override Expression CreateExpressionTree (ResolveContext ec)
4218 Arguments args = new Arguments (3);
4219 args.Add (new Argument (expr.CreateExpressionTree (ec)));
4220 args.Add (new Argument (true_expr.CreateExpressionTree (ec)));
4221 args.Add (new Argument (false_expr.CreateExpressionTree (ec)));
4222 return CreateExpressionFactoryCall (ec, "Condition", args);
4225 protected override Expression DoResolve (ResolveContext ec)
4227 expr = expr.Resolve (ec);
4228 true_expr = true_expr.Resolve (ec);
4229 false_expr = false_expr.Resolve (ec);
4231 if (true_expr == null || false_expr == null || expr == null)
4232 return null;
4234 eclass = ExprClass.Value;
4235 Type true_type = true_expr.Type;
4236 Type false_type = false_expr.Type;
4237 type = true_type;
4240 // First, if an implicit conversion exists from true_expr
4241 // to false_expr, then the result type is of type false_expr.Type
4243 if (!TypeManager.IsEqual (true_type, false_type)) {
4244 Expression conv = Convert.ImplicitConversion (ec, true_expr, false_type, loc);
4245 if (conv != null) {
4247 // Check if both can convert implicitly to each other's type
4249 if (Convert.ImplicitConversion (ec, false_expr, true_type, loc) != null) {
4250 ec.Report.Error (172, loc,
4251 "Type of conditional expression cannot be determined as `{0}' and `{1}' convert implicitly to each other",
4252 TypeManager.CSharpName (true_type), TypeManager.CSharpName (false_type));
4253 return null;
4255 type = false_type;
4256 true_expr = conv;
4257 } else if ((conv = Convert.ImplicitConversion (ec, false_expr, true_type, loc)) != null) {
4258 false_expr = conv;
4259 } else {
4260 ec.Report.Error (173, loc,
4261 "Type of conditional expression cannot be determined because there is no implicit conversion between `{0}' and `{1}'",
4262 TypeManager.CSharpName (true_type), TypeManager.CSharpName (false_type));
4263 return null;
4267 // Dead code optimalization
4268 Constant c = expr as Constant;
4269 if (c != null){
4270 bool is_false = c.IsDefaultValue;
4271 ec.Report.Warning (429, 4, is_false ? true_expr.Location : false_expr.Location, "Unreachable expression code detected");
4272 return ReducedExpression.Create (is_false ? false_expr : true_expr, this);
4275 return this;
4278 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
4280 expr.MutateHoistedGenericType (storey);
4281 true_expr.MutateHoistedGenericType (storey);
4282 false_expr.MutateHoistedGenericType (storey);
4283 type = storey.MutateType (type);
4286 public override TypeExpr ResolveAsTypeTerminal (IMemberContext ec, bool silent)
4288 return null;
4291 public override void Emit (EmitContext ec)
4293 ILGenerator ig = ec.ig;
4294 Label false_target = ig.DefineLabel ();
4295 Label end_target = ig.DefineLabel ();
4297 expr.EmitBranchable (ec, false_target, false);
4298 true_expr.Emit (ec);
4300 if (type.IsInterface) {
4301 LocalBuilder temp = ec.GetTemporaryLocal (type);
4302 ig.Emit (OpCodes.Stloc, temp);
4303 ig.Emit (OpCodes.Ldloc, temp);
4304 ec.FreeTemporaryLocal (temp, type);
4307 ig.Emit (OpCodes.Br, end_target);
4308 ig.MarkLabel (false_target);
4309 false_expr.Emit (ec);
4310 ig.MarkLabel (end_target);
4313 protected override void CloneTo (CloneContext clonectx, Expression t)
4315 Conditional target = (Conditional) t;
4317 target.expr = expr.Clone (clonectx);
4318 target.true_expr = true_expr.Clone (clonectx);
4319 target.false_expr = false_expr.Clone (clonectx);
4323 public abstract class VariableReference : Expression, IAssignMethod, IMemoryLocation, IVariableReference {
4324 LocalTemporary temp;
4326 #region Abstract
4327 public abstract HoistedVariable GetHoistedVariable (AnonymousExpression ae);
4328 public abstract bool IsFixed { get; }
4329 public abstract bool IsRef { get; }
4330 public abstract string Name { get; }
4331 public abstract void SetHasAddressTaken ();
4334 // Variable IL data, it has to be protected to encapsulate hoisted variables
4336 protected abstract ILocalVariable Variable { get; }
4339 // Variable flow-analysis data
4341 public abstract VariableInfo VariableInfo { get; }
4342 #endregion
4344 public virtual void AddressOf (EmitContext ec, AddressOp mode)
4346 HoistedVariable hv = GetHoistedVariable (ec);
4347 if (hv != null) {
4348 hv.AddressOf (ec, mode);
4349 return;
4352 Variable.EmitAddressOf (ec);
4355 public HoistedVariable GetHoistedVariable (ResolveContext rc)
4357 return GetHoistedVariable (rc.CurrentAnonymousMethod);
4360 public HoistedVariable GetHoistedVariable (EmitContext ec)
4362 return GetHoistedVariable (ec.CurrentAnonymousMethod);
4365 public override string GetSignatureForError ()
4367 return Name;
4370 public override void Emit (EmitContext ec)
4372 Emit (ec, false);
4375 public override void EmitSideEffect (EmitContext ec)
4377 // do nothing
4381 // This method is used by parameters that are references, that are
4382 // being passed as references: we only want to pass the pointer (that
4383 // is already stored in the parameter, not the address of the pointer,
4384 // and not the value of the variable).
4386 public void EmitLoad (EmitContext ec)
4388 Variable.Emit (ec);
4391 public void Emit (EmitContext ec, bool leave_copy)
4393 Report.Debug (64, "VARIABLE EMIT", this, Variable, type, IsRef, loc);
4395 HoistedVariable hv = GetHoistedVariable (ec);
4396 if (hv != null) {
4397 hv.Emit (ec, leave_copy);
4398 return;
4401 EmitLoad (ec);
4403 if (IsRef) {
4405 // If we are a reference, we loaded on the stack a pointer
4406 // Now lets load the real value
4408 LoadFromPtr (ec.ig, type);
4411 if (leave_copy) {
4412 ec.ig.Emit (OpCodes.Dup);
4414 if (IsRef) {
4415 temp = new LocalTemporary (Type);
4416 temp.Store (ec);
4421 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy,
4422 bool prepare_for_load)
4424 HoistedVariable hv = GetHoistedVariable (ec);
4425 if (hv != null) {
4426 hv.EmitAssign (ec, source, leave_copy, prepare_for_load);
4427 return;
4430 New n_source = source as New;
4431 if (n_source != null) {
4432 if (!n_source.Emit (ec, this)) {
4433 if (leave_copy)
4434 EmitLoad (ec);
4435 return;
4437 } else {
4438 if (IsRef)
4439 EmitLoad (ec);
4441 source.Emit (ec);
4444 if (leave_copy) {
4445 ec.ig.Emit (OpCodes.Dup);
4446 if (IsRef) {
4447 temp = new LocalTemporary (Type);
4448 temp.Store (ec);
4452 if (IsRef)
4453 StoreFromPtr (ec.ig, type);
4454 else
4455 Variable.EmitAssign (ec);
4457 if (temp != null) {
4458 temp.Emit (ec);
4459 temp.Release (ec);
4463 public bool IsHoisted {
4464 get { return GetHoistedVariable ((AnonymousExpression) null) != null; }
4467 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
4469 type = storey.MutateType (type);
4473 /// <summary>
4474 /// Local variables
4475 /// </summary>
4476 public class LocalVariableReference : VariableReference {
4477 readonly string name;
4478 public Block Block;
4479 public LocalInfo local_info;
4480 bool is_readonly;
4482 public LocalVariableReference (Block block, string name, Location l)
4484 Block = block;
4485 this.name = name;
4486 loc = l;
4490 // Setting `is_readonly' to false will allow you to create a writable
4491 // reference to a read-only variable. This is used by foreach and using.
4493 public LocalVariableReference (Block block, string name, Location l,
4494 LocalInfo local_info, bool is_readonly)
4495 : this (block, name, l)
4497 this.local_info = local_info;
4498 this.is_readonly = is_readonly;
4501 public override VariableInfo VariableInfo {
4502 get { return local_info.VariableInfo; }
4505 public override HoistedVariable GetHoistedVariable (AnonymousExpression ae)
4507 return local_info.HoistedVariant;
4511 // A local variable is always fixed
4513 public override bool IsFixed {
4514 get { return true; }
4517 public override bool IsRef {
4518 get { return false; }
4521 public bool IsReadOnly {
4522 get { return is_readonly; }
4525 public override string Name {
4526 get { return name; }
4529 public bool VerifyAssigned (ResolveContext ec)
4531 VariableInfo variable_info = local_info.VariableInfo;
4532 return variable_info == null || variable_info.IsAssigned (ec, loc);
4535 void ResolveLocalInfo ()
4537 if (local_info == null) {
4538 local_info = Block.GetLocalInfo (Name);
4539 type = local_info.VariableType;
4540 is_readonly = local_info.ReadOnly;
4544 public override void SetHasAddressTaken ()
4546 local_info.AddressTaken = true;
4549 public override Expression CreateExpressionTree (ResolveContext ec)
4551 HoistedVariable hv = GetHoistedVariable (ec);
4552 if (hv != null)
4553 return hv.CreateExpressionTree ();
4555 Arguments arg = new Arguments (1);
4556 arg.Add (new Argument (this));
4557 return CreateExpressionFactoryCall (ec, "Constant", arg);
4560 Expression DoResolveBase (ResolveContext ec)
4562 Expression e = Block.GetConstantExpression (Name);
4563 if (e != null)
4564 return e.Resolve (ec);
4566 VerifyAssigned (ec);
4569 // If we are referencing a variable from the external block
4570 // flag it for capturing
4572 if (ec.MustCaptureVariable (local_info)) {
4573 if (local_info.AddressTaken)
4574 AnonymousMethodExpression.Error_AddressOfCapturedVar (ec, this, loc);
4576 if (ec.IsVariableCapturingRequired) {
4577 AnonymousMethodStorey storey = local_info.Block.Explicit.CreateAnonymousMethodStorey (ec);
4578 storey.CaptureLocalVariable (ec, local_info);
4582 eclass = ExprClass.Variable;
4583 type = local_info.VariableType;
4584 return this;
4587 protected override Expression DoResolve (ResolveContext ec)
4589 ResolveLocalInfo ();
4590 local_info.Used = true;
4592 if (type == null && local_info.Type is VarExpr) {
4593 local_info.VariableType = TypeManager.object_type;
4594 Error_VariableIsUsedBeforeItIsDeclared (ec.Report, Name);
4595 return null;
4598 return DoResolveBase (ec);
4601 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
4603 ResolveLocalInfo ();
4605 // is out param
4606 if (right_side == EmptyExpression.OutAccess.Instance)
4607 local_info.Used = true;
4609 // Infer implicitly typed local variable
4610 if (type == null) {
4611 VarExpr ve = local_info.Type as VarExpr;
4612 if (ve != null) {
4613 if (!ve.InferType (ec, right_side))
4614 return null;
4615 type = local_info.VariableType = ve.Type;
4619 if (is_readonly) {
4620 int code;
4621 string msg;
4622 if (right_side == EmptyExpression.OutAccess.Instance) {
4623 code = 1657; msg = "Cannot pass `{0}' as a ref or out argument because it is a `{1}'";
4624 } else if (right_side == EmptyExpression.LValueMemberAccess) {
4625 code = 1654; msg = "Cannot assign to members of `{0}' because it is a `{1}'";
4626 } else if (right_side == EmptyExpression.LValueMemberOutAccess) {
4627 code = 1655; msg = "Cannot pass members of `{0}' as ref or out arguments because it is a `{1}'";
4628 } else if (right_side == EmptyExpression.UnaryAddress) {
4629 code = 459; msg = "Cannot take the address of {1} `{0}'";
4630 } else {
4631 code = 1656; msg = "Cannot assign to `{0}' because it is a `{1}'";
4633 ec.Report.Error (code, loc, msg, Name, local_info.GetReadOnlyContext ());
4634 } else if (VariableInfo != null) {
4635 VariableInfo.SetAssigned (ec);
4638 return DoResolveBase (ec);
4641 public override int GetHashCode ()
4643 return Name.GetHashCode ();
4646 public override bool Equals (object obj)
4648 LocalVariableReference lvr = obj as LocalVariableReference;
4649 if (lvr == null)
4650 return false;
4652 return Name == lvr.Name && Block == lvr.Block;
4655 protected override ILocalVariable Variable {
4656 get { return local_info; }
4659 public override string ToString ()
4661 return String.Format ("{0} ({1}:{2})", GetType (), Name, loc);
4664 protected override void CloneTo (CloneContext clonectx, Expression t)
4666 LocalVariableReference target = (LocalVariableReference) t;
4668 target.Block = clonectx.LookupBlock (Block);
4669 if (local_info != null)
4670 target.local_info = clonectx.LookupVariable (local_info);
4674 /// <summary>
4675 /// This represents a reference to a parameter in the intermediate
4676 /// representation.
4677 /// </summary>
4678 public class ParameterReference : VariableReference {
4679 readonly ToplevelParameterInfo pi;
4681 public ParameterReference (ToplevelParameterInfo pi, Location loc)
4683 this.pi = pi;
4684 this.loc = loc;
4687 public override bool IsRef {
4688 get { return (pi.Parameter.ModFlags & Parameter.Modifier.ISBYREF) != 0; }
4691 bool HasOutModifier {
4692 get { return pi.Parameter.ModFlags == Parameter.Modifier.OUT; }
4695 public override HoistedVariable GetHoistedVariable (AnonymousExpression ae)
4697 return pi.Parameter.HoistedVariant;
4701 // A ref or out parameter is classified as a moveable variable, even
4702 // if the argument given for the parameter is a fixed variable
4704 public override bool IsFixed {
4705 get { return !IsRef; }
4708 public override string Name {
4709 get { return Parameter.Name; }
4712 public Parameter Parameter {
4713 get { return pi.Parameter; }
4716 public override VariableInfo VariableInfo {
4717 get { return pi.VariableInfo; }
4720 protected override ILocalVariable Variable {
4721 get { return Parameter; }
4724 public bool IsAssigned (ResolveContext ec, Location loc)
4726 // HACK: Variables are not captured in probing mode
4727 if (ec.IsInProbingMode)
4728 return true;
4730 if (!ec.DoFlowAnalysis || !HasOutModifier || ec.CurrentBranching.IsAssigned (VariableInfo))
4731 return true;
4733 ec.Report.Error (269, loc, "Use of unassigned out parameter `{0}'", Name);
4734 return false;
4737 public override void SetHasAddressTaken ()
4739 Parameter.HasAddressTaken = true;
4742 void SetAssigned (ResolveContext ec)
4744 if (HasOutModifier && ec.DoFlowAnalysis)
4745 ec.CurrentBranching.SetAssigned (VariableInfo);
4748 bool DoResolveBase (ResolveContext ec)
4750 type = pi.ParameterType;
4751 eclass = ExprClass.Variable;
4753 AnonymousExpression am = ec.CurrentAnonymousMethod;
4754 if (am == null)
4755 return true;
4757 Block b = ec.CurrentBlock;
4758 while (b != null) {
4759 b = b.Toplevel;
4760 IParameterData[] p = b.Toplevel.Parameters.FixedParameters;
4761 for (int i = 0; i < p.Length; ++i) {
4762 if (p [i] != Parameter)
4763 continue;
4766 // Don't capture local parameters
4768 if (b == ec.CurrentBlock.Toplevel && !am.IsIterator)
4769 return true;
4771 if (IsRef) {
4772 ec.Report.Error (1628, loc,
4773 "Parameter `{0}' cannot be used inside `{1}' when using `ref' or `out' modifier",
4774 Name, am.ContainerType);
4777 if (pi.Parameter.HasAddressTaken)
4778 AnonymousMethodExpression.Error_AddressOfCapturedVar (ec, this, loc);
4780 if (ec.IsVariableCapturingRequired && !b.Toplevel.IsExpressionTree) {
4781 AnonymousMethodStorey storey = pi.Block.CreateAnonymousMethodStorey (ec);
4782 storey.CaptureParameter (ec, this);
4785 return true;
4788 b = b.Parent;
4791 return true;
4794 public override int GetHashCode ()
4796 return Name.GetHashCode ();
4799 public override bool Equals (object obj)
4801 ParameterReference pr = obj as ParameterReference;
4802 if (pr == null)
4803 return false;
4805 return Name == pr.Name;
4808 public override void AddressOf (EmitContext ec, AddressOp mode)
4811 // ParameterReferences might already be a reference
4813 if (IsRef) {
4814 EmitLoad (ec);
4815 return;
4818 base.AddressOf (ec, mode);
4821 protected override void CloneTo (CloneContext clonectx, Expression target)
4823 // Nothing to clone
4826 public override Expression CreateExpressionTree (ResolveContext ec)
4828 HoistedVariable hv = GetHoistedVariable (ec);
4829 if (hv != null)
4830 return hv.CreateExpressionTree ();
4832 return Parameter.ExpressionTreeVariableReference ();
4836 // Notice that for ref/out parameters, the type exposed is not the
4837 // same type exposed externally.
4839 // for "ref int a":
4840 // externally we expose "int&"
4841 // here we expose "int".
4843 // We record this in "is_ref". This means that the type system can treat
4844 // the type as it is expected, but when we generate the code, we generate
4845 // the alternate kind of code.
4847 protected override Expression DoResolve (ResolveContext ec)
4849 if (!DoResolveBase (ec))
4850 return null;
4852 // HACK: Variables are not captured in probing mode
4853 if (ec.IsInProbingMode)
4854 return this;
4856 if (HasOutModifier && ec.DoFlowAnalysis &&
4857 (!ec.OmitStructFlowAnalysis || !VariableInfo.TypeInfo.IsStruct) && !IsAssigned (ec, loc))
4858 return null;
4860 return this;
4863 override public Expression DoResolveLValue (ResolveContext ec, Expression right_side)
4865 if (!DoResolveBase (ec))
4866 return null;
4868 // HACK: parameters are not captured when probing is on
4869 if (!ec.IsInProbingMode)
4870 SetAssigned (ec);
4872 return this;
4875 static public void EmitLdArg (ILGenerator ig, int x)
4877 switch (x) {
4878 case 0: ig.Emit (OpCodes.Ldarg_0); break;
4879 case 1: ig.Emit (OpCodes.Ldarg_1); break;
4880 case 2: ig.Emit (OpCodes.Ldarg_2); break;
4881 case 3: ig.Emit (OpCodes.Ldarg_3); break;
4882 default:
4883 if (x > byte.MaxValue)
4884 ig.Emit (OpCodes.Ldarg, x);
4885 else
4886 ig.Emit (OpCodes.Ldarg_S, (byte) x);
4887 break;
4892 /// <summary>
4893 /// Invocation of methods or delegates.
4894 /// </summary>
4895 public class Invocation : ExpressionStatement
4897 protected Arguments arguments;
4898 protected Expression expr;
4899 protected MethodGroupExpr mg;
4900 bool arguments_resolved;
4903 // arguments is an ArrayList, but we do not want to typecast,
4904 // as it might be null.
4906 public Invocation (Expression expr, Arguments arguments)
4908 SimpleName sn = expr as SimpleName;
4909 if (sn != null)
4910 this.expr = sn.GetMethodGroup ();
4911 else
4912 this.expr = expr;
4914 this.arguments = arguments;
4915 if (expr != null)
4916 loc = expr.Location;
4919 public Invocation (Expression expr, Arguments arguments, bool arguments_resolved)
4920 : this (expr, arguments)
4922 this.arguments_resolved = arguments_resolved;
4925 public override Expression CreateExpressionTree (ResolveContext ec)
4927 Expression instance = mg.IsInstance ?
4928 mg.InstanceExpression.CreateExpressionTree (ec) :
4929 new NullLiteral (loc);
4931 var args = Arguments.CreateForExpressionTree (ec, arguments,
4932 instance,
4933 mg.CreateExpressionTree (ec));
4935 if (mg.IsBase)
4936 MemberExpr.Error_BaseAccessInExpressionTree (ec, loc);
4938 return CreateExpressionFactoryCall (ec, "Call", args);
4941 protected override Expression DoResolve (ResolveContext ec)
4943 Expression member_expr = expr.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.MethodGroup);
4944 if (member_expr == null)
4945 return null;
4948 // Next, evaluate all the expressions in the argument list
4950 bool dynamic_arg = false;
4951 if (arguments != null && !arguments_resolved)
4952 arguments.Resolve (ec, out dynamic_arg);
4954 Type expr_type = member_expr.Type;
4955 mg = member_expr as MethodGroupExpr;
4957 bool dynamic_member = TypeManager.IsDynamicType (expr_type);
4959 if (!dynamic_member) {
4960 Expression invoke = null;
4962 if (mg == null) {
4963 if (expr_type != null && TypeManager.IsDelegateType (expr_type)) {
4964 invoke = new DelegateInvocation (member_expr, arguments, loc);
4965 invoke = invoke.Resolve (ec);
4966 if (invoke == null || !dynamic_arg)
4967 return invoke;
4968 } else {
4969 MemberExpr me = member_expr as MemberExpr;
4970 if (me == null) {
4971 member_expr.Error_UnexpectedKind (ec, ResolveFlags.MethodGroup, loc);
4972 return null;
4975 mg = ec.LookupExtensionMethod (me.Type, me.Name, loc);
4976 if (mg == null) {
4977 ec.Report.Error (1955, loc, "The member `{0}' cannot be used as method or delegate",
4978 member_expr.GetSignatureForError ());
4979 return null;
4982 ((ExtensionMethodGroupExpr) mg).ExtensionExpression = me.InstanceExpression;
4986 if (invoke == null) {
4987 mg = DoResolveOverload (ec);
4988 if (mg == null)
4989 return null;
4993 if (dynamic_arg || dynamic_member)
4994 return DoResolveDynamic (ec, member_expr);
4996 MethodInfo method = (MethodInfo)mg;
4997 if (method != null) {
4998 type = TypeManager.TypeToCoreType (method.ReturnType);
5000 // TODO: this is a copy of mg.ResolveMemberAccess method
5001 Expression iexpr = mg.InstanceExpression;
5002 if (method.IsStatic) {
5003 if (iexpr == null ||
5004 iexpr is This || iexpr is EmptyExpression ||
5005 mg.IdenticalTypeName) {
5006 mg.InstanceExpression = null;
5007 } else {
5008 MemberExpr.error176 (ec, loc, mg.GetSignatureForError ());
5009 return null;
5011 } else {
5012 if (iexpr == null || iexpr == EmptyExpression.Null) {
5013 SimpleName.Error_ObjectRefRequired (ec, loc, mg.GetSignatureForError ());
5019 // Only base will allow this invocation to happen.
5021 if (mg.IsBase && method.IsAbstract){
5022 Error_CannotCallAbstractBase (ec, TypeManager.CSharpSignature (method));
5023 return null;
5026 if (arguments == null && method.DeclaringType == TypeManager.object_type && method.Name == Destructor.MetadataName) {
5027 if (mg.IsBase)
5028 ec.Report.Error (250, loc, "Do not directly call your base class Finalize method. It is called automatically from your destructor");
5029 else
5030 ec.Report.Error (245, loc, "Destructors and object.Finalize cannot be called directly. Consider calling IDisposable.Dispose if available");
5031 return null;
5034 IsSpecialMethodInvocation (ec, method, loc);
5036 if (mg.InstanceExpression != null)
5037 mg.InstanceExpression.CheckMarshalByRefAccess (ec);
5039 eclass = ExprClass.Value;
5040 return this;
5043 Expression DoResolveDynamic (ResolveContext ec, Expression memberExpr)
5045 Arguments args;
5046 DynamicMemberBinder dmb = memberExpr as DynamicMemberBinder;
5047 if (dmb != null) {
5048 args = dmb.Arguments;
5049 if (arguments != null)
5050 args.AddRange (arguments);
5051 } else if (mg == null) {
5052 if (arguments == null)
5053 args = new Arguments (1);
5054 else
5055 args = arguments;
5057 args.Insert (0, new Argument (memberExpr));
5058 this.expr = null;
5059 } else {
5060 if (mg.IsBase) {
5061 ec.Report.Error (1971, loc,
5062 "The base call to method `{0}' cannot be dynamically dispatched. Consider casting the dynamic arguments or eliminating the base access",
5063 mg.Name);
5064 return null;
5067 args = arguments;
5069 if (mg.IsStatic != mg.IsInstance) {
5070 if (args == null)
5071 args = new Arguments (1);
5073 if (mg.IsStatic) {
5074 args.Insert (0, new Argument (new TypeOf (new TypeExpression (mg.DeclaringType, loc), loc).Resolve (ec), Argument.AType.DynamicTypeName));
5075 } else {
5076 MemberAccess ma = expr as MemberAccess;
5077 if (ma != null)
5078 args.Insert (0, new Argument (ma.Left.Resolve (ec)));
5079 else
5080 args.Insert (0, new Argument (new This (loc).Resolve (ec)));
5085 return new DynamicInvocation (expr as ATypeNameExpression, args, loc).Resolve (ec);
5088 protected virtual MethodGroupExpr DoResolveOverload (ResolveContext ec)
5090 return mg.OverloadResolve (ec, ref arguments, false, loc);
5093 public static bool IsSpecialMethodInvocation (ResolveContext ec, MethodBase method, Location loc)
5095 if (!TypeManager.IsSpecialMethod (method))
5096 return false;
5098 if (ec.HasSet (ResolveContext.Options.InvokeSpecialName))
5099 return false;
5101 ec.Report.SymbolRelatedToPreviousError (method);
5102 ec.Report.Error (571, loc, "`{0}': cannot explicitly call operator or accessor",
5103 TypeManager.CSharpSignature (method, true));
5105 return true;
5108 static Type[] GetVarargsTypes (MethodBase mb, Arguments arguments)
5110 AParametersCollection pd = TypeManager.GetParameterData (mb);
5112 Argument a = arguments [pd.Count - 1];
5113 Arglist list = (Arglist) a.Expr;
5115 return list.ArgumentTypes;
5118 /// <summary>
5119 /// This checks the ConditionalAttribute on the method
5120 /// </summary>
5121 public static bool IsMethodExcluded (MethodBase method, Location loc)
5123 if (method.IsConstructor)
5124 return false;
5126 method = TypeManager.DropGenericMethodArguments (method);
5127 if (TypeManager.IsBeingCompiled (method)) {
5128 IMethodData md = TypeManager.GetMethod (method);
5129 if (md != null)
5130 return md.IsExcluded ();
5132 // For some methods (generated by delegate class) GetMethod returns null
5133 // because they are not included in builder_to_method table
5134 return false;
5137 return AttributeTester.IsConditionalMethodExcluded (method, loc);
5140 /// <remarks>
5141 /// is_base tells whether we want to force the use of the `call'
5142 /// opcode instead of using callvirt. Call is required to call
5143 /// a specific method, while callvirt will always use the most
5144 /// recent method in the vtable.
5146 /// is_static tells whether this is an invocation on a static method
5148 /// instance_expr is an expression that represents the instance
5149 /// it must be non-null if is_static is false.
5151 /// method is the method to invoke.
5153 /// Arguments is the list of arguments to pass to the method or constructor.
5154 /// </remarks>
5155 public static void EmitCall (EmitContext ec, bool is_base,
5156 Expression instance_expr,
5157 MethodBase method, Arguments Arguments, Location loc)
5159 EmitCall (ec, is_base, instance_expr, method, Arguments, loc, false, false);
5162 // `dup_args' leaves an extra copy of the arguments on the stack
5163 // `omit_args' does not leave any arguments at all.
5164 // So, basically, you could make one call with `dup_args' set to true,
5165 // and then another with `omit_args' set to true, and the two calls
5166 // would have the same set of arguments. However, each argument would
5167 // only have been evaluated once.
5168 public static void EmitCall (EmitContext ec, bool is_base,
5169 Expression instance_expr,
5170 MethodBase method, Arguments Arguments, Location loc,
5171 bool dup_args, bool omit_args)
5173 ILGenerator ig = ec.ig;
5174 bool struct_call = false;
5175 bool this_call = false;
5176 LocalTemporary this_arg = null;
5178 Type decl_type = method.DeclaringType;
5180 if (IsMethodExcluded (method, loc))
5181 return;
5183 bool is_static = method.IsStatic;
5184 if (!is_static){
5185 this_call = instance_expr is This;
5186 if (TypeManager.IsStruct (decl_type) || TypeManager.IsEnumType (decl_type))
5187 struct_call = true;
5190 // If this is ourselves, push "this"
5192 if (!omit_args) {
5193 Type t = null;
5194 Type iexpr_type = instance_expr.Type;
5197 // Push the instance expression
5199 if (TypeManager.IsValueType (iexpr_type) || TypeManager.IsGenericParameter (iexpr_type)) {
5201 // Special case: calls to a function declared in a
5202 // reference-type with a value-type argument need
5203 // to have their value boxed.
5204 if (TypeManager.IsStruct (decl_type) ||
5205 TypeManager.IsGenericParameter (iexpr_type)) {
5207 // If the expression implements IMemoryLocation, then
5208 // we can optimize and use AddressOf on the
5209 // return.
5211 // If not we have to use some temporary storage for
5212 // it.
5213 if (instance_expr is IMemoryLocation) {
5214 ((IMemoryLocation)instance_expr).
5215 AddressOf (ec, AddressOp.LoadStore);
5216 } else {
5217 LocalTemporary temp = new LocalTemporary (iexpr_type);
5218 instance_expr.Emit (ec);
5219 temp.Store (ec);
5220 temp.AddressOf (ec, AddressOp.Load);
5223 // avoid the overhead of doing this all the time.
5224 if (dup_args)
5225 t = TypeManager.GetReferenceType (iexpr_type);
5226 } else {
5227 instance_expr.Emit (ec);
5229 // FIXME: should use instance_expr is IMemoryLocation + constraint.
5230 // to help JIT to produce better code
5231 ig.Emit (OpCodes.Box, instance_expr.Type);
5232 t = TypeManager.object_type;
5234 } else {
5235 instance_expr.Emit (ec);
5236 t = instance_expr.Type;
5239 if (dup_args) {
5240 ig.Emit (OpCodes.Dup);
5241 if (Arguments != null && Arguments.Count != 0) {
5242 this_arg = new LocalTemporary (t);
5243 this_arg.Store (ec);
5249 if (!omit_args && Arguments != null)
5250 Arguments.Emit (ec, dup_args, this_arg);
5252 OpCode call_op;
5253 if (is_static || struct_call || is_base || (this_call && !method.IsVirtual)) {
5254 call_op = OpCodes.Call;
5255 } else {
5256 call_op = OpCodes.Callvirt;
5258 if ((instance_expr != null) && (instance_expr.Type.IsGenericParameter))
5259 ig.Emit (OpCodes.Constrained, instance_expr.Type);
5262 if ((method.CallingConvention & CallingConventions.VarArgs) != 0) {
5263 Type[] varargs_types = GetVarargsTypes (method, Arguments);
5264 ig.EmitCall (call_op, (MethodInfo) method, varargs_types);
5265 return;
5269 // If you have:
5270 // this.DoFoo ();
5271 // and DoFoo is not virtual, you can omit the callvirt,
5272 // because you don't need the null checking behavior.
5274 if (method is MethodInfo)
5275 ig.Emit (call_op, (MethodInfo) method);
5276 else
5277 ig.Emit (call_op, (ConstructorInfo) method);
5280 public override void Emit (EmitContext ec)
5282 mg.EmitCall (ec, arguments);
5285 public override void EmitStatement (EmitContext ec)
5287 Emit (ec);
5290 // Pop the return value if there is one
5292 if (TypeManager.TypeToCoreType (type) != TypeManager.void_type)
5293 ec.ig.Emit (OpCodes.Pop);
5296 protected override void CloneTo (CloneContext clonectx, Expression t)
5298 Invocation target = (Invocation) t;
5300 if (arguments != null)
5301 target.arguments = arguments.Clone (clonectx);
5303 target.expr = expr.Clone (clonectx);
5306 public override SLE.Expression MakeExpression (BuilderContext ctx)
5308 return MakeExpression (ctx, mg.InstanceExpression, (MethodInfo) mg, arguments);
5311 public static SLE.Expression MakeExpression (BuilderContext ctx, Expression instance, MethodInfo mi, Arguments args)
5313 var instance_expr = instance == null ? null : instance.MakeExpression (ctx);
5314 return SLE.Expression.Call (instance_expr, mi, Arguments.MakeExpression (args, ctx));
5317 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5319 mg.MutateHoistedGenericType (storey);
5320 type = storey.MutateType (type);
5321 if (arguments != null) {
5322 arguments.MutateHoistedGenericType (storey);
5327 /// <summary>
5328 /// Implements the new expression
5329 /// </summary>
5330 public class New : ExpressionStatement, IMemoryLocation {
5331 protected Arguments Arguments;
5334 // During bootstrap, it contains the RequestedType,
5335 // but if `type' is not null, it *might* contain a NewDelegate
5336 // (because of field multi-initialization)
5338 protected Expression RequestedType;
5340 protected MethodGroupExpr method;
5342 bool is_type_parameter;
5344 public New (Expression requested_type, Arguments arguments, Location l)
5346 RequestedType = requested_type;
5347 Arguments = arguments;
5348 loc = l;
5351 /// <summary>
5352 /// Converts complex core type syntax like 'new int ()' to simple constant
5353 /// </summary>
5354 public static Constant Constantify (Type t)
5356 if (t == TypeManager.int32_type)
5357 return new IntConstant (0, Location.Null);
5358 if (t == TypeManager.uint32_type)
5359 return new UIntConstant (0, Location.Null);
5360 if (t == TypeManager.int64_type)
5361 return new LongConstant (0, Location.Null);
5362 if (t == TypeManager.uint64_type)
5363 return new ULongConstant (0, Location.Null);
5364 if (t == TypeManager.float_type)
5365 return new FloatConstant (0, Location.Null);
5366 if (t == TypeManager.double_type)
5367 return new DoubleConstant (0, Location.Null);
5368 if (t == TypeManager.short_type)
5369 return new ShortConstant (0, Location.Null);
5370 if (t == TypeManager.ushort_type)
5371 return new UShortConstant (0, Location.Null);
5372 if (t == TypeManager.sbyte_type)
5373 return new SByteConstant (0, Location.Null);
5374 if (t == TypeManager.byte_type)
5375 return new ByteConstant (0, Location.Null);
5376 if (t == TypeManager.char_type)
5377 return new CharConstant ('\0', Location.Null);
5378 if (t == TypeManager.bool_type)
5379 return new BoolConstant (false, Location.Null);
5380 if (t == TypeManager.decimal_type)
5381 return new DecimalConstant (0, Location.Null);
5382 if (TypeManager.IsEnumType (t))
5383 return new EnumConstant (Constantify (TypeManager.GetEnumUnderlyingType (t)), t);
5384 if (TypeManager.IsNullableType (t))
5385 return Nullable.LiftedNull.Create (t, Location.Null);
5387 return null;
5391 // Checks whether the type is an interface that has the
5392 // [ComImport, CoClass] attributes and must be treated
5393 // specially
5395 public Expression CheckComImport (ResolveContext ec)
5397 if (!type.IsInterface)
5398 return null;
5401 // Turn the call into:
5402 // (the-interface-stated) (new class-referenced-in-coclassattribute ())
5404 Type real_class = AttributeTester.GetCoClassAttribute (type);
5405 if (real_class == null)
5406 return null;
5408 New proxy = new New (new TypeExpression (real_class, loc), Arguments, loc);
5409 Cast cast = new Cast (new TypeExpression (type, loc), proxy, loc);
5410 return cast.Resolve (ec);
5413 public override Expression CreateExpressionTree (ResolveContext ec)
5415 Arguments args;
5416 if (method == null) {
5417 args = new Arguments (1);
5418 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
5419 } else {
5420 args = Arguments.CreateForExpressionTree (ec,
5421 Arguments,
5422 method.CreateExpressionTree (ec));
5425 return CreateExpressionFactoryCall (ec, "New", args);
5428 protected override Expression DoResolve (ResolveContext ec)
5431 // The New DoResolve might be called twice when initializing field
5432 // expressions (see EmitFieldInitializers, the call to
5433 // GetInitializerExpression will perform a resolve on the expression,
5434 // and later the assign will trigger another resolution
5436 // This leads to bugs (#37014)
5438 if (type != null){
5439 if (RequestedType is NewDelegate)
5440 return RequestedType;
5441 return this;
5444 TypeExpr texpr = RequestedType.ResolveAsTypeTerminal (ec, false);
5445 if (texpr == null)
5446 return null;
5448 type = texpr.Type;
5450 if (type.IsPointer) {
5451 ec.Report.Error (1919, loc, "Unsafe type `{0}' cannot be used in an object creation expression",
5452 TypeManager.CSharpName (type));
5453 return null;
5456 if (Arguments == null) {
5457 Constant c = Constantify (type);
5458 if (c != null)
5459 return ReducedExpression.Create (c.Resolve (ec), this);
5462 if (TypeManager.IsDelegateType (type)) {
5463 return (new NewDelegate (type, Arguments, loc)).Resolve (ec);
5466 if (TypeManager.IsGenericParameter (type)) {
5467 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (type);
5469 if ((gc == null) || (!gc.HasConstructorConstraint && !gc.IsValueType)) {
5470 ec.Report.Error (304, loc,
5471 "Cannot create an instance of the variable type '{0}' because it doesn't have the new() constraint",
5472 TypeManager.CSharpName (type));
5473 return null;
5476 if ((Arguments != null) && (Arguments.Count != 0)) {
5477 ec.Report.Error (417, loc,
5478 "`{0}': cannot provide arguments when creating an instance of a variable type",
5479 TypeManager.CSharpName (type));
5480 return null;
5483 if (TypeManager.activator_create_instance == null) {
5484 Type activator_type = TypeManager.CoreLookupType (ec.Compiler, "System", "Activator", Kind.Class, true);
5485 if (activator_type != null) {
5486 TypeManager.activator_create_instance = TypeManager.GetPredefinedMethod (
5487 activator_type, "CreateInstance", loc, Type.EmptyTypes);
5491 is_type_parameter = true;
5492 eclass = ExprClass.Value;
5493 return this;
5496 if (type.IsAbstract && type.IsSealed) {
5497 ec.Report.SymbolRelatedToPreviousError (type);
5498 ec.Report.Error (712, loc, "Cannot create an instance of the static class `{0}'", TypeManager.CSharpName (type));
5499 return null;
5502 if (type.IsInterface || type.IsAbstract){
5503 if (!TypeManager.IsGenericType (type)) {
5504 RequestedType = CheckComImport (ec);
5505 if (RequestedType != null)
5506 return RequestedType;
5509 ec.Report.SymbolRelatedToPreviousError (type);
5510 ec.Report.Error (144, loc, "Cannot create an instance of the abstract class or interface `{0}'", TypeManager.CSharpName (type));
5511 return null;
5514 bool is_struct = TypeManager.IsStruct (type);
5515 eclass = ExprClass.Value;
5518 // SRE returns a match for .ctor () on structs (the object constructor),
5519 // so we have to manually ignore it.
5521 if (is_struct && Arguments == null)
5522 return this;
5524 // For member-lookup, treat 'new Foo (bar)' as call to 'foo.ctor (bar)', where 'foo' is of type 'Foo'.
5525 Expression ml = MemberLookupFinal (ec, type, type, ConstructorInfo.ConstructorName,
5526 MemberTypes.Constructor, AllBindingFlags | BindingFlags.DeclaredOnly, loc);
5528 bool dynamic;
5529 if (Arguments != null) {
5530 Arguments.Resolve (ec, out dynamic);
5531 } else {
5532 dynamic = false;
5535 if (ml == null)
5536 return null;
5538 method = ml as MethodGroupExpr;
5539 if (method == null) {
5540 ml.Error_UnexpectedKind (ec, ResolveFlags.MethodGroup, loc);
5541 return null;
5544 method = method.OverloadResolve (ec, ref Arguments, false, loc);
5545 if (method == null)
5546 return null;
5548 if (dynamic) {
5549 Arguments.Insert (0, new Argument (new TypeOf (texpr, loc).Resolve (ec), Argument.AType.DynamicTypeName));
5550 return new DynamicConstructorBinder (type, Arguments, loc).Resolve (ec);
5553 return this;
5556 bool DoEmitTypeParameter (EmitContext ec)
5558 ILGenerator ig = ec.ig;
5560 MethodInfo ci = TypeManager.activator_create_instance.MakeGenericMethod (
5561 new Type [] { type });
5563 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (type);
5564 if (gc.HasReferenceTypeConstraint || gc.HasClassConstraint) {
5565 ig.Emit (OpCodes.Call, ci);
5566 return true;
5569 // Allow DoEmit() to be called multiple times.
5570 // We need to create a new LocalTemporary each time since
5571 // you can't share LocalBuilders among ILGeneators.
5572 LocalTemporary temp = new LocalTemporary (type);
5574 Label label_activator = ig.DefineLabel ();
5575 Label label_end = ig.DefineLabel ();
5577 temp.AddressOf (ec, AddressOp.Store);
5578 ig.Emit (OpCodes.Initobj, type);
5580 temp.Emit (ec);
5581 ig.Emit (OpCodes.Box, type);
5582 ig.Emit (OpCodes.Brfalse, label_activator);
5584 temp.AddressOf (ec, AddressOp.Store);
5585 ig.Emit (OpCodes.Initobj, type);
5586 temp.Emit (ec);
5587 ig.Emit (OpCodes.Br_S, label_end);
5589 ig.MarkLabel (label_activator);
5591 ig.Emit (OpCodes.Call, ci);
5592 ig.MarkLabel (label_end);
5593 return true;
5597 // This Emit can be invoked in two contexts:
5598 // * As a mechanism that will leave a value on the stack (new object)
5599 // * As one that wont (init struct)
5601 // If we are dealing with a ValueType, we have a few
5602 // situations to deal with:
5604 // * The target is a ValueType, and we have been provided
5605 // the instance (this is easy, we are being assigned).
5607 // * The target of New is being passed as an argument,
5608 // to a boxing operation or a function that takes a
5609 // ValueType.
5611 // In this case, we need to create a temporary variable
5612 // that is the argument of New.
5614 // Returns whether a value is left on the stack
5616 // *** Implementation note ***
5618 // To benefit from this optimization, each assignable expression
5619 // has to manually cast to New and call this Emit.
5621 // TODO: It's worth to implement it for arrays and fields
5623 public virtual bool Emit (EmitContext ec, IMemoryLocation target)
5625 bool is_value_type = TypeManager.IsValueType (type);
5626 ILGenerator ig = ec.ig;
5627 VariableReference vr = target as VariableReference;
5629 if (target != null && is_value_type && (vr != null || method == null)) {
5630 target.AddressOf (ec, AddressOp.Store);
5631 } else if (vr != null && vr.IsRef) {
5632 vr.EmitLoad (ec);
5635 if (Arguments != null)
5636 Arguments.Emit (ec);
5638 if (is_value_type) {
5639 if (method == null) {
5640 ig.Emit (OpCodes.Initobj, type);
5641 return false;
5644 if (vr != null) {
5645 ig.Emit (OpCodes.Call, (ConstructorInfo) method);
5646 return false;
5650 if (is_type_parameter)
5651 return DoEmitTypeParameter (ec);
5653 ConstructorInfo ci = (ConstructorInfo) method;
5654 #if MS_COMPATIBLE
5655 if (TypeManager.IsGenericType (type) && type.IsGenericTypeDefinition)
5656 ci = TypeBuilder.GetConstructor (type, ci);
5657 #endif
5659 ig.Emit (OpCodes.Newobj, ci);
5660 return true;
5663 public override void Emit (EmitContext ec)
5665 LocalTemporary v = null;
5666 if (method == null && TypeManager.IsValueType (type)) {
5667 // TODO: Use temporary variable from pool
5668 v = new LocalTemporary (type);
5671 if (!Emit (ec, v))
5672 v.Emit (ec);
5675 public override void EmitStatement (EmitContext ec)
5677 LocalTemporary v = null;
5678 if (method == null && TypeManager.IsValueType (type)) {
5679 // TODO: Use temporary variable from pool
5680 v = new LocalTemporary (type);
5683 if (Emit (ec, v))
5684 ec.ig.Emit (OpCodes.Pop);
5687 public virtual bool HasInitializer {
5688 get {
5689 return false;
5693 public void AddressOf (EmitContext ec, AddressOp mode)
5695 EmitAddressOf (ec, mode);
5698 protected virtual IMemoryLocation EmitAddressOf (EmitContext ec, AddressOp mode)
5700 LocalTemporary value_target = new LocalTemporary (type);
5702 if (is_type_parameter) {
5703 DoEmitTypeParameter (ec);
5704 value_target.Store (ec);
5705 value_target.AddressOf (ec, mode);
5706 return value_target;
5709 if (!TypeManager.IsStruct (type)){
5711 // We throw an exception. So far, I believe we only need to support
5712 // value types:
5713 // foreach (int j in new StructType ())
5714 // see bug 42390
5716 throw new Exception ("AddressOf should not be used for classes");
5719 value_target.AddressOf (ec, AddressOp.Store);
5721 if (method == null) {
5722 ec.ig.Emit (OpCodes.Initobj, type);
5723 } else {
5724 if (Arguments != null)
5725 Arguments.Emit (ec);
5727 ec.ig.Emit (OpCodes.Call, (ConstructorInfo) method);
5730 value_target.AddressOf (ec, mode);
5731 return value_target;
5734 protected override void CloneTo (CloneContext clonectx, Expression t)
5736 New target = (New) t;
5738 target.RequestedType = RequestedType.Clone (clonectx);
5739 if (Arguments != null){
5740 target.Arguments = Arguments.Clone (clonectx);
5744 public override SLE.Expression MakeExpression (BuilderContext ctx)
5746 return SLE.Expression.New ((ConstructorInfo) method, Arguments.MakeExpression (Arguments, ctx));
5749 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5751 if (method != null) {
5752 method.MutateHoistedGenericType (storey);
5753 if (Arguments != null) {
5754 Arguments.MutateHoistedGenericType (storey);
5758 type = storey.MutateType (type);
5762 public class ArrayInitializer : ShimExpression
5764 List<Expression> elements;
5766 public ArrayInitializer (List<Expression> init, Location loc)
5767 : base (null)
5769 elements = init;
5772 public ArrayInitializer (int count, Location loc)
5773 : base (null)
5775 elements = new List<Expression> (count);
5778 public ArrayInitializer (Location loc)
5779 : this (4, loc)
5783 public void Add (Expression expr)
5785 elements.Add (expr);
5788 protected override void CloneTo (CloneContext clonectx, Expression t)
5790 var target = (ArrayInitializer) t;
5792 target.elements = new List<Expression> (elements.Count);
5793 foreach (var element in elements)
5794 target.elements.Add (element.Clone (clonectx));
5796 base.CloneTo (clonectx, t);
5799 public int Count {
5800 get { return elements.Count; }
5803 protected override Expression DoResolve (ResolveContext rc)
5805 throw new NotImplementedException ();
5808 public Expression this [int index] {
5809 get { return elements [index]; }
5813 /// <summary>
5814 /// 14.5.10.2: Represents an array creation expression.
5815 /// </summary>
5817 /// <remarks>
5818 /// There are two possible scenarios here: one is an array creation
5819 /// expression that specifies the dimensions and optionally the
5820 /// initialization data and the other which does not need dimensions
5821 /// specified but where initialization data is mandatory.
5822 /// </remarks>
5823 class ArrayCreation : Expression
5825 FullNamedExpression requested_base_type;
5826 ArrayInitializer initializers;
5829 // The list of Argument types.
5830 // This is used to construct the `newarray' or constructor signature
5832 protected List<Expression> arguments;
5834 protected Type array_element_type;
5835 bool expect_initializers = false;
5836 int num_arguments = 0;
5837 protected int dimensions;
5838 protected readonly string rank;
5839 Expression first_emit;
5840 LocalTemporary first_emit_temp;
5842 protected List<Expression> array_data;
5844 Dictionary<int, int> bounds;
5846 // The number of constants in array initializers
5847 int const_initializers_count;
5848 bool only_constant_initializers;
5850 public ArrayCreation (FullNamedExpression requested_base_type, List<Expression> exprs, string rank, ArrayInitializer initializers, Location l)
5852 this.requested_base_type = requested_base_type;
5853 this.initializers = initializers;
5854 this.rank = rank;
5855 loc = l;
5857 arguments = new List<Expression> (exprs);
5858 num_arguments = arguments.Count;
5861 public ArrayCreation (FullNamedExpression requested_base_type, string rank, ArrayInitializer initializers, Location l)
5863 this.requested_base_type = requested_base_type;
5864 this.initializers = initializers;
5865 this.rank = rank;
5866 loc = l;
5868 //this.rank = rank.Substring (0, rank.LastIndexOf ('['));
5870 //string tmp = rank.Substring (rank.LastIndexOf ('['));
5872 //dimensions = tmp.Length - 1;
5873 expect_initializers = true;
5876 protected override void Error_NegativeArrayIndex (ResolveContext ec, Location loc)
5878 ec.Report.Error (248, loc, "Cannot create an array with a negative size");
5881 bool CheckIndices (ResolveContext ec, ArrayInitializer probe, int idx, bool specified_dims, int child_bounds)
5883 if (specified_dims) {
5884 Expression a = arguments [idx];
5885 a = a.Resolve (ec);
5886 if (a == null)
5887 return false;
5889 Constant c = a as Constant;
5890 if (c != null) {
5891 c = c.ImplicitConversionRequired (ec, TypeManager.int32_type, a.Location);
5894 if (c == null) {
5895 ec.Report.Error (150, a.Location, "A constant value is expected");
5896 return false;
5899 int value = (int) c.GetValue ();
5901 if (value != probe.Count) {
5902 ec.Report.Error (847, loc, "An array initializer of length `{0}' was expected", value);
5903 return false;
5906 bounds [idx] = value;
5909 only_constant_initializers = true;
5910 for (int i = 0; i < probe.Count; ++i) {
5911 var o = probe [i];
5912 if (o is ArrayInitializer) {
5913 var sub_probe = o as ArrayInitializer;
5914 if (idx + 1 >= dimensions){
5915 ec.Report.Error (623, loc, "Array initializers can only be used in a variable or field initializer. Try using a new expression instead");
5916 return false;
5919 bool ret = CheckIndices (ec, sub_probe, idx + 1, specified_dims, child_bounds - 1);
5920 if (!ret)
5921 return false;
5922 } else if (child_bounds > 1) {
5923 ec.Report.Error (846, o.Location, "A nested array initializer was expected");
5924 } else {
5925 Expression element = ResolveArrayElement (ec, o);
5926 if (element == null)
5927 continue;
5929 // Initializers with the default values can be ignored
5930 Constant c = element as Constant;
5931 if (c != null) {
5932 if (c.IsDefaultInitializer (array_element_type)) {
5933 element = null;
5935 else {
5936 ++const_initializers_count;
5938 } else {
5939 only_constant_initializers = false;
5942 array_data.Add (element);
5946 return true;
5949 public override Expression CreateExpressionTree (ResolveContext ec)
5951 Arguments args;
5953 if (array_data == null) {
5954 args = new Arguments (arguments.Count + 1);
5955 args.Add (new Argument (new TypeOf (new TypeExpression (array_element_type, loc), loc)));
5956 foreach (Expression a in arguments)
5957 args.Add (new Argument (a.CreateExpressionTree (ec)));
5959 return CreateExpressionFactoryCall (ec, "NewArrayBounds", args);
5962 if (dimensions > 1) {
5963 ec.Report.Error (838, loc, "An expression tree cannot contain a multidimensional array initializer");
5964 return null;
5967 args = new Arguments (array_data == null ? 1 : array_data.Count + 1);
5968 args.Add (new Argument (new TypeOf (new TypeExpression (array_element_type, loc), loc)));
5969 if (array_data != null) {
5970 for (int i = 0; i < array_data.Count; ++i) {
5971 Expression e = array_data [i];
5972 if (e == null)
5973 e = Convert.ImplicitConversion (ec, initializers [i], array_element_type, loc);
5975 args.Add (new Argument (e.CreateExpressionTree (ec)));
5979 return CreateExpressionFactoryCall (ec, "NewArrayInit", args);
5982 public void UpdateIndices ()
5984 int i = 0;
5985 for (var probe = initializers; probe != null;) {
5986 if (probe.Count > 0 && probe [0] is ArrayInitializer) {
5987 Expression e = new IntConstant (probe.Count, Location.Null);
5988 arguments.Add (e);
5990 bounds [i++] = probe.Count;
5992 probe = (ArrayInitializer) probe[0];
5994 } else {
5995 Expression e = new IntConstant (probe.Count, Location.Null);
5996 arguments.Add (e);
5998 bounds [i++] = probe.Count;
5999 return;
6004 protected virtual Expression ResolveArrayElement (ResolveContext ec, Expression element)
6006 element = element.Resolve (ec);
6007 if (element == null)
6008 return null;
6010 if (element is CompoundAssign.TargetExpression) {
6011 if (first_emit != null)
6012 throw new InternalErrorException ("Can only handle one mutator at a time");
6013 first_emit = element;
6014 element = first_emit_temp = new LocalTemporary (element.Type);
6017 return Convert.ImplicitConversionRequired (
6018 ec, element, array_element_type, loc);
6021 protected bool ResolveInitializers (ResolveContext ec)
6023 if (initializers == null) {
6024 return !expect_initializers;
6028 // We use this to store all the date values in the order in which we
6029 // will need to store them in the byte blob later
6031 array_data = new List<Expression> ();
6032 bounds = new Dictionary<int, int> ();
6034 if (arguments != null)
6035 return CheckIndices (ec, initializers, 0, true, dimensions);
6037 arguments = new List<Expression> ();
6039 if (!CheckIndices (ec, initializers, 0, false, dimensions))
6040 return false;
6042 UpdateIndices ();
6044 return true;
6048 // Resolved the type of the array
6050 bool ResolveArrayType (ResolveContext ec)
6052 if (requested_base_type is VarExpr) {
6053 ec.Report.Error (820, loc, "An implicitly typed local variable declarator cannot use an array initializer");
6054 return false;
6057 StringBuilder array_qualifier = new StringBuilder (rank);
6060 // `In the first form allocates an array instace of the type that results
6061 // from deleting each of the individual expression from the expression list'
6063 if (num_arguments > 0) {
6064 array_qualifier.Append ("[");
6065 for (int i = num_arguments-1; i > 0; i--)
6066 array_qualifier.Append (",");
6067 array_qualifier.Append ("]");
6071 // Lookup the type
6073 TypeExpr array_type_expr;
6074 array_type_expr = new ComposedCast (requested_base_type, array_qualifier.ToString (), loc);
6075 array_type_expr = array_type_expr.ResolveAsTypeTerminal (ec, false);
6076 if (array_type_expr == null)
6077 return false;
6079 type = array_type_expr.Type;
6080 if (!type.IsArray) {
6081 ec.Report.Error (622, loc, "Can only use array initializer expressions to assign to array types. Try using a new expression instead");
6082 return false;
6085 array_element_type = TypeManager.GetElementType (type);
6086 dimensions = type.GetArrayRank ();
6088 return true;
6091 protected override Expression DoResolve (ResolveContext ec)
6093 if (type != null)
6094 return this;
6096 if (!ResolveArrayType (ec))
6097 return null;
6100 // First step is to validate the initializers and fill
6101 // in any missing bits
6103 if (!ResolveInitializers (ec))
6104 return null;
6106 for (int i = 0; i < arguments.Count; ++i) {
6107 Expression e = arguments[i].Resolve (ec);
6108 if (e == null)
6109 continue;
6111 arguments [i] = ConvertExpressionToArrayIndex (ec, e);
6114 eclass = ExprClass.Value;
6115 return this;
6118 MethodInfo GetArrayMethod (EmitContext ec, int arguments)
6120 ModuleBuilder mb = RootContext.ToplevelTypes.Builder;
6122 Type[] arg_types = new Type[arguments];
6123 for (int i = 0; i < arguments; i++)
6124 arg_types[i] = TypeManager.int32_type;
6126 MethodInfo mi = mb.GetArrayMethod (type, ".ctor", CallingConventions.HasThis, null,
6127 arg_types);
6129 if (mi == null) {
6130 ec.Report.Error (-6, "New invocation: Can not find a constructor for " +
6131 "this argument list");
6132 return null;
6135 return mi;
6138 byte [] MakeByteBlob ()
6140 int factor;
6141 byte [] data;
6142 byte [] element;
6143 int count = array_data.Count;
6145 Type element_type = array_element_type;
6146 if (TypeManager.IsEnumType (element_type))
6147 element_type = TypeManager.GetEnumUnderlyingType (element_type);
6149 factor = GetTypeSize (element_type);
6150 if (factor == 0)
6151 throw new Exception ("unrecognized type in MakeByteBlob: " + element_type);
6153 data = new byte [(count * factor + 3) & ~3];
6154 int idx = 0;
6156 for (int i = 0; i < count; ++i) {
6157 object v = array_data [i];
6159 if (v is EnumConstant)
6160 v = ((EnumConstant) v).Child;
6162 if (v is Constant && !(v is StringConstant))
6163 v = ((Constant) v).GetValue ();
6164 else {
6165 idx += factor;
6166 continue;
6169 if (element_type == TypeManager.int64_type){
6170 if (!(v is Expression)){
6171 long val = (long) v;
6173 for (int j = 0; j < factor; ++j) {
6174 data [idx + j] = (byte) (val & 0xFF);
6175 val = (val >> 8);
6178 } else if (element_type == TypeManager.uint64_type){
6179 if (!(v is Expression)){
6180 ulong val = (ulong) v;
6182 for (int j = 0; j < factor; ++j) {
6183 data [idx + j] = (byte) (val & 0xFF);
6184 val = (val >> 8);
6187 } else if (element_type == TypeManager.float_type) {
6188 if (!(v is Expression)){
6189 element = BitConverter.GetBytes ((float) v);
6191 for (int j = 0; j < factor; ++j)
6192 data [idx + j] = element [j];
6193 if (!BitConverter.IsLittleEndian)
6194 System.Array.Reverse (data, idx, 4);
6196 } else if (element_type == TypeManager.double_type) {
6197 if (!(v is Expression)){
6198 element = BitConverter.GetBytes ((double) v);
6200 for (int j = 0; j < factor; ++j)
6201 data [idx + j] = element [j];
6203 // FIXME: Handle the ARM float format.
6204 if (!BitConverter.IsLittleEndian)
6205 System.Array.Reverse (data, idx, 8);
6207 } else if (element_type == TypeManager.char_type){
6208 if (!(v is Expression)){
6209 int val = (int) ((char) v);
6211 data [idx] = (byte) (val & 0xff);
6212 data [idx+1] = (byte) (val >> 8);
6214 } else if (element_type == TypeManager.short_type){
6215 if (!(v is Expression)){
6216 int val = (int) ((short) v);
6218 data [idx] = (byte) (val & 0xff);
6219 data [idx+1] = (byte) (val >> 8);
6221 } else if (element_type == TypeManager.ushort_type){
6222 if (!(v is Expression)){
6223 int val = (int) ((ushort) v);
6225 data [idx] = (byte) (val & 0xff);
6226 data [idx+1] = (byte) (val >> 8);
6228 } else if (element_type == TypeManager.int32_type) {
6229 if (!(v is Expression)){
6230 int val = (int) v;
6232 data [idx] = (byte) (val & 0xff);
6233 data [idx+1] = (byte) ((val >> 8) & 0xff);
6234 data [idx+2] = (byte) ((val >> 16) & 0xff);
6235 data [idx+3] = (byte) (val >> 24);
6237 } else if (element_type == TypeManager.uint32_type) {
6238 if (!(v is Expression)){
6239 uint val = (uint) v;
6241 data [idx] = (byte) (val & 0xff);
6242 data [idx+1] = (byte) ((val >> 8) & 0xff);
6243 data [idx+2] = (byte) ((val >> 16) & 0xff);
6244 data [idx+3] = (byte) (val >> 24);
6246 } else if (element_type == TypeManager.sbyte_type) {
6247 if (!(v is Expression)){
6248 sbyte val = (sbyte) v;
6249 data [idx] = (byte) val;
6251 } else if (element_type == TypeManager.byte_type) {
6252 if (!(v is Expression)){
6253 byte val = (byte) v;
6254 data [idx] = (byte) val;
6256 } else if (element_type == TypeManager.bool_type) {
6257 if (!(v is Expression)){
6258 bool val = (bool) v;
6259 data [idx] = (byte) (val ? 1 : 0);
6261 } else if (element_type == TypeManager.decimal_type){
6262 if (!(v is Expression)){
6263 int [] bits = Decimal.GetBits ((decimal) v);
6264 int p = idx;
6266 // FIXME: For some reason, this doesn't work on the MS runtime.
6267 int [] nbits = new int [4];
6268 nbits [0] = bits [3];
6269 nbits [1] = bits [2];
6270 nbits [2] = bits [0];
6271 nbits [3] = bits [1];
6273 for (int j = 0; j < 4; j++){
6274 data [p++] = (byte) (nbits [j] & 0xff);
6275 data [p++] = (byte) ((nbits [j] >> 8) & 0xff);
6276 data [p++] = (byte) ((nbits [j] >> 16) & 0xff);
6277 data [p++] = (byte) (nbits [j] >> 24);
6280 } else {
6281 throw new Exception ("Unrecognized type in MakeByteBlob: " + element_type);
6284 idx += factor;
6287 return data;
6290 #if NET_4_0
6291 public override SLE.Expression MakeExpression (BuilderContext ctx)
6293 var initializers = new SLE.Expression [array_data.Count];
6294 for (var i = 0; i < initializers.Length; i++) {
6295 if (array_data [i] == null)
6296 initializers [i] = SLE.Expression.Default (array_element_type);
6297 else
6298 initializers [i] = array_data [i].MakeExpression (ctx);
6301 return SLE.Expression.NewArrayInit (array_element_type, initializers);
6303 #endif
6305 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6307 array_element_type = storey.MutateType (array_element_type);
6308 type = storey.MutateType (type);
6309 if (arguments != null) {
6310 foreach (Expression e in arguments)
6311 e.MutateHoistedGenericType (storey);
6314 if (array_data != null) {
6315 foreach (Expression e in array_data) {
6316 // Don't mutate values optimized away
6317 if (e == null)
6318 continue;
6320 e.MutateHoistedGenericType (storey);
6326 // Emits the initializers for the array
6328 void EmitStaticInitializers (EmitContext ec)
6330 // FIXME: This should go to Resolve !
6331 if (TypeManager.void_initializearray_array_fieldhandle == null) {
6332 TypeManager.void_initializearray_array_fieldhandle = TypeManager.GetPredefinedMethod (
6333 TypeManager.runtime_helpers_type, "InitializeArray", loc,
6334 TypeManager.array_type, TypeManager.runtime_field_handle_type);
6335 if (TypeManager.void_initializearray_array_fieldhandle == null)
6336 return;
6340 // First, the static data
6342 FieldBuilder fb;
6343 ILGenerator ig = ec.ig;
6345 byte [] data = MakeByteBlob ();
6347 fb = RootContext.MakeStaticData (data);
6349 ig.Emit (OpCodes.Dup);
6350 ig.Emit (OpCodes.Ldtoken, fb);
6351 ig.Emit (OpCodes.Call,
6352 TypeManager.void_initializearray_array_fieldhandle);
6356 // Emits pieces of the array that can not be computed at compile
6357 // time (variables and string locations).
6359 // This always expect the top value on the stack to be the array
6361 void EmitDynamicInitializers (EmitContext ec, bool emitConstants)
6363 ILGenerator ig = ec.ig;
6364 int dims = bounds.Count;
6365 int [] current_pos = new int [dims];
6367 MethodInfo set = null;
6369 if (dims != 1){
6370 Type [] args = new Type [dims + 1];
6372 for (int j = 0; j < dims; j++)
6373 args [j] = TypeManager.int32_type;
6374 args [dims] = array_element_type;
6376 set = RootContext.ToplevelTypes.Builder.GetArrayMethod (
6377 type, "Set",
6378 CallingConventions.HasThis | CallingConventions.Standard,
6379 TypeManager.void_type, args);
6382 for (int i = 0; i < array_data.Count; i++){
6384 Expression e = array_data [i];
6386 // Constant can be initialized via StaticInitializer
6387 if (e != null && !(!emitConstants && e is Constant)) {
6388 Type etype = e.Type;
6390 ig.Emit (OpCodes.Dup);
6392 for (int idx = 0; idx < dims; idx++)
6393 IntConstant.EmitInt (ig, current_pos [idx]);
6396 // If we are dealing with a struct, get the
6397 // address of it, so we can store it.
6399 if ((dims == 1) && TypeManager.IsStruct (etype) &&
6400 (!TypeManager.IsBuiltinOrEnum (etype) ||
6401 etype == TypeManager.decimal_type)) {
6403 ig.Emit (OpCodes.Ldelema, etype);
6406 e.Emit (ec);
6408 if (dims == 1) {
6409 bool is_stobj, has_type_arg;
6410 OpCode op = ArrayAccess.GetStoreOpcode (etype, out is_stobj, out has_type_arg);
6411 if (is_stobj)
6412 ig.Emit (OpCodes.Stobj, etype);
6413 else if (has_type_arg)
6414 ig.Emit (op, etype);
6415 else
6416 ig.Emit (op);
6417 } else
6418 ig.Emit (OpCodes.Call, set);
6423 // Advance counter
6425 for (int j = dims - 1; j >= 0; j--){
6426 current_pos [j]++;
6427 if (current_pos [j] < bounds [j])
6428 break;
6429 current_pos [j] = 0;
6434 public override void Emit (EmitContext ec)
6436 ILGenerator ig = ec.ig;
6438 if (first_emit != null) {
6439 first_emit.Emit (ec);
6440 first_emit_temp.Store (ec);
6443 foreach (Expression e in arguments)
6444 e.Emit (ec);
6446 if (arguments.Count == 1)
6447 ig.Emit (OpCodes.Newarr, TypeManager.TypeToReflectionType (array_element_type));
6448 else {
6449 ig.Emit (OpCodes.Newobj, GetArrayMethod (ec, arguments.Count));
6452 if (initializers == null)
6453 return;
6455 // Emit static initializer for arrays which have contain more than 2 items and
6456 // the static initializer will initialize at least 25% of array values.
6457 // NOTE: const_initializers_count does not contain default constant values.
6458 if (const_initializers_count > 2 && const_initializers_count * 4 > (array_data.Count) &&
6459 (TypeManager.IsPrimitiveType (array_element_type) || TypeManager.IsEnumType (array_element_type))) {
6460 EmitStaticInitializers (ec);
6462 if (!only_constant_initializers)
6463 EmitDynamicInitializers (ec, false);
6464 } else {
6465 EmitDynamicInitializers (ec, true);
6468 if (first_emit_temp != null)
6469 first_emit_temp.Release (ec);
6472 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
6474 if (arguments.Count != 1) {
6475 // ec.Report.Error (-211, Location, "attribute can not encode multi-dimensional arrays");
6476 return base.GetAttributableValue (ec, null, out value);
6479 if (array_data == null) {
6480 Expression arg = arguments [0];
6481 object arg_value;
6482 if (arg.GetAttributableValue (ec, arg.Type, out arg_value) && arg_value is int && (int)arg_value == 0) {
6483 value = Array.CreateInstance (array_element_type, 0);
6484 return true;
6487 // ec.Report.Error (-212, Location, "array should be initialized when passing it to an attribute");
6488 return base.GetAttributableValue (ec, null, out value);
6491 Array ret = Array.CreateInstance (array_element_type, array_data.Count);
6492 object element_value;
6493 for (int i = 0; i < ret.Length; ++i)
6495 Expression e = array_data [i];
6497 // Is null when an initializer is optimized (value == predefined value)
6498 if (e == null)
6499 continue;
6501 if (!e.GetAttributableValue (ec, array_element_type, out element_value)) {
6502 value = null;
6503 return false;
6505 ret.SetValue (element_value, i);
6507 value = ret;
6508 return true;
6511 protected override void CloneTo (CloneContext clonectx, Expression t)
6513 ArrayCreation target = (ArrayCreation) t;
6515 if (requested_base_type != null)
6516 target.requested_base_type = (FullNamedExpression)requested_base_type.Clone (clonectx);
6518 if (arguments != null){
6519 target.arguments = new List<Expression> (arguments.Count);
6520 foreach (Expression e in arguments)
6521 target.arguments.Add (e.Clone (clonectx));
6524 if (initializers != null)
6525 target.initializers = (ArrayInitializer) initializers.Clone (clonectx);
6530 // Represents an implicitly typed array epxression
6532 class ImplicitlyTypedArrayCreation : ArrayCreation
6534 public ImplicitlyTypedArrayCreation (string rank, ArrayInitializer initializers, Location loc)
6535 : base (null, rank, initializers, loc)
6537 if (rank.Length > 2) {
6538 while (rank [++dimensions] == ',');
6539 } else {
6540 dimensions = 1;
6544 protected override Expression DoResolve (ResolveContext ec)
6546 if (type != null)
6547 return this;
6549 if (!ResolveInitializers (ec))
6550 return null;
6552 if (array_element_type == null || array_element_type == TypeManager.null_type ||
6553 array_element_type == TypeManager.void_type || array_element_type == InternalType.AnonymousMethod ||
6554 array_element_type == InternalType.MethodGroup ||
6555 arguments.Count != dimensions) {
6556 Error_NoBestType (ec);
6557 return null;
6561 // At this point we found common base type for all initializer elements
6562 // but we have to be sure that all static initializer elements are of
6563 // same type
6565 UnifyInitializerElement (ec);
6567 type = TypeManager.GetConstructedType (array_element_type, rank);
6568 eclass = ExprClass.Value;
6569 return this;
6572 void Error_NoBestType (ResolveContext ec)
6574 ec.Report.Error (826, loc,
6575 "The type of an implicitly typed array cannot be inferred from the initializer. Try specifying array type explicitly");
6579 // Converts static initializer only
6581 void UnifyInitializerElement (ResolveContext ec)
6583 for (int i = 0; i < array_data.Count; ++i) {
6584 Expression e = (Expression)array_data[i];
6585 if (e != null)
6586 array_data [i] = Convert.ImplicitConversion (ec, e, array_element_type, Location.Null);
6590 protected override Expression ResolveArrayElement (ResolveContext ec, Expression element)
6592 element = element.Resolve (ec);
6593 if (element == null)
6594 return null;
6596 if (array_element_type == null) {
6597 if (element.Type != TypeManager.null_type)
6598 array_element_type = element.Type;
6600 return element;
6603 if (Convert.ImplicitConversionExists (ec, element, array_element_type)) {
6604 return element;
6607 if (Convert.ImplicitConversionExists (ec, new TypeExpression (array_element_type, loc), element.Type)) {
6608 array_element_type = element.Type;
6609 return element;
6612 Error_NoBestType (ec);
6613 return null;
6617 public sealed class CompilerGeneratedThis : This
6619 public static This Instance = new CompilerGeneratedThis ();
6621 private CompilerGeneratedThis ()
6622 : base (Location.Null)
6626 public CompilerGeneratedThis (Type type, Location loc)
6627 : base (loc)
6629 this.type = type;
6632 protected override Expression DoResolve (ResolveContext ec)
6634 eclass = ExprClass.Variable;
6635 if (type == null)
6636 type = ec.CurrentType;
6638 is_struct = type.IsValueType;
6639 return this;
6642 public override HoistedVariable GetHoistedVariable (AnonymousExpression ae)
6644 return null;
6648 /// <summary>
6649 /// Represents the `this' construct
6650 /// </summary>
6652 public class This : VariableReference
6654 sealed class ThisVariable : ILocalVariable
6656 public static readonly ILocalVariable Instance = new ThisVariable ();
6658 public void Emit (EmitContext ec)
6660 ec.ig.Emit (OpCodes.Ldarg_0);
6663 public void EmitAssign (EmitContext ec)
6665 throw new InvalidOperationException ();
6668 public void EmitAddressOf (EmitContext ec)
6670 ec.ig.Emit (OpCodes.Ldarg_0);
6674 Block block;
6675 VariableInfo variable_info;
6676 protected bool is_struct;
6678 public This (Block block, Location loc)
6680 this.loc = loc;
6681 this.block = block;
6684 public This (Location loc)
6686 this.loc = loc;
6689 public override VariableInfo VariableInfo {
6690 get { return variable_info; }
6693 public override bool IsFixed {
6694 get { return false; }
6697 public override HoistedVariable GetHoistedVariable (AnonymousExpression ae)
6699 if (ae == null)
6700 return null;
6702 AnonymousMethodStorey storey = ae.Storey;
6703 while (storey != null) {
6704 AnonymousMethodStorey temp = storey.Parent as AnonymousMethodStorey;
6705 if (temp == null)
6706 return storey.HoistedThis;
6708 storey = temp;
6711 return null;
6714 public override bool IsRef {
6715 get { return is_struct; }
6718 protected override ILocalVariable Variable {
6719 get { return ThisVariable.Instance; }
6722 public static bool IsThisAvailable (ResolveContext ec)
6724 if (ec.IsStatic || ec.HasAny (ResolveContext.Options.FieldInitializerScope | ResolveContext.Options.BaseInitializer | ResolveContext.Options.ConstantScope))
6725 return false;
6727 if (ec.CurrentAnonymousMethod == null)
6728 return true;
6730 if (ec.CurrentType.IsValueType && ec.CurrentIterator == null)
6731 return false;
6733 return true;
6736 public bool ResolveBase (ResolveContext ec)
6738 eclass = ExprClass.Variable;
6739 type = ec.CurrentType;
6741 if (!IsThisAvailable (ec)) {
6742 if (ec.IsStatic && !ec.HasSet (ResolveContext.Options.ConstantScope)) {
6743 ec.Report.Error (26, loc, "Keyword `this' is not valid in a static property, static method, or static field initializer");
6744 } else if (ec.CurrentAnonymousMethod != null) {
6745 ec.Report.Error (1673, loc,
6746 "Anonymous methods inside structs cannot access instance members of `this'. " +
6747 "Consider copying `this' to a local variable outside the anonymous method and using the local instead");
6748 } else {
6749 ec.Report.Error (27, loc, "Keyword `this' is not available in the current context");
6753 is_struct = type.IsValueType;
6755 if (block != null) {
6756 if (block.Toplevel.ThisVariable != null)
6757 variable_info = block.Toplevel.ThisVariable.VariableInfo;
6759 AnonymousExpression am = ec.CurrentAnonymousMethod;
6760 if (am != null && ec.IsVariableCapturingRequired) {
6761 am.SetHasThisAccess ();
6765 return true;
6769 // Called from Invocation to check if the invocation is correct
6771 public override void CheckMarshalByRefAccess (ResolveContext ec)
6773 if ((variable_info != null) && !(TypeManager.IsStruct (type) && ec.OmitStructFlowAnalysis) &&
6774 !variable_info.IsAssigned (ec)) {
6775 ec.Report.Error (188, loc,
6776 "The `this' object cannot be used before all of its fields are assigned to");
6777 variable_info.SetAssigned (ec);
6781 public override Expression CreateExpressionTree (ResolveContext ec)
6783 Arguments args = new Arguments (1);
6784 args.Add (new Argument (this));
6786 // Use typeless constant for ldarg.0 to save some
6787 // space and avoid problems with anonymous stories
6788 return CreateExpressionFactoryCall (ec, "Constant", args);
6791 protected override Expression DoResolve (ResolveContext ec)
6793 ResolveBase (ec);
6794 return this;
6797 override public Expression DoResolveLValue (ResolveContext ec, Expression right_side)
6799 if (!ResolveBase (ec))
6800 return null;
6802 if (variable_info != null)
6803 variable_info.SetAssigned (ec);
6805 if (ec.CurrentType.IsClass){
6806 if (right_side == EmptyExpression.UnaryAddress)
6807 ec.Report.Error (459, loc, "Cannot take the address of `this' because it is read-only");
6808 else if (right_side == EmptyExpression.OutAccess.Instance)
6809 ec.Report.Error (1605, loc, "Cannot pass `this' as a ref or out argument because it is read-only");
6810 else
6811 ec.Report.Error (1604, loc, "Cannot assign to `this' because it is read-only");
6814 return this;
6817 public override int GetHashCode()
6819 return block.GetHashCode ();
6822 public override string Name {
6823 get { return "this"; }
6826 public override bool Equals (object obj)
6828 This t = obj as This;
6829 if (t == null)
6830 return false;
6832 return block == t.block;
6835 protected override void CloneTo (CloneContext clonectx, Expression t)
6837 This target = (This) t;
6839 target.block = clonectx.LookupBlock (block);
6842 public override void SetHasAddressTaken ()
6844 // Nothing
6848 /// <summary>
6849 /// Represents the `__arglist' construct
6850 /// </summary>
6851 public class ArglistAccess : Expression
6853 public ArglistAccess (Location loc)
6855 this.loc = loc;
6858 public override Expression CreateExpressionTree (ResolveContext ec)
6860 throw new NotSupportedException ("ET");
6863 protected override Expression DoResolve (ResolveContext ec)
6865 eclass = ExprClass.Variable;
6866 type = TypeManager.runtime_argument_handle_type;
6868 if (ec.HasSet (ResolveContext.Options.FieldInitializerScope) || !ec.CurrentBlock.Toplevel.Parameters.HasArglist) {
6869 ec.Report.Error (190, loc,
6870 "The __arglist construct is valid only within a variable argument method");
6873 return this;
6876 public override void Emit (EmitContext ec)
6878 ec.ig.Emit (OpCodes.Arglist);
6881 protected override void CloneTo (CloneContext clonectx, Expression target)
6883 // nothing.
6887 /// <summary>
6888 /// Represents the `__arglist (....)' construct
6889 /// </summary>
6890 class Arglist : Expression
6892 Arguments Arguments;
6894 public Arglist (Location loc)
6895 : this (null, loc)
6899 public Arglist (Arguments args, Location l)
6901 Arguments = args;
6902 loc = l;
6905 public Type[] ArgumentTypes {
6906 get {
6907 if (Arguments == null)
6908 return Type.EmptyTypes;
6910 Type[] retval = new Type [Arguments.Count];
6911 for (int i = 0; i < retval.Length; i++)
6912 retval [i] = Arguments [i].Expr.Type;
6914 return retval;
6918 public override Expression CreateExpressionTree (ResolveContext ec)
6920 ec.Report.Error (1952, loc, "An expression tree cannot contain a method with variable arguments");
6921 return null;
6924 protected override Expression DoResolve (ResolveContext ec)
6926 eclass = ExprClass.Variable;
6927 type = InternalType.Arglist;
6928 if (Arguments != null) {
6929 bool dynamic; // Can be ignored as there is always only 1 overload
6930 Arguments.Resolve (ec, out dynamic);
6933 return this;
6936 public override void Emit (EmitContext ec)
6938 if (Arguments != null)
6939 Arguments.Emit (ec);
6942 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6944 if (Arguments != null)
6945 Arguments.MutateHoistedGenericType (storey);
6948 protected override void CloneTo (CloneContext clonectx, Expression t)
6950 Arglist target = (Arglist) t;
6952 if (Arguments != null)
6953 target.Arguments = Arguments.Clone (clonectx);
6957 /// <summary>
6958 /// Implements the typeof operator
6959 /// </summary>
6960 public class TypeOf : Expression {
6961 Expression QueriedType;
6962 protected Type typearg;
6964 public TypeOf (Expression queried_type, Location l)
6966 QueriedType = queried_type;
6967 loc = l;
6970 public override Expression CreateExpressionTree (ResolveContext ec)
6972 Arguments args = new Arguments (2);
6973 args.Add (new Argument (this));
6974 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
6975 return CreateExpressionFactoryCall (ec, "Constant", args);
6978 protected override Expression DoResolve (ResolveContext ec)
6980 TypeExpr texpr = QueriedType.ResolveAsTypeTerminal (ec, false);
6981 if (texpr == null)
6982 return null;
6984 typearg = texpr.Type;
6986 if (typearg == TypeManager.void_type) {
6987 ec.Report.Error (673, loc, "System.Void cannot be used from C#. Use typeof (void) to get the void type object");
6988 } else if (typearg.IsPointer && !ec.IsUnsafe){
6989 UnsafeError (ec, loc);
6990 } else if (texpr is DynamicTypeExpr) {
6991 ec.Report.Error (1962, QueriedType.Location,
6992 "The typeof operator cannot be used on the dynamic type");
6995 type = TypeManager.type_type;
6997 return DoResolveBase ();
7000 protected Expression DoResolveBase ()
7002 if (TypeManager.system_type_get_type_from_handle == null) {
7003 TypeManager.system_type_get_type_from_handle = TypeManager.GetPredefinedMethod (
7004 TypeManager.type_type, "GetTypeFromHandle", loc, TypeManager.runtime_handle_type);
7007 // Even though what is returned is a type object, it's treated as a value by the compiler.
7008 // In particular, 'typeof (Foo).X' is something totally different from 'Foo.X'.
7009 eclass = ExprClass.Value;
7010 return this;
7013 public override void Emit (EmitContext ec)
7015 ec.ig.Emit (OpCodes.Ldtoken, TypeManager.TypeToReflectionType (typearg));
7016 ec.ig.Emit (OpCodes.Call, TypeManager.system_type_get_type_from_handle);
7019 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
7021 if (TypeManager.ContainsGenericParameters (typearg) &&
7022 !TypeManager.IsGenericTypeDefinition (typearg)) {
7023 ec.Report.SymbolRelatedToPreviousError (typearg);
7024 ec.Report.Error (416, loc, "`{0}': an attribute argument cannot use type parameters",
7025 TypeManager.CSharpName (typearg));
7026 value = null;
7027 return false;
7030 if (value_type == TypeManager.object_type) {
7031 value = (object)typearg;
7032 return true;
7034 value = typearg;
7035 return true;
7038 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7040 typearg = storey.MutateType (typearg);
7043 public Type TypeArgument {
7044 get {
7045 return typearg;
7049 protected override void CloneTo (CloneContext clonectx, Expression t)
7051 TypeOf target = (TypeOf) t;
7052 if (QueriedType != null)
7053 target.QueriedType = QueriedType.Clone (clonectx);
7057 /// <summary>
7058 /// Implements the `typeof (void)' operator
7059 /// </summary>
7060 public class TypeOfVoid : TypeOf {
7061 public TypeOfVoid (Location l) : base (null, l)
7063 loc = l;
7066 protected override Expression DoResolve (ResolveContext ec)
7068 type = TypeManager.type_type;
7069 typearg = TypeManager.void_type;
7071 return DoResolveBase ();
7075 class TypeOfMethod : TypeOfMember
7077 public TypeOfMethod (MethodBase method, Location loc)
7078 : base (method, loc)
7082 protected override Expression DoResolve (ResolveContext ec)
7084 if (member is MethodInfo) {
7085 type = TypeManager.methodinfo_type;
7086 if (type == null)
7087 type = TypeManager.methodinfo_type = TypeManager.CoreLookupType (ec.Compiler, "System.Reflection", "MethodInfo", Kind.Class, true);
7088 } else {
7089 type = TypeManager.ctorinfo_type;
7090 if (type == null)
7091 type = TypeManager.ctorinfo_type = TypeManager.CoreLookupType (ec.Compiler, "System.Reflection", "ConstructorInfo", Kind.Class, true);
7094 return base.DoResolve (ec);
7097 public override void Emit (EmitContext ec)
7099 if (member is ConstructorInfo)
7100 ec.ig.Emit (OpCodes.Ldtoken, (ConstructorInfo) member);
7101 else
7102 ec.ig.Emit (OpCodes.Ldtoken, (MethodInfo) member);
7104 base.Emit (ec);
7105 ec.ig.Emit (OpCodes.Castclass, type);
7108 protected override string GetMethodName {
7109 get { return "GetMethodFromHandle"; }
7112 protected override string RuntimeHandleName {
7113 get { return "RuntimeMethodHandle"; }
7116 protected override MethodInfo TypeFromHandle {
7117 get {
7118 return TypeManager.methodbase_get_type_from_handle;
7120 set {
7121 TypeManager.methodbase_get_type_from_handle = value;
7125 protected override MethodInfo TypeFromHandleGeneric {
7126 get {
7127 return TypeManager.methodbase_get_type_from_handle_generic;
7129 set {
7130 TypeManager.methodbase_get_type_from_handle_generic = value;
7134 protected override string TypeName {
7135 get { return "MethodBase"; }
7139 abstract class TypeOfMember : Expression
7141 protected readonly MemberInfo member;
7143 protected TypeOfMember (MemberInfo member, Location loc)
7145 this.member = member;
7146 this.loc = loc;
7149 public override Expression CreateExpressionTree (ResolveContext ec)
7151 Arguments args = new Arguments (2);
7152 args.Add (new Argument (this));
7153 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
7154 return CreateExpressionFactoryCall (ec, "Constant", args);
7157 protected override Expression DoResolve (ResolveContext ec)
7159 bool is_generic = TypeManager.IsGenericType (member.DeclaringType);
7160 MethodInfo mi = is_generic ? TypeFromHandleGeneric : TypeFromHandle;
7162 if (mi == null) {
7163 Type t = TypeManager.CoreLookupType (ec.Compiler, "System.Reflection", TypeName, Kind.Class, true);
7164 Type handle_type = TypeManager.CoreLookupType (ec.Compiler, "System", RuntimeHandleName, Kind.Class, true);
7166 if (t == null || handle_type == null)
7167 return null;
7169 mi = TypeManager.GetPredefinedMethod (t, GetMethodName, loc,
7170 is_generic ?
7171 new Type[] { handle_type, TypeManager.runtime_handle_type } :
7172 new Type[] { handle_type } );
7174 if (is_generic)
7175 TypeFromHandleGeneric = mi;
7176 else
7177 TypeFromHandle = mi;
7180 eclass = ExprClass.Value;
7181 return this;
7184 public override void Emit (EmitContext ec)
7186 bool is_generic = TypeManager.IsGenericType (member.DeclaringType);
7187 MethodInfo mi;
7188 if (is_generic) {
7189 mi = TypeFromHandleGeneric;
7190 ec.ig.Emit (OpCodes.Ldtoken, member.DeclaringType);
7191 } else {
7192 mi = TypeFromHandle;
7195 ec.ig.Emit (OpCodes.Call, mi);
7198 protected abstract string GetMethodName { get; }
7199 protected abstract string RuntimeHandleName { get; }
7200 protected abstract MethodInfo TypeFromHandle { get; set; }
7201 protected abstract MethodInfo TypeFromHandleGeneric { get; set; }
7202 protected abstract string TypeName { get; }
7205 class TypeOfField : TypeOfMember
7207 public TypeOfField (FieldInfo field, Location loc)
7208 : base (field, loc)
7212 protected override Expression DoResolve (ResolveContext ec)
7214 if (TypeManager.fieldinfo_type == null)
7215 TypeManager.fieldinfo_type = TypeManager.CoreLookupType (ec.Compiler, "System.Reflection", TypeName, Kind.Class, true);
7217 type = TypeManager.fieldinfo_type;
7218 return base.DoResolve (ec);
7221 public override void Emit (EmitContext ec)
7223 ec.ig.Emit (OpCodes.Ldtoken, (FieldInfo) member);
7224 base.Emit (ec);
7227 protected override string GetMethodName {
7228 get { return "GetFieldFromHandle"; }
7231 protected override string RuntimeHandleName {
7232 get { return "RuntimeFieldHandle"; }
7235 protected override MethodInfo TypeFromHandle {
7236 get {
7237 return TypeManager.fieldinfo_get_field_from_handle;
7239 set {
7240 TypeManager.fieldinfo_get_field_from_handle = value;
7244 protected override MethodInfo TypeFromHandleGeneric {
7245 get {
7246 return TypeManager.fieldinfo_get_field_from_handle_generic;
7248 set {
7249 TypeManager.fieldinfo_get_field_from_handle_generic = value;
7253 protected override string TypeName {
7254 get { return "FieldInfo"; }
7258 /// <summary>
7259 /// Implements the sizeof expression
7260 /// </summary>
7261 public class SizeOf : Expression {
7262 readonly Expression QueriedType;
7263 Type type_queried;
7265 public SizeOf (Expression queried_type, Location l)
7267 this.QueriedType = queried_type;
7268 loc = l;
7271 public override Expression CreateExpressionTree (ResolveContext ec)
7273 Error_PointerInsideExpressionTree (ec);
7274 return null;
7277 protected override Expression DoResolve (ResolveContext ec)
7279 TypeExpr texpr = QueriedType.ResolveAsTypeTerminal (ec, false);
7280 if (texpr == null)
7281 return null;
7283 type_queried = texpr.Type;
7284 if (TypeManager.IsEnumType (type_queried))
7285 type_queried = TypeManager.GetEnumUnderlyingType (type_queried);
7287 int size_of = GetTypeSize (type_queried);
7288 if (size_of > 0) {
7289 return new IntConstant (size_of, loc).Resolve (ec);
7292 if (!TypeManager.VerifyUnmanaged (ec.Compiler, type_queried, loc)){
7293 return null;
7296 if (!ec.IsUnsafe) {
7297 ec.Report.Error (233, loc,
7298 "`{0}' does not have a predefined size, therefore sizeof can only be used in an unsafe context (consider using System.Runtime.InteropServices.Marshal.SizeOf)",
7299 TypeManager.CSharpName (type_queried));
7302 type = TypeManager.int32_type;
7303 eclass = ExprClass.Value;
7304 return this;
7307 public override void Emit (EmitContext ec)
7309 ec.ig.Emit (OpCodes.Sizeof, type_queried);
7312 protected override void CloneTo (CloneContext clonectx, Expression t)
7317 /// <summary>
7318 /// Implements the qualified-alias-member (::) expression.
7319 /// </summary>
7320 public class QualifiedAliasMember : MemberAccess
7322 readonly string alias;
7323 public static readonly string GlobalAlias = "global";
7325 public QualifiedAliasMember (string alias, string identifier, TypeArguments targs, Location l)
7326 : base (null, identifier, targs, l)
7328 this.alias = alias;
7331 public QualifiedAliasMember (string alias, string identifier, Location l)
7332 : base (null, identifier, l)
7334 this.alias = alias;
7337 public override FullNamedExpression ResolveAsTypeStep (IMemberContext ec, bool silent)
7339 if (alias == GlobalAlias) {
7340 expr = GlobalRootNamespace.Instance;
7341 return base.ResolveAsTypeStep (ec, silent);
7344 int errors = ec.Compiler.Report.Errors;
7345 expr = ec.LookupNamespaceAlias (alias);
7346 if (expr == null) {
7347 if (errors == ec.Compiler.Report.Errors)
7348 ec.Compiler.Report.Error (432, loc, "Alias `{0}' not found", alias);
7349 return null;
7352 FullNamedExpression fne = base.ResolveAsTypeStep (ec, silent);
7353 if (fne == null)
7354 return null;
7356 if (expr.eclass == ExprClass.Type) {
7357 if (!silent) {
7358 ec.Compiler.Report.Error (431, loc,
7359 "Alias `{0}' cannot be used with '::' since it denotes a type. Consider replacing '::' with '.'", alias);
7361 return null;
7364 return fne;
7367 protected override Expression DoResolve (ResolveContext ec)
7369 return ResolveAsTypeStep (ec, false);
7372 protected override void Error_IdentifierNotFound (IMemberContext rc, FullNamedExpression expr_type, string identifier)
7374 rc.Compiler.Report.Error (687, loc,
7375 "A namespace alias qualifier `{0}' did not resolve to a namespace or a type",
7376 GetSignatureForError ());
7379 public override string GetSignatureForError ()
7381 string name = Name;
7382 if (targs != null) {
7383 name = TypeManager.RemoveGenericArity (Name) + "<" +
7384 targs.GetSignatureForError () + ">";
7387 return alias + "::" + name;
7390 protected override void CloneTo (CloneContext clonectx, Expression t)
7392 // Nothing
7396 /// <summary>
7397 /// Implements the member access expression
7398 /// </summary>
7399 public class MemberAccess : ATypeNameExpression {
7400 protected Expression expr;
7402 public MemberAccess (Expression expr, string id)
7403 : base (id, expr.Location)
7405 this.expr = expr;
7408 public MemberAccess (Expression expr, string identifier, Location loc)
7409 : base (identifier, loc)
7411 this.expr = expr;
7414 public MemberAccess (Expression expr, string identifier, TypeArguments args, Location loc)
7415 : base (identifier, args, loc)
7417 this.expr = expr;
7420 Expression DoResolve (ResolveContext ec, Expression right_side)
7422 if (type != null)
7423 throw new Exception ();
7426 // Resolve the expression with flow analysis turned off, we'll do the definite
7427 // assignment checks later. This is because we don't know yet what the expression
7428 // will resolve to - it may resolve to a FieldExpr and in this case we must do the
7429 // definite assignment check on the actual field and not on the whole struct.
7432 SimpleName original = expr as SimpleName;
7433 Expression expr_resolved;
7434 using (ec.Set (ResolveContext.Options.OmitStructFlowAnalysis)) {
7435 expr_resolved = expr.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.Type | ResolveFlags.Intermediate);
7438 if (expr_resolved == null)
7439 return null;
7441 string LookupIdentifier = MemberName.MakeName (Name, targs);
7443 Namespace ns = expr_resolved as Namespace;
7444 if (ns != null) {
7445 FullNamedExpression retval = ns.Lookup (ec.Compiler, LookupIdentifier, loc);
7447 if (retval == null)
7448 ns.Error_NamespaceDoesNotExist (loc, LookupIdentifier, ec);
7449 else if (targs != null)
7450 retval = new GenericTypeExpr (retval.Type, targs, loc).ResolveAsTypeStep (ec, false);
7452 return retval;
7455 Type expr_type = expr_resolved.Type;
7456 if (TypeManager.IsDynamicType (expr_type)) {
7457 Arguments args = new Arguments (1);
7458 args.Add (new Argument (expr_resolved.Resolve (ec)));
7459 expr = new DynamicMemberBinder (Name, args, loc);
7460 if (right_side != null)
7461 return expr.DoResolveLValue (ec, right_side);
7463 return expr.Resolve (ec);
7466 if (expr_type.IsPointer || expr_type == TypeManager.void_type ||
7467 expr_type == TypeManager.null_type || expr_type == InternalType.AnonymousMethod) {
7468 Unary.Error_OperatorCannotBeApplied (ec, loc, ".", expr_type);
7469 return null;
7472 Constant c = expr_resolved as Constant;
7473 if (c != null && c.GetValue () == null) {
7474 ec.Report.Warning (1720, 1, loc, "Expression will always cause a `{0}'",
7475 "System.NullReferenceException");
7478 if (targs != null) {
7479 if (!targs.Resolve (ec))
7480 return null;
7483 Expression member_lookup;
7484 member_lookup = MemberLookup (ec.Compiler,
7485 ec.CurrentType, expr_type, expr_type, Name, loc);
7487 if (member_lookup == null && targs != null) {
7488 member_lookup = MemberLookup (ec.Compiler,
7489 ec.CurrentType, expr_type, expr_type, LookupIdentifier, loc);
7492 if (member_lookup == null) {
7493 ExprClass expr_eclass = expr_resolved.eclass;
7496 // Extension methods are not allowed on all expression types
7498 if (expr_eclass == ExprClass.Value || expr_eclass == ExprClass.Variable ||
7499 expr_eclass == ExprClass.IndexerAccess || expr_eclass == ExprClass.PropertyAccess ||
7500 expr_eclass == ExprClass.EventAccess) {
7501 ExtensionMethodGroupExpr ex_method_lookup = ec.LookupExtensionMethod (expr_type, Name, loc);
7502 if (ex_method_lookup != null) {
7503 ex_method_lookup.ExtensionExpression = expr_resolved;
7505 if (targs != null) {
7506 ex_method_lookup.SetTypeArguments (ec, targs);
7509 return ex_method_lookup.Resolve (ec);
7513 expr = expr_resolved;
7514 member_lookup = Error_MemberLookupFailed (ec,
7515 ec.CurrentType, expr_type, expr_type, Name, null,
7516 AllMemberTypes, AllBindingFlags);
7517 if (member_lookup == null)
7518 return null;
7521 TypeExpr texpr = member_lookup as TypeExpr;
7522 if (texpr != null) {
7523 if (!(expr_resolved is TypeExpr) &&
7524 (original == null || !original.IdenticalNameAndTypeName (ec, expr_resolved, loc))) {
7525 ec.Report.Error (572, loc, "`{0}': cannot reference a type through an expression; try `{1}' instead",
7526 Name, member_lookup.GetSignatureForError ());
7527 return null;
7530 if (!texpr.CheckAccessLevel (ec.MemberContext)) {
7531 ec.Report.SymbolRelatedToPreviousError (member_lookup.Type);
7532 ErrorIsInaccesible (loc, TypeManager.CSharpName (member_lookup.Type), ec.Report);
7533 return null;
7536 GenericTypeExpr ct = expr_resolved as GenericTypeExpr;
7537 if (ct != null) {
7539 // When looking up a nested type in a generic instance
7540 // via reflection, we always get a generic type definition
7541 // and not a generic instance - so we have to do this here.
7543 // See gtest-172-lib.cs and gtest-172.cs for an example.
7546 TypeArguments nested_targs;
7547 if (HasTypeArguments) {
7548 nested_targs = ct.TypeArguments.Clone ();
7549 nested_targs.Add (targs);
7550 } else {
7551 nested_targs = ct.TypeArguments;
7554 ct = new GenericTypeExpr (member_lookup.Type, nested_targs, loc);
7556 return ct.ResolveAsTypeStep (ec, false);
7559 return member_lookup;
7562 MemberExpr me = (MemberExpr) member_lookup;
7563 me = me.ResolveMemberAccess (ec, expr_resolved, loc, original);
7564 if (me == null)
7565 return null;
7567 if (targs != null) {
7568 me.SetTypeArguments (ec, targs);
7571 if (original != null && (!TypeManager.IsValueType (expr_type) || me is PropertyExpr)) {
7572 if (me.IsInstance) {
7573 LocalVariableReference var = expr_resolved as LocalVariableReference;
7574 if (var != null && !var.VerifyAssigned (ec))
7575 return null;
7579 // The following DoResolve/DoResolveLValue will do the definite assignment
7580 // check.
7582 if (right_side != null)
7583 return me.DoResolveLValue (ec, right_side);
7584 else
7585 return me.Resolve (ec);
7588 protected override Expression DoResolve (ResolveContext ec)
7590 return DoResolve (ec, null);
7593 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
7595 return DoResolve (ec, right_side);
7598 public override FullNamedExpression ResolveAsTypeStep (IMemberContext ec, bool silent)
7600 return ResolveNamespaceOrType (ec, silent);
7603 public FullNamedExpression ResolveNamespaceOrType (IMemberContext rc, bool silent)
7605 FullNamedExpression expr_resolved = expr.ResolveAsTypeStep (rc, silent);
7607 if (expr_resolved == null)
7608 return null;
7610 string LookupIdentifier = MemberName.MakeName (Name, targs);
7612 Namespace ns = expr_resolved as Namespace;
7613 if (ns != null) {
7614 FullNamedExpression retval = ns.Lookup (rc.Compiler, LookupIdentifier, loc);
7616 if (retval == null && !silent)
7617 ns.Error_NamespaceDoesNotExist (loc, LookupIdentifier, rc);
7618 else if (targs != null)
7619 retval = new GenericTypeExpr (retval.Type, targs, loc).ResolveAsTypeStep (rc, silent);
7621 return retval;
7624 TypeExpr tnew_expr = expr_resolved.ResolveAsTypeTerminal (rc, false);
7625 if (tnew_expr == null)
7626 return null;
7628 Type expr_type = tnew_expr.Type;
7629 if (TypeManager.IsGenericParameter (expr_type)) {
7630 rc.Compiler.Report.Error (704, loc, "A nested type cannot be specified through a type parameter `{0}'",
7631 tnew_expr.GetSignatureForError ());
7632 return null;
7635 Expression member_lookup = MemberLookup (rc.Compiler,
7636 rc.CurrentType, expr_type, expr_type, LookupIdentifier,
7637 MemberTypes.NestedType, BindingFlags.Public | BindingFlags.NonPublic, loc);
7638 if (member_lookup == null) {
7639 if (silent)
7640 return null;
7642 Error_IdentifierNotFound (rc, expr_resolved, LookupIdentifier);
7643 return null;
7646 TypeExpr texpr = member_lookup.ResolveAsTypeTerminal (rc, false);
7647 if (texpr == null)
7648 return null;
7650 TypeArguments the_args = targs;
7651 Type declaring_type = texpr.Type.DeclaringType;
7652 if (TypeManager.HasGenericArguments (declaring_type) && !TypeManager.IsGenericTypeDefinition (expr_type)) {
7653 while (!TypeManager.IsEqual (TypeManager.DropGenericTypeArguments (expr_type), declaring_type)) {
7654 expr_type = expr_type.BaseType;
7657 TypeArguments new_args = new TypeArguments ();
7658 foreach (Type decl in TypeManager.GetTypeArguments (expr_type))
7659 new_args.Add (new TypeExpression (TypeManager.TypeToCoreType (decl), loc));
7661 if (targs != null)
7662 new_args.Add (targs);
7664 the_args = new_args;
7667 if (the_args != null) {
7668 GenericTypeExpr ctype = new GenericTypeExpr (texpr.Type, the_args, loc);
7669 return ctype.ResolveAsTypeStep (rc, false);
7672 return texpr;
7675 protected virtual void Error_IdentifierNotFound (IMemberContext rc, FullNamedExpression expr_type, string identifier)
7677 Expression member_lookup = MemberLookup (rc.Compiler,
7678 rc.CurrentType, expr_type.Type, expr_type.Type, SimpleName.RemoveGenericArity (identifier),
7679 MemberTypes.NestedType, BindingFlags.Public | BindingFlags.NonPublic, loc);
7681 if (member_lookup != null) {
7682 expr_type = member_lookup.ResolveAsTypeTerminal (rc, false);
7683 if (expr_type == null)
7684 return;
7686 expr_type.Error_TypeArgumentsCannotBeUsed (rc.Compiler.Report, loc);
7687 return;
7690 member_lookup = MemberLookup (rc.Compiler,
7691 rc.CurrentType, expr_type.Type, expr_type.Type, identifier,
7692 MemberTypes.All, BindingFlags.Public | BindingFlags.NonPublic, loc);
7694 if (member_lookup == null) {
7695 rc.Compiler.Report.Error (426, loc, "The nested type `{0}' does not exist in the type `{1}'",
7696 Name, expr_type.GetSignatureForError ());
7697 } else {
7698 // TODO: Report.SymbolRelatedToPreviousError
7699 member_lookup.Error_UnexpectedKind (rc.Compiler.Report, null, "type", loc);
7703 protected override void Error_TypeDoesNotContainDefinition (ResolveContext ec, Type type, string name)
7705 if (RootContext.Version > LanguageVersion.ISO_2 && !ec.Compiler.IsRuntimeBinder &&
7706 ((expr.eclass & (ExprClass.Value | ExprClass.Variable)) != 0)) {
7707 ec.Report.Error (1061, loc, "Type `{0}' does not contain a definition for `{1}' and no " +
7708 "extension method `{1}' of type `{0}' could be found " +
7709 "(are you missing a using directive or an assembly reference?)",
7710 TypeManager.CSharpName (type), name);
7711 return;
7714 base.Error_TypeDoesNotContainDefinition (ec, type, name);
7717 public override string GetSignatureForError ()
7719 return expr.GetSignatureForError () + "." + base.GetSignatureForError ();
7722 public Expression Left {
7723 get {
7724 return expr;
7728 protected override void CloneTo (CloneContext clonectx, Expression t)
7730 MemberAccess target = (MemberAccess) t;
7732 target.expr = expr.Clone (clonectx);
7736 /// <summary>
7737 /// Implements checked expressions
7738 /// </summary>
7739 public class CheckedExpr : Expression {
7741 public Expression Expr;
7743 public CheckedExpr (Expression e, Location l)
7745 Expr = e;
7746 loc = l;
7749 public override Expression CreateExpressionTree (ResolveContext ec)
7751 using (ec.With (ResolveContext.Options.AllCheckStateFlags, true))
7752 return Expr.CreateExpressionTree (ec);
7755 protected override Expression DoResolve (ResolveContext ec)
7757 using (ec.With (ResolveContext.Options.AllCheckStateFlags, true))
7758 Expr = Expr.Resolve (ec);
7760 if (Expr == null)
7761 return null;
7763 if (Expr is Constant || Expr is MethodGroupExpr || Expr is AnonymousMethodExpression || Expr is DefaultValueExpression)
7764 return Expr;
7766 eclass = Expr.eclass;
7767 type = Expr.Type;
7768 return this;
7771 public override void Emit (EmitContext ec)
7773 using (ec.With (EmitContext.Options.AllCheckStateFlags, true))
7774 Expr.Emit (ec);
7777 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
7779 using (ec.With (EmitContext.Options.AllCheckStateFlags, true))
7780 Expr.EmitBranchable (ec, target, on_true);
7783 public override SLE.Expression MakeExpression (BuilderContext ctx)
7785 using (ctx.With (BuilderContext.Options.AllCheckStateFlags, true)) {
7786 return Expr.MakeExpression (ctx);
7790 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7792 Expr.MutateHoistedGenericType (storey);
7795 protected override void CloneTo (CloneContext clonectx, Expression t)
7797 CheckedExpr target = (CheckedExpr) t;
7799 target.Expr = Expr.Clone (clonectx);
7803 /// <summary>
7804 /// Implements the unchecked expression
7805 /// </summary>
7806 public class UnCheckedExpr : Expression {
7808 public Expression Expr;
7810 public UnCheckedExpr (Expression e, Location l)
7812 Expr = e;
7813 loc = l;
7816 public override Expression CreateExpressionTree (ResolveContext ec)
7818 using (ec.With (ResolveContext.Options.AllCheckStateFlags, false))
7819 return Expr.CreateExpressionTree (ec);
7822 protected override Expression DoResolve (ResolveContext ec)
7824 using (ec.With (ResolveContext.Options.AllCheckStateFlags, false))
7825 Expr = Expr.Resolve (ec);
7827 if (Expr == null)
7828 return null;
7830 if (Expr is Constant || Expr is MethodGroupExpr || Expr is AnonymousMethodExpression || Expr is DefaultValueExpression)
7831 return Expr;
7833 eclass = Expr.eclass;
7834 type = Expr.Type;
7835 return this;
7838 public override void Emit (EmitContext ec)
7840 using (ec.With (EmitContext.Options.AllCheckStateFlags, false))
7841 Expr.Emit (ec);
7844 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
7846 using (ec.With (EmitContext.Options.AllCheckStateFlags, false))
7847 Expr.EmitBranchable (ec, target, on_true);
7850 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7852 Expr.MutateHoistedGenericType (storey);
7855 protected override void CloneTo (CloneContext clonectx, Expression t)
7857 UnCheckedExpr target = (UnCheckedExpr) t;
7859 target.Expr = Expr.Clone (clonectx);
7863 /// <summary>
7864 /// An Element Access expression.
7866 /// During semantic analysis these are transformed into
7867 /// IndexerAccess, ArrayAccess or a PointerArithmetic.
7868 /// </summary>
7869 public class ElementAccess : Expression {
7870 public Arguments Arguments;
7871 public Expression Expr;
7873 public ElementAccess (Expression e, Arguments args)
7875 Expr = e;
7876 loc = e.Location;
7877 this.Arguments = args;
7880 public override Expression CreateExpressionTree (ResolveContext ec)
7882 Arguments args = Arguments.CreateForExpressionTree (ec, Arguments,
7883 Expr.CreateExpressionTree (ec));
7885 return CreateExpressionFactoryCall (ec, "ArrayIndex", args);
7888 Expression MakePointerAccess (ResolveContext ec, Type t)
7890 if (Arguments.Count != 1){
7891 ec.Report.Error (196, loc, "A pointer must be indexed by only one value");
7892 return null;
7895 if (Arguments [0] is NamedArgument)
7896 Error_NamedArgument ((NamedArgument) Arguments[0], ec.Report);
7898 Expression p = new PointerArithmetic (Binary.Operator.Addition, Expr, Arguments [0].Expr.Resolve (ec), t, loc);
7899 return new Indirection (p, loc).Resolve (ec);
7902 protected override Expression DoResolve (ResolveContext ec)
7904 Expr = Expr.Resolve (ec);
7905 if (Expr == null)
7906 return null;
7909 // We perform some simple tests, and then to "split" the emit and store
7910 // code we create an instance of a different class, and return that.
7912 // I am experimenting with this pattern.
7914 Type t = Expr.Type;
7916 if (t == TypeManager.array_type){
7917 ec.Report.Error (21, loc, "Cannot apply indexing with [] to an expression of type `System.Array'");
7918 return null;
7921 if (t.IsArray)
7922 return (new ArrayAccess (this, loc)).Resolve (ec);
7923 if (t.IsPointer)
7924 return MakePointerAccess (ec, t);
7926 FieldExpr fe = Expr as FieldExpr;
7927 if (fe != null) {
7928 IFixedBuffer ff = AttributeTester.GetFixedBuffer (fe.FieldInfo);
7929 if (ff != null) {
7930 return MakePointerAccess (ec, ff.ElementType);
7933 return (new IndexerAccess (this, loc)).Resolve (ec);
7936 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
7938 Expr = Expr.Resolve (ec);
7939 if (Expr == null)
7940 return null;
7942 type = Expr.Type;
7943 if (type.IsArray)
7944 return (new ArrayAccess (this, loc)).DoResolveLValue (ec, right_side);
7946 if (type.IsPointer)
7947 return MakePointerAccess (ec, type);
7949 if (Expr.eclass != ExprClass.Variable && TypeManager.IsStruct (type))
7950 Error_CannotModifyIntermediateExpressionValue (ec);
7952 return (new IndexerAccess (this, loc)).DoResolveLValue (ec, right_side);
7955 public override void Emit (EmitContext ec)
7957 throw new Exception ("Should never be reached");
7960 public static void Error_NamedArgument (NamedArgument na, Report Report)
7962 Report.Error (1742, na.Location, "An element access expression cannot use named argument");
7965 public override string GetSignatureForError ()
7967 return Expr.GetSignatureForError ();
7970 protected override void CloneTo (CloneContext clonectx, Expression t)
7972 ElementAccess target = (ElementAccess) t;
7974 target.Expr = Expr.Clone (clonectx);
7975 if (Arguments != null)
7976 target.Arguments = Arguments.Clone (clonectx);
7980 /// <summary>
7981 /// Implements array access
7982 /// </summary>
7983 public class ArrayAccess : Expression, IDynamicAssign, IMemoryLocation {
7985 // Points to our "data" repository
7987 ElementAccess ea;
7989 LocalTemporary temp;
7991 bool prepared;
7993 public ArrayAccess (ElementAccess ea_data, Location l)
7995 ea = ea_data;
7996 loc = l;
7999 public override Expression CreateExpressionTree (ResolveContext ec)
8001 return ea.CreateExpressionTree (ec);
8004 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
8006 return DoResolve (ec);
8009 protected override Expression DoResolve (ResolveContext ec)
8011 // dynamic is used per argument in ConvertExpressionToArrayIndex case
8012 bool dynamic;
8013 ea.Arguments.Resolve (ec, out dynamic);
8015 Type t = ea.Expr.Type;
8016 int rank = ea.Arguments.Count;
8017 if (t.GetArrayRank () != rank) {
8018 ec.Report.Error (22, ea.Location, "Wrong number of indexes `{0}' inside [], expected `{1}'",
8019 ea.Arguments.Count.ToString (), t.GetArrayRank ().ToString ());
8020 return null;
8023 type = TypeManager.GetElementType (t);
8024 if (type.IsPointer && !ec.IsUnsafe) {
8025 UnsafeError (ec, ea.Location);
8028 foreach (Argument a in ea.Arguments) {
8029 if (a is NamedArgument)
8030 ElementAccess.Error_NamedArgument ((NamedArgument) a, ec.Report);
8032 a.Expr = ConvertExpressionToArrayIndex (ec, a.Expr);
8035 eclass = ExprClass.Variable;
8037 return this;
8040 /// <summary>
8041 /// Emits the right opcode to load an object of Type `t'
8042 /// from an array of T
8043 /// </summary>
8044 void EmitLoadOpcode (ILGenerator ig, Type type, int rank)
8046 if (rank > 1) {
8047 MethodInfo get = FetchGetMethod ();
8048 ig.Emit (OpCodes.Call, get);
8049 return;
8052 if (type == TypeManager.byte_type || type == TypeManager.bool_type)
8053 ig.Emit (OpCodes.Ldelem_U1);
8054 else if (type == TypeManager.sbyte_type)
8055 ig.Emit (OpCodes.Ldelem_I1);
8056 else if (type == TypeManager.short_type)
8057 ig.Emit (OpCodes.Ldelem_I2);
8058 else if (type == TypeManager.ushort_type || type == TypeManager.char_type)
8059 ig.Emit (OpCodes.Ldelem_U2);
8060 else if (type == TypeManager.int32_type)
8061 ig.Emit (OpCodes.Ldelem_I4);
8062 else if (type == TypeManager.uint32_type)
8063 ig.Emit (OpCodes.Ldelem_U4);
8064 else if (type == TypeManager.uint64_type)
8065 ig.Emit (OpCodes.Ldelem_I8);
8066 else if (type == TypeManager.int64_type)
8067 ig.Emit (OpCodes.Ldelem_I8);
8068 else if (type == TypeManager.float_type)
8069 ig.Emit (OpCodes.Ldelem_R4);
8070 else if (type == TypeManager.double_type)
8071 ig.Emit (OpCodes.Ldelem_R8);
8072 else if (type == TypeManager.intptr_type)
8073 ig.Emit (OpCodes.Ldelem_I);
8074 else if (TypeManager.IsEnumType (type)){
8075 EmitLoadOpcode (ig, TypeManager.GetEnumUnderlyingType (type), rank);
8076 } else if (TypeManager.IsStruct (type)){
8077 ig.Emit (OpCodes.Ldelema, type);
8078 ig.Emit (OpCodes.Ldobj, type);
8079 } else if (type.IsGenericParameter) {
8080 ig.Emit (OpCodes.Ldelem, type);
8081 } else if (type.IsPointer)
8082 ig.Emit (OpCodes.Ldelem_I);
8083 else
8084 ig.Emit (OpCodes.Ldelem_Ref);
8087 protected override void Error_NegativeArrayIndex (ResolveContext ec, Location loc)
8089 ec.Report.Warning (251, 2, loc, "Indexing an array with a negative index (array indices always start at zero)");
8092 /// <summary>
8093 /// Returns the right opcode to store an object of Type `t'
8094 /// from an array of T.
8095 /// </summary>
8096 static public OpCode GetStoreOpcode (Type t, out bool is_stobj, out bool has_type_arg)
8098 has_type_arg = false; is_stobj = false;
8099 t = TypeManager.TypeToCoreType (t);
8100 if (TypeManager.IsEnumType (t))
8101 t = TypeManager.GetEnumUnderlyingType (t);
8102 if (t == TypeManager.byte_type || t == TypeManager.sbyte_type ||
8103 t == TypeManager.bool_type)
8104 return OpCodes.Stelem_I1;
8105 else if (t == TypeManager.short_type || t == TypeManager.ushort_type ||
8106 t == TypeManager.char_type)
8107 return OpCodes.Stelem_I2;
8108 else if (t == TypeManager.int32_type || t == TypeManager.uint32_type)
8109 return OpCodes.Stelem_I4;
8110 else if (t == TypeManager.int64_type || t == TypeManager.uint64_type)
8111 return OpCodes.Stelem_I8;
8112 else if (t == TypeManager.float_type)
8113 return OpCodes.Stelem_R4;
8114 else if (t == TypeManager.double_type)
8115 return OpCodes.Stelem_R8;
8116 else if (t == TypeManager.intptr_type) {
8117 has_type_arg = true;
8118 is_stobj = true;
8119 return OpCodes.Stobj;
8120 } else if (TypeManager.IsStruct (t)) {
8121 has_type_arg = true;
8122 is_stobj = true;
8123 return OpCodes.Stobj;
8124 } else if (t.IsGenericParameter) {
8125 has_type_arg = true;
8126 return OpCodes.Stelem;
8127 } else if (t.IsPointer)
8128 return OpCodes.Stelem_I;
8129 else
8130 return OpCodes.Stelem_Ref;
8133 MethodInfo FetchGetMethod ()
8135 ModuleBuilder mb = RootContext.ToplevelTypes.Builder;
8136 int arg_count = ea.Arguments.Count;
8137 Type [] args = new Type [arg_count];
8138 MethodInfo get;
8140 for (int i = 0; i < arg_count; i++){
8141 //args [i++] = a.Type;
8142 args [i] = TypeManager.int32_type;
8145 get = mb.GetArrayMethod (
8146 ea.Expr.Type, "Get",
8147 CallingConventions.HasThis |
8148 CallingConventions.Standard,
8149 type, args);
8150 return get;
8154 MethodInfo FetchAddressMethod ()
8156 ModuleBuilder mb = RootContext.ToplevelTypes.Builder;
8157 int arg_count = ea.Arguments.Count;
8158 Type [] args = new Type [arg_count];
8159 MethodInfo address;
8160 Type ret_type;
8162 ret_type = TypeManager.GetReferenceType (type);
8164 for (int i = 0; i < arg_count; i++){
8165 //args [i++] = a.Type;
8166 args [i] = TypeManager.int32_type;
8169 address = mb.GetArrayMethod (
8170 ea.Expr.Type, "Address",
8171 CallingConventions.HasThis |
8172 CallingConventions.Standard,
8173 ret_type, args);
8175 return address;
8179 // Load the array arguments into the stack.
8181 void LoadArrayAndArguments (EmitContext ec)
8183 ea.Expr.Emit (ec);
8185 for (int i = 0; i < ea.Arguments.Count; ++i) {
8186 ea.Arguments [i].Emit (ec);
8190 public void Emit (EmitContext ec, bool leave_copy)
8192 int rank = ea.Expr.Type.GetArrayRank ();
8193 ILGenerator ig = ec.ig;
8195 if (prepared) {
8196 LoadFromPtr (ig, this.type);
8197 } else {
8198 LoadArrayAndArguments (ec);
8199 EmitLoadOpcode (ig, type, rank);
8202 if (leave_copy) {
8203 ig.Emit (OpCodes.Dup);
8204 temp = new LocalTemporary (this.type);
8205 temp.Store (ec);
8209 public override void Emit (EmitContext ec)
8211 Emit (ec, false);
8214 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
8216 int rank = ea.Expr.Type.GetArrayRank ();
8217 ILGenerator ig = ec.ig;
8218 Type t = source.Type;
8219 prepared = prepare_for_load;
8221 if (prepared) {
8222 AddressOf (ec, AddressOp.LoadStore);
8223 ec.ig.Emit (OpCodes.Dup);
8224 } else {
8225 LoadArrayAndArguments (ec);
8228 if (rank == 1) {
8229 bool is_stobj, has_type_arg;
8230 OpCode op = GetStoreOpcode (t, out is_stobj, out has_type_arg);
8232 if (!prepared) {
8234 // The stobj opcode used by value types will need
8235 // an address on the stack, not really an array/array
8236 // pair
8238 if (is_stobj)
8239 ig.Emit (OpCodes.Ldelema, t);
8242 source.Emit (ec);
8243 if (leave_copy) {
8244 ec.ig.Emit (OpCodes.Dup);
8245 temp = new LocalTemporary (this.type);
8246 temp.Store (ec);
8249 if (prepared)
8250 StoreFromPtr (ig, t);
8251 else if (is_stobj)
8252 ig.Emit (OpCodes.Stobj, t);
8253 else if (has_type_arg)
8254 ig.Emit (op, t);
8255 else
8256 ig.Emit (op);
8257 } else {
8258 source.Emit (ec);
8259 if (leave_copy) {
8260 ec.ig.Emit (OpCodes.Dup);
8261 temp = new LocalTemporary (this.type);
8262 temp.Store (ec);
8265 if (prepared) {
8266 StoreFromPtr (ig, t);
8267 } else {
8268 int arg_count = ea.Arguments.Count;
8269 Type [] args = new Type [arg_count + 1];
8270 for (int i = 0; i < arg_count; i++) {
8271 //args [i++] = a.Type;
8272 args [i] = TypeManager.int32_type;
8274 args [arg_count] = type;
8276 MethodInfo set = RootContext.ToplevelTypes.Builder.GetArrayMethod (
8277 ea.Expr.Type, "Set",
8278 CallingConventions.HasThis |
8279 CallingConventions.Standard,
8280 TypeManager.void_type, args);
8282 ig.Emit (OpCodes.Call, set);
8286 if (temp != null) {
8287 temp.Emit (ec);
8288 temp.Release (ec);
8292 public void EmitNew (EmitContext ec, New source, bool leave_copy)
8294 if (!source.Emit (ec, this)) {
8295 if (leave_copy)
8296 throw new NotImplementedException ();
8298 return;
8301 throw new NotImplementedException ();
8304 public void AddressOf (EmitContext ec, AddressOp mode)
8306 int rank = ea.Expr.Type.GetArrayRank ();
8307 ILGenerator ig = ec.ig;
8309 LoadArrayAndArguments (ec);
8311 if (rank == 1){
8312 ig.Emit (OpCodes.Ldelema, type);
8313 } else {
8314 MethodInfo address = FetchAddressMethod ();
8315 ig.Emit (OpCodes.Call, address);
8319 #if NET_4_0
8320 public SLE.Expression MakeAssignExpression (BuilderContext ctx)
8322 return SLE.Expression.ArrayAccess (
8323 ea.Expr.MakeExpression (ctx),
8324 Arguments.MakeExpression (ea.Arguments, ctx));
8326 #endif
8328 public override SLE.Expression MakeExpression (BuilderContext ctx)
8330 return SLE.Expression.ArrayIndex (
8331 ea.Expr.MakeExpression (ctx),
8332 Arguments.MakeExpression (ea.Arguments, ctx));
8335 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8337 type = storey.MutateType (type);
8338 ea.Expr.Type = storey.MutateType (ea.Expr.Type);
8342 /// <summary>
8343 /// Expressions that represent an indexer call.
8344 /// </summary>
8345 public class IndexerAccess : Expression, IDynamicAssign
8347 class IndexerMethodGroupExpr : MethodGroupExpr
8349 public IndexerMethodGroupExpr (Indexers indexers, Location loc)
8350 : base (null, loc)
8352 Methods = indexers.Methods.ToArray ();
8355 public override string Name {
8356 get {
8357 return "this";
8361 protected override int GetApplicableParametersCount (MethodBase method, AParametersCollection parameters)
8364 // Here is the trick, decrease number of arguments by 1 when only
8365 // available property method is setter. This makes overload resolution
8366 // work correctly for indexers.
8369 if (method.Name [0] == 'g')
8370 return parameters.Count;
8372 return parameters.Count - 1;
8376 class Indexers
8378 // Contains either property getter or setter
8379 public List<MethodBase> Methods;
8380 public List<PropertyInfo> Properties;
8382 Indexers ()
8386 void Append (Type caller_type, MemberInfo [] mi)
8388 if (mi == null)
8389 return;
8391 foreach (PropertyInfo property in mi) {
8392 MethodInfo accessor = property.GetGetMethod (true);
8393 if (accessor == null)
8394 accessor = property.GetSetMethod (true);
8396 if (Methods == null) {
8397 Methods = new List<MethodBase> ();
8398 Properties = new List<PropertyInfo> ();
8401 Methods.Add (accessor);
8402 Properties.Add (property);
8406 static MemberInfo [] GetIndexersForTypeOrInterface (Type caller_type, Type lookup_type)
8408 string p_name = TypeManager.IndexerPropertyName (lookup_type);
8410 return TypeManager.MemberLookup (
8411 caller_type, caller_type, lookup_type, MemberTypes.Property,
8412 BindingFlags.Public | BindingFlags.Instance |
8413 BindingFlags.DeclaredOnly, p_name, null);
8416 public static Indexers GetIndexersForType (Type caller_type, Type lookup_type)
8418 Indexers ix = new Indexers ();
8420 if (TypeManager.IsGenericParameter (lookup_type)) {
8421 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (lookup_type);
8422 if (gc == null)
8423 return ix;
8425 if (gc.HasClassConstraint) {
8426 Type class_contraint = gc.ClassConstraint;
8427 while (class_contraint != TypeManager.object_type && class_contraint != null) {
8428 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, class_contraint));
8429 class_contraint = class_contraint.BaseType;
8433 Type[] ifaces = gc.InterfaceConstraints;
8434 foreach (Type itype in ifaces)
8435 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, itype));
8437 return ix;
8440 Type copy = lookup_type;
8441 while (copy != TypeManager.object_type && copy != null){
8442 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, copy));
8443 copy = copy.BaseType;
8446 if (lookup_type.IsInterface) {
8447 Type [] ifaces = TypeManager.GetInterfaces (lookup_type);
8448 if (ifaces != null) {
8449 foreach (Type itype in ifaces)
8450 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, itype));
8454 return ix;
8459 // Points to our "data" repository
8461 MethodInfo get, set;
8462 bool is_base_indexer;
8463 bool prepared;
8464 LocalTemporary temp;
8465 LocalTemporary prepared_value;
8466 Expression set_expr;
8468 protected Type indexer_type;
8469 protected Type current_type;
8470 protected Expression instance_expr;
8471 protected Arguments arguments;
8473 public IndexerAccess (ElementAccess ea, Location loc)
8474 : this (ea.Expr, false, loc)
8476 this.arguments = ea.Arguments;
8479 protected IndexerAccess (Expression instance_expr, bool is_base_indexer,
8480 Location loc)
8482 this.instance_expr = instance_expr;
8483 this.is_base_indexer = is_base_indexer;
8484 this.loc = loc;
8487 static string GetAccessorName (bool isSet)
8489 return isSet ? "set" : "get";
8492 public override Expression CreateExpressionTree (ResolveContext ec)
8494 Arguments args = Arguments.CreateForExpressionTree (ec, arguments,
8495 instance_expr.CreateExpressionTree (ec),
8496 new TypeOfMethod (get, loc));
8498 return CreateExpressionFactoryCall (ec, "Call", args);
8501 protected virtual void CommonResolve (ResolveContext ec)
8503 indexer_type = instance_expr.Type;
8504 current_type = ec.CurrentType;
8507 protected override Expression DoResolve (ResolveContext ec)
8509 return ResolveAccessor (ec, null);
8512 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
8514 if (right_side == EmptyExpression.OutAccess.Instance) {
8515 right_side.DoResolveLValue (ec, this);
8516 return null;
8519 // if the indexer returns a value type, and we try to set a field in it
8520 if (right_side == EmptyExpression.LValueMemberAccess || right_side == EmptyExpression.LValueMemberOutAccess) {
8521 Error_CannotModifyIntermediateExpressionValue (ec);
8524 return ResolveAccessor (ec, right_side);
8527 Expression ResolveAccessor (ResolveContext ec, Expression right_side)
8529 CommonResolve (ec);
8531 MethodGroupExpr mg;
8532 Indexers ilist;
8533 bool dynamic;
8535 arguments.Resolve (ec, out dynamic);
8537 if (TypeManager.IsDynamicType (indexer_type)) {
8538 dynamic = true;
8539 mg = null;
8540 ilist = null;
8541 } else {
8542 ilist = Indexers.GetIndexersForType (current_type, indexer_type);
8543 if (ilist.Methods == null) {
8544 ec.Report.Error (21, loc, "Cannot apply indexing with [] to an expression of type `{0}'",
8545 TypeManager.CSharpName (indexer_type));
8546 return null;
8549 mg = new IndexerMethodGroupExpr (ilist, loc);
8550 mg = mg.OverloadResolve (ec, ref arguments, false, loc);
8551 if (mg == null)
8552 return null;
8555 if (dynamic) {
8556 Arguments args = new Arguments (arguments.Count + 1);
8557 if (is_base_indexer) {
8558 ec.Report.Error (1972, loc, "The indexer base access cannot be dynamically dispatched. Consider casting the dynamic arguments or eliminating the base access");
8559 } else {
8560 args.Add (new Argument (instance_expr));
8562 args.AddRange (arguments);
8564 var expr = new DynamicIndexBinder (args, loc);
8565 if (right_side != null)
8566 return expr.ResolveLValue (ec, right_side);
8568 return expr.Resolve (ec);
8571 MethodInfo mi = (MethodInfo) mg;
8572 PropertyInfo pi = null;
8573 for (int i = 0; i < ilist.Methods.Count; ++i) {
8574 if (ilist.Methods [i] == mi) {
8575 pi = (PropertyInfo) ilist.Properties [i];
8576 break;
8580 type = TypeManager.TypeToCoreType (pi.PropertyType);
8581 if (type.IsPointer && !ec.IsUnsafe)
8582 UnsafeError (ec, loc);
8584 MethodInfo accessor;
8585 if (right_side == null) {
8586 accessor = get = pi.GetGetMethod (true);
8587 } else {
8588 accessor = set = pi.GetSetMethod (true);
8589 if (accessor == null && pi.GetGetMethod (true) != null) {
8590 ec.Report.SymbolRelatedToPreviousError (pi);
8591 ec.Report.Error (200, loc, "The read only property or indexer `{0}' cannot be assigned to",
8592 TypeManager.GetFullNameSignature (pi));
8593 return null;
8596 set_expr = Convert.ImplicitConversion (ec, right_side, type, loc);
8599 if (accessor == null) {
8600 ec.Report.SymbolRelatedToPreviousError (pi);
8601 ec.Report.Error (154, loc, "The property or indexer `{0}' cannot be used in this context because it lacks a `{1}' accessor",
8602 TypeManager.GetFullNameSignature (pi), GetAccessorName (right_side != null));
8603 return null;
8607 // Only base will allow this invocation to happen.
8609 if (accessor.IsAbstract && this is BaseIndexerAccess) {
8610 Error_CannotCallAbstractBase (ec, TypeManager.GetFullNameSignature (pi));
8613 bool must_do_cs1540_check;
8614 if (!IsAccessorAccessible (ec.CurrentType, accessor, out must_do_cs1540_check)) {
8615 if (set == null)
8616 set = pi.GetSetMethod (true);
8617 else
8618 get = pi.GetGetMethod (true);
8620 if (set != null && get != null &&
8621 (set.Attributes & MethodAttributes.MemberAccessMask) != (get.Attributes & MethodAttributes.MemberAccessMask)) {
8622 ec.Report.SymbolRelatedToPreviousError (accessor);
8623 ec.Report.Error (271, loc, "The property or indexer `{0}' cannot be used in this context because a `{1}' accessor is inaccessible",
8624 TypeManager.GetFullNameSignature (pi), GetAccessorName (right_side != null));
8625 } else {
8626 ec.Report.SymbolRelatedToPreviousError (pi);
8627 ErrorIsInaccesible (loc, TypeManager.GetFullNameSignature (pi), ec.Report);
8631 instance_expr.CheckMarshalByRefAccess (ec);
8632 eclass = ExprClass.IndexerAccess;
8633 return this;
8636 public override void Emit (EmitContext ec)
8638 Emit (ec, false);
8641 public void Emit (EmitContext ec, bool leave_copy)
8643 if (prepared) {
8644 prepared_value.Emit (ec);
8645 } else {
8646 Invocation.EmitCall (ec, is_base_indexer, instance_expr, get,
8647 arguments, loc, false, false);
8650 if (leave_copy) {
8651 ec.ig.Emit (OpCodes.Dup);
8652 temp = new LocalTemporary (Type);
8653 temp.Store (ec);
8658 // source is ignored, because we already have a copy of it from the
8659 // LValue resolution and we have already constructed a pre-cached
8660 // version of the arguments (ea.set_arguments);
8662 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
8664 prepared = prepare_for_load;
8665 Expression value = set_expr;
8667 if (prepared) {
8668 Invocation.EmitCall (ec, is_base_indexer, instance_expr, get,
8669 arguments, loc, true, false);
8671 prepared_value = new LocalTemporary (type);
8672 prepared_value.Store (ec);
8673 source.Emit (ec);
8674 prepared_value.Release (ec);
8676 if (leave_copy) {
8677 ec.ig.Emit (OpCodes.Dup);
8678 temp = new LocalTemporary (Type);
8679 temp.Store (ec);
8681 } else if (leave_copy) {
8682 temp = new LocalTemporary (Type);
8683 source.Emit (ec);
8684 temp.Store (ec);
8685 value = temp;
8688 if (!prepared)
8689 arguments.Add (new Argument (value));
8691 Invocation.EmitCall (ec, is_base_indexer, instance_expr, set, arguments, loc, false, prepared);
8693 if (temp != null) {
8694 temp.Emit (ec);
8695 temp.Release (ec);
8699 public override string GetSignatureForError ()
8701 return TypeManager.CSharpSignature (get != null ? get : set, false);
8704 #if NET_4_0
8705 public SLE.Expression MakeAssignExpression (BuilderContext ctx)
8707 var value = new[] { set_expr.MakeExpression (ctx) };
8708 var args = Arguments.MakeExpression (arguments, ctx).Concat (value);
8710 return SLE.Expression.Block (
8711 SLE.Expression.Call (instance_expr.MakeExpression (ctx), set, args),
8712 value [0]);
8714 #endif
8716 public override SLE.Expression MakeExpression (BuilderContext ctx)
8718 var args = Arguments.MakeExpression (arguments, ctx);
8719 return SLE.Expression.Call (instance_expr.MakeExpression (ctx), get, args);
8722 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8724 if (get != null)
8725 get = storey.MutateGenericMethod (get);
8726 if (set != null)
8727 set = storey.MutateGenericMethod (set);
8729 instance_expr.MutateHoistedGenericType (storey);
8730 if (arguments != null)
8731 arguments.MutateHoistedGenericType (storey);
8733 type = storey.MutateType (type);
8736 protected override void CloneTo (CloneContext clonectx, Expression t)
8738 IndexerAccess target = (IndexerAccess) t;
8740 if (arguments != null)
8741 target.arguments = arguments.Clone (clonectx);
8743 if (instance_expr != null)
8744 target.instance_expr = instance_expr.Clone (clonectx);
8748 /// <summary>
8749 /// The base operator for method names
8750 /// </summary>
8751 public class BaseAccess : Expression {
8752 public readonly string Identifier;
8753 TypeArguments args;
8755 public BaseAccess (string member, Location l)
8757 this.Identifier = member;
8758 loc = l;
8761 public BaseAccess (string member, TypeArguments args, Location l)
8762 : this (member, l)
8764 this.args = args;
8767 public override Expression CreateExpressionTree (ResolveContext ec)
8769 throw new NotSupportedException ("ET");
8772 protected override Expression DoResolve (ResolveContext ec)
8774 Expression c = CommonResolve (ec);
8776 if (c == null)
8777 return null;
8780 // MethodGroups use this opportunity to flag an error on lacking ()
8782 if (!(c is MethodGroupExpr))
8783 return c.Resolve (ec);
8784 return c;
8787 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
8789 Expression c = CommonResolve (ec);
8791 if (c == null)
8792 return null;
8795 // MethodGroups use this opportunity to flag an error on lacking ()
8797 if (! (c is MethodGroupExpr))
8798 return c.DoResolveLValue (ec, right_side);
8800 return c;
8803 Expression CommonResolve (ResolveContext ec)
8805 Expression member_lookup;
8806 Type current_type = ec.CurrentType;
8807 Type base_type = current_type.BaseType;
8809 if (!This.IsThisAvailable (ec)) {
8810 if (ec.IsStatic) {
8811 ec.Report.Error (1511, loc, "Keyword `base' is not available in a static method");
8812 } else {
8813 ec.Report.Error (1512, loc, "Keyword `base' is not available in the current context");
8815 return null;
8818 member_lookup = MemberLookup (ec.Compiler, ec.CurrentType, null, base_type, Identifier,
8819 AllMemberTypes, AllBindingFlags, loc);
8820 if (member_lookup == null) {
8821 Error_MemberLookupFailed (ec, ec.CurrentType, base_type, base_type, Identifier,
8822 null, AllMemberTypes, AllBindingFlags);
8823 return null;
8826 Expression left;
8828 if (ec.IsStatic)
8829 left = new TypeExpression (base_type, loc);
8830 else
8831 left = ec.GetThis (loc);
8833 MemberExpr me = member_lookup as MemberExpr;
8834 if (me == null){
8835 if (member_lookup is TypeExpression){
8836 ec.Report.Error (582, loc, "{0}: Can not reference a type through an expression, try `{1}' instead",
8837 Identifier, member_lookup.GetSignatureForError ());
8838 } else {
8839 ec.Report.Error (582, loc, "{0}: Can not reference a {1} through an expression",
8840 Identifier, member_lookup.ExprClassName);
8843 return null;
8846 me = me.ResolveMemberAccess (ec, left, loc, null);
8847 if (me == null)
8848 return null;
8850 me.IsBase = true;
8851 if (args != null) {
8852 args.Resolve (ec);
8853 me.SetTypeArguments (ec, args);
8856 return me;
8859 public override void Emit (EmitContext ec)
8861 throw new Exception ("Should never be called");
8864 protected override void CloneTo (CloneContext clonectx, Expression t)
8866 BaseAccess target = (BaseAccess) t;
8868 if (args != null)
8869 target.args = args.Clone ();
8873 /// <summary>
8874 /// The base indexer operator
8875 /// </summary>
8876 public class BaseIndexerAccess : IndexerAccess {
8877 public BaseIndexerAccess (Arguments args, Location loc)
8878 : base (null, true, loc)
8880 this.arguments = args;
8883 protected override void CommonResolve (ResolveContext ec)
8885 instance_expr = ec.GetThis (loc);
8887 current_type = ec.CurrentType.BaseType;
8888 indexer_type = current_type;
8891 public override Expression CreateExpressionTree (ResolveContext ec)
8893 MemberExpr.Error_BaseAccessInExpressionTree (ec, loc);
8894 return base.CreateExpressionTree (ec);
8898 /// <summary>
8899 /// This class exists solely to pass the Type around and to be a dummy
8900 /// that can be passed to the conversion functions (this is used by
8901 /// foreach implementation to typecast the object return value from
8902 /// get_Current into the proper type. All code has been generated and
8903 /// we only care about the side effect conversions to be performed
8905 /// This is also now used as a placeholder where a no-action expression
8906 /// is needed (the `New' class).
8907 /// </summary>
8908 public class EmptyExpression : Expression {
8909 public static readonly Expression Null = new EmptyExpression ();
8911 public class OutAccess : EmptyExpression
8913 public static readonly OutAccess Instance = new OutAccess ();
8915 public override Expression DoResolveLValue (ResolveContext rc, Expression right_side)
8917 rc.Report.Error (206, right_side.Location,
8918 "A property, indexer or dynamic member access may not be passed as `ref' or `out' parameter");
8920 return null;
8924 public static readonly EmptyExpression LValueMemberAccess = new EmptyExpression ();
8925 public static readonly EmptyExpression LValueMemberOutAccess = new EmptyExpression ();
8926 public static readonly EmptyExpression UnaryAddress = new EmptyExpression ();
8928 static EmptyExpression temp = new EmptyExpression ();
8929 public static EmptyExpression Grab ()
8931 EmptyExpression retval = temp == null ? new EmptyExpression () : temp;
8932 temp = null;
8933 return retval;
8936 public static void Release (EmptyExpression e)
8938 temp = e;
8941 EmptyExpression ()
8943 // FIXME: Don't set to object
8944 type = TypeManager.object_type;
8945 eclass = ExprClass.Value;
8946 loc = Location.Null;
8949 public EmptyExpression (Type t)
8951 type = t;
8952 eclass = ExprClass.Value;
8953 loc = Location.Null;
8956 public override Expression CreateExpressionTree (ResolveContext ec)
8958 throw new NotSupportedException ("ET");
8961 protected override Expression DoResolve (ResolveContext ec)
8963 return this;
8966 public override void Emit (EmitContext ec)
8968 // nothing, as we only exist to not do anything.
8971 public override void EmitSideEffect (EmitContext ec)
8976 // This is just because we might want to reuse this bad boy
8977 // instead of creating gazillions of EmptyExpressions.
8978 // (CanImplicitConversion uses it)
8980 public void SetType (Type t)
8982 type = t;
8987 // Empty statement expression
8989 public sealed class EmptyExpressionStatement : ExpressionStatement
8991 public static readonly EmptyExpressionStatement Instance = new EmptyExpressionStatement ();
8993 private EmptyExpressionStatement ()
8995 loc = Location.Null;
8998 public override Expression CreateExpressionTree (ResolveContext ec)
9000 return null;
9003 public override void EmitStatement (EmitContext ec)
9005 // Do nothing
9008 protected override Expression DoResolve (ResolveContext ec)
9010 eclass = ExprClass.Value;
9011 type = TypeManager.object_type;
9012 return this;
9015 public override void Emit (EmitContext ec)
9017 // Do nothing
9021 public class UserCast : Expression {
9022 MethodInfo method;
9023 Expression source;
9025 public UserCast (MethodInfo method, Expression source, Location l)
9027 this.method = method;
9028 this.source = source;
9029 type = TypeManager.TypeToCoreType (method.ReturnType);
9030 loc = l;
9033 public Expression Source {
9034 get {
9035 return source;
9039 public override Expression CreateExpressionTree (ResolveContext ec)
9041 Arguments args = new Arguments (3);
9042 args.Add (new Argument (source.CreateExpressionTree (ec)));
9043 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
9044 args.Add (new Argument (new TypeOfMethod (method, loc)));
9045 return CreateExpressionFactoryCall (ec, "Convert", args);
9048 protected override Expression DoResolve (ResolveContext ec)
9050 ObsoleteAttribute oa = AttributeTester.GetMethodObsoleteAttribute (method);
9051 if (oa != null)
9052 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc, ec.Report);
9054 eclass = ExprClass.Value;
9055 return this;
9058 public override void Emit (EmitContext ec)
9060 source.Emit (ec);
9061 ec.ig.Emit (OpCodes.Call, method);
9064 public override string GetSignatureForError ()
9066 return TypeManager.CSharpSignature (method);
9069 public override SLE.Expression MakeExpression (BuilderContext ctx)
9071 return SLE.Expression.Convert (source.MakeExpression (ctx), type, method);
9074 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9076 source.MutateHoistedGenericType (storey);
9077 method = storey.MutateGenericMethod (method);
9081 // <summary>
9082 // This class is used to "construct" the type during a typecast
9083 // operation. Since the Type.GetType class in .NET can parse
9084 // the type specification, we just use this to construct the type
9085 // one bit at a time.
9086 // </summary>
9087 public class ComposedCast : TypeExpr {
9088 FullNamedExpression left;
9089 string dim;
9091 public ComposedCast (FullNamedExpression left, string dim)
9092 : this (left, dim, left.Location)
9096 public ComposedCast (FullNamedExpression left, string dim, Location l)
9098 this.left = left;
9099 this.dim = dim;
9100 loc = l;
9103 protected override TypeExpr DoResolveAsTypeStep (IMemberContext ec)
9105 TypeExpr lexpr = left.ResolveAsTypeTerminal (ec, false);
9106 if (lexpr == null)
9107 return null;
9109 Type ltype = lexpr.Type;
9110 if ((dim.Length > 0) && (dim [0] == '?')) {
9111 TypeExpr nullable = new Nullable.NullableType (lexpr, loc);
9112 if (dim.Length > 1)
9113 nullable = new ComposedCast (nullable, dim.Substring (1), loc);
9114 return nullable.ResolveAsTypeTerminal (ec, false);
9117 if (dim == "*" && !TypeManager.VerifyUnmanaged (ec.Compiler, ltype, loc))
9118 return null;
9120 if (dim.Length != 0 && dim [0] == '[') {
9121 if (TypeManager.IsSpecialType (ltype)) {
9122 ec.Compiler.Report.Error (611, loc, "Array elements cannot be of type `{0}'", TypeManager.CSharpName (ltype));
9123 return null;
9126 if ((ltype.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
9127 ec.Compiler.Report.SymbolRelatedToPreviousError (ltype);
9128 ec.Compiler.Report.Error (719, loc, "Array elements cannot be of static type `{0}'",
9129 TypeManager.CSharpName (ltype));
9133 if (dim != "")
9134 type = TypeManager.GetConstructedType (ltype, dim);
9135 else
9136 type = ltype;
9138 if (type == null)
9139 throw new InternalErrorException ("Couldn't create computed type " + ltype + dim);
9141 if (type.IsPointer && !ec.IsUnsafe){
9142 UnsafeError (ec.Compiler.Report, loc);
9145 eclass = ExprClass.Type;
9146 return this;
9149 public override string GetSignatureForError ()
9151 return left.GetSignatureForError () + dim;
9154 public override TypeExpr ResolveAsTypeTerminal (IMemberContext ec, bool silent)
9156 return ResolveAsBaseTerminal (ec, silent);
9160 public class FixedBufferPtr : Expression {
9161 Expression array;
9163 public FixedBufferPtr (Expression array, Type array_type, Location l)
9165 this.array = array;
9166 this.loc = l;
9168 type = TypeManager.GetPointerType (array_type);
9169 eclass = ExprClass.Value;
9172 public override Expression CreateExpressionTree (ResolveContext ec)
9174 Error_PointerInsideExpressionTree (ec);
9175 return null;
9178 public override void Emit(EmitContext ec)
9180 array.Emit (ec);
9183 protected override Expression DoResolve (ResolveContext ec)
9186 // We are born fully resolved
9188 return this;
9194 // This class is used to represent the address of an array, used
9195 // only by the Fixed statement, this generates "&a [0]" construct
9196 // for fixed (char *pa = a)
9198 public class ArrayPtr : FixedBufferPtr {
9199 Type array_type;
9201 public ArrayPtr (Expression array, Type array_type, Location l):
9202 base (array, array_type, l)
9204 this.array_type = array_type;
9207 public override void Emit (EmitContext ec)
9209 base.Emit (ec);
9211 ILGenerator ig = ec.ig;
9212 IntLiteral.EmitInt (ig, 0);
9213 ig.Emit (OpCodes.Ldelema, array_type);
9218 // Encapsulates a conversion rules required for array indexes
9220 public class ArrayIndexCast : TypeCast
9222 public ArrayIndexCast (Expression expr)
9223 : base (expr, TypeManager.int32_type)
9225 if (expr.Type == TypeManager.int32_type)
9226 throw new ArgumentException ("unnecessary array index conversion");
9229 public override Expression CreateExpressionTree (ResolveContext ec)
9231 using (ec.Set (ResolveContext.Options.CheckedScope)) {
9232 return base.CreateExpressionTree (ec);
9236 public override void Emit (EmitContext ec)
9238 child.Emit (ec);
9240 var expr_type = child.Type;
9242 if (expr_type == TypeManager.uint32_type)
9243 ec.ig.Emit (OpCodes.Conv_U);
9244 else if (expr_type == TypeManager.int64_type)
9245 ec.ig.Emit (OpCodes.Conv_Ovf_I);
9246 else if (expr_type == TypeManager.uint64_type)
9247 ec.ig.Emit (OpCodes.Conv_Ovf_I_Un);
9248 else
9249 throw new InternalErrorException ("Cannot emit cast to unknown array element type", type);
9252 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
9254 return child.GetAttributableValue (ec, value_type, out value);
9259 // Implements the `stackalloc' keyword
9261 public class StackAlloc : Expression {
9262 Type otype;
9263 Expression t;
9264 Expression count;
9266 public StackAlloc (Expression type, Expression count, Location l)
9268 t = type;
9269 this.count = count;
9270 loc = l;
9273 public override Expression CreateExpressionTree (ResolveContext ec)
9275 throw new NotSupportedException ("ET");
9278 protected override Expression DoResolve (ResolveContext ec)
9280 count = count.Resolve (ec);
9281 if (count == null)
9282 return null;
9284 if (count.Type != TypeManager.uint32_type){
9285 count = Convert.ImplicitConversionRequired (ec, count, TypeManager.int32_type, loc);
9286 if (count == null)
9287 return null;
9290 Constant c = count as Constant;
9291 if (c != null && c.IsNegative) {
9292 ec.Report.Error (247, loc, "Cannot use a negative size with stackalloc");
9295 if (ec.HasAny (ResolveContext.Options.CatchScope | ResolveContext.Options.FinallyScope)) {
9296 ec.Report.Error (255, loc, "Cannot use stackalloc in finally or catch");
9299 TypeExpr texpr = t.ResolveAsTypeTerminal (ec, false);
9300 if (texpr == null)
9301 return null;
9303 otype = texpr.Type;
9305 if (!TypeManager.VerifyUnmanaged (ec.Compiler, otype, loc))
9306 return null;
9308 type = TypeManager.GetPointerType (otype);
9309 eclass = ExprClass.Value;
9311 return this;
9314 public override void Emit (EmitContext ec)
9316 int size = GetTypeSize (otype);
9317 ILGenerator ig = ec.ig;
9319 count.Emit (ec);
9321 if (size == 0)
9322 ig.Emit (OpCodes.Sizeof, otype);
9323 else
9324 IntConstant.EmitInt (ig, size);
9326 ig.Emit (OpCodes.Mul_Ovf_Un);
9327 ig.Emit (OpCodes.Localloc);
9330 protected override void CloneTo (CloneContext clonectx, Expression t)
9332 StackAlloc target = (StackAlloc) t;
9333 target.count = count.Clone (clonectx);
9334 target.t = t.Clone (clonectx);
9339 // An object initializer expression
9341 public class ElementInitializer : Assign
9343 public readonly string Name;
9345 public ElementInitializer (string name, Expression initializer, Location loc)
9346 : base (null, initializer, loc)
9348 this.Name = name;
9351 protected override void CloneTo (CloneContext clonectx, Expression t)
9353 ElementInitializer target = (ElementInitializer) t;
9354 target.source = source.Clone (clonectx);
9357 public override Expression CreateExpressionTree (ResolveContext ec)
9359 Arguments args = new Arguments (2);
9360 FieldExpr fe = target as FieldExpr;
9361 if (fe != null)
9362 args.Add (new Argument (fe.CreateTypeOfExpression ()));
9363 else
9364 args.Add (new Argument (((PropertyExpr)target).CreateSetterTypeOfExpression ()));
9366 args.Add (new Argument (source.CreateExpressionTree (ec)));
9367 return CreateExpressionFactoryCall (ec,
9368 source is CollectionOrObjectInitializers ? "ListBind" : "Bind",
9369 args);
9372 protected override Expression DoResolve (ResolveContext ec)
9374 if (source == null)
9375 return EmptyExpressionStatement.Instance;
9377 MemberExpr me = MemberLookupFinal (ec, ec.CurrentInitializerVariable.Type, ec.CurrentInitializerVariable.Type,
9378 Name, MemberTypes.Field | MemberTypes.Property, BindingFlags.Public | BindingFlags.Instance, loc) as MemberExpr;
9380 if (me == null)
9381 return null;
9383 target = me;
9384 me.InstanceExpression = ec.CurrentInitializerVariable;
9386 if (source is CollectionOrObjectInitializers) {
9387 Expression previous = ec.CurrentInitializerVariable;
9388 ec.CurrentInitializerVariable = target;
9389 source = source.Resolve (ec);
9390 ec.CurrentInitializerVariable = previous;
9391 if (source == null)
9392 return null;
9394 eclass = source.eclass;
9395 type = source.Type;
9396 return this;
9399 Expression expr = base.DoResolve (ec);
9400 if (expr == null)
9401 return null;
9404 // Ignore field initializers with default value
9406 Constant c = source as Constant;
9407 if (c != null && c.IsDefaultInitializer (type) && target.eclass == ExprClass.Variable)
9408 return EmptyExpressionStatement.Instance.Resolve (ec);
9410 return expr;
9413 protected override Expression Error_MemberLookupFailed (ResolveContext ec, Type type, MemberInfo[] members)
9415 MemberInfo member = members [0];
9416 if (member.MemberType != MemberTypes.Property && member.MemberType != MemberTypes.Field)
9417 ec.Report.Error (1913, loc, "Member `{0}' cannot be initialized. An object " +
9418 "initializer may only be used for fields, or properties", TypeManager.GetFullNameSignature (member));
9419 else
9420 ec.Report.Error (1914, loc, " Static field or property `{0}' cannot be assigned in an object initializer",
9421 TypeManager.GetFullNameSignature (member));
9423 return null;
9426 public override void EmitStatement (EmitContext ec)
9428 if (source is CollectionOrObjectInitializers)
9429 source.Emit (ec);
9430 else
9431 base.EmitStatement (ec);
9436 // A collection initializer expression
9438 class CollectionElementInitializer : Invocation
9440 public class ElementInitializerArgument : Argument
9442 public ElementInitializerArgument (Expression e)
9443 : base (e)
9448 sealed class AddMemberAccess : MemberAccess
9450 public AddMemberAccess (Expression expr, Location loc)
9451 : base (expr, "Add", loc)
9455 protected override void Error_TypeDoesNotContainDefinition (ResolveContext ec, Type type, string name)
9457 if (TypeManager.HasElementType (type))
9458 return;
9460 base.Error_TypeDoesNotContainDefinition (ec, type, name);
9464 public CollectionElementInitializer (Expression argument)
9465 : base (null, new Arguments (1))
9467 base.arguments.Add (new ElementInitializerArgument (argument));
9468 this.loc = argument.Location;
9471 public CollectionElementInitializer (List<Expression> arguments, Location loc)
9472 : base (null, new Arguments (arguments.Count))
9474 foreach (Expression e in arguments)
9475 base.arguments.Add (new ElementInitializerArgument (e));
9477 this.loc = loc;
9480 public override Expression CreateExpressionTree (ResolveContext ec)
9482 Arguments args = new Arguments (2);
9483 args.Add (new Argument (mg.CreateExpressionTree (ec)));
9485 var expr_initializers = new ArrayInitializer (arguments.Count, loc);
9486 foreach (Argument a in arguments)
9487 expr_initializers.Add (a.CreateExpressionTree (ec));
9489 args.Add (new Argument (new ArrayCreation (
9490 CreateExpressionTypeExpression (ec, loc), "[]", expr_initializers, loc)));
9491 return CreateExpressionFactoryCall (ec, "ElementInit", args);
9494 protected override void CloneTo (CloneContext clonectx, Expression t)
9496 CollectionElementInitializer target = (CollectionElementInitializer) t;
9497 if (arguments != null)
9498 target.arguments = arguments.Clone (clonectx);
9501 protected override Expression DoResolve (ResolveContext ec)
9503 base.expr = new AddMemberAccess (ec.CurrentInitializerVariable, loc);
9505 return base.DoResolve (ec);
9510 // A block of object or collection initializers
9512 public class CollectionOrObjectInitializers : ExpressionStatement
9514 IList<Expression> initializers;
9515 bool is_collection_initialization;
9517 public static readonly CollectionOrObjectInitializers Empty =
9518 new CollectionOrObjectInitializers (Array.AsReadOnly (new Expression [0]), Location.Null);
9520 public CollectionOrObjectInitializers (IList<Expression> initializers, Location loc)
9522 this.initializers = initializers;
9523 this.loc = loc;
9526 public bool IsEmpty {
9527 get {
9528 return initializers.Count == 0;
9532 public bool IsCollectionInitializer {
9533 get {
9534 return is_collection_initialization;
9538 protected override void CloneTo (CloneContext clonectx, Expression target)
9540 CollectionOrObjectInitializers t = (CollectionOrObjectInitializers) target;
9542 t.initializers = new List<Expression> (initializers.Count);
9543 foreach (var e in initializers)
9544 t.initializers.Add (e.Clone (clonectx));
9547 public override Expression CreateExpressionTree (ResolveContext ec)
9549 var expr_initializers = new ArrayInitializer (initializers.Count, loc);
9550 foreach (Expression e in initializers) {
9551 Expression expr = e.CreateExpressionTree (ec);
9552 if (expr != null)
9553 expr_initializers.Add (expr);
9556 return new ImplicitlyTypedArrayCreation ("[]", expr_initializers, loc);
9559 protected override Expression DoResolve (ResolveContext ec)
9561 List<string> element_names = null;
9562 for (int i = 0; i < initializers.Count; ++i) {
9563 Expression initializer = (Expression) initializers [i];
9564 ElementInitializer element_initializer = initializer as ElementInitializer;
9566 if (i == 0) {
9567 if (element_initializer != null) {
9568 element_names = new List<string> (initializers.Count);
9569 element_names.Add (element_initializer.Name);
9570 } else if (initializer is CompletingExpression){
9571 initializer.Resolve (ec);
9572 throw new InternalErrorException ("This line should never be reached");
9573 } else {
9574 if (!TypeManager.ImplementsInterface (ec.CurrentInitializerVariable.Type, TypeManager.ienumerable_type)) {
9575 ec.Report.Error (1922, loc, "A field or property `{0}' cannot be initialized with a collection " +
9576 "object initializer because type `{1}' does not implement `{2}' interface",
9577 ec.CurrentInitializerVariable.GetSignatureForError (),
9578 TypeManager.CSharpName (ec.CurrentInitializerVariable.Type),
9579 TypeManager.CSharpName (TypeManager.ienumerable_type));
9580 return null;
9582 is_collection_initialization = true;
9584 } else {
9585 if (is_collection_initialization != (element_initializer == null)) {
9586 ec.Report.Error (747, initializer.Location, "Inconsistent `{0}' member declaration",
9587 is_collection_initialization ? "collection initializer" : "object initializer");
9588 continue;
9591 if (!is_collection_initialization) {
9592 if (element_names.Contains (element_initializer.Name)) {
9593 ec.Report.Error (1912, element_initializer.Location,
9594 "An object initializer includes more than one member `{0}' initialization",
9595 element_initializer.Name);
9596 } else {
9597 element_names.Add (element_initializer.Name);
9602 Expression e = initializer.Resolve (ec);
9603 if (e == EmptyExpressionStatement.Instance)
9604 initializers.RemoveAt (i--);
9605 else
9606 initializers [i] = e;
9609 type = ec.CurrentInitializerVariable.Type;
9610 if (is_collection_initialization) {
9611 if (TypeManager.HasElementType (type)) {
9612 ec.Report.Error (1925, loc, "Cannot initialize object of type `{0}' with a collection initializer",
9613 TypeManager.CSharpName (type));
9617 eclass = ExprClass.Variable;
9618 return this;
9621 public override void Emit (EmitContext ec)
9623 EmitStatement (ec);
9626 public override void EmitStatement (EmitContext ec)
9628 foreach (ExpressionStatement e in initializers)
9629 e.EmitStatement (ec);
9632 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9634 foreach (Expression e in initializers)
9635 e.MutateHoistedGenericType (storey);
9640 // New expression with element/object initializers
9642 public class NewInitialize : New
9645 // This class serves as a proxy for variable initializer target instances.
9646 // A real variable is assigned later when we resolve left side of an
9647 // assignment
9649 sealed class InitializerTargetExpression : Expression, IMemoryLocation
9651 NewInitialize new_instance;
9653 public InitializerTargetExpression (NewInitialize newInstance)
9655 this.type = newInstance.type;
9656 this.loc = newInstance.loc;
9657 this.eclass = newInstance.eclass;
9658 this.new_instance = newInstance;
9661 public override Expression CreateExpressionTree (ResolveContext ec)
9663 // Should not be reached
9664 throw new NotSupportedException ("ET");
9667 protected override Expression DoResolve (ResolveContext ec)
9669 return this;
9672 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
9674 return this;
9677 public override void Emit (EmitContext ec)
9679 Expression e = (Expression) new_instance.instance;
9680 e.Emit (ec);
9683 #region IMemoryLocation Members
9685 public void AddressOf (EmitContext ec, AddressOp mode)
9687 new_instance.instance.AddressOf (ec, mode);
9690 #endregion
9693 CollectionOrObjectInitializers initializers;
9694 IMemoryLocation instance;
9696 public NewInitialize (Expression requested_type, Arguments arguments, CollectionOrObjectInitializers initializers, Location l)
9697 : base (requested_type, arguments, l)
9699 this.initializers = initializers;
9702 protected override IMemoryLocation EmitAddressOf (EmitContext ec, AddressOp Mode)
9704 instance = base.EmitAddressOf (ec, Mode);
9706 if (!initializers.IsEmpty)
9707 initializers.Emit (ec);
9709 return instance;
9712 protected override void CloneTo (CloneContext clonectx, Expression t)
9714 base.CloneTo (clonectx, t);
9716 NewInitialize target = (NewInitialize) t;
9717 target.initializers = (CollectionOrObjectInitializers) initializers.Clone (clonectx);
9720 public override Expression CreateExpressionTree (ResolveContext ec)
9722 Arguments args = new Arguments (2);
9723 args.Add (new Argument (base.CreateExpressionTree (ec)));
9724 if (!initializers.IsEmpty)
9725 args.Add (new Argument (initializers.CreateExpressionTree (ec)));
9727 return CreateExpressionFactoryCall (ec,
9728 initializers.IsCollectionInitializer ? "ListInit" : "MemberInit",
9729 args);
9732 protected override Expression DoResolve (ResolveContext ec)
9734 Expression e = base.DoResolve (ec);
9735 if (type == null)
9736 return null;
9738 Expression previous = ec.CurrentInitializerVariable;
9739 ec.CurrentInitializerVariable = new InitializerTargetExpression (this);
9740 initializers.Resolve (ec);
9741 ec.CurrentInitializerVariable = previous;
9742 return e;
9745 public override bool Emit (EmitContext ec, IMemoryLocation target)
9747 bool left_on_stack = base.Emit (ec, target);
9749 if (initializers.IsEmpty)
9750 return left_on_stack;
9752 LocalTemporary temp = target as LocalTemporary;
9753 if (temp == null) {
9754 if (!left_on_stack) {
9755 VariableReference vr = target as VariableReference;
9757 // FIXME: This still does not work correctly for pre-set variables
9758 if (vr != null && vr.IsRef)
9759 target.AddressOf (ec, AddressOp.Load);
9761 ((Expression) target).Emit (ec);
9762 left_on_stack = true;
9765 temp = new LocalTemporary (type);
9768 instance = temp;
9769 if (left_on_stack)
9770 temp.Store (ec);
9772 initializers.Emit (ec);
9774 if (left_on_stack) {
9775 temp.Emit (ec);
9776 temp.Release (ec);
9779 return left_on_stack;
9782 public override bool HasInitializer {
9783 get {
9784 return !initializers.IsEmpty;
9788 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9790 base.MutateHoistedGenericType (storey);
9791 initializers.MutateHoistedGenericType (storey);
9795 public class NewAnonymousType : New
9797 static readonly IList<AnonymousTypeParameter> EmptyParameters = Array.AsReadOnly (new AnonymousTypeParameter[0]);
9799 List<AnonymousTypeParameter> parameters;
9800 readonly TypeContainer parent;
9801 AnonymousTypeClass anonymous_type;
9803 public NewAnonymousType (List<AnonymousTypeParameter> parameters, TypeContainer parent, Location loc)
9804 : base (null, null, loc)
9806 this.parameters = parameters;
9807 this.parent = parent;
9810 protected override void CloneTo (CloneContext clonectx, Expression target)
9812 if (parameters == null)
9813 return;
9815 NewAnonymousType t = (NewAnonymousType) target;
9816 t.parameters = new List<AnonymousTypeParameter> (parameters.Count);
9817 foreach (AnonymousTypeParameter atp in parameters)
9818 t.parameters.Add ((AnonymousTypeParameter) atp.Clone (clonectx));
9821 AnonymousTypeClass CreateAnonymousType (ResolveContext ec, IList<AnonymousTypeParameter> parameters)
9823 AnonymousTypeClass type = parent.Module.Compiled.GetAnonymousType (parameters);
9824 if (type != null)
9825 return type;
9827 type = AnonymousTypeClass.Create (ec.Compiler, parent, parameters, loc);
9828 if (type == null)
9829 return null;
9831 type.DefineType ();
9832 type.Define ();
9833 type.EmitType ();
9834 if (ec.Report.Errors == 0)
9835 type.CloseType ();
9837 parent.Module.Compiled.AddAnonymousType (type);
9838 return type;
9841 public override Expression CreateExpressionTree (ResolveContext ec)
9843 if (parameters == null)
9844 return base.CreateExpressionTree (ec);
9846 var init = new ArrayInitializer (parameters.Count, loc);
9847 foreach (Property p in anonymous_type.Properties)
9848 init.Add (new TypeOfMethod (TypeBuilder.GetMethod (type, p.GetBuilder), loc));
9850 var ctor_args = new ArrayInitializer (Arguments.Count, loc);
9851 foreach (Argument a in Arguments)
9852 ctor_args.Add (a.CreateExpressionTree (ec));
9854 Arguments args = new Arguments (3);
9855 args.Add (new Argument (method.CreateExpressionTree (ec)));
9856 args.Add (new Argument (new ArrayCreation (TypeManager.expression_type_expr, "[]", ctor_args, loc)));
9857 args.Add (new Argument (new ImplicitlyTypedArrayCreation ("[]", init, loc)));
9859 return CreateExpressionFactoryCall (ec, "New", args);
9862 protected override Expression DoResolve (ResolveContext ec)
9864 if (ec.HasSet (ResolveContext.Options.ConstantScope)) {
9865 ec.Report.Error (836, loc, "Anonymous types cannot be used in this expression");
9866 return null;
9869 if (parameters == null) {
9870 anonymous_type = CreateAnonymousType (ec, EmptyParameters);
9871 RequestedType = new TypeExpression (anonymous_type.TypeBuilder, loc);
9872 return base.DoResolve (ec);
9875 bool error = false;
9876 Arguments = new Arguments (parameters.Count);
9877 TypeExpression [] t_args = new TypeExpression [parameters.Count];
9878 for (int i = 0; i < parameters.Count; ++i) {
9879 Expression e = ((AnonymousTypeParameter) parameters [i]).Resolve (ec);
9880 if (e == null) {
9881 error = true;
9882 continue;
9885 Arguments.Add (new Argument (e));
9886 t_args [i] = new TypeExpression (e.Type, e.Location);
9889 if (error)
9890 return null;
9892 anonymous_type = CreateAnonymousType (ec, parameters);
9893 if (anonymous_type == null)
9894 return null;
9896 RequestedType = new GenericTypeExpr (anonymous_type.TypeBuilder, new TypeArguments (t_args), loc);
9897 return base.DoResolve (ec);
9901 public class AnonymousTypeParameter : ShimExpression
9903 public readonly string Name;
9905 public AnonymousTypeParameter (Expression initializer, string name, Location loc)
9906 : base (initializer)
9908 this.Name = name;
9909 this.loc = loc;
9912 public AnonymousTypeParameter (Parameter parameter)
9913 : base (new SimpleName (parameter.Name, parameter.Location))
9915 this.Name = parameter.Name;
9916 this.loc = parameter.Location;
9919 public override bool Equals (object o)
9921 AnonymousTypeParameter other = o as AnonymousTypeParameter;
9922 return other != null && Name == other.Name;
9925 public override int GetHashCode ()
9927 return Name.GetHashCode ();
9930 protected override Expression DoResolve (ResolveContext ec)
9932 Expression e = expr.Resolve (ec);
9933 if (e == null)
9934 return null;
9936 if (e.eclass == ExprClass.MethodGroup) {
9937 Error_InvalidInitializer (ec, e.ExprClassName);
9938 return null;
9941 type = e.Type;
9942 if (type == TypeManager.void_type || type == TypeManager.null_type ||
9943 type == InternalType.AnonymousMethod || type.IsPointer) {
9944 Error_InvalidInitializer (ec, e.GetSignatureForError ());
9945 return null;
9948 return e;
9951 protected virtual void Error_InvalidInitializer (ResolveContext ec, string initializer)
9953 ec.Report.Error (828, loc, "An anonymous type property `{0}' cannot be initialized with `{1}'",
9954 Name, initializer);