Fix bug #566087.
[mcs.git] / mcs / ecore.cs
blob25b8bac65e4c1ec2725078cfc9d3673724b6c771
1 //
2 // ecore.cs: Core of the Expression representation for the intermediate tree.
3 //
4 // Author:
5 // Miguel de Icaza (miguel@ximian.com)
6 // Marek Safar (marek.safar@seznam.cz)
7 //
8 // Copyright 2001, 2002, 2003 Ximian, Inc.
9 // Copyright 2003-2008 Novell, Inc.
13 namespace Mono.CSharp {
14 using System;
15 using System.Collections.Generic;
16 using System.Diagnostics;
17 using System.Reflection;
18 using System.Reflection.Emit;
19 using System.Text;
20 using SLE = System.Linq.Expressions;
22 /// <remarks>
23 /// The ExprClass class contains the is used to pass the
24 /// classification of an expression (value, variable, namespace,
25 /// type, method group, property access, event access, indexer access,
26 /// nothing).
27 /// </remarks>
28 public enum ExprClass : byte {
29 Unresolved = 0,
31 Value,
32 Variable,
33 Namespace,
34 Type,
35 TypeParameter,
36 MethodGroup,
37 PropertyAccess,
38 EventAccess,
39 IndexerAccess,
40 Nothing,
43 /// <remarks>
44 /// This is used to tell Resolve in which types of expressions we're
45 /// interested.
46 /// </remarks>
47 [Flags]
48 public enum ResolveFlags {
49 // Returns Value, Variable, PropertyAccess, EventAccess or IndexerAccess.
50 VariableOrValue = 1,
52 // Returns a type expression.
53 Type = 1 << 1,
55 // Returns a method group.
56 MethodGroup = 1 << 2,
58 TypeParameter = 1 << 3,
60 // Mask of all the expression class flags.
61 MaskExprClass = VariableOrValue | Type | MethodGroup | TypeParameter,
63 // Set if this is resolving the first part of a MemberAccess.
64 Intermediate = 1 << 11,
68 // This is just as a hint to AddressOf of what will be done with the
69 // address.
70 [Flags]
71 public enum AddressOp {
72 Store = 1,
73 Load = 2,
74 LoadStore = 3
77 /// <summary>
78 /// This interface is implemented by variables
79 /// </summary>
80 public interface IMemoryLocation {
81 /// <summary>
82 /// The AddressOf method should generate code that loads
83 /// the address of the object and leaves it on the stack.
84 ///
85 /// The `mode' argument is used to notify the expression
86 /// of whether this will be used to read from the address or
87 /// write to the address.
88 ///
89 /// This is just a hint that can be used to provide good error
90 /// reporting, and should have no other side effects.
91 /// </summary>
92 void AddressOf (EmitContext ec, AddressOp mode);
96 // An expressions resolved as a direct variable reference
98 public interface IVariableReference : IFixedExpression
100 bool IsHoisted { get; }
101 string Name { get; }
102 VariableInfo VariableInfo { get; }
104 void SetHasAddressTaken ();
108 // Implemented by an expression which could be or is always
109 // fixed
111 public interface IFixedExpression
113 bool IsFixed { get; }
116 /// <remarks>
117 /// Base class for expressions
118 /// </remarks>
119 public abstract class Expression {
120 public ExprClass eclass;
121 protected Type type;
122 protected Location loc;
124 public Type Type {
125 get { return type; }
126 set { type = value; }
129 public virtual Location Location {
130 get { return loc; }
133 // Not nice but we have broken hierarchy.
134 public virtual void CheckMarshalByRefAccess (ResolveContext ec)
138 public virtual bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
140 Attribute.Error_AttributeArgumentNotValid (ec, loc);
141 value = null;
142 return false;
145 public virtual string GetSignatureForError ()
147 return TypeManager.CSharpName (type);
150 public static bool IsAccessorAccessible (Type invocation_type, MethodInfo mi, out bool must_do_cs1540_check)
152 MethodAttributes ma = mi.Attributes & MethodAttributes.MemberAccessMask;
154 must_do_cs1540_check = false; // by default we do not check for this
156 if (ma == MethodAttributes.Public)
157 return true;
160 // If only accessible to the current class or children
162 if (ma == MethodAttributes.Private)
163 return TypeManager.IsPrivateAccessible (invocation_type, mi.DeclaringType) ||
164 TypeManager.IsNestedChildOf (invocation_type, mi.DeclaringType);
166 if (TypeManager.IsThisOrFriendAssembly (invocation_type.Assembly, mi.DeclaringType.Assembly)) {
167 if (ma == MethodAttributes.Assembly || ma == MethodAttributes.FamORAssem)
168 return true;
169 } else {
170 if (ma == MethodAttributes.Assembly || ma == MethodAttributes.FamANDAssem)
171 return false;
174 // Family and FamANDAssem require that we derive.
175 // FamORAssem requires that we derive if in different assemblies.
176 if (!TypeManager.IsNestedFamilyAccessible (invocation_type, mi.DeclaringType))
177 return false;
179 if (!TypeManager.IsNestedChildOf (invocation_type, mi.DeclaringType))
180 must_do_cs1540_check = true;
182 return true;
185 public virtual bool IsNull {
186 get {
187 return false;
191 /// <summary>
192 /// Performs semantic analysis on the Expression
193 /// </summary>
195 /// <remarks>
196 /// The Resolve method is invoked to perform the semantic analysis
197 /// on the node.
199 /// The return value is an expression (it can be the
200 /// same expression in some cases) or a new
201 /// expression that better represents this node.
202 ///
203 /// For example, optimizations of Unary (LiteralInt)
204 /// would return a new LiteralInt with a negated
205 /// value.
206 ///
207 /// If there is an error during semantic analysis,
208 /// then an error should be reported (using Report)
209 /// and a null value should be returned.
210 ///
211 /// There are two side effects expected from calling
212 /// Resolve(): the the field variable "eclass" should
213 /// be set to any value of the enumeration
214 /// `ExprClass' and the type variable should be set
215 /// to a valid type (this is the type of the
216 /// expression).
217 /// </remarks>
218 protected abstract Expression DoResolve (ResolveContext rc);
220 public virtual Expression DoResolveLValue (ResolveContext rc, Expression right_side)
222 return null;
226 // This is used if the expression should be resolved as a type or namespace name.
227 // the default implementation fails.
229 public virtual FullNamedExpression ResolveAsTypeStep (IMemberContext rc, bool silent)
231 if (!silent) {
232 ResolveContext ec = new ResolveContext (rc);
233 Expression e = Resolve (ec);
234 if (e != null)
235 e.Error_UnexpectedKind (ec, ResolveFlags.Type, loc);
238 return null;
242 // C# 3.0 introduced contextual keywords (var) which behaves like a type if type with
243 // same name exists or as a keyword when no type was found
245 public virtual TypeExpr ResolveAsContextualType (IMemberContext rc, bool silent)
247 return ResolveAsTypeTerminal (rc, silent);
251 // This is used to resolve the expression as a type, a null
252 // value will be returned if the expression is not a type
253 // reference
255 public virtual TypeExpr ResolveAsTypeTerminal (IMemberContext ec, bool silent)
257 TypeExpr te = ResolveAsBaseTerminal (ec, silent);
258 if (te == null)
259 return null;
261 if (!silent) { // && !(te is TypeParameterExpr)) {
262 ObsoleteAttribute obsolete_attr = AttributeTester.GetObsoleteAttribute (te.Type);
263 if (obsolete_attr != null && !ec.IsObsolete) {
264 AttributeTester.Report_ObsoleteMessage (obsolete_attr, te.GetSignatureForError (), Location, ec.Compiler.Report);
268 GenericTypeExpr ct = te as GenericTypeExpr;
269 if (ct != null) {
271 // TODO: Constrained type parameters check for parameters of generic method overrides is broken
272 // There are 2 solutions.
273 // 1, Skip this check completely when we are in override/explicit impl scope
274 // 2, Copy type parameters constraints from base implementation and pass (they have to be emitted anyway)
276 MemberCore gm = ec as GenericMethod;
277 if (gm == null)
278 gm = ec as Method;
279 if (gm != null && ((gm.ModFlags & Modifiers.OVERRIDE) != 0 || gm.MemberName.Left != null)) {
280 te.loc = loc;
281 return te;
284 // TODO: silent flag is ignored
285 ct.CheckConstraints (ec);
288 return te;
291 public TypeExpr ResolveAsBaseTerminal (IMemberContext ec, bool silent)
293 int errors = ec.Compiler.Report.Errors;
295 FullNamedExpression fne = ResolveAsTypeStep (ec, silent);
297 if (fne == null)
298 return null;
300 TypeExpr te = fne as TypeExpr;
301 if (te == null) {
302 if (!silent && errors == ec.Compiler.Report.Errors)
303 fne.Error_UnexpectedKind (ec.Compiler.Report, null, "type", loc);
304 return null;
307 if (!te.CheckAccessLevel (ec)) {
308 ec.Compiler.Report.SymbolRelatedToPreviousError (te.Type);
309 ErrorIsInaccesible (loc, TypeManager.CSharpName (te.Type), ec.Compiler.Report);
310 return null;
313 te.loc = loc;
314 return te;
317 public static void ErrorIsInaccesible (Location loc, string name, Report Report)
319 Report.Error (122, loc, "`{0}' is inaccessible due to its protection level", name);
322 protected static void Error_CannotAccessProtected (ResolveContext ec, Location loc, MemberInfo m, Type qualifier, Type container)
324 ec.Report.Error (1540, loc, "Cannot access protected member `{0}' via a qualifier of type `{1}'."
325 + " The qualifier must be of type `{2}' or derived from it",
326 TypeManager.GetFullNameSignature (m),
327 TypeManager.CSharpName (qualifier),
328 TypeManager.CSharpName (container));
332 public static void Error_InvalidExpressionStatement (Report Report, Location loc)
334 Report.Error (201, loc, "Only assignment, call, increment, decrement, and new object " +
335 "expressions can be used as a statement");
338 public void Error_InvalidExpressionStatement (BlockContext ec)
340 Error_InvalidExpressionStatement (ec.Report, loc);
343 public static void Error_VoidInvalidInTheContext (Location loc, Report Report)
345 Report.Error (1547, loc, "Keyword `void' cannot be used in this context");
348 public virtual void Error_ValueCannotBeConverted (ResolveContext ec, Location loc, Type target, bool expl)
350 Error_ValueCannotBeConvertedCore (ec, loc, target, expl);
353 protected void Error_ValueCannotBeConvertedCore (ResolveContext ec, Location loc, Type target, bool expl)
355 // The error was already reported as CS1660
356 if (type == InternalType.AnonymousMethod)
357 return;
359 if (TypeManager.IsGenericParameter (Type) && TypeManager.IsGenericParameter (target) && type.Name == target.Name) {
360 string sig1 = type.DeclaringMethod == null ?
361 TypeManager.CSharpName (type.DeclaringType) :
362 TypeManager.CSharpSignature (type.DeclaringMethod);
363 string sig2 = target.DeclaringMethod == null ?
364 TypeManager.CSharpName (target.DeclaringType) :
365 TypeManager.CSharpSignature (target.DeclaringMethod);
366 ec.Report.ExtraInformation (loc,
367 String.Format (
368 "The generic parameter `{0}' of `{1}' cannot be converted to the generic parameter `{0}' of `{2}' (in the previous ",
369 Type.Name, sig1, sig2));
370 } else if (Type.FullName == target.FullName){
371 ec.Report.ExtraInformation (loc,
372 String.Format (
373 "The type `{0}' has two conflicting definitions, one comes from `{1}' and the other from `{2}' (in the previous ",
374 Type.FullName, Type.Assembly.FullName, target.Assembly.FullName));
377 if (expl) {
378 ec.Report.Error (30, loc, "Cannot convert type `{0}' to `{1}'",
379 TypeManager.CSharpName (type), TypeManager.CSharpName (target));
380 return;
383 ec.Report.DisableReporting ();
384 bool expl_exists = Convert.ExplicitConversion (ec, this, target, Location.Null) != null;
385 ec.Report.EnableReporting ();
387 if (expl_exists) {
388 ec.Report.Error (266, loc, "Cannot implicitly convert type `{0}' to `{1}'. " +
389 "An explicit conversion exists (are you missing a cast?)",
390 TypeManager.CSharpName (Type), TypeManager.CSharpName (target));
391 return;
394 ec.Report.Error (29, loc, "Cannot implicitly convert type `{0}' to `{1}'",
395 TypeManager.CSharpName (type),
396 TypeManager.CSharpName (target));
399 public virtual void Error_VariableIsUsedBeforeItIsDeclared (Report Report, string name)
401 Report.Error (841, loc, "A local variable `{0}' cannot be used before it is declared", name);
404 public void Error_TypeArgumentsCannotBeUsed (Report report, Location loc)
406 // Better message for possible generic expressions
407 if (eclass == ExprClass.MethodGroup || eclass == ExprClass.Type) {
408 if (this is TypeExpr)
409 report.SymbolRelatedToPreviousError (type);
411 string name = eclass == ExprClass.Type ? ExprClassName : "method";
412 report.Error (308, loc, "The non-generic {0} `{1}' cannot be used with the type arguments",
413 name, GetSignatureForError ());
414 } else {
415 report.Error (307, loc, "The {0} `{1}' cannot be used with type arguments",
416 ExprClassName, GetSignatureForError ());
420 protected virtual void Error_TypeDoesNotContainDefinition (ResolveContext ec, Type type, string name)
422 Error_TypeDoesNotContainDefinition (ec, loc, type, name);
425 public static void Error_TypeDoesNotContainDefinition (ResolveContext ec, Location loc, Type type, string name)
427 ec.Report.SymbolRelatedToPreviousError (type);
428 ec.Report.Error (117, loc, "`{0}' does not contain a definition for `{1}'",
429 TypeManager.CSharpName (type), name);
432 protected static void Error_ValueAssignment (ResolveContext ec, Location loc)
434 ec.Report.Error (131, loc, "The left-hand side of an assignment must be a variable, a property or an indexer");
437 ResolveFlags ExprClassToResolveFlags {
438 get {
439 switch (eclass) {
440 case ExprClass.Type:
441 case ExprClass.Namespace:
442 return ResolveFlags.Type;
444 case ExprClass.MethodGroup:
445 return ResolveFlags.MethodGroup;
447 case ExprClass.TypeParameter:
448 return ResolveFlags.TypeParameter;
450 case ExprClass.Value:
451 case ExprClass.Variable:
452 case ExprClass.PropertyAccess:
453 case ExprClass.EventAccess:
454 case ExprClass.IndexerAccess:
455 return ResolveFlags.VariableOrValue;
457 default:
458 throw new InternalErrorException (loc.ToString () + " " + GetType () + " ExprClass is Invalid after resolve");
463 /// <summary>
464 /// Resolves an expression and performs semantic analysis on it.
465 /// </summary>
467 /// <remarks>
468 /// Currently Resolve wraps DoResolve to perform sanity
469 /// checking and assertion checking on what we expect from Resolve.
470 /// </remarks>
471 public Expression Resolve (ResolveContext ec, ResolveFlags flags)
473 if (eclass != ExprClass.Unresolved)
474 return this;
476 Expression e;
477 if (this is SimpleName) {
478 e = ((SimpleName) this).DoResolve (ec, (flags & ResolveFlags.Intermediate) != 0);
479 } else {
480 e = DoResolve (ec);
483 if (e == null)
484 return null;
486 if ((flags & e.ExprClassToResolveFlags) == 0) {
487 e.Error_UnexpectedKind (ec, flags, loc);
488 return null;
491 if (e.type == null)
492 throw new InternalErrorException ("Expression `{0}' didn't set its type in DoResolve", e.GetType ());
494 return e;
497 /// <summary>
498 /// Resolves an expression and performs semantic analysis on it.
499 /// </summary>
500 public Expression Resolve (ResolveContext rc)
502 return Resolve (rc, ResolveFlags.VariableOrValue | ResolveFlags.MethodGroup);
505 public Constant ResolveAsConstant (ResolveContext ec, MemberCore mc)
507 Expression e = Resolve (ec);
508 if (e == null)
509 return null;
511 Constant c = e as Constant;
512 if (c != null)
513 return c;
515 if (type != null && TypeManager.IsReferenceType (type))
516 Const.Error_ConstantCanBeInitializedWithNullOnly (type, loc, mc.GetSignatureForError (), ec.Report);
517 else
518 Const.Error_ExpressionMustBeConstant (loc, mc.GetSignatureForError (), ec.Report);
520 return null;
523 /// <summary>
524 /// Resolves an expression for LValue assignment
525 /// </summary>
527 /// <remarks>
528 /// Currently ResolveLValue wraps DoResolveLValue to perform sanity
529 /// checking and assertion checking on what we expect from Resolve
530 /// </remarks>
531 public Expression ResolveLValue (ResolveContext ec, Expression right_side)
533 int errors = ec.Report.Errors;
534 bool out_access = right_side == EmptyExpression.OutAccess.Instance;
536 Expression e = DoResolveLValue (ec, right_side);
538 if (e != null && out_access && !(e is IMemoryLocation)) {
539 // FIXME: There's no problem with correctness, the 'Expr = null' handles that.
540 // Enabling this 'throw' will "only" result in deleting useless code elsewhere,
542 //throw new InternalErrorException ("ResolveLValue didn't return an IMemoryLocation: " +
543 // e.GetType () + " " + e.GetSignatureForError ());
544 e = null;
547 if (e == null) {
548 if (errors == ec.Report.Errors) {
549 if (out_access)
550 ec.Report.Error (1510, loc, "A ref or out argument must be an assignable variable");
551 else
552 Error_ValueAssignment (ec, loc);
554 return null;
557 if (e.eclass == ExprClass.Unresolved)
558 throw new Exception ("Expression " + e + " ExprClass is Invalid after resolve");
560 if ((e.type == null) && !(e is GenericTypeExpr))
561 throw new Exception ("Expression " + e + " did not set its type after Resolve");
563 return e;
566 /// <summary>
567 /// Emits the code for the expression
568 /// </summary>
570 /// <remarks>
571 /// The Emit method is invoked to generate the code
572 /// for the expression.
573 /// </remarks>
574 public abstract void Emit (EmitContext ec);
576 // Emit code to branch to @target if this expression is equivalent to @on_true.
577 // The default implementation is to emit the value, and then emit a brtrue or brfalse.
578 // Subclasses can provide more efficient implementations, but those MUST be equivalent,
579 // including the use of conditional branches. Note also that a branch MUST be emitted
580 public virtual void EmitBranchable (EmitContext ec, Label target, bool on_true)
582 Emit (ec);
583 ec.ig.Emit (on_true ? OpCodes.Brtrue : OpCodes.Brfalse, target);
586 // Emit this expression for its side effects, not for its value.
587 // The default implementation is to emit the value, and then throw it away.
588 // Subclasses can provide more efficient implementations, but those MUST be equivalent
589 public virtual void EmitSideEffect (EmitContext ec)
591 Emit (ec);
592 ec.ig.Emit (OpCodes.Pop);
595 /// <summary>
596 /// Protected constructor. Only derivate types should
597 /// be able to be created
598 /// </summary>
600 protected Expression ()
604 /// <summary>
605 /// Returns a fully formed expression after a MemberLookup
606 /// </summary>
607 ///
608 public static Expression ExprClassFromMemberInfo (Type container_type, MemberInfo mi, Location loc)
610 if (mi is EventInfo)
611 return new EventExpr ((EventInfo) mi, loc);
612 else if (mi is FieldInfo) {
613 FieldInfo fi = (FieldInfo) mi;
614 if (fi.IsLiteral || (fi.IsInitOnly && fi.FieldType == TypeManager.decimal_type))
615 return new ConstantExpr (fi, loc);
616 return new FieldExpr (fi, loc);
617 } else if (mi is PropertyInfo)
618 return new PropertyExpr (container_type, (PropertyInfo) mi, loc);
619 else if (mi is Type) {
620 return new TypeExpression ((System.Type) mi, loc);
623 return null;
626 // TODO: [Obsolete ("Can be removed")]
627 protected static IList<MemberInfo> almost_matched_members = new List<MemberInfo> (4);
630 // FIXME: Probably implement a cache for (t,name,current_access_set)?
632 // This code could use some optimizations, but we need to do some
633 // measurements. For example, we could use a delegate to `flag' when
634 // something can not any longer be a method-group (because it is something
635 // else).
637 // Return values:
638 // If the return value is an Array, then it is an array of
639 // MethodBases
641 // If the return value is an MemberInfo, it is anything, but a Method
643 // null on error.
645 // FIXME: When calling MemberLookup inside an `Invocation', we should pass
646 // the arguments here and have MemberLookup return only the methods that
647 // match the argument count/type, unlike we are doing now (we delay this
648 // decision).
650 // This is so we can catch correctly attempts to invoke instance methods
651 // from a static body (scan for error 120 in ResolveSimpleName).
654 // FIXME: Potential optimization, have a static ArrayList
657 public static Expression MemberLookup (CompilerContext ctx, Type container_type, Type queried_type, string name,
658 MemberTypes mt, BindingFlags bf, Location loc)
660 return MemberLookup (ctx, container_type, null, queried_type, name, mt, bf, loc);
664 // Lookup type `queried_type' for code in class `container_type' with a qualifier of
665 // `qualifier_type' or null to lookup members in the current class.
668 public static Expression MemberLookup (CompilerContext ctx, Type container_type,
669 Type qualifier_type, Type queried_type,
670 string name, MemberTypes mt,
671 BindingFlags bf, Location loc)
673 almost_matched_members.Clear ();
675 MemberInfo [] mi = TypeManager.MemberLookup (container_type, qualifier_type,
676 queried_type, mt, bf, name, almost_matched_members);
678 if (mi == null)
679 return null;
681 if (mi.Length > 1) {
682 bool is_interface = qualifier_type != null && qualifier_type.IsInterface;
683 var methods = new List<MethodBase> (2);
684 List<MemberInfo> non_methods = null;
686 foreach (MemberInfo m in mi) {
687 if (m is MethodBase) {
688 methods.Add ((MethodBase) m);
689 continue;
692 if (non_methods == null)
693 non_methods = new List<MemberInfo> (2);
695 bool is_candidate = true;
696 for (int i = 0; i < non_methods.Count; ++i) {
697 MemberInfo n_m = non_methods [i];
698 if (n_m.DeclaringType.IsInterface && TypeManager.ImplementsInterface (m.DeclaringType, n_m.DeclaringType)) {
699 non_methods.Remove (n_m);
700 --i;
701 } else if (m.DeclaringType.IsInterface && TypeManager.ImplementsInterface (n_m.DeclaringType, m.DeclaringType)) {
702 is_candidate = false;
703 break;
707 if (is_candidate) {
708 non_methods.Add (m);
712 if (methods.Count == 0 && non_methods != null && non_methods.Count > 1) {
713 ctx.Report.SymbolRelatedToPreviousError (non_methods [1]);
714 ctx.Report.SymbolRelatedToPreviousError (non_methods [0]);
715 ctx.Report.Error (229, loc, "Ambiguity between `{0}' and `{1}'",
716 TypeManager.GetFullNameSignature (non_methods [1]),
717 TypeManager.GetFullNameSignature (non_methods [0]));
718 return null;
721 if (methods.Count == 0)
722 return ExprClassFromMemberInfo (container_type, (MemberInfo)non_methods [0], loc);
724 if (non_methods != null && non_methods.Count > 0) {
725 MethodBase method = (MethodBase) methods [0];
726 MemberInfo non_method = (MemberInfo) non_methods [0];
727 if (method.DeclaringType == non_method.DeclaringType) {
728 // Cannot happen with C# code, but is valid in IL
729 ctx.Report.SymbolRelatedToPreviousError (method);
730 ctx.Report.SymbolRelatedToPreviousError (non_method);
731 ctx.Report.Error (229, loc, "Ambiguity between `{0}' and `{1}'",
732 TypeManager.GetFullNameSignature (non_method),
733 TypeManager.CSharpSignature (method));
734 return null;
737 if (is_interface) {
738 ctx.Report.SymbolRelatedToPreviousError (method);
739 ctx.Report.SymbolRelatedToPreviousError (non_method);
740 ctx.Report.Warning (467, 2, loc, "Ambiguity between method `{0}' and non-method `{1}'. Using method `{0}'",
741 TypeManager.CSharpSignature (method), TypeManager.GetFullNameSignature (non_method));
745 return new MethodGroupExpr (methods, queried_type, loc);
748 if (mi [0] is MethodBase)
749 return new MethodGroupExpr (mi, queried_type, loc);
751 return ExprClassFromMemberInfo (container_type, mi [0], loc);
754 public const MemberTypes AllMemberTypes =
755 MemberTypes.Constructor |
756 MemberTypes.Event |
757 MemberTypes.Field |
758 MemberTypes.Method |
759 MemberTypes.NestedType |
760 MemberTypes.Property;
762 public const BindingFlags AllBindingFlags =
763 BindingFlags.Public |
764 BindingFlags.Static |
765 BindingFlags.Instance;
767 public static Expression MemberLookup (CompilerContext ctx, Type container_type, Type queried_type,
768 string name, Location loc)
770 return MemberLookup (ctx, container_type, null, queried_type, name,
771 AllMemberTypes, AllBindingFlags, loc);
774 public static Expression MemberLookup (CompilerContext ctx, Type container_type, Type qualifier_type,
775 Type queried_type, string name, Location loc)
777 return MemberLookup (ctx, container_type, qualifier_type, queried_type,
778 name, AllMemberTypes, AllBindingFlags, loc);
781 public static MethodGroupExpr MethodLookup (CompilerContext ctx, Type container_type, Type queried_type,
782 string name, Location loc)
784 return (MethodGroupExpr)MemberLookup (ctx, container_type, null, queried_type, name,
785 MemberTypes.Method, AllBindingFlags, loc);
788 /// <summary>
789 /// This is a wrapper for MemberLookup that is not used to "probe", but
790 /// to find a final definition. If the final definition is not found, we
791 /// look for private members and display a useful debugging message if we
792 /// find it.
793 /// </summary>
794 protected Expression MemberLookupFinal (ResolveContext ec, Type qualifier_type,
795 Type queried_type, string name,
796 MemberTypes mt, BindingFlags bf,
797 Location loc)
799 Expression e;
801 int errors = ec.Report.Errors;
802 e = MemberLookup (ec.Compiler, ec.CurrentType, qualifier_type, queried_type, name, mt, bf, loc);
804 if (e != null || errors != ec.Report.Errors)
805 return e;
807 // No errors were reported by MemberLookup, but there was an error.
808 return Error_MemberLookupFailed (ec, ec.CurrentType, qualifier_type, queried_type,
809 name, null, mt, bf);
812 protected virtual Expression Error_MemberLookupFailed (ResolveContext ec, Type container_type, Type qualifier_type,
813 Type queried_type, string name, string class_name,
814 MemberTypes mt, BindingFlags bf)
816 MemberInfo[] lookup = null;
817 if (queried_type == null) {
818 class_name = "global::";
819 } else {
820 lookup = TypeManager.MemberLookup (queried_type, null, queried_type,
821 mt, (bf & ~BindingFlags.Public) | BindingFlags.NonPublic,
822 name, null);
824 if (lookup != null) {
825 Expression e = Error_MemberLookupFailed (ec, queried_type, lookup);
828 // FIXME: This is still very wrong, it should be done inside
829 // OverloadResolve to do correct arguments matching.
830 // Requires MemberLookup accessiblity check removal
832 if (e == null || (mt & (MemberTypes.Method | MemberTypes.Constructor)) == 0) {
833 MemberInfo mi = lookup[0];
834 ec.Report.SymbolRelatedToPreviousError (mi);
835 if (qualifier_type != null && container_type != null && qualifier_type != container_type &&
836 TypeManager.IsNestedFamilyAccessible (container_type, mi.DeclaringType)) {
837 // Although a derived class can access protected members of
838 // its base class it cannot do so through an instance of the
839 // base class (CS1540). If the qualifier_type is a base of the
840 // ec.CurrentType and the lookup succeeds with the latter one,
841 // then we are in this situation.
842 Error_CannotAccessProtected (ec, loc, mi, qualifier_type, container_type);
843 } else {
844 ErrorIsInaccesible (loc, TypeManager.GetFullNameSignature (mi), ec.Report);
848 return e;
851 lookup = TypeManager.MemberLookup (queried_type, null, queried_type,
852 AllMemberTypes, AllBindingFlags | BindingFlags.NonPublic,
853 name, null);
856 if (lookup == null) {
857 if (class_name != null) {
858 ec.Report.Error (103, loc, "The name `{0}' does not exist in the current context",
859 name);
860 } else {
861 Error_TypeDoesNotContainDefinition (ec, queried_type, name);
863 return null;
866 if (TypeManager.MemberLookup (queried_type, null, queried_type,
867 AllMemberTypes, AllBindingFlags |
868 BindingFlags.NonPublic, name, null) == null) {
869 if ((lookup.Length == 1) && (lookup [0] is Type)) {
870 Type t = (Type) lookup [0];
872 ec.Report.Error (305, loc,
873 "Using the generic type `{0}' " +
874 "requires {1} type arguments",
875 TypeManager.CSharpName (t),
876 TypeManager.GetNumberOfTypeArguments (t).ToString ());
877 return null;
881 return Error_MemberLookupFailed (ec, queried_type, lookup);
884 protected virtual Expression Error_MemberLookupFailed (ResolveContext ec, Type type, MemberInfo[] members)
886 for (int i = 0; i < members.Length; ++i) {
887 if (!(members [i] is MethodBase))
888 return null;
891 // By default propagate the closest candidates upwards
892 return new MethodGroupExpr (members, type, loc, true);
895 protected virtual void Error_NegativeArrayIndex (ResolveContext ec, Location loc)
897 throw new NotImplementedException ();
900 protected void Error_PointerInsideExpressionTree (ResolveContext ec)
902 ec.Report.Error (1944, loc, "An expression tree cannot contain an unsafe pointer operation");
905 /// <summary>
906 /// Returns an expression that can be used to invoke operator true
907 /// on the expression if it exists.
908 /// </summary>
909 protected static Expression GetOperatorTrue (ResolveContext ec, Expression e, Location loc)
911 return GetOperatorTrueOrFalse (ec, e, true, loc);
914 /// <summary>
915 /// Returns an expression that can be used to invoke operator false
916 /// on the expression if it exists.
917 /// </summary>
918 static public Expression GetOperatorFalse (ResolveContext ec, Expression e, Location loc)
920 return GetOperatorTrueOrFalse (ec, e, false, loc);
923 static Expression GetOperatorTrueOrFalse (ResolveContext ec, Expression e, bool is_true, Location loc)
925 MethodGroupExpr operator_group;
926 string mname = Operator.GetMetadataName (is_true ? Operator.OpType.True : Operator.OpType.False);
927 operator_group = MethodLookup (ec.Compiler, ec.CurrentType, e.Type, mname, loc) as MethodGroupExpr;
928 if (operator_group == null)
929 return null;
931 Arguments arguments = new Arguments (1);
932 arguments.Add (new Argument (e));
933 operator_group = operator_group.OverloadResolve (
934 ec, ref arguments, false, loc);
936 if (operator_group == null)
937 return null;
939 return new UserOperatorCall (operator_group, arguments, null, loc);
942 public virtual string ExprClassName
944 get {
945 switch (eclass){
946 case ExprClass.Unresolved:
947 return "Unresolved";
948 case ExprClass.Value:
949 return "value";
950 case ExprClass.Variable:
951 return "variable";
952 case ExprClass.Namespace:
953 return "namespace";
954 case ExprClass.Type:
955 return "type";
956 case ExprClass.MethodGroup:
957 return "method group";
958 case ExprClass.PropertyAccess:
959 return "property access";
960 case ExprClass.EventAccess:
961 return "event access";
962 case ExprClass.IndexerAccess:
963 return "indexer access";
964 case ExprClass.Nothing:
965 return "null";
966 case ExprClass.TypeParameter:
967 return "type parameter";
969 throw new Exception ("Should not happen");
973 /// <summary>
974 /// Reports that we were expecting `expr' to be of class `expected'
975 /// </summary>
976 public void Error_UnexpectedKind (Report r, MemberCore mc, string expected, Location loc)
978 Error_UnexpectedKind (r, mc, expected, ExprClassName, loc);
981 public void Error_UnexpectedKind (Report r, MemberCore mc, string expected, string was, Location loc)
983 string name;
984 if (mc != null)
985 name = mc.GetSignatureForError ();
986 else
987 name = GetSignatureForError ();
989 r.Error (118, loc, "`{0}' is a `{1}' but a `{2}' was expected",
990 name, was, expected);
993 public void Error_UnexpectedKind (ResolveContext ec, ResolveFlags flags, Location loc)
995 string [] valid = new string [4];
996 int count = 0;
998 if ((flags & ResolveFlags.VariableOrValue) != 0) {
999 valid [count++] = "variable";
1000 valid [count++] = "value";
1003 if ((flags & ResolveFlags.Type) != 0)
1004 valid [count++] = "type";
1006 if ((flags & ResolveFlags.MethodGroup) != 0)
1007 valid [count++] = "method group";
1009 if (count == 0)
1010 valid [count++] = "unknown";
1012 StringBuilder sb = new StringBuilder (valid [0]);
1013 for (int i = 1; i < count - 1; i++) {
1014 sb.Append ("', `");
1015 sb.Append (valid [i]);
1017 if (count > 1) {
1018 sb.Append ("' or `");
1019 sb.Append (valid [count - 1]);
1022 ec.Report.Error (119, loc,
1023 "Expression denotes a `{0}', where a `{1}' was expected", ExprClassName, sb.ToString ());
1026 public static void UnsafeError (ResolveContext ec, Location loc)
1028 UnsafeError (ec.Report, loc);
1031 public static void UnsafeError (Report Report, Location loc)
1033 Report.Error (214, loc, "Pointers and fixed size buffers may only be used in an unsafe context");
1037 // Load the object from the pointer.
1039 public static void LoadFromPtr (ILGenerator ig, Type t)
1041 if (t == TypeManager.int32_type)
1042 ig.Emit (OpCodes.Ldind_I4);
1043 else if (t == TypeManager.uint32_type)
1044 ig.Emit (OpCodes.Ldind_U4);
1045 else if (t == TypeManager.short_type)
1046 ig.Emit (OpCodes.Ldind_I2);
1047 else if (t == TypeManager.ushort_type)
1048 ig.Emit (OpCodes.Ldind_U2);
1049 else if (t == TypeManager.char_type)
1050 ig.Emit (OpCodes.Ldind_U2);
1051 else if (t == TypeManager.byte_type)
1052 ig.Emit (OpCodes.Ldind_U1);
1053 else if (t == TypeManager.sbyte_type)
1054 ig.Emit (OpCodes.Ldind_I1);
1055 else if (t == TypeManager.uint64_type)
1056 ig.Emit (OpCodes.Ldind_I8);
1057 else if (t == TypeManager.int64_type)
1058 ig.Emit (OpCodes.Ldind_I8);
1059 else if (t == TypeManager.float_type)
1060 ig.Emit (OpCodes.Ldind_R4);
1061 else if (t == TypeManager.double_type)
1062 ig.Emit (OpCodes.Ldind_R8);
1063 else if (t == TypeManager.bool_type)
1064 ig.Emit (OpCodes.Ldind_I1);
1065 else if (t == TypeManager.intptr_type)
1066 ig.Emit (OpCodes.Ldind_I);
1067 else if (TypeManager.IsEnumType (t)) {
1068 if (t == TypeManager.enum_type)
1069 ig.Emit (OpCodes.Ldind_Ref);
1070 else
1071 LoadFromPtr (ig, TypeManager.GetEnumUnderlyingType (t));
1072 } else if (TypeManager.IsStruct (t) || TypeManager.IsGenericParameter (t))
1073 ig.Emit (OpCodes.Ldobj, t);
1074 else if (t.IsPointer)
1075 ig.Emit (OpCodes.Ldind_I);
1076 else
1077 ig.Emit (OpCodes.Ldind_Ref);
1081 // The stack contains the pointer and the value of type `type'
1083 public static void StoreFromPtr (ILGenerator ig, Type type)
1085 if (TypeManager.IsEnumType (type))
1086 type = TypeManager.GetEnumUnderlyingType (type);
1087 if (type == TypeManager.int32_type || type == TypeManager.uint32_type)
1088 ig.Emit (OpCodes.Stind_I4);
1089 else if (type == TypeManager.int64_type || type == TypeManager.uint64_type)
1090 ig.Emit (OpCodes.Stind_I8);
1091 else if (type == TypeManager.char_type || type == TypeManager.short_type ||
1092 type == TypeManager.ushort_type)
1093 ig.Emit (OpCodes.Stind_I2);
1094 else if (type == TypeManager.float_type)
1095 ig.Emit (OpCodes.Stind_R4);
1096 else if (type == TypeManager.double_type)
1097 ig.Emit (OpCodes.Stind_R8);
1098 else if (type == TypeManager.byte_type || type == TypeManager.sbyte_type ||
1099 type == TypeManager.bool_type)
1100 ig.Emit (OpCodes.Stind_I1);
1101 else if (type == TypeManager.intptr_type)
1102 ig.Emit (OpCodes.Stind_I);
1103 else if (TypeManager.IsStruct (type) || TypeManager.IsGenericParameter (type))
1104 ig.Emit (OpCodes.Stobj, type);
1105 else
1106 ig.Emit (OpCodes.Stind_Ref);
1110 // Returns the size of type `t' if known, otherwise, 0
1112 public static int GetTypeSize (Type t)
1114 t = TypeManager.TypeToCoreType (t);
1115 if (t == TypeManager.int32_type ||
1116 t == TypeManager.uint32_type ||
1117 t == TypeManager.float_type)
1118 return 4;
1119 else if (t == TypeManager.int64_type ||
1120 t == TypeManager.uint64_type ||
1121 t == TypeManager.double_type)
1122 return 8;
1123 else if (t == TypeManager.byte_type ||
1124 t == TypeManager.sbyte_type ||
1125 t == TypeManager.bool_type)
1126 return 1;
1127 else if (t == TypeManager.short_type ||
1128 t == TypeManager.char_type ||
1129 t == TypeManager.ushort_type)
1130 return 2;
1131 else if (t == TypeManager.decimal_type)
1132 return 16;
1133 else
1134 return 0;
1137 protected void Error_CannotCallAbstractBase (ResolveContext ec, string name)
1139 ec.Report.Error (205, loc, "Cannot call an abstract base member `{0}'", name);
1142 protected void Error_CannotModifyIntermediateExpressionValue (ResolveContext ec)
1144 ec.Report.SymbolRelatedToPreviousError (type);
1145 if (ec.CurrentInitializerVariable != null) {
1146 ec.Report.Error (1918, loc, "Members of value type `{0}' cannot be assigned using a property `{1}' object initializer",
1147 TypeManager.CSharpName (type), GetSignatureForError ());
1148 } else {
1149 ec.Report.Error (1612, loc, "Cannot modify a value type return value of `{0}'. Consider storing the value in a temporary variable",
1150 GetSignatureForError ());
1155 // Converts `source' to an int, uint, long or ulong.
1157 protected Expression ConvertExpressionToArrayIndex (ResolveContext ec, Expression source)
1159 if (TypeManager.IsDynamicType (source.type)) {
1160 Arguments args = new Arguments (1);
1161 args.Add (new Argument (source));
1162 return new DynamicConversion (TypeManager.int32_type, CSharpBinderFlags.ConvertArrayIndex, args, loc).Resolve (ec);
1165 Expression converted;
1167 using (ec.Set (ResolveContext.Options.CheckedScope)) {
1168 converted = Convert.ImplicitConversion (ec, source, TypeManager.int32_type, source.loc);
1169 if (converted == null)
1170 converted = Convert.ImplicitConversion (ec, source, TypeManager.uint32_type, source.loc);
1171 if (converted == null)
1172 converted = Convert.ImplicitConversion (ec, source, TypeManager.int64_type, source.loc);
1173 if (converted == null)
1174 converted = Convert.ImplicitConversion (ec, source, TypeManager.uint64_type, source.loc);
1176 if (converted == null) {
1177 source.Error_ValueCannotBeConverted (ec, source.loc, TypeManager.int32_type, false);
1178 return null;
1183 // Only positive constants are allowed at compile time
1185 Constant c = converted as Constant;
1186 if (c != null && c.IsNegative)
1187 Error_NegativeArrayIndex (ec, source.loc);
1189 // No conversion needed to array index
1190 if (converted.Type == TypeManager.int32_type)
1191 return converted;
1193 return new ArrayIndexCast (converted).Resolve (ec);
1197 // Derived classes implement this method by cloning the fields that
1198 // could become altered during the Resolve stage
1200 // Only expressions that are created for the parser need to implement
1201 // this.
1203 protected virtual void CloneTo (CloneContext clonectx, Expression target)
1205 throw new NotImplementedException (
1206 String.Format (
1207 "CloneTo not implemented for expression {0}", this.GetType ()));
1211 // Clones an expression created by the parser.
1213 // We only support expressions created by the parser so far, not
1214 // expressions that have been resolved (many more classes would need
1215 // to implement CloneTo).
1217 // This infrastructure is here merely for Lambda expressions which
1218 // compile the same code using different type values for the same
1219 // arguments to find the correct overload
1221 public Expression Clone (CloneContext clonectx)
1223 Expression cloned = (Expression) MemberwiseClone ();
1224 CloneTo (clonectx, cloned);
1226 return cloned;
1230 // Implementation of expression to expression tree conversion
1232 public abstract Expression CreateExpressionTree (ResolveContext ec);
1234 protected Expression CreateExpressionFactoryCall (ResolveContext ec, string name, Arguments args)
1236 return CreateExpressionFactoryCall (ec, name, null, args, loc);
1239 protected Expression CreateExpressionFactoryCall (ResolveContext ec, string name, TypeArguments typeArguments, Arguments args)
1241 return CreateExpressionFactoryCall (ec, name, typeArguments, args, loc);
1244 public static Expression CreateExpressionFactoryCall (ResolveContext ec, string name, TypeArguments typeArguments, Arguments args, Location loc)
1246 return new Invocation (new MemberAccess (CreateExpressionTypeExpression (ec, loc), name, typeArguments, loc), args);
1249 protected static TypeExpr CreateExpressionTypeExpression (ResolveContext ec, Location loc)
1251 TypeExpr texpr = TypeManager.expression_type_expr;
1252 if (texpr == null) {
1253 Type t = TypeManager.CoreLookupType (ec.Compiler, "System.Linq.Expressions", "Expression", Kind.Class, true);
1254 if (t == null)
1255 return null;
1257 TypeManager.expression_type_expr = texpr = new TypeExpression (t, Location.Null);
1260 return texpr;
1264 // Implemented by all expressions which support conversion from
1265 // compiler expression to invokable runtime expression. Used by
1266 // dynamic C# binder.
1268 public virtual SLE.Expression MakeExpression (BuilderContext ctx)
1270 throw new NotImplementedException ("MakeExpression for " + GetType ());
1273 public virtual void MutateHoistedGenericType (AnonymousMethodStorey storey)
1275 // TODO: It should probably be type = storey.MutateType (type);
1279 /// <summary>
1280 /// This is just a base class for expressions that can
1281 /// appear on statements (invocations, object creation,
1282 /// assignments, post/pre increment and decrement). The idea
1283 /// being that they would support an extra Emition interface that
1284 /// does not leave a result on the stack.
1285 /// </summary>
1286 public abstract class ExpressionStatement : Expression {
1288 public virtual ExpressionStatement ResolveStatement (BlockContext ec)
1290 Expression e = Resolve (ec);
1291 if (e == null)
1292 return null;
1294 ExpressionStatement es = e as ExpressionStatement;
1295 if (es == null)
1296 Error_InvalidExpressionStatement (ec);
1298 return es;
1301 /// <summary>
1302 /// Requests the expression to be emitted in a `statement'
1303 /// context. This means that no new value is left on the
1304 /// stack after invoking this method (constrasted with
1305 /// Emit that will always leave a value on the stack).
1306 /// </summary>
1307 public abstract void EmitStatement (EmitContext ec);
1309 public override void EmitSideEffect (EmitContext ec)
1311 EmitStatement (ec);
1315 /// <summary>
1316 /// This kind of cast is used to encapsulate the child
1317 /// whose type is child.Type into an expression that is
1318 /// reported to return "return_type". This is used to encapsulate
1319 /// expressions which have compatible types, but need to be dealt
1320 /// at higher levels with.
1322 /// For example, a "byte" expression could be encapsulated in one
1323 /// of these as an "unsigned int". The type for the expression
1324 /// would be "unsigned int".
1326 /// </summary>
1327 public abstract class TypeCast : Expression
1329 protected readonly Expression child;
1331 protected TypeCast (Expression child, Type return_type)
1333 eclass = child.eclass;
1334 loc = child.Location;
1335 type = return_type;
1336 this.child = child;
1339 public override Expression CreateExpressionTree (ResolveContext ec)
1341 Arguments args = new Arguments (2);
1342 args.Add (new Argument (child.CreateExpressionTree (ec)));
1343 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
1345 if (type.IsPointer || child.Type.IsPointer)
1346 Error_PointerInsideExpressionTree (ec);
1348 return CreateExpressionFactoryCall (ec, ec.HasSet (ResolveContext.Options.CheckedScope) ? "ConvertChecked" : "Convert", args);
1351 protected override Expression DoResolve (ResolveContext ec)
1353 // This should never be invoked, we are born in fully
1354 // initialized state.
1356 return this;
1359 public override void Emit (EmitContext ec)
1361 child.Emit (ec);
1364 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
1366 return child.GetAttributableValue (ec, value_type, out value);
1369 public override SLE.Expression MakeExpression (BuilderContext ctx)
1371 return ctx.HasSet (BuilderContext.Options.CheckedScope) ?
1372 SLE.Expression.ConvertChecked (child.MakeExpression (ctx), type) :
1373 SLE.Expression.Convert (child.MakeExpression (ctx), type);
1376 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1378 type = storey.MutateType (type);
1379 child.MutateHoistedGenericType (storey);
1382 protected override void CloneTo (CloneContext clonectx, Expression t)
1384 // Nothing to clone
1387 public override bool IsNull {
1388 get { return child.IsNull; }
1392 public class EmptyCast : TypeCast {
1393 EmptyCast (Expression child, Type target_type)
1394 : base (child, target_type)
1398 public static Expression Create (Expression child, Type type)
1400 Constant c = child as Constant;
1401 if (c != null)
1402 return new EmptyConstantCast (c, type);
1404 EmptyCast e = child as EmptyCast;
1405 if (e != null)
1406 return new EmptyCast (e.child, type);
1408 return new EmptyCast (child, type);
1411 public override void EmitBranchable (EmitContext ec, Label label, bool on_true)
1413 child.EmitBranchable (ec, label, on_true);
1416 public override void EmitSideEffect (EmitContext ec)
1418 child.EmitSideEffect (ec);
1423 // Used for predefined class library user casts (no obsolete check, etc.)
1425 public class OperatorCast : TypeCast {
1426 MethodInfo conversion_operator;
1428 public OperatorCast (Expression child, Type target_type)
1429 : this (child, target_type, false)
1433 public OperatorCast (Expression child, Type target_type, bool find_explicit)
1434 : base (child, target_type)
1436 conversion_operator = GetConversionOperator (find_explicit);
1437 if (conversion_operator == null)
1438 throw new InternalErrorException ("Outer conversion routine is out of sync");
1441 // Returns the implicit operator that converts from
1442 // 'child.Type' to our target type (type)
1443 MethodInfo GetConversionOperator (bool find_explicit)
1445 string operator_name = find_explicit ? "op_Explicit" : "op_Implicit";
1447 MemberInfo [] mi;
1449 mi = TypeManager.MemberLookup (child.Type, child.Type, child.Type, MemberTypes.Method,
1450 BindingFlags.Static | BindingFlags.Public, operator_name, null);
1452 if (mi == null){
1453 mi = TypeManager.MemberLookup (type, type, type, MemberTypes.Method,
1454 BindingFlags.Static | BindingFlags.Public, operator_name, null);
1457 foreach (MethodInfo oper in mi) {
1458 AParametersCollection pd = TypeManager.GetParameterData (oper);
1460 if (pd.Types [0] == child.Type && TypeManager.TypeToCoreType (oper.ReturnType) == type)
1461 return oper;
1464 return null;
1467 public override void Emit (EmitContext ec)
1469 child.Emit (ec);
1470 ec.ig.Emit (OpCodes.Call, conversion_operator);
1474 /// <summary>
1475 /// This is a numeric cast to a Decimal
1476 /// </summary>
1477 public class CastToDecimal : OperatorCast {
1478 public CastToDecimal (Expression child)
1479 : this (child, false)
1483 public CastToDecimal (Expression child, bool find_explicit)
1484 : base (child, TypeManager.decimal_type, find_explicit)
1489 /// <summary>
1490 /// This is an explicit numeric cast from a Decimal
1491 /// </summary>
1492 public class CastFromDecimal : TypeCast
1494 static Dictionary<Type, MethodInfo> operators;
1496 public CastFromDecimal (Expression child, Type return_type)
1497 : base (child, return_type)
1499 if (child.Type != TypeManager.decimal_type)
1500 throw new InternalErrorException (
1501 "The expected type is Decimal, instead it is " + child.Type.FullName);
1504 // Returns the explicit operator that converts from an
1505 // express of type System.Decimal to 'type'.
1506 public Expression Resolve ()
1508 if (operators == null) {
1509 MemberInfo[] all_oper = TypeManager.MemberLookup (TypeManager.decimal_type,
1510 TypeManager.decimal_type, TypeManager.decimal_type, MemberTypes.Method,
1511 BindingFlags.Static | BindingFlags.Public, "op_Explicit", null);
1513 operators = new Dictionary<Type, MethodInfo> (ReferenceEquality<Type>.Default);
1514 foreach (MethodInfo oper in all_oper) {
1515 AParametersCollection pd = TypeManager.GetParameterData (oper);
1516 if (pd.Types [0] == TypeManager.decimal_type)
1517 operators.Add (TypeManager.TypeToCoreType (oper.ReturnType), oper);
1521 return operators.ContainsKey (type) ? this : null;
1524 public override void Emit (EmitContext ec)
1526 ILGenerator ig = ec.ig;
1527 child.Emit (ec);
1529 ig.Emit (OpCodes.Call, operators [type]);
1535 // Constant specialization of EmptyCast.
1536 // We need to special case this since an empty cast of
1537 // a constant is still a constant.
1539 public class EmptyConstantCast : Constant
1541 public Constant child;
1543 public EmptyConstantCast (Constant child, Type type)
1544 : base (child.Location)
1546 if (child == null)
1547 throw new ArgumentNullException ("child");
1549 this.child = child;
1550 this.eclass = child.eclass;
1551 this.type = type;
1554 public override string AsString ()
1556 return child.AsString ();
1559 public override object GetValue ()
1561 return child.GetValue ();
1564 public override Constant ConvertExplicitly (bool in_checked_context, Type target_type)
1566 if (child.Type == target_type)
1567 return child;
1569 // FIXME: check that 'type' can be converted to 'target_type' first
1570 return child.ConvertExplicitly (in_checked_context, target_type);
1573 public override Expression CreateExpressionTree (ResolveContext ec)
1575 Arguments args = Arguments.CreateForExpressionTree (ec, null,
1576 child.CreateExpressionTree (ec),
1577 new TypeOf (new TypeExpression (type, loc), loc));
1579 if (type.IsPointer)
1580 Error_PointerInsideExpressionTree (ec);
1582 return CreateExpressionFactoryCall (ec, "Convert", args);
1585 public override bool IsDefaultValue {
1586 get { return child.IsDefaultValue; }
1589 public override bool IsNegative {
1590 get { return child.IsNegative; }
1593 public override bool IsNull {
1594 get { return child.IsNull; }
1597 public override bool IsZeroInteger {
1598 get { return child.IsZeroInteger; }
1601 protected override Expression DoResolve (ResolveContext rc)
1603 return this;
1606 public override void Emit (EmitContext ec)
1608 child.Emit (ec);
1611 public override void EmitBranchable (EmitContext ec, Label label, bool on_true)
1613 child.EmitBranchable (ec, label, on_true);
1615 // Only to make verifier happy
1616 if (TypeManager.IsGenericParameter (type) && child.IsNull)
1617 ec.ig.Emit (OpCodes.Unbox_Any, type);
1620 public override void EmitSideEffect (EmitContext ec)
1622 child.EmitSideEffect (ec);
1625 public override Constant ConvertImplicitly (ResolveContext rc, Type target_type)
1627 // FIXME: Do we need to check user conversions?
1628 if (!Convert.ImplicitStandardConversionExists (this, target_type))
1629 return null;
1630 return child.ConvertImplicitly (rc, target_type);
1633 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1635 child.MutateHoistedGenericType (storey);
1639 /// <summary>
1640 /// This class is used to wrap literals which belong inside Enums
1641 /// </summary>
1642 public class EnumConstant : Constant
1644 public Constant Child;
1646 public EnumConstant (Constant child, Type enum_type)
1647 : base (child.Location)
1649 this.Child = child;
1650 this.type = enum_type;
1653 protected EnumConstant (Location loc)
1654 : base (loc)
1658 protected override Expression DoResolve (ResolveContext rc)
1660 Child = Child.Resolve (rc);
1661 this.eclass = ExprClass.Value;
1662 return this;
1665 public override void Emit (EmitContext ec)
1667 Child.Emit (ec);
1670 public override void EmitBranchable (EmitContext ec, Label label, bool on_true)
1672 Child.EmitBranchable (ec, label, on_true);
1675 public override void EmitSideEffect (EmitContext ec)
1677 Child.EmitSideEffect (ec);
1680 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
1682 value = GetTypedValue ();
1683 return true;
1686 public override string GetSignatureForError()
1688 return TypeManager.CSharpName (Type);
1691 public override object GetValue ()
1693 return Child.GetValue ();
1696 public override object GetTypedValue ()
1698 // FIXME: runtime is not ready to work with just emited enums
1699 if (!RootContext.StdLib) {
1700 return Child.GetValue ();
1703 #if MS_COMPATIBLE
1704 // Small workaround for big problem
1705 // System.Enum.ToObject cannot be called on dynamic types
1706 // EnumBuilder has to be used, but we cannot use EnumBuilder
1707 // because it does not properly support generics
1709 // This works only sometimes
1711 if (TypeManager.IsBeingCompiled (type))
1712 return Child.GetValue ();
1713 #endif
1715 return System.Enum.ToObject (type, Child.GetValue ());
1718 public override string AsString ()
1720 return Child.AsString ();
1723 public EnumConstant Increment()
1725 return new EnumConstant (((IntegralConstant) Child).Increment (), type);
1728 public override bool IsDefaultValue {
1729 get {
1730 return Child.IsDefaultValue;
1734 public override bool IsZeroInteger {
1735 get { return Child.IsZeroInteger; }
1738 public override bool IsNegative {
1739 get {
1740 return Child.IsNegative;
1744 public override Constant ConvertExplicitly(bool in_checked_context, Type target_type)
1746 if (Child.Type == target_type)
1747 return Child;
1749 return Child.ConvertExplicitly (in_checked_context, target_type);
1752 public override Constant ConvertImplicitly (ResolveContext rc, Type type)
1754 Type this_type = TypeManager.DropGenericTypeArguments (Type);
1755 type = TypeManager.DropGenericTypeArguments (type);
1757 if (this_type == type) {
1758 // This is workaround of mono bug. It can be removed when the latest corlib spreads enough
1759 if (TypeManager.IsEnumType (type.UnderlyingSystemType))
1760 return this;
1762 Type child_type = TypeManager.DropGenericTypeArguments (Child.Type);
1763 if (type.UnderlyingSystemType != child_type)
1764 Child = Child.ConvertImplicitly (rc, type.UnderlyingSystemType);
1765 return this;
1768 if (!Convert.ImplicitStandardConversionExists (this, type)){
1769 return null;
1772 return Child.ConvertImplicitly (rc, type);
1776 /// <summary>
1777 /// This kind of cast is used to encapsulate Value Types in objects.
1779 /// The effect of it is to box the value type emitted by the previous
1780 /// operation.
1781 /// </summary>
1782 public class BoxedCast : TypeCast {
1784 public BoxedCast (Expression expr, Type target_type)
1785 : base (expr, target_type)
1787 eclass = ExprClass.Value;
1790 protected override Expression DoResolve (ResolveContext ec)
1792 // This should never be invoked, we are born in fully
1793 // initialized state.
1795 return this;
1798 public override void Emit (EmitContext ec)
1800 base.Emit (ec);
1802 ec.ig.Emit (OpCodes.Box, child.Type);
1805 public override void EmitSideEffect (EmitContext ec)
1807 // boxing is side-effectful, since it involves runtime checks, except when boxing to Object or ValueType
1808 // so, we need to emit the box+pop instructions in most cases
1809 if (TypeManager.IsStruct (child.Type) &&
1810 (type == TypeManager.object_type || type == TypeManager.value_type))
1811 child.EmitSideEffect (ec);
1812 else
1813 base.EmitSideEffect (ec);
1817 public class UnboxCast : TypeCast {
1818 public UnboxCast (Expression expr, Type return_type)
1819 : base (expr, return_type)
1823 protected override Expression DoResolve (ResolveContext ec)
1825 // This should never be invoked, we are born in fully
1826 // initialized state.
1828 return this;
1831 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
1833 if (right_side == EmptyExpression.LValueMemberAccess || right_side == EmptyExpression.LValueMemberOutAccess)
1834 ec.Report.Error (445, loc, "Cannot modify the result of an unboxing conversion");
1835 return base.DoResolveLValue (ec, right_side);
1838 public override void Emit (EmitContext ec)
1840 base.Emit (ec);
1842 ILGenerator ig = ec.ig;
1843 ig.Emit (OpCodes.Unbox_Any, type);
1846 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1848 type = storey.MutateType (type);
1849 base.MutateHoistedGenericType (storey);
1853 /// <summary>
1854 /// This is used to perform explicit numeric conversions.
1856 /// Explicit numeric conversions might trigger exceptions in a checked
1857 /// context, so they should generate the conv.ovf opcodes instead of
1858 /// conv opcodes.
1859 /// </summary>
1860 public class ConvCast : TypeCast {
1861 public enum Mode : byte {
1862 I1_U1, I1_U2, I1_U4, I1_U8, I1_CH,
1863 U1_I1, U1_CH,
1864 I2_I1, I2_U1, I2_U2, I2_U4, I2_U8, I2_CH,
1865 U2_I1, U2_U1, U2_I2, U2_CH,
1866 I4_I1, I4_U1, I4_I2, I4_U2, I4_U4, I4_U8, I4_CH,
1867 U4_I1, U4_U1, U4_I2, U4_U2, U4_I4, U4_CH,
1868 I8_I1, I8_U1, I8_I2, I8_U2, I8_I4, I8_U4, I8_U8, I8_CH, I8_I,
1869 U8_I1, U8_U1, U8_I2, U8_U2, U8_I4, U8_U4, U8_I8, U8_CH, U8_I,
1870 CH_I1, CH_U1, CH_I2,
1871 R4_I1, R4_U1, R4_I2, R4_U2, R4_I4, R4_U4, R4_I8, R4_U8, R4_CH,
1872 R8_I1, R8_U1, R8_I2, R8_U2, R8_I4, R8_U4, R8_I8, R8_U8, R8_CH, R8_R4,
1873 I_I8,
1876 Mode mode;
1878 public ConvCast (Expression child, Type return_type, Mode m)
1879 : base (child, return_type)
1881 mode = m;
1884 protected override Expression DoResolve (ResolveContext ec)
1886 // This should never be invoked, we are born in fully
1887 // initialized state.
1889 return this;
1892 public override string ToString ()
1894 return String.Format ("ConvCast ({0}, {1})", mode, child);
1897 public override void Emit (EmitContext ec)
1899 ILGenerator ig = ec.ig;
1901 base.Emit (ec);
1903 if (ec.HasSet (EmitContext.Options.CheckedScope)) {
1904 switch (mode){
1905 case Mode.I1_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break;
1906 case Mode.I1_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1907 case Mode.I1_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break;
1908 case Mode.I1_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break;
1909 case Mode.I1_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1911 case Mode.U1_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break;
1912 case Mode.U1_CH: /* nothing */ break;
1914 case Mode.I2_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break;
1915 case Mode.I2_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break;
1916 case Mode.I2_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1917 case Mode.I2_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break;
1918 case Mode.I2_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break;
1919 case Mode.I2_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1921 case Mode.U2_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break;
1922 case Mode.U2_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break;
1923 case Mode.U2_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break;
1924 case Mode.U2_CH: /* nothing */ break;
1926 case Mode.I4_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break;
1927 case Mode.I4_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break;
1928 case Mode.I4_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break;
1929 case Mode.I4_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break;
1930 case Mode.I4_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1931 case Mode.I4_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break;
1932 case Mode.I4_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1934 case Mode.U4_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break;
1935 case Mode.U4_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break;
1936 case Mode.U4_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break;
1937 case Mode.U4_U2: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break;
1938 case Mode.U4_I4: ig.Emit (OpCodes.Conv_Ovf_I4_Un); break;
1939 case Mode.U4_CH: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break;
1941 case Mode.I8_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break;
1942 case Mode.I8_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break;
1943 case Mode.I8_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break;
1944 case Mode.I8_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1945 case Mode.I8_I4: ig.Emit (OpCodes.Conv_Ovf_I4); break;
1946 case Mode.I8_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break;
1947 case Mode.I8_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break;
1948 case Mode.I8_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1949 case Mode.I8_I: ig.Emit (OpCodes.Conv_Ovf_U); break;
1951 case Mode.U8_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break;
1952 case Mode.U8_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break;
1953 case Mode.U8_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break;
1954 case Mode.U8_U2: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break;
1955 case Mode.U8_I4: ig.Emit (OpCodes.Conv_Ovf_I4_Un); break;
1956 case Mode.U8_U4: ig.Emit (OpCodes.Conv_Ovf_U4_Un); break;
1957 case Mode.U8_I8: ig.Emit (OpCodes.Conv_Ovf_I8_Un); break;
1958 case Mode.U8_CH: ig.Emit (OpCodes.Conv_Ovf_U2_Un); break;
1959 case Mode.U8_I: ig.Emit (OpCodes.Conv_Ovf_U_Un); break;
1961 case Mode.CH_I1: ig.Emit (OpCodes.Conv_Ovf_I1_Un); break;
1962 case Mode.CH_U1: ig.Emit (OpCodes.Conv_Ovf_U1_Un); break;
1963 case Mode.CH_I2: ig.Emit (OpCodes.Conv_Ovf_I2_Un); break;
1965 case Mode.R4_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break;
1966 case Mode.R4_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break;
1967 case Mode.R4_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break;
1968 case Mode.R4_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1969 case Mode.R4_I4: ig.Emit (OpCodes.Conv_Ovf_I4); break;
1970 case Mode.R4_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break;
1971 case Mode.R4_I8: ig.Emit (OpCodes.Conv_Ovf_I8); break;
1972 case Mode.R4_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break;
1973 case Mode.R4_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1975 case Mode.R8_I1: ig.Emit (OpCodes.Conv_Ovf_I1); break;
1976 case Mode.R8_U1: ig.Emit (OpCodes.Conv_Ovf_U1); break;
1977 case Mode.R8_I2: ig.Emit (OpCodes.Conv_Ovf_I2); break;
1978 case Mode.R8_U2: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1979 case Mode.R8_I4: ig.Emit (OpCodes.Conv_Ovf_I4); break;
1980 case Mode.R8_U4: ig.Emit (OpCodes.Conv_Ovf_U4); break;
1981 case Mode.R8_I8: ig.Emit (OpCodes.Conv_Ovf_I8); break;
1982 case Mode.R8_U8: ig.Emit (OpCodes.Conv_Ovf_U8); break;
1983 case Mode.R8_CH: ig.Emit (OpCodes.Conv_Ovf_U2); break;
1984 case Mode.R8_R4: ig.Emit (OpCodes.Conv_R4); break;
1986 case Mode.I_I8: ig.Emit (OpCodes.Conv_Ovf_I8_Un); break;
1988 } else {
1989 switch (mode){
1990 case Mode.I1_U1: ig.Emit (OpCodes.Conv_U1); break;
1991 case Mode.I1_U2: ig.Emit (OpCodes.Conv_U2); break;
1992 case Mode.I1_U4: ig.Emit (OpCodes.Conv_U4); break;
1993 case Mode.I1_U8: ig.Emit (OpCodes.Conv_I8); break;
1994 case Mode.I1_CH: ig.Emit (OpCodes.Conv_U2); break;
1996 case Mode.U1_I1: ig.Emit (OpCodes.Conv_I1); break;
1997 case Mode.U1_CH: ig.Emit (OpCodes.Conv_U2); break;
1999 case Mode.I2_I1: ig.Emit (OpCodes.Conv_I1); break;
2000 case Mode.I2_U1: ig.Emit (OpCodes.Conv_U1); break;
2001 case Mode.I2_U2: ig.Emit (OpCodes.Conv_U2); break;
2002 case Mode.I2_U4: ig.Emit (OpCodes.Conv_U4); break;
2003 case Mode.I2_U8: ig.Emit (OpCodes.Conv_I8); break;
2004 case Mode.I2_CH: ig.Emit (OpCodes.Conv_U2); break;
2006 case Mode.U2_I1: ig.Emit (OpCodes.Conv_I1); break;
2007 case Mode.U2_U1: ig.Emit (OpCodes.Conv_U1); break;
2008 case Mode.U2_I2: ig.Emit (OpCodes.Conv_I2); break;
2009 case Mode.U2_CH: /* nothing */ break;
2011 case Mode.I4_I1: ig.Emit (OpCodes.Conv_I1); break;
2012 case Mode.I4_U1: ig.Emit (OpCodes.Conv_U1); break;
2013 case Mode.I4_I2: ig.Emit (OpCodes.Conv_I2); break;
2014 case Mode.I4_U4: /* nothing */ break;
2015 case Mode.I4_U2: ig.Emit (OpCodes.Conv_U2); break;
2016 case Mode.I4_U8: ig.Emit (OpCodes.Conv_I8); break;
2017 case Mode.I4_CH: ig.Emit (OpCodes.Conv_U2); break;
2019 case Mode.U4_I1: ig.Emit (OpCodes.Conv_I1); break;
2020 case Mode.U4_U1: ig.Emit (OpCodes.Conv_U1); break;
2021 case Mode.U4_I2: ig.Emit (OpCodes.Conv_I2); break;
2022 case Mode.U4_U2: ig.Emit (OpCodes.Conv_U2); break;
2023 case Mode.U4_I4: /* nothing */ break;
2024 case Mode.U4_CH: ig.Emit (OpCodes.Conv_U2); break;
2026 case Mode.I8_I1: ig.Emit (OpCodes.Conv_I1); break;
2027 case Mode.I8_U1: ig.Emit (OpCodes.Conv_U1); break;
2028 case Mode.I8_I2: ig.Emit (OpCodes.Conv_I2); break;
2029 case Mode.I8_U2: ig.Emit (OpCodes.Conv_U2); break;
2030 case Mode.I8_I4: ig.Emit (OpCodes.Conv_I4); break;
2031 case Mode.I8_U4: ig.Emit (OpCodes.Conv_U4); break;
2032 case Mode.I8_U8: /* nothing */ break;
2033 case Mode.I8_CH: ig.Emit (OpCodes.Conv_U2); break;
2034 case Mode.I8_I: ig.Emit (OpCodes.Conv_U); break;
2036 case Mode.U8_I1: ig.Emit (OpCodes.Conv_I1); break;
2037 case Mode.U8_U1: ig.Emit (OpCodes.Conv_U1); break;
2038 case Mode.U8_I2: ig.Emit (OpCodes.Conv_I2); break;
2039 case Mode.U8_U2: ig.Emit (OpCodes.Conv_U2); break;
2040 case Mode.U8_I4: ig.Emit (OpCodes.Conv_I4); break;
2041 case Mode.U8_U4: ig.Emit (OpCodes.Conv_U4); break;
2042 case Mode.U8_I8: /* nothing */ break;
2043 case Mode.U8_CH: ig.Emit (OpCodes.Conv_U2); break;
2044 case Mode.U8_I: ig.Emit (OpCodes.Conv_U); break;
2046 case Mode.CH_I1: ig.Emit (OpCodes.Conv_I1); break;
2047 case Mode.CH_U1: ig.Emit (OpCodes.Conv_U1); break;
2048 case Mode.CH_I2: ig.Emit (OpCodes.Conv_I2); break;
2050 case Mode.R4_I1: ig.Emit (OpCodes.Conv_I1); break;
2051 case Mode.R4_U1: ig.Emit (OpCodes.Conv_U1); break;
2052 case Mode.R4_I2: ig.Emit (OpCodes.Conv_I2); break;
2053 case Mode.R4_U2: ig.Emit (OpCodes.Conv_U2); break;
2054 case Mode.R4_I4: ig.Emit (OpCodes.Conv_I4); break;
2055 case Mode.R4_U4: ig.Emit (OpCodes.Conv_U4); break;
2056 case Mode.R4_I8: ig.Emit (OpCodes.Conv_I8); break;
2057 case Mode.R4_U8: ig.Emit (OpCodes.Conv_U8); break;
2058 case Mode.R4_CH: ig.Emit (OpCodes.Conv_U2); break;
2060 case Mode.R8_I1: ig.Emit (OpCodes.Conv_I1); break;
2061 case Mode.R8_U1: ig.Emit (OpCodes.Conv_U1); break;
2062 case Mode.R8_I2: ig.Emit (OpCodes.Conv_I2); break;
2063 case Mode.R8_U2: ig.Emit (OpCodes.Conv_U2); break;
2064 case Mode.R8_I4: ig.Emit (OpCodes.Conv_I4); break;
2065 case Mode.R8_U4: ig.Emit (OpCodes.Conv_U4); break;
2066 case Mode.R8_I8: ig.Emit (OpCodes.Conv_I8); break;
2067 case Mode.R8_U8: ig.Emit (OpCodes.Conv_U8); break;
2068 case Mode.R8_CH: ig.Emit (OpCodes.Conv_U2); break;
2069 case Mode.R8_R4: ig.Emit (OpCodes.Conv_R4); break;
2071 case Mode.I_I8: ig.Emit (OpCodes.Conv_U8); break;
2077 public class OpcodeCast : TypeCast {
2078 readonly OpCode op;
2080 public OpcodeCast (Expression child, Type return_type, OpCode op)
2081 : base (child, return_type)
2083 this.op = op;
2086 protected override Expression DoResolve (ResolveContext ec)
2088 // This should never be invoked, we are born in fully
2089 // initialized state.
2091 return this;
2094 public override void Emit (EmitContext ec)
2096 base.Emit (ec);
2097 ec.ig.Emit (op);
2100 public Type UnderlyingType {
2101 get { return child.Type; }
2105 /// <summary>
2106 /// This kind of cast is used to encapsulate a child and cast it
2107 /// to the class requested
2108 /// </summary>
2109 public sealed class ClassCast : TypeCast {
2110 readonly bool forced;
2112 public ClassCast (Expression child, Type return_type)
2113 : base (child, return_type)
2117 public ClassCast (Expression child, Type return_type, bool forced)
2118 : base (child, return_type)
2120 this.forced = forced;
2123 public override void Emit (EmitContext ec)
2125 base.Emit (ec);
2127 bool gen = TypeManager.IsGenericParameter (child.Type);
2128 if (gen)
2129 ec.ig.Emit (OpCodes.Box, child.Type);
2131 if (type.IsGenericParameter) {
2132 ec.ig.Emit (OpCodes.Unbox_Any, type);
2133 return;
2136 if (gen && !forced)
2137 return;
2139 ec.ig.Emit (OpCodes.Castclass, type);
2144 // Created during resolving pahse when an expression is wrapped or constantified
2145 // and original expression can be used later (e.g. for expression trees)
2147 public class ReducedExpression : Expression
2149 sealed class ReducedConstantExpression : EmptyConstantCast
2151 readonly Expression orig_expr;
2153 public ReducedConstantExpression (Constant expr, Expression orig_expr)
2154 : base (expr, expr.Type)
2156 this.orig_expr = orig_expr;
2159 public override Constant ConvertImplicitly (ResolveContext rc, Type target_type)
2161 Constant c = base.ConvertImplicitly (rc, target_type);
2162 if (c != null)
2163 c = new ReducedConstantExpression (c, orig_expr);
2165 return c;
2168 public override Expression CreateExpressionTree (ResolveContext ec)
2170 return orig_expr.CreateExpressionTree (ec);
2173 public override bool GetAttributableValue (ResolveContext ec, Type value_type, out object value)
2176 // Even if resolved result is a constant original expression was not
2177 // and attribute accepts constants only
2179 Attribute.Error_AttributeArgumentNotValid (ec, orig_expr.Location);
2180 value = null;
2181 return false;
2184 public override Constant ConvertExplicitly (bool in_checked_context, Type target_type)
2186 Constant c = base.ConvertExplicitly (in_checked_context, target_type);
2187 if (c != null)
2188 c = new ReducedConstantExpression (c, orig_expr);
2189 return c;
2193 sealed class ReducedExpressionStatement : ExpressionStatement
2195 readonly Expression orig_expr;
2196 readonly ExpressionStatement stm;
2198 public ReducedExpressionStatement (ExpressionStatement stm, Expression orig)
2200 this.orig_expr = orig;
2201 this.stm = stm;
2202 this.loc = orig.Location;
2205 public override Expression CreateExpressionTree (ResolveContext ec)
2207 return orig_expr.CreateExpressionTree (ec);
2210 protected override Expression DoResolve (ResolveContext ec)
2212 eclass = stm.eclass;
2213 type = stm.Type;
2214 return this;
2217 public override void Emit (EmitContext ec)
2219 stm.Emit (ec);
2222 public override void EmitStatement (EmitContext ec)
2224 stm.EmitStatement (ec);
2227 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2229 stm.MutateHoistedGenericType (storey);
2233 readonly Expression expr, orig_expr;
2235 private ReducedExpression (Expression expr, Expression orig_expr)
2237 this.expr = expr;
2238 this.eclass = expr.eclass;
2239 this.type = expr.Type;
2240 this.orig_expr = orig_expr;
2241 this.loc = orig_expr.Location;
2245 // Creates fully resolved expression switcher
2247 public static Constant Create (Constant expr, Expression original_expr)
2249 if (expr.eclass == ExprClass.Unresolved)
2250 throw new ArgumentException ("Unresolved expression");
2252 return new ReducedConstantExpression (expr, original_expr);
2255 public static ExpressionStatement Create (ExpressionStatement s, Expression orig)
2257 return new ReducedExpressionStatement (s, orig);
2261 // Creates unresolved reduce expression. The original expression has to be
2262 // already resolved
2264 public static Expression Create (Expression expr, Expression original_expr)
2266 Constant c = expr as Constant;
2267 if (c != null)
2268 return Create (c, original_expr);
2270 ExpressionStatement s = expr as ExpressionStatement;
2271 if (s != null)
2272 return Create (s, original_expr);
2274 if (expr.eclass == ExprClass.Unresolved)
2275 throw new ArgumentException ("Unresolved expression");
2277 return new ReducedExpression (expr, original_expr);
2280 public override Expression CreateExpressionTree (ResolveContext ec)
2282 return orig_expr.CreateExpressionTree (ec);
2285 protected override Expression DoResolve (ResolveContext ec)
2287 return this;
2290 public override void Emit (EmitContext ec)
2292 expr.Emit (ec);
2295 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
2297 expr.EmitBranchable (ec, target, on_true);
2300 public override SLE.Expression MakeExpression (BuilderContext ctx)
2302 return orig_expr.MakeExpression (ctx);
2305 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2307 expr.MutateHoistedGenericType (storey);
2312 // Standard composite pattern
2314 public abstract class CompositeExpression : Expression
2316 Expression expr;
2318 protected CompositeExpression (Expression expr)
2320 this.expr = expr;
2321 this.loc = expr.Location;
2324 public override Expression CreateExpressionTree (ResolveContext ec)
2326 return expr.CreateExpressionTree (ec);
2329 public Expression Child {
2330 get { return expr; }
2333 protected override Expression DoResolve (ResolveContext ec)
2335 expr = expr.Resolve (ec);
2336 if (expr != null) {
2337 type = expr.Type;
2338 eclass = expr.eclass;
2341 return this;
2344 public override void Emit (EmitContext ec)
2346 expr.Emit (ec);
2349 public override bool IsNull {
2350 get { return expr.IsNull; }
2355 // Base of expressions used only to narrow resolve flow
2357 public abstract class ShimExpression : Expression
2359 protected Expression expr;
2361 protected ShimExpression (Expression expr)
2363 this.expr = expr;
2366 protected override void CloneTo (CloneContext clonectx, Expression t)
2368 if (expr == null)
2369 return;
2371 ShimExpression target = (ShimExpression) t;
2372 target.expr = expr.Clone (clonectx);
2375 public override Expression CreateExpressionTree (ResolveContext ec)
2377 throw new NotSupportedException ("ET");
2380 public override void Emit (EmitContext ec)
2382 throw new InternalErrorException ("Missing Resolve call");
2385 public Expression Expr {
2386 get { return expr; }
2389 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2391 throw new InternalErrorException ("Missing Resolve call");
2396 // Unresolved type name expressions
2398 public abstract class ATypeNameExpression : FullNamedExpression
2400 string name;
2401 protected TypeArguments targs;
2403 protected ATypeNameExpression (string name, Location l)
2405 this.name = name;
2406 loc = l;
2409 protected ATypeNameExpression (string name, TypeArguments targs, Location l)
2411 this.name = name;
2412 this.targs = targs;
2413 loc = l;
2416 public bool HasTypeArguments {
2417 get {
2418 return targs != null;
2422 public override bool Equals (object obj)
2424 ATypeNameExpression atne = obj as ATypeNameExpression;
2425 return atne != null && atne.Name == Name &&
2426 (targs == null || targs.Equals (atne.targs));
2429 public override int GetHashCode ()
2431 return Name.GetHashCode ();
2434 public override string GetSignatureForError ()
2436 if (targs != null) {
2437 return TypeManager.RemoveGenericArity (Name) + "<" +
2438 targs.GetSignatureForError () + ">";
2441 return Name;
2444 public string Name {
2445 get {
2446 return name;
2448 set {
2449 name = value;
2453 public TypeArguments TypeArguments {
2454 get {
2455 return targs;
2460 /// <summary>
2461 /// SimpleName expressions are formed of a single word and only happen at the beginning
2462 /// of a dotted-name.
2463 /// </summary>
2464 public class SimpleName : ATypeNameExpression
2466 public SimpleName (string name, Location l)
2467 : base (name, l)
2471 public SimpleName (string name, TypeArguments args, Location l)
2472 : base (name, args, l)
2476 public SimpleName (string name, TypeParameter[] type_params, Location l)
2477 : base (name, l)
2479 targs = new TypeArguments ();
2480 foreach (TypeParameter type_param in type_params)
2481 targs.Add (new TypeParameterExpr (type_param, l));
2484 public static string RemoveGenericArity (string name)
2486 int start = 0;
2487 StringBuilder sb = null;
2488 do {
2489 int pos = name.IndexOf ('`', start);
2490 if (pos < 0) {
2491 if (start == 0)
2492 return name;
2494 sb.Append (name.Substring (start));
2495 break;
2498 if (sb == null)
2499 sb = new StringBuilder ();
2500 sb.Append (name.Substring (start, pos-start));
2502 pos++;
2503 while ((pos < name.Length) && Char.IsNumber (name [pos]))
2504 pos++;
2506 start = pos;
2507 } while (start < name.Length);
2509 return sb.ToString ();
2512 public SimpleName GetMethodGroup ()
2514 return new SimpleName (RemoveGenericArity (Name), targs, loc);
2517 public static void Error_ObjectRefRequired (ResolveContext ec, Location l, string name)
2519 if (ec.HasSet (ResolveContext.Options.FieldInitializerScope))
2520 ec.Report.Error (236, l,
2521 "A field initializer cannot reference the nonstatic field, method, or property `{0}'",
2522 name);
2523 else
2524 ec.Report.Error (120, l,
2525 "An object reference is required to access non-static member `{0}'",
2526 name);
2529 public bool IdenticalNameAndTypeName (IMemberContext mc, Expression resolved_to, Location loc)
2531 return resolved_to != null && resolved_to.Type != null &&
2532 resolved_to.Type.Name == Name &&
2533 (mc.LookupNamespaceOrType (Name, loc, /* ignore_cs0104 = */ true) != null);
2536 protected override Expression DoResolve (ResolveContext ec)
2538 return SimpleNameResolve (ec, null, false);
2541 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
2543 return SimpleNameResolve (ec, right_side, false);
2546 public Expression DoResolve (ResolveContext ec, bool intermediate)
2548 return SimpleNameResolve (ec, null, intermediate);
2551 static bool IsNestedChild (Type t, Type parent)
2553 while (parent != null) {
2554 if (TypeManager.IsNestedChildOf (t, TypeManager.DropGenericTypeArguments (parent)))
2555 return true;
2557 parent = parent.BaseType;
2560 return false;
2563 FullNamedExpression ResolveNested (Type t)
2565 if (!TypeManager.IsGenericTypeDefinition (t) && !TypeManager.IsGenericType (t))
2566 return null;
2568 Type ds = t;
2569 while (ds != null && !IsNestedChild (t, ds))
2570 ds = ds.DeclaringType;
2572 if (ds == null)
2573 return null;
2575 Type[] gen_params = TypeManager.GetTypeArguments (t);
2577 int arg_count = targs != null ? targs.Count : 0;
2579 for (; (ds != null) && TypeManager.IsGenericType (ds); ds = ds.DeclaringType) {
2580 Type[] gargs = TypeManager.GetTypeArguments (ds);
2581 if (arg_count + gargs.Length == gen_params.Length) {
2582 TypeArguments new_args = new TypeArguments ();
2583 foreach (Type param in gargs)
2584 new_args.Add (new TypeExpression (param, loc));
2586 if (targs != null)
2587 new_args.Add (targs);
2589 return new GenericTypeExpr (t, new_args, loc);
2593 return null;
2596 public override FullNamedExpression ResolveAsTypeStep (IMemberContext ec, bool silent)
2598 int errors = ec.Compiler.Report.Errors;
2599 FullNamedExpression fne = ec.LookupNamespaceOrType (Name, loc, /*ignore_cs0104=*/ false);
2601 if (fne != null) {
2602 if (fne.Type == null)
2603 return fne;
2605 FullNamedExpression nested = ResolveNested (fne.Type);
2606 if (nested != null)
2607 return nested.ResolveAsTypeStep (ec, false);
2609 if (targs != null) {
2610 if (TypeManager.IsGenericType (fne.Type)) {
2611 GenericTypeExpr ct = new GenericTypeExpr (fne.Type, targs, loc);
2612 return ct.ResolveAsTypeStep (ec, false);
2615 fne.Error_TypeArgumentsCannotBeUsed (ec.Compiler.Report, loc);
2618 return fne;
2621 if (!HasTypeArguments && Name == "dynamic" &&
2622 RootContext.Version > LanguageVersion.V_3 &&
2623 RootContext.MetadataCompatibilityVersion > MetadataVersion.v2) {
2625 if (!PredefinedAttributes.Get.Dynamic.IsDefined) {
2626 ec.Compiler.Report.Error (1980, Location,
2627 "Dynamic keyword requires `{0}' to be defined. Are you missing System.Core.dll assembly reference?",
2628 PredefinedAttributes.Get.Dynamic.GetSignatureForError ());
2631 return new DynamicTypeExpr (loc);
2634 if (silent || errors != ec.Compiler.Report.Errors)
2635 return null;
2637 Error_TypeOrNamespaceNotFound (ec);
2638 return null;
2641 protected virtual void Error_TypeOrNamespaceNotFound (IMemberContext ec)
2643 if (ec.CurrentType != null) {
2644 if (ec.CurrentTypeDefinition != null) {
2645 MemberCore mc = ec.CurrentTypeDefinition.GetDefinition (Name);
2646 if (mc != null) {
2647 Error_UnexpectedKind (ec.Compiler.Report, mc, "type", GetMemberType (mc), loc);
2648 return;
2652 string ns = ec.CurrentType.Namespace;
2653 string fullname = (ns.Length > 0) ? ns + "." + Name : Name;
2654 foreach (Assembly a in GlobalRootNamespace.Instance.Assemblies) {
2655 Type type = a.GetType (fullname);
2656 if (type != null) {
2657 ec.Compiler.Report.SymbolRelatedToPreviousError (type);
2658 Expression.ErrorIsInaccesible (loc, TypeManager.CSharpName (type), ec.Compiler.Report);
2659 return;
2663 if (ec.CurrentTypeDefinition != null) {
2664 Type t = ec.CurrentTypeDefinition.LookupAnyGeneric (Name);
2665 if (t != null) {
2666 Namespace.Error_InvalidNumberOfTypeArguments (ec.Compiler.Report, t, loc);
2667 return;
2672 if (targs != null) {
2673 FullNamedExpression retval = ec.LookupNamespaceOrType (SimpleName.RemoveGenericArity (Name), loc, true);
2674 if (retval != null) {
2675 retval.Error_TypeArgumentsCannotBeUsed (ec.Compiler.Report, loc);
2676 return;
2680 NamespaceEntry.Error_NamespaceNotFound (loc, Name, ec.Compiler.Report);
2683 // TODO: I am still not convinced about this. If someone else will need it
2684 // implement this as virtual property in MemberCore hierarchy
2685 public static string GetMemberType (MemberCore mc)
2687 if (mc is Property)
2688 return "property";
2689 if (mc is Indexer)
2690 return "indexer";
2691 if (mc is FieldBase)
2692 return "field";
2693 if (mc is MethodCore)
2694 return "method";
2695 if (mc is EnumMember)
2696 return "enum";
2697 if (mc is Event)
2698 return "event";
2700 return "type";
2703 Expression SimpleNameResolve (ResolveContext ec, Expression right_side, bool intermediate)
2705 Expression e = DoSimpleNameResolve (ec, right_side, intermediate);
2707 if (e == null)
2708 return null;
2710 if (ec.CurrentBlock == null || ec.CurrentBlock.CheckInvariantMeaningInBlock (Name, e, Location))
2711 return e;
2713 return null;
2716 /// <remarks>
2717 /// 7.5.2: Simple Names.
2719 /// Local Variables and Parameters are handled at
2720 /// parse time, so they never occur as SimpleNames.
2722 /// The `intermediate' flag is used by MemberAccess only
2723 /// and it is used to inform us that it is ok for us to
2724 /// avoid the static check, because MemberAccess might end
2725 /// up resolving the Name as a Type name and the access as
2726 /// a static type access.
2728 /// ie: Type Type; .... { Type.GetType (""); }
2730 /// Type is both an instance variable and a Type; Type.GetType
2731 /// is the static method not an instance method of type.
2732 /// </remarks>
2733 Expression DoSimpleNameResolve (ResolveContext ec, Expression right_side, bool intermediate)
2735 Expression e = null;
2738 // Stage 1: Performed by the parser (binding to locals or parameters).
2740 Block current_block = ec.CurrentBlock;
2741 if (current_block != null){
2742 LocalInfo vi = current_block.GetLocalInfo (Name);
2743 if (vi != null){
2744 e = new LocalVariableReference (ec.CurrentBlock, Name, loc);
2746 if (right_side != null) {
2747 e = e.ResolveLValue (ec, right_side);
2748 } else {
2749 if (intermediate) {
2750 using (ec.With (ResolveContext.Options.DoFlowAnalysis, false)) {
2751 e = e.Resolve (ec, ResolveFlags.VariableOrValue);
2753 } else {
2754 e = e.Resolve (ec, ResolveFlags.VariableOrValue);
2758 if (targs != null && e != null)
2759 e.Error_TypeArgumentsCannotBeUsed (ec.Report, loc);
2761 return e;
2764 e = current_block.Toplevel.GetParameterReference (Name, loc);
2765 if (e != null) {
2766 if (right_side != null)
2767 e = e.ResolveLValue (ec, right_side);
2768 else
2769 e = e.Resolve (ec);
2771 if (targs != null && e != null)
2772 e.Error_TypeArgumentsCannotBeUsed (ec.Report, loc);
2774 return e;
2779 // Stage 2: Lookup members
2782 Type almost_matched_type = null;
2783 IList<MemberInfo> almost_matched = null;
2784 for (Type lookup_ds = ec.CurrentType; lookup_ds != null; lookup_ds = lookup_ds.DeclaringType) {
2785 e = MemberLookup (ec.Compiler, ec.CurrentType, lookup_ds, Name, loc);
2786 if (e != null) {
2787 PropertyExpr pe = e as PropertyExpr;
2788 if (pe != null) {
2789 AParametersCollection param = TypeManager.GetParameterData (pe.PropertyInfo);
2791 // since TypeManager.MemberLookup doesn't know if we're doing a lvalue access or not,
2792 // it doesn't know which accessor to check permissions against
2793 if (param.IsEmpty && pe.IsAccessibleFrom (ec.CurrentType, right_side != null))
2794 break;
2795 } else if (e is EventExpr) {
2796 if (((EventExpr) e).IsAccessibleFrom (ec.CurrentType))
2797 break;
2798 } else if (targs != null && e is TypeExpression) {
2799 e = new GenericTypeExpr (e.Type, targs, loc).ResolveAsTypeStep (ec, false);
2800 break;
2801 } else {
2802 break;
2804 e = null;
2807 if (almost_matched == null && almost_matched_members.Count > 0) {
2808 almost_matched_type = lookup_ds;
2809 almost_matched = new List<MemberInfo>(almost_matched_members);
2813 if (e == null) {
2814 if (almost_matched == null && almost_matched_members.Count > 0) {
2815 almost_matched_type = ec.CurrentType;
2816 almost_matched = new List<MemberInfo> (almost_matched_members);
2818 e = ResolveAsTypeStep (ec, true);
2821 if (e == null) {
2822 if (current_block != null) {
2823 IKnownVariable ikv = current_block.Explicit.GetKnownVariable (Name);
2824 if (ikv != null) {
2825 LocalInfo li = ikv as LocalInfo;
2826 // Supress CS0219 warning
2827 if (li != null)
2828 li.Used = true;
2830 Error_VariableIsUsedBeforeItIsDeclared (ec.Report, Name);
2831 return null;
2835 if (RootContext.EvalMode){
2836 FieldInfo fi = Evaluator.LookupField (Name);
2837 if (fi != null)
2838 return new FieldExpr (fi, loc).Resolve (ec);
2841 if (almost_matched != null)
2842 almost_matched_members = almost_matched;
2843 if (almost_matched_type == null)
2844 almost_matched_type = ec.CurrentType;
2846 string type_name = ec.MemberContext.CurrentType == null ? null : ec.MemberContext.CurrentType.Name;
2847 return Error_MemberLookupFailed (ec, ec.CurrentType, null, almost_matched_type, Name,
2848 type_name, AllMemberTypes, AllBindingFlags);
2851 if (e is MemberExpr) {
2852 MemberExpr me = (MemberExpr) e;
2854 Expression left;
2855 if (me.IsInstance) {
2856 if (ec.IsStatic || ec.HasAny (ResolveContext.Options.FieldInitializerScope | ResolveContext.Options.BaseInitializer | ResolveContext.Options.ConstantScope)) {
2858 // Note that an MemberExpr can be both IsInstance and IsStatic.
2859 // An unresolved MethodGroupExpr can contain both kinds of methods
2860 // and each predicate is true if the MethodGroupExpr contains
2861 // at least one of that kind of method.
2864 if (!me.IsStatic &&
2865 (!intermediate || !IdenticalNameAndTypeName (ec, me, loc))) {
2866 Error_ObjectRefRequired (ec, loc, me.GetSignatureForError ());
2867 return null;
2871 // Pass the buck to MemberAccess and Invocation.
2873 left = EmptyExpression.Null;
2874 } else {
2875 left = ec.GetThis (loc);
2877 } else {
2878 left = new TypeExpression (ec.CurrentType, loc);
2881 me = me.ResolveMemberAccess (ec, left, loc, null);
2882 if (me == null)
2883 return null;
2885 if (targs != null) {
2886 if (!targs.Resolve (ec))
2887 return null;
2889 me.SetTypeArguments (ec, targs);
2892 if (!me.IsStatic && (me.InstanceExpression != null && me.InstanceExpression != EmptyExpression.Null) &&
2893 TypeManager.IsNestedFamilyAccessible (me.InstanceExpression.Type, me.DeclaringType) &&
2894 me.InstanceExpression.Type != me.DeclaringType &&
2895 !TypeManager.IsFamilyAccessible (me.InstanceExpression.Type, me.DeclaringType) &&
2896 (!intermediate || !IdenticalNameAndTypeName (ec, e, loc))) {
2897 ec.Report.Error (38, loc, "Cannot access a nonstatic member of outer type `{0}' via nested type `{1}'",
2898 TypeManager.CSharpName (me.DeclaringType), TypeManager.CSharpName (me.InstanceExpression.Type));
2899 return null;
2902 return (right_side != null)
2903 ? me.DoResolveLValue (ec, right_side)
2904 : me.Resolve (ec);
2907 return e;
2911 /// <summary>
2912 /// Represents a namespace or a type. The name of the class was inspired by
2913 /// section 10.8.1 (Fully Qualified Names).
2914 /// </summary>
2915 public abstract class FullNamedExpression : Expression
2917 protected override void CloneTo (CloneContext clonectx, Expression target)
2919 // Do nothing, most unresolved type expressions cannot be
2920 // resolved to different type
2923 public override Expression CreateExpressionTree (ResolveContext ec)
2925 throw new NotSupportedException ("ET");
2928 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2930 throw new NotSupportedException ();
2933 public override FullNamedExpression ResolveAsTypeStep (IMemberContext ec, bool silent)
2935 return this;
2938 public override void Emit (EmitContext ec)
2940 throw new InternalErrorException ("FullNamedExpression `{0}' found in resolved tree",
2941 GetSignatureForError ());
2945 /// <summary>
2946 /// Expression that evaluates to a type
2947 /// </summary>
2948 public abstract class TypeExpr : FullNamedExpression {
2949 public override FullNamedExpression ResolveAsTypeStep (IMemberContext ec, bool silent)
2951 TypeExpr t = DoResolveAsTypeStep (ec);
2952 if (t == null)
2953 return null;
2955 eclass = ExprClass.Type;
2956 return t;
2959 protected override Expression DoResolve (ResolveContext ec)
2961 return ResolveAsTypeTerminal (ec, false);
2964 public virtual bool CheckAccessLevel (IMemberContext mc)
2966 return mc.CurrentTypeDefinition.CheckAccessLevel (Type);
2969 public virtual bool IsClass {
2970 get { return Type.IsClass; }
2973 public virtual bool IsValueType {
2974 get { return TypeManager.IsStruct (Type); }
2977 public virtual bool IsInterface {
2978 get { return Type.IsInterface; }
2981 public virtual bool IsSealed {
2982 get { return Type.IsSealed; }
2985 public virtual bool CanInheritFrom ()
2987 if (Type == TypeManager.enum_type ||
2988 (Type == TypeManager.value_type && RootContext.StdLib) ||
2989 Type == TypeManager.multicast_delegate_type ||
2990 Type == TypeManager.delegate_type ||
2991 Type == TypeManager.array_type)
2992 return false;
2994 return true;
2997 protected abstract TypeExpr DoResolveAsTypeStep (IMemberContext ec);
2999 public override bool Equals (object obj)
3001 TypeExpr tobj = obj as TypeExpr;
3002 if (tobj == null)
3003 return false;
3005 return Type == tobj.Type;
3008 public override int GetHashCode ()
3010 return Type.GetHashCode ();
3013 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3015 type = storey.MutateType (type);
3019 /// <summary>
3020 /// Fully resolved Expression that already evaluated to a type
3021 /// </summary>
3022 public class TypeExpression : TypeExpr {
3023 public TypeExpression (Type t, Location l)
3025 Type = t;
3026 eclass = ExprClass.Type;
3027 loc = l;
3030 protected override TypeExpr DoResolveAsTypeStep (IMemberContext ec)
3032 return this;
3035 public override TypeExpr ResolveAsTypeTerminal (IMemberContext ec, bool silent)
3037 return this;
3042 // Used to create types from a fully qualified name. These are just used
3043 // by the parser to setup the core types.
3045 public sealed class TypeLookupExpression : TypeExpr {
3046 readonly string ns_name;
3047 readonly string name;
3049 public TypeLookupExpression (string ns, string name)
3051 this.name = name;
3052 this.ns_name = ns;
3053 eclass = ExprClass.Type;
3056 public override TypeExpr ResolveAsTypeTerminal (IMemberContext ec, bool silent)
3059 // It's null only during mscorlib bootstrap when DefineType
3060 // nees to resolve base type of same type
3062 // For instance struct Char : IComparable<char>
3064 // TODO: it could be removed when Resolve starts to use
3065 // DeclSpace instead of Type
3067 if (type == null) {
3068 Namespace ns = GlobalRootNamespace.Instance.GetNamespace (ns_name, false);
3069 FullNamedExpression fne = ns.Lookup (ec.Compiler, name, loc);
3070 if (fne != null)
3071 type = fne.Type;
3074 return this;
3077 protected override TypeExpr DoResolveAsTypeStep (IMemberContext ec)
3079 return this;
3082 public override string GetSignatureForError ()
3084 if (type == null)
3085 return TypeManager.CSharpName (ns_name + "." + name, null);
3087 return base.GetSignatureForError ();
3091 /// <summary>
3092 /// This class denotes an expression which evaluates to a member
3093 /// of a struct or a class.
3094 /// </summary>
3095 public abstract class MemberExpr : Expression
3097 protected bool is_base;
3099 /// <summary>
3100 /// The name of this member.
3101 /// </summary>
3102 public abstract string Name {
3103 get;
3107 // When base.member is used
3109 public bool IsBase {
3110 get { return is_base; }
3111 set { is_base = value; }
3114 /// <summary>
3115 /// Whether this is an instance member.
3116 /// </summary>
3117 public abstract bool IsInstance {
3118 get;
3121 /// <summary>
3122 /// Whether this is a static member.
3123 /// </summary>
3124 public abstract bool IsStatic {
3125 get;
3128 /// <summary>
3129 /// The type which declares this member.
3130 /// </summary>
3131 public abstract Type DeclaringType {
3132 get;
3135 /// <summary>
3136 /// The instance expression associated with this member, if it's a
3137 /// non-static member.
3138 /// </summary>
3139 public Expression InstanceExpression;
3141 public static void error176 (ResolveContext ec, Location loc, string name)
3143 ec.Report.Error (176, loc, "Static member `{0}' cannot be accessed " +
3144 "with an instance reference, qualify it with a type name instead", name);
3147 public static void Error_BaseAccessInExpressionTree (ResolveContext ec, Location loc)
3149 ec.Report.Error (831, loc, "An expression tree may not contain a base access");
3152 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3154 if (InstanceExpression != null)
3155 InstanceExpression.MutateHoistedGenericType (storey);
3158 // TODO: possible optimalization
3159 // Cache resolved constant result in FieldBuilder <-> expression map
3160 public virtual MemberExpr ResolveMemberAccess (ResolveContext ec, Expression left, Location loc,
3161 SimpleName original)
3164 // Precondition:
3165 // original == null || original.Resolve (...) ==> left
3168 if (left is TypeExpr) {
3169 left = left.ResolveAsBaseTerminal (ec, false);
3170 if (left == null)
3171 return null;
3173 // TODO: Same problem as in class.cs, TypeTerminal does not
3174 // always do all necessary checks
3175 ObsoleteAttribute oa = AttributeTester.GetObsoleteAttribute (left.Type);
3176 if (oa != null && !ec.IsObsolete) {
3177 AttributeTester.Report_ObsoleteMessage (oa, left.GetSignatureForError (), loc, ec.Report);
3180 GenericTypeExpr ct = left as GenericTypeExpr;
3181 if (ct != null && !ct.CheckConstraints (ec))
3182 return null;
3185 if (!IsStatic) {
3186 SimpleName.Error_ObjectRefRequired (ec, loc, GetSignatureForError ());
3187 return null;
3190 return this;
3193 if (!IsInstance) {
3194 if (original != null && original.IdenticalNameAndTypeName (ec, left, loc))
3195 return this;
3197 return ResolveExtensionMemberAccess (ec, left);
3200 InstanceExpression = left;
3201 return this;
3204 protected virtual MemberExpr ResolveExtensionMemberAccess (ResolveContext ec, Expression left)
3206 error176 (ec, loc, GetSignatureForError ());
3207 return this;
3210 protected void EmitInstance (EmitContext ec, bool prepare_for_load)
3212 if (IsStatic)
3213 return;
3215 if (InstanceExpression == EmptyExpression.Null) {
3216 // FIXME: This should not be here at all
3217 SimpleName.Error_ObjectRefRequired (new ResolveContext (ec.MemberContext), loc, GetSignatureForError ());
3218 return;
3221 if (TypeManager.IsValueType (InstanceExpression.Type)) {
3222 if (InstanceExpression is IMemoryLocation) {
3223 ((IMemoryLocation) InstanceExpression).AddressOf (ec, AddressOp.LoadStore);
3224 } else {
3225 LocalTemporary t = new LocalTemporary (InstanceExpression.Type);
3226 InstanceExpression.Emit (ec);
3227 t.Store (ec);
3228 t.AddressOf (ec, AddressOp.Store);
3230 } else
3231 InstanceExpression.Emit (ec);
3233 if (prepare_for_load)
3234 ec.ig.Emit (OpCodes.Dup);
3237 public virtual void SetTypeArguments (ResolveContext ec, TypeArguments ta)
3239 // TODO: need to get correct member type
3240 ec.Report.Error (307, loc, "The property `{0}' cannot be used with type arguments",
3241 GetSignatureForError ());
3245 ///
3246 /// Represents group of extension methods
3247 ///
3248 public class ExtensionMethodGroupExpr : MethodGroupExpr
3250 readonly NamespaceEntry namespace_entry;
3251 public Expression ExtensionExpression;
3252 Argument extension_argument;
3254 public ExtensionMethodGroupExpr (List<MethodBase> list, NamespaceEntry n, Type extensionType, Location l)
3255 : base (list, extensionType, l)
3257 this.namespace_entry = n;
3260 public override bool IsStatic {
3261 get { return true; }
3264 public bool IsTopLevel {
3265 get { return namespace_entry == null; }
3268 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3270 extension_argument.Expr.MutateHoistedGenericType (storey);
3271 base.MutateHoistedGenericType (storey);
3274 public override MethodGroupExpr OverloadResolve (ResolveContext ec, ref Arguments arguments, bool may_fail, Location loc)
3276 if (arguments == null)
3277 arguments = new Arguments (1);
3279 arguments.Insert (0, new Argument (ExtensionExpression));
3280 MethodGroupExpr mg = ResolveOverloadExtensions (ec, ref arguments, namespace_entry, loc);
3282 // Store resolved argument and restore original arguments
3283 if (mg != null)
3284 ((ExtensionMethodGroupExpr)mg).extension_argument = arguments [0];
3285 else
3286 arguments.RemoveAt (0); // Clean-up modified arguments for error reporting
3288 return mg;
3291 MethodGroupExpr ResolveOverloadExtensions (ResolveContext ec, ref Arguments arguments, NamespaceEntry ns, Location loc)
3293 // Use normal resolve rules
3294 MethodGroupExpr mg = base.OverloadResolve (ec, ref arguments, ns != null, loc);
3295 if (mg != null)
3296 return mg;
3298 if (ns == null)
3299 return null;
3301 // Search continues
3302 ExtensionMethodGroupExpr e = ns.LookupExtensionMethod (type, Name, loc);
3303 if (e == null)
3304 return base.OverloadResolve (ec, ref arguments, false, loc);
3306 e.ExtensionExpression = ExtensionExpression;
3307 e.SetTypeArguments (ec, type_arguments);
3308 return e.ResolveOverloadExtensions (ec, ref arguments, e.namespace_entry, loc);
3312 /// <summary>
3313 /// MethodGroupExpr represents a group of method candidates which
3314 /// can be resolved to the best method overload
3315 /// </summary>
3316 public class MethodGroupExpr : MemberExpr
3318 public interface IErrorHandler
3320 bool AmbiguousCall (ResolveContext ec, MethodBase ambiguous);
3321 bool NoExactMatch (ResolveContext ec, MethodBase method);
3324 public IErrorHandler CustomErrorHandler;
3325 public MethodBase [] Methods;
3326 MethodBase best_candidate;
3327 // TODO: make private
3328 public TypeArguments type_arguments;
3329 bool identical_type_name;
3330 bool has_inaccessible_candidates_only;
3331 Type delegate_type;
3332 Type queried_type;
3334 public MethodGroupExpr (MemberInfo [] mi, Type type, Location l)
3335 : this (type, l)
3337 Methods = new MethodBase [mi.Length];
3338 mi.CopyTo (Methods, 0);
3341 public MethodGroupExpr (MemberInfo[] mi, Type type, Location l, bool inacessibleCandidatesOnly)
3342 : this (mi, type, l)
3344 has_inaccessible_candidates_only = inacessibleCandidatesOnly;
3347 public MethodGroupExpr (List<MethodBase> list, Type type, Location l)
3348 : this (type, l)
3350 try {
3351 Methods = list.ToArray ();
3352 } catch {
3353 foreach (MemberInfo m in list){
3354 if (!(m is MethodBase)){
3355 Console.WriteLine ("Name " + m.Name);
3356 Console.WriteLine ("Found a: " + m.GetType ().FullName);
3359 throw;
3365 protected MethodGroupExpr (Type type, Location loc)
3367 this.loc = loc;
3368 eclass = ExprClass.MethodGroup;
3369 this.type = InternalType.MethodGroup;
3370 queried_type = type;
3373 public override Type DeclaringType {
3374 get {
3375 return queried_type;
3379 public Type DelegateType {
3380 set {
3381 delegate_type = value;
3385 public bool IdenticalTypeName {
3386 get {
3387 return identical_type_name;
3391 public override string GetSignatureForError ()
3393 if (best_candidate != null)
3394 return TypeManager.CSharpSignature (best_candidate);
3396 return TypeManager.CSharpSignature (Methods [0]);
3399 public override string Name {
3400 get {
3401 return Methods [0].Name;
3405 public override bool IsInstance {
3406 get {
3407 if (best_candidate != null)
3408 return !best_candidate.IsStatic;
3410 foreach (MethodBase mb in Methods)
3411 if (!mb.IsStatic)
3412 return true;
3414 return false;
3418 public override bool IsStatic {
3419 get {
3420 if (best_candidate != null)
3421 return best_candidate.IsStatic;
3423 foreach (MethodBase mb in Methods)
3424 if (mb.IsStatic)
3425 return true;
3427 return false;
3431 public static explicit operator ConstructorInfo (MethodGroupExpr mg)
3433 return (ConstructorInfo)mg.best_candidate;
3436 public static explicit operator MethodInfo (MethodGroupExpr mg)
3438 return (MethodInfo)mg.best_candidate;
3442 // 7.4.3.3 Better conversion from expression
3443 // Returns : 1 if a->p is better,
3444 // 2 if a->q is better,
3445 // 0 if neither is better
3447 static int BetterExpressionConversion (ResolveContext ec, Argument a, Type p, Type q)
3449 Type argument_type = TypeManager.TypeToCoreType (a.Type);
3450 if (argument_type == InternalType.AnonymousMethod && RootContext.Version > LanguageVersion.ISO_2) {
3452 // Uwrap delegate from Expression<T>
3454 if (TypeManager.DropGenericTypeArguments (p) == TypeManager.expression_type) {
3455 p = TypeManager.GetTypeArguments (p) [0];
3457 if (TypeManager.DropGenericTypeArguments (q) == TypeManager.expression_type) {
3458 q = TypeManager.GetTypeArguments (q) [0];
3461 p = Delegate.GetInvokeMethod (ec.Compiler, null, p).ReturnType;
3462 q = Delegate.GetInvokeMethod (ec.Compiler, null, q).ReturnType;
3463 if (p == TypeManager.void_type && q != TypeManager.void_type)
3464 return 2;
3465 if (q == TypeManager.void_type && p != TypeManager.void_type)
3466 return 1;
3467 } else {
3468 if (argument_type == p)
3469 return 1;
3471 if (argument_type == q)
3472 return 2;
3475 return BetterTypeConversion (ec, p, q);
3479 // 7.4.3.4 Better conversion from type
3481 public static int BetterTypeConversion (ResolveContext ec, Type p, Type q)
3483 if (p == null || q == null)
3484 throw new InternalErrorException ("BetterTypeConversion got a null conversion");
3486 if (p == TypeManager.int32_type) {
3487 if (q == TypeManager.uint32_type || q == TypeManager.uint64_type)
3488 return 1;
3489 } else if (p == TypeManager.int64_type) {
3490 if (q == TypeManager.uint64_type)
3491 return 1;
3492 } else if (p == TypeManager.sbyte_type) {
3493 if (q == TypeManager.byte_type || q == TypeManager.ushort_type ||
3494 q == TypeManager.uint32_type || q == TypeManager.uint64_type)
3495 return 1;
3496 } else if (p == TypeManager.short_type) {
3497 if (q == TypeManager.ushort_type || q == TypeManager.uint32_type ||
3498 q == TypeManager.uint64_type)
3499 return 1;
3500 } else if (p == InternalType.Dynamic) {
3501 if (q == TypeManager.object_type)
3502 return 2;
3505 if (q == TypeManager.int32_type) {
3506 if (p == TypeManager.uint32_type || p == TypeManager.uint64_type)
3507 return 2;
3508 } if (q == TypeManager.int64_type) {
3509 if (p == TypeManager.uint64_type)
3510 return 2;
3511 } else if (q == TypeManager.sbyte_type) {
3512 if (p == TypeManager.byte_type || p == TypeManager.ushort_type ||
3513 p == TypeManager.uint32_type || p == TypeManager.uint64_type)
3514 return 2;
3515 } if (q == TypeManager.short_type) {
3516 if (p == TypeManager.ushort_type || p == TypeManager.uint32_type ||
3517 p == TypeManager.uint64_type)
3518 return 2;
3519 } else if (q == InternalType.Dynamic) {
3520 if (p == TypeManager.object_type)
3521 return 1;
3524 // TODO: this is expensive
3525 Expression p_tmp = new EmptyExpression (p);
3526 Expression q_tmp = new EmptyExpression (q);
3528 bool p_to_q = Convert.ImplicitConversionExists (ec, p_tmp, q);
3529 bool q_to_p = Convert.ImplicitConversionExists (ec, q_tmp, p);
3531 if (p_to_q && !q_to_p)
3532 return 1;
3534 if (q_to_p && !p_to_q)
3535 return 2;
3537 return 0;
3540 /// <summary>
3541 /// Determines "Better function" between candidate
3542 /// and the current best match
3543 /// </summary>
3544 /// <remarks>
3545 /// Returns a boolean indicating :
3546 /// false if candidate ain't better
3547 /// true if candidate is better than the current best match
3548 /// </remarks>
3549 static bool BetterFunction (ResolveContext ec, Arguments args, int argument_count,
3550 MethodBase candidate, bool candidate_params,
3551 MethodBase best, bool best_params)
3553 AParametersCollection candidate_pd = TypeManager.GetParameterData (candidate);
3554 AParametersCollection best_pd = TypeManager.GetParameterData (best);
3556 bool better_at_least_one = false;
3557 bool same = true;
3558 for (int j = 0, c_idx = 0, b_idx = 0; j < argument_count; ++j, ++c_idx, ++b_idx)
3560 Argument a = args [j];
3562 // Provided default argument value is never better
3563 if (a.IsDefaultArgument && candidate_params == best_params)
3564 return false;
3566 Type ct = candidate_pd.Types [c_idx];
3567 Type bt = best_pd.Types [b_idx];
3569 if (candidate_params && candidate_pd.FixedParameters [c_idx].ModFlags == Parameter.Modifier.PARAMS)
3571 ct = TypeManager.GetElementType (ct);
3572 --c_idx;
3575 if (best_params && best_pd.FixedParameters [b_idx].ModFlags == Parameter.Modifier.PARAMS)
3577 bt = TypeManager.GetElementType (bt);
3578 --b_idx;
3581 if (ct == bt)
3582 continue;
3584 same = false;
3585 int result = BetterExpressionConversion (ec, a, ct, bt);
3587 // for each argument, the conversion to 'ct' should be no worse than
3588 // the conversion to 'bt'.
3589 if (result == 2)
3590 return false;
3592 // for at least one argument, the conversion to 'ct' should be better than
3593 // the conversion to 'bt'.
3594 if (result != 0)
3595 better_at_least_one = true;
3598 if (better_at_least_one)
3599 return true;
3602 // This handles the case
3604 // Add (float f1, float f2, float f3);
3605 // Add (params decimal [] foo);
3607 // The call Add (3, 4, 5) should be ambiguous. Without this check, the
3608 // first candidate would've chosen as better.
3610 if (!same)
3611 return false;
3614 // The two methods have equal parameter types. Now apply tie-breaking rules
3616 if (TypeManager.IsGenericMethod (best)) {
3617 if (!TypeManager.IsGenericMethod (candidate))
3618 return true;
3619 } else if (TypeManager.IsGenericMethod (candidate)) {
3620 return false;
3624 // This handles the following cases:
3626 // Trim () is better than Trim (params char[] chars)
3627 // Concat (string s1, string s2, string s3) is better than
3628 // Concat (string s1, params string [] srest)
3629 // Foo (int, params int [] rest) is better than Foo (params int [] rest)
3631 if (!candidate_params && best_params)
3632 return true;
3633 if (candidate_params && !best_params)
3634 return false;
3636 int candidate_param_count = candidate_pd.Count;
3637 int best_param_count = best_pd.Count;
3639 if (candidate_param_count != best_param_count)
3640 // can only happen if (candidate_params && best_params)
3641 return candidate_param_count > best_param_count && best_pd.HasParams;
3644 // now, both methods have the same number of parameters, and the parameters have the same types
3645 // Pick the "more specific" signature
3648 MethodBase orig_candidate = TypeManager.DropGenericMethodArguments (candidate);
3649 MethodBase orig_best = TypeManager.DropGenericMethodArguments (best);
3651 AParametersCollection orig_candidate_pd = TypeManager.GetParameterData (orig_candidate);
3652 AParametersCollection orig_best_pd = TypeManager.GetParameterData (orig_best);
3654 bool specific_at_least_once = false;
3655 for (int j = 0; j < candidate_param_count; ++j)
3657 Type ct = orig_candidate_pd.Types [j];
3658 Type bt = orig_best_pd.Types [j];
3659 if (ct.Equals (bt))
3660 continue;
3661 Type specific = MoreSpecific (ct, bt);
3662 if (specific == bt)
3663 return false;
3664 if (specific == ct)
3665 specific_at_least_once = true;
3668 if (specific_at_least_once)
3669 return true;
3671 // FIXME: handle lifted operators
3672 // ...
3674 return false;
3677 protected override MemberExpr ResolveExtensionMemberAccess (ResolveContext ec, Expression left)
3679 if (!IsStatic)
3680 return base.ResolveExtensionMemberAccess (ec, left);
3683 // When left side is an expression and at least one candidate method is
3684 // static, it can be extension method
3686 InstanceExpression = left;
3687 return this;
3690 public override MemberExpr ResolveMemberAccess (ResolveContext ec, Expression left, Location loc,
3691 SimpleName original)
3693 if (!(left is TypeExpr) &&
3694 original != null && original.IdenticalNameAndTypeName (ec, left, loc))
3695 identical_type_name = true;
3697 return base.ResolveMemberAccess (ec, left, loc, original);
3700 public override Expression CreateExpressionTree (ResolveContext ec)
3702 if (best_candidate == null) {
3703 ec.Report.Error (1953, loc, "An expression tree cannot contain an expression with method group");
3704 return null;
3707 IMethodData md = TypeManager.GetMethod (best_candidate);
3708 if (md != null && md.IsExcluded ())
3709 ec.Report.Error (765, loc,
3710 "Partial methods with only a defining declaration or removed conditional methods cannot be used in an expression tree");
3712 return new TypeOfMethod (best_candidate, loc);
3715 protected override Expression DoResolve (ResolveContext ec)
3717 this.eclass = ExprClass.MethodGroup;
3719 if (InstanceExpression != null) {
3720 InstanceExpression = InstanceExpression.Resolve (ec);
3721 if (InstanceExpression == null)
3722 return null;
3725 return this;
3728 public void ReportUsageError (ResolveContext ec)
3730 ec.Report.Error (654, loc, "Method `" + DeclaringType + "." +
3731 Name + "()' is referenced without parentheses");
3734 override public void Emit (EmitContext ec)
3736 throw new NotSupportedException ();
3737 // ReportUsageError ();
3740 public void EmitCall (EmitContext ec, Arguments arguments)
3742 Invocation.EmitCall (ec, IsBase, InstanceExpression, best_candidate, arguments, loc);
3745 void Error_AmbiguousCall (ResolveContext ec, MethodBase ambiguous)
3747 if (CustomErrorHandler != null && CustomErrorHandler.AmbiguousCall (ec, ambiguous))
3748 return;
3750 ec.Report.SymbolRelatedToPreviousError (best_candidate);
3751 ec.Report.Error (121, loc, "The call is ambiguous between the following methods or properties: `{0}' and `{1}'",
3752 TypeManager.CSharpSignature (ambiguous), TypeManager.CSharpSignature (best_candidate));
3755 protected virtual void Error_InvalidArguments (ResolveContext ec, Location loc, int idx, MethodBase method,
3756 Argument a, AParametersCollection expected_par, Type paramType)
3758 ExtensionMethodGroupExpr emg = this as ExtensionMethodGroupExpr;
3760 if (a is CollectionElementInitializer.ElementInitializerArgument) {
3761 ec.Report.SymbolRelatedToPreviousError (method);
3762 if ((expected_par.FixedParameters [idx].ModFlags & Parameter.Modifier.ISBYREF) != 0) {
3763 ec.Report.Error (1954, loc, "The best overloaded collection initalizer method `{0}' cannot have 'ref', or `out' modifier",
3764 TypeManager.CSharpSignature (method));
3765 return;
3767 ec.Report.Error (1950, loc, "The best overloaded collection initalizer method `{0}' has some invalid arguments",
3768 TypeManager.CSharpSignature (method));
3769 } else if (TypeManager.IsDelegateType (method.DeclaringType)) {
3770 ec.Report.Error (1594, loc, "Delegate `{0}' has some invalid arguments",
3771 TypeManager.CSharpName (method.DeclaringType));
3772 } else {
3773 ec.Report.SymbolRelatedToPreviousError (method);
3774 if (emg != null) {
3775 ec.Report.Error (1928, loc,
3776 "Type `{0}' does not contain a member `{1}' and the best extension method overload `{2}' has some invalid arguments",
3777 emg.ExtensionExpression.GetSignatureForError (),
3778 emg.Name, TypeManager.CSharpSignature (method));
3779 } else {
3780 ec.Report.Error (1502, loc, "The best overloaded method match for `{0}' has some invalid arguments",
3781 TypeManager.CSharpSignature (method));
3785 Parameter.Modifier mod = idx >= expected_par.Count ? 0 : expected_par.FixedParameters [idx].ModFlags;
3787 string index = (idx + 1).ToString ();
3788 if (((mod & (Parameter.Modifier.REF | Parameter.Modifier.OUT)) ^
3789 (a.Modifier & (Parameter.Modifier.REF | Parameter.Modifier.OUT))) != 0) {
3790 if ((mod & Parameter.Modifier.ISBYREF) == 0)
3791 ec.Report.Error (1615, loc, "Argument `#{0}' does not require `{1}' modifier. Consider removing `{1}' modifier",
3792 index, Parameter.GetModifierSignature (a.Modifier));
3793 else
3794 ec.Report.Error (1620, loc, "Argument `#{0}' is missing `{1}' modifier",
3795 index, Parameter.GetModifierSignature (mod));
3796 } else {
3797 string p1 = a.GetSignatureForError ();
3798 string p2 = TypeManager.CSharpName (paramType);
3800 if (p1 == p2) {
3801 ec.Report.ExtraInformation (loc, "(equally named types possibly from different assemblies in previous ");
3802 ec.Report.SymbolRelatedToPreviousError (a.Expr.Type);
3803 ec.Report.SymbolRelatedToPreviousError (paramType);
3806 if (idx == 0 && emg != null) {
3807 ec.Report.Error (1929, loc,
3808 "Extension method instance type `{0}' cannot be converted to `{1}'", p1, p2);
3809 } else {
3810 ec.Report.Error (1503, loc,
3811 "Argument `#{0}' cannot convert `{1}' expression to type `{2}'", index, p1, p2);
3816 public override void Error_ValueCannotBeConverted (ResolveContext ec, Location loc, Type target, bool expl)
3818 ec.Report.Error (428, loc, "Cannot convert method group `{0}' to non-delegate type `{1}'. Consider using parentheses to invoke the method",
3819 Name, TypeManager.CSharpName (target));
3822 void Error_ArgumentCountWrong (ResolveContext ec, int arg_count)
3824 ec.Report.Error (1501, loc, "No overload for method `{0}' takes `{1}' arguments",
3825 Name, arg_count.ToString ());
3828 protected virtual int GetApplicableParametersCount (MethodBase method, AParametersCollection parameters)
3830 return parameters.Count;
3833 public static bool IsAncestralType (Type first_type, Type second_type)
3835 return first_type != second_type &&
3836 (TypeManager.IsSubclassOf (second_type, first_type) ||
3837 TypeManager.ImplementsInterface (second_type, first_type));
3841 /// Determines if the candidate method is applicable (section 14.4.2.1)
3842 /// to the given set of arguments
3843 /// A return value rates candidate method compatibility,
3844 /// 0 = the best, int.MaxValue = the worst
3846 public int IsApplicable (ResolveContext ec,
3847 ref Arguments arguments, int arg_count, ref MethodBase method, ref bool params_expanded_form)
3849 MethodBase candidate = method;
3851 AParametersCollection pd = TypeManager.GetParameterData (candidate);
3852 int param_count = GetApplicableParametersCount (candidate, pd);
3853 int optional_count = 0;
3855 if (arg_count != param_count) {
3856 for (int i = 0; i < pd.Count; ++i) {
3857 if (pd.FixedParameters [i].HasDefaultValue) {
3858 optional_count = pd.Count - i;
3859 break;
3863 int args_gap = Math.Abs (arg_count - param_count);
3864 if (optional_count != 0) {
3865 if (args_gap > optional_count)
3866 return int.MaxValue - 10000 + args_gap - optional_count;
3868 // Readjust expected number when params used
3869 if (pd.HasParams) {
3870 optional_count--;
3871 if (arg_count < param_count)
3872 param_count--;
3873 } else if (arg_count > param_count) {
3874 return int.MaxValue - 10000 + args_gap;
3876 } else if (arg_count != param_count) {
3877 if (!pd.HasParams)
3878 return int.MaxValue - 10000 + args_gap;
3879 if (arg_count < param_count - 1)
3880 return int.MaxValue - 10000 + args_gap;
3883 // Initialize expanded form of a method with 1 params parameter
3884 params_expanded_form = param_count == 1 && pd.HasParams;
3886 // Resize to fit optional arguments
3887 if (optional_count != 0) {
3888 Arguments resized;
3889 if (arguments == null) {
3890 resized = new Arguments (optional_count);
3891 } else {
3892 resized = new Arguments (param_count);
3893 resized.AddRange (arguments);
3896 for (int i = arg_count; i < param_count; ++i)
3897 resized.Add (null);
3898 arguments = resized;
3902 if (arg_count > 0) {
3904 // Shuffle named arguments to the right positions if there are any
3906 if (arguments [arg_count - 1] is NamedArgument) {
3907 arg_count = arguments.Count;
3909 for (int i = 0; i < arg_count; ++i) {
3910 bool arg_moved = false;
3911 while (true) {
3912 NamedArgument na = arguments[i] as NamedArgument;
3913 if (na == null)
3914 break;
3916 int index = pd.GetParameterIndexByName (na.Name);
3918 // Named parameter not found or already reordered
3919 if (index <= i)
3920 break;
3922 // When using parameters which should not be available to the user
3923 if (index >= param_count)
3924 break;
3926 if (!arg_moved) {
3927 arguments.MarkReorderedArgument (na);
3928 arg_moved = true;
3931 Argument temp = arguments[index];
3932 arguments[index] = arguments[i];
3933 arguments[i] = temp;
3935 if (temp == null)
3936 break;
3939 } else {
3940 arg_count = arguments.Count;
3942 } else if (arguments != null) {
3943 arg_count = arguments.Count;
3947 // 1. Handle generic method using type arguments when specified or type inference
3949 if (TypeManager.IsGenericMethod (candidate)) {
3950 if (type_arguments != null) {
3951 Type [] g_args = candidate.GetGenericArguments ();
3952 if (g_args.Length != type_arguments.Count)
3953 return int.MaxValue - 20000 + Math.Abs (type_arguments.Count - g_args.Length);
3955 // TODO: Don't create new method, create Parameters only
3956 method = TypeManager.MakeGenericMethod ((MethodInfo) candidate, type_arguments.Arguments);
3957 candidate = method;
3958 pd = TypeManager.GetParameterData (candidate);
3959 } else {
3960 int score = TypeManager.InferTypeArguments (ec, arguments, ref candidate);
3961 if (score != 0)
3962 return score - 20000;
3964 if (TypeManager.IsGenericMethodDefinition (candidate))
3965 throw new InternalErrorException ("A generic method `{0}' definition took part in overload resolution",
3966 TypeManager.CSharpSignature (candidate));
3968 pd = TypeManager.GetParameterData (candidate);
3970 } else {
3971 if (type_arguments != null)
3972 return int.MaxValue - 15000;
3976 // 2. Each argument has to be implicitly convertible to method parameter
3978 method = candidate;
3979 Parameter.Modifier p_mod = 0;
3980 Type pt = null;
3981 for (int i = 0; i < arg_count; i++) {
3982 Argument a = arguments [i];
3983 if (a == null) {
3984 if (!pd.FixedParameters [i].HasDefaultValue)
3985 throw new InternalErrorException ();
3987 Expression e = pd.FixedParameters [i].DefaultValue as Constant;
3988 if (e == null)
3989 e = new DefaultValueExpression (new TypeExpression (pd.Types [i], loc), loc).Resolve (ec);
3991 arguments [i] = new Argument (e, Argument.AType.Default);
3992 continue;
3995 if (p_mod != Parameter.Modifier.PARAMS) {
3996 p_mod = pd.FixedParameters [i].ModFlags & ~(Parameter.Modifier.OUTMASK | Parameter.Modifier.REFMASK);
3997 pt = pd.Types [i];
3998 } else {
3999 params_expanded_form = true;
4002 Parameter.Modifier a_mod = a.Modifier & ~(Parameter.Modifier.OUTMASK | Parameter.Modifier.REFMASK);
4003 int score = 1;
4004 if (!params_expanded_form)
4005 score = IsArgumentCompatible (ec, a_mod, a, p_mod & ~Parameter.Modifier.PARAMS, pt);
4007 if (score != 0 && (p_mod & Parameter.Modifier.PARAMS) != 0 && delegate_type == null) {
4008 // It can be applicable in expanded form
4009 score = IsArgumentCompatible (ec, a_mod, a, 0, TypeManager.GetElementType (pt));
4010 if (score == 0)
4011 params_expanded_form = true;
4014 if (score != 0) {
4015 if (params_expanded_form)
4016 ++score;
4017 return (arg_count - i) * 2 + score;
4021 if (arg_count != param_count)
4022 params_expanded_form = true;
4024 return 0;
4027 int IsArgumentCompatible (ResolveContext ec, Parameter.Modifier arg_mod, Argument argument, Parameter.Modifier param_mod, Type parameter)
4030 // Types have to be identical when ref or out modifer is used
4032 if (arg_mod != 0 || param_mod != 0) {
4033 if (TypeManager.HasElementType (parameter))
4034 parameter = TypeManager.GetElementType (parameter);
4036 Type a_type = argument.Type;
4037 if (TypeManager.HasElementType (a_type))
4038 a_type = TypeManager.GetElementType (a_type);
4040 if (a_type != parameter) {
4041 if (TypeManager.IsDynamicType (a_type))
4042 return 0;
4044 return 2;
4046 } else {
4047 if (!Convert.ImplicitConversionExists (ec, argument.Expr, parameter)) {
4048 if (TypeManager.IsDynamicType (argument.Type))
4049 return 0;
4051 return 2;
4055 if (arg_mod != param_mod)
4056 return 1;
4058 return 0;
4061 public static bool IsOverride (MethodBase cand_method, MethodBase base_method)
4063 if (!IsAncestralType (base_method.DeclaringType, cand_method.DeclaringType))
4064 return false;
4066 AParametersCollection cand_pd = TypeManager.GetParameterData (cand_method);
4067 AParametersCollection base_pd = TypeManager.GetParameterData (base_method);
4069 if (cand_pd.Count != base_pd.Count)
4070 return false;
4072 for (int j = 0; j < cand_pd.Count; ++j)
4074 Parameter.Modifier cm = cand_pd.FixedParameters [j].ModFlags;
4075 Parameter.Modifier bm = base_pd.FixedParameters [j].ModFlags;
4076 Type ct = cand_pd.Types [j];
4077 Type bt = base_pd.Types [j];
4079 if (cm != bm || ct != bt)
4080 return false;
4083 return true;
4086 public static MethodGroupExpr MakeUnionSet (MethodGroupExpr mg1, MethodGroupExpr mg2, Location loc)
4088 if (mg1 == null) {
4089 if (mg2 == null)
4090 return null;
4091 return mg2;
4094 if (mg2 == null)
4095 return mg1;
4097 var all = new List<MethodBase> (mg1.Methods);
4098 foreach (MethodBase m in mg2.Methods){
4099 if (!TypeManager.ArrayContainsMethod (mg1.Methods, m, false))
4100 all.Add (m);
4103 return new MethodGroupExpr (all, null, loc);
4106 static Type MoreSpecific (Type p, Type q)
4108 if (TypeManager.IsGenericParameter (p) && !TypeManager.IsGenericParameter (q))
4109 return q;
4110 if (!TypeManager.IsGenericParameter (p) && TypeManager.IsGenericParameter (q))
4111 return p;
4113 if (TypeManager.HasElementType (p))
4115 Type pe = TypeManager.GetElementType (p);
4116 Type qe = TypeManager.GetElementType (q);
4117 Type specific = MoreSpecific (pe, qe);
4118 if (specific == pe)
4119 return p;
4120 if (specific == qe)
4121 return q;
4123 else if (TypeManager.IsGenericType (p))
4125 Type[] pargs = TypeManager.GetTypeArguments (p);
4126 Type[] qargs = TypeManager.GetTypeArguments (q);
4128 bool p_specific_at_least_once = false;
4129 bool q_specific_at_least_once = false;
4131 for (int i = 0; i < pargs.Length; i++)
4133 Type specific = MoreSpecific (TypeManager.TypeToCoreType (pargs [i]), TypeManager.TypeToCoreType (qargs [i]));
4134 if (specific == pargs [i])
4135 p_specific_at_least_once = true;
4136 if (specific == qargs [i])
4137 q_specific_at_least_once = true;
4140 if (p_specific_at_least_once && !q_specific_at_least_once)
4141 return p;
4142 if (!p_specific_at_least_once && q_specific_at_least_once)
4143 return q;
4146 return null;
4149 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
4151 base.MutateHoistedGenericType (storey);
4153 MethodInfo mi = best_candidate as MethodInfo;
4154 if (mi != null) {
4155 best_candidate = storey.MutateGenericMethod (mi);
4156 return;
4159 best_candidate = storey.MutateConstructor ((ConstructorInfo) this);
4162 /// <summary>
4163 /// Find the Applicable Function Members (7.4.2.1)
4165 /// me: Method Group expression with the members to select.
4166 /// it might contain constructors or methods (or anything
4167 /// that maps to a method).
4169 /// Arguments: ArrayList containing resolved Argument objects.
4171 /// loc: The location if we want an error to be reported, or a Null
4172 /// location for "probing" purposes.
4174 /// Returns: The MethodBase (either a ConstructorInfo or a MethodInfo)
4175 /// that is the best match of me on Arguments.
4177 /// </summary>
4178 public virtual MethodGroupExpr OverloadResolve (ResolveContext ec, ref Arguments Arguments,
4179 bool may_fail, Location loc)
4181 bool method_params = false;
4182 Type applicable_type = null;
4183 var candidates = new List<MethodBase> (2);
4184 List<MethodBase> candidate_overrides = null;
4187 // Used to keep a map between the candidate
4188 // and whether it is being considered in its
4189 // normal or expanded form
4191 // false is normal form, true is expanded form
4193 Dictionary<MethodBase, MethodBase> candidate_to_form = null;
4194 Dictionary<MethodBase, Arguments> candidates_expanded = null;
4195 Arguments candidate_args = Arguments;
4197 int arg_count = Arguments != null ? Arguments.Count : 0;
4199 if (RootContext.Version == LanguageVersion.ISO_1 && Name == "Invoke" && TypeManager.IsDelegateType (DeclaringType)) {
4200 if (!may_fail)
4201 ec.Report.Error (1533, loc, "Invoke cannot be called directly on a delegate");
4202 return null;
4205 int nmethods = Methods.Length;
4207 if (!IsBase) {
4209 // Methods marked 'override' don't take part in 'applicable_type'
4210 // computation, nor in the actual overload resolution.
4211 // However, they still need to be emitted instead of a base virtual method.
4212 // So, we salt them away into the 'candidate_overrides' array.
4214 // In case of reflected methods, we replace each overriding method with
4215 // its corresponding base virtual method. This is to improve compatibility
4216 // with non-C# libraries which change the visibility of overrides (#75636)
4218 int j = 0;
4219 for (int i = 0; i < Methods.Length; ++i) {
4220 MethodBase m = Methods [i];
4221 if (TypeManager.IsOverride (m)) {
4222 if (candidate_overrides == null)
4223 candidate_overrides = new List<MethodBase> ();
4224 candidate_overrides.Add (m);
4225 m = TypeManager.TryGetBaseDefinition (m);
4226 if (m != null && Array.Exists (Methods, l => l == m))
4227 continue;
4229 if (m != null)
4230 Methods [j++] = m;
4232 nmethods = j;
4236 // Enable message recording, it's used mainly by lambda expressions
4238 SessionReportPrinter msg_recorder = new SessionReportPrinter ();
4239 ReportPrinter prev_recorder = ec.Report.SetPrinter (msg_recorder);
4242 // First we construct the set of applicable methods
4244 bool is_sorted = true;
4245 int best_candidate_rate = int.MaxValue;
4246 for (int i = 0; i < nmethods; i++) {
4247 Type decl_type = Methods [i].DeclaringType;
4250 // If we have already found an applicable method
4251 // we eliminate all base types (Section 14.5.5.1)
4253 if (applicable_type != null && IsAncestralType (decl_type, applicable_type))
4254 continue;
4257 // Check if candidate is applicable (section 14.4.2.1)
4259 bool params_expanded_form = false;
4260 int candidate_rate = IsApplicable (ec, ref candidate_args, arg_count, ref Methods [i], ref params_expanded_form);
4262 if (candidate_rate < best_candidate_rate) {
4263 best_candidate_rate = candidate_rate;
4264 best_candidate = Methods [i];
4267 if (params_expanded_form) {
4268 if (candidate_to_form == null)
4269 candidate_to_form = new Dictionary<MethodBase, MethodBase> (4, ReferenceEquality<MethodBase>.Default);
4270 MethodBase candidate = Methods [i];
4271 candidate_to_form [candidate] = candidate;
4274 if (candidate_args != Arguments) {
4275 if (candidates_expanded == null)
4276 candidates_expanded = new Dictionary<MethodBase, Arguments> (4, ReferenceEquality<MethodBase>.Default);
4278 candidates_expanded.Add (Methods [i], candidate_args);
4279 candidate_args = Arguments;
4282 if (candidate_rate != 0 || has_inaccessible_candidates_only) {
4283 if (msg_recorder != null)
4284 msg_recorder.EndSession ();
4285 continue;
4288 msg_recorder = null;
4289 candidates.Add (Methods [i]);
4291 if (applicable_type == null)
4292 applicable_type = decl_type;
4293 else if (applicable_type != decl_type) {
4294 is_sorted = false;
4295 if (IsAncestralType (applicable_type, decl_type))
4296 applicable_type = decl_type;
4300 ec.Report.SetPrinter (prev_recorder);
4301 if (msg_recorder != null && !msg_recorder.IsEmpty) {
4302 if (!may_fail)
4303 msg_recorder.Merge (prev_recorder);
4305 return null;
4308 int candidate_top = candidates.Count;
4310 if (applicable_type == null) {
4312 // When we found a top level method which does not match and it's
4313 // not an extension method. We start extension methods lookup from here
4315 if (InstanceExpression != null) {
4316 ExtensionMethodGroupExpr ex_method_lookup = ec.LookupExtensionMethod (type, Name, loc);
4317 if (ex_method_lookup != null) {
4318 ex_method_lookup.ExtensionExpression = InstanceExpression;
4319 ex_method_lookup.SetTypeArguments (ec, type_arguments);
4320 return ex_method_lookup.OverloadResolve (ec, ref Arguments, may_fail, loc);
4324 if (may_fail)
4325 return null;
4328 // Okay so we have failed to find exact match so we
4329 // return error info about the closest match
4331 if (best_candidate != null) {
4332 if (CustomErrorHandler != null && !has_inaccessible_candidates_only && CustomErrorHandler.NoExactMatch (ec, best_candidate))
4333 return null;
4335 if (NoExactMatch (ec, ref Arguments, candidate_to_form))
4336 return null;
4340 // We failed to find any method with correct argument count
4342 if (Name == ConstructorInfo.ConstructorName) {
4343 ec.Report.SymbolRelatedToPreviousError (queried_type);
4344 ec.Report.Error (1729, loc,
4345 "The type `{0}' does not contain a constructor that takes `{1}' arguments",
4346 TypeManager.CSharpName (queried_type), arg_count);
4347 } else {
4348 Error_ArgumentCountWrong (ec, arg_count);
4351 return null;
4354 if (arg_count != 0 && Arguments.HasDynamic) {
4355 best_candidate = null;
4356 return this;
4359 if (!is_sorted) {
4361 // At this point, applicable_type is _one_ of the most derived types
4362 // in the set of types containing the methods in this MethodGroup.
4363 // Filter the candidates so that they only contain methods from the
4364 // most derived types.
4367 int finalized = 0; // Number of finalized candidates
4369 do {
4370 // Invariant: applicable_type is a most derived type
4372 // We'll try to complete Section 14.5.5.1 for 'applicable_type' by
4373 // eliminating all it's base types. At the same time, we'll also move
4374 // every unrelated type to the end of the array, and pick the next
4375 // 'applicable_type'.
4377 Type next_applicable_type = null;
4378 int j = finalized; // where to put the next finalized candidate
4379 int k = finalized; // where to put the next undiscarded candidate
4380 for (int i = finalized; i < candidate_top; ++i) {
4381 MethodBase candidate = candidates [i];
4382 Type decl_type = candidate.DeclaringType;
4384 if (decl_type == applicable_type) {
4385 candidates [k++] = candidates [j];
4386 candidates [j++] = candidates [i];
4387 continue;
4390 if (IsAncestralType (decl_type, applicable_type))
4391 continue;
4393 if (next_applicable_type != null &&
4394 IsAncestralType (decl_type, next_applicable_type))
4395 continue;
4397 candidates [k++] = candidates [i];
4399 if (next_applicable_type == null ||
4400 IsAncestralType (next_applicable_type, decl_type))
4401 next_applicable_type = decl_type;
4404 applicable_type = next_applicable_type;
4405 finalized = j;
4406 candidate_top = k;
4407 } while (applicable_type != null);
4411 // Now we actually find the best method
4414 best_candidate = candidates [0];
4415 method_params = candidate_to_form != null && candidate_to_form.ContainsKey (best_candidate);
4418 // TODO: Broken inverse order of candidates logic does not work with optional
4419 // parameters used for method overrides and I am not going to fix it for SRE
4421 if (candidates_expanded != null && candidates_expanded.ContainsKey (best_candidate)) {
4422 candidate_args = candidates_expanded [best_candidate];
4423 arg_count = candidate_args.Count;
4426 for (int ix = 1; ix < candidate_top; ix++) {
4427 MethodBase candidate = (MethodBase) candidates [ix];
4429 if (candidate == best_candidate)
4430 continue;
4432 bool cand_params = candidate_to_form != null && candidate_to_form.ContainsKey (candidate);
4434 if (BetterFunction (ec, candidate_args, arg_count,
4435 candidate, cand_params,
4436 best_candidate, method_params)) {
4437 best_candidate = candidate;
4438 method_params = cand_params;
4442 // Now check that there are no ambiguities i.e the selected method
4443 // should be better than all the others
4445 MethodBase ambiguous = null;
4446 for (int ix = 1; ix < candidate_top; ix++) {
4447 MethodBase candidate = candidates [ix];
4449 if (candidate == best_candidate)
4450 continue;
4452 bool cand_params = candidate_to_form != null && candidate_to_form.ContainsKey (candidate);
4453 if (!BetterFunction (ec, candidate_args, arg_count,
4454 best_candidate, method_params,
4455 candidate, cand_params))
4457 if (!may_fail)
4458 ec.Report.SymbolRelatedToPreviousError (candidate);
4459 ambiguous = candidate;
4463 if (ambiguous != null) {
4464 Error_AmbiguousCall (ec, ambiguous);
4465 return this;
4469 // If the method is a virtual function, pick an override closer to the LHS type.
4471 if (!IsBase && best_candidate.IsVirtual) {
4472 if (TypeManager.IsOverride (best_candidate))
4473 throw new InternalErrorException (
4474 "Should not happen. An 'override' method took part in overload resolution: " + best_candidate);
4476 if (candidate_overrides != null) {
4477 Type[] gen_args = null;
4478 bool gen_override = false;
4479 if (TypeManager.IsGenericMethod (best_candidate))
4480 gen_args = TypeManager.GetGenericArguments (best_candidate);
4482 foreach (MethodBase candidate in candidate_overrides) {
4483 if (TypeManager.IsGenericMethod (candidate)) {
4484 if (gen_args == null)
4485 continue;
4487 if (gen_args.Length != TypeManager.GetGenericArguments (candidate).Length)
4488 continue;
4489 } else {
4490 if (gen_args != null)
4491 continue;
4494 if (IsOverride (candidate, best_candidate)) {
4495 gen_override = true;
4496 best_candidate = candidate;
4500 if (gen_override && gen_args != null) {
4501 best_candidate = ((MethodInfo) best_candidate).MakeGenericMethod (gen_args);
4507 // And now check if the arguments are all
4508 // compatible, perform conversions if
4509 // necessary etc. and return if everything is
4510 // all right
4512 if (!VerifyArgumentsCompat (ec, ref candidate_args, arg_count, best_candidate,
4513 method_params, may_fail, loc))
4514 return null;
4516 if (best_candidate == null)
4517 return null;
4519 MethodBase the_method = TypeManager.DropGenericMethodArguments (best_candidate);
4520 if (TypeManager.IsGenericMethodDefinition (the_method) &&
4521 !ConstraintChecker.CheckConstraints (ec, the_method, best_candidate, loc))
4522 return null;
4525 // Check ObsoleteAttribute on the best method
4527 ObsoleteAttribute oa = AttributeTester.GetMethodObsoleteAttribute (the_method);
4528 if (oa != null && !ec.IsObsolete)
4529 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc, ec.Report);
4531 IMethodData data = TypeManager.GetMethod (the_method);
4532 if (data != null)
4533 data.SetMemberIsUsed ();
4535 Arguments = candidate_args;
4536 return this;
4539 bool NoExactMatch (ResolveContext ec, ref Arguments Arguments, IDictionary<MethodBase, MethodBase> candidate_to_form)
4541 AParametersCollection pd = TypeManager.GetParameterData (best_candidate);
4542 int arg_count = Arguments == null ? 0 : Arguments.Count;
4544 if (arg_count == pd.Count || pd.HasParams) {
4545 if (TypeManager.IsGenericMethodDefinition (best_candidate)) {
4546 if (type_arguments == null) {
4547 ec.Report.Error (411, loc,
4548 "The type arguments for method `{0}' cannot be inferred from " +
4549 "the usage. Try specifying the type arguments explicitly",
4550 TypeManager.CSharpSignature (best_candidate));
4551 return true;
4554 Type[] g_args = TypeManager.GetGenericArguments (best_candidate);
4555 if (type_arguments.Count != g_args.Length) {
4556 ec.Report.SymbolRelatedToPreviousError (best_candidate);
4557 ec.Report.Error (305, loc, "Using the generic method `{0}' requires `{1}' type argument(s)",
4558 TypeManager.CSharpSignature (best_candidate),
4559 g_args.Length.ToString ());
4560 return true;
4562 } else {
4563 if (type_arguments != null && !TypeManager.IsGenericMethod (best_candidate)) {
4564 Error_TypeArgumentsCannotBeUsed (ec.Report, loc);
4565 return true;
4569 if (has_inaccessible_candidates_only) {
4570 if (InstanceExpression != null && type != ec.CurrentType && TypeManager.IsNestedFamilyAccessible (ec.CurrentType, best_candidate.DeclaringType)) {
4571 // Although a derived class can access protected members of
4572 // its base class it cannot do so through an instance of the
4573 // base class (CS1540). If the qualifier_type is a base of the
4574 // ec.CurrentType and the lookup succeeds with the latter one,
4575 // then we are in this situation.
4576 Error_CannotAccessProtected (ec, loc, best_candidate, queried_type, ec.CurrentType);
4577 } else {
4578 ec.Report.SymbolRelatedToPreviousError (best_candidate);
4579 ErrorIsInaccesible (loc, GetSignatureForError (), ec.Report);
4583 bool cand_params = candidate_to_form != null && candidate_to_form.ContainsKey (best_candidate);
4584 if (!VerifyArgumentsCompat (ec, ref Arguments, arg_count, best_candidate, cand_params, false, loc))
4585 return true;
4587 if (has_inaccessible_candidates_only)
4588 return true;
4591 return false;
4594 public override void SetTypeArguments (ResolveContext ec, TypeArguments ta)
4596 type_arguments = ta;
4599 public bool VerifyArgumentsCompat (ResolveContext ec, ref Arguments arguments,
4600 int arg_count, MethodBase method,
4601 bool chose_params_expanded,
4602 bool may_fail, Location loc)
4604 AParametersCollection pd = TypeManager.GetParameterData (method);
4605 int param_count = GetApplicableParametersCount (method, pd);
4607 int errors = ec.Report.Errors;
4608 Parameter.Modifier p_mod = 0;
4609 Type pt = null;
4610 int a_idx = 0, a_pos = 0;
4611 Argument a = null;
4612 ArrayInitializer params_initializers = null;
4613 bool has_unsafe_arg = method is MethodInfo ? ((MethodInfo) method).ReturnType.IsPointer : false;
4615 for (; a_idx < arg_count; a_idx++, ++a_pos) {
4616 a = arguments [a_idx];
4617 if (p_mod != Parameter.Modifier.PARAMS) {
4618 p_mod = pd.FixedParameters [a_idx].ModFlags;
4619 pt = pd.Types [a_idx];
4620 has_unsafe_arg |= pt.IsPointer;
4622 if (p_mod == Parameter.Modifier.PARAMS) {
4623 if (chose_params_expanded) {
4624 params_initializers = new ArrayInitializer (arg_count - a_idx, a.Expr.Location);
4625 pt = TypeManager.GetElementType (pt);
4631 // Types have to be identical when ref or out modifer is used
4633 if (a.Modifier != 0 || (p_mod & ~Parameter.Modifier.PARAMS) != 0) {
4634 if ((p_mod & ~Parameter.Modifier.PARAMS) != a.Modifier)
4635 break;
4637 if (!TypeManager.IsEqual (a.Expr.Type, pt))
4638 break;
4640 continue;
4641 } else {
4642 NamedArgument na = a as NamedArgument;
4643 if (na != null) {
4644 int name_index = pd.GetParameterIndexByName (na.Name);
4645 if (name_index < 0 || name_index >= param_count) {
4646 if (DeclaringType != null && TypeManager.IsDelegateType (DeclaringType)) {
4647 ec.Report.SymbolRelatedToPreviousError (DeclaringType);
4648 ec.Report.Error (1746, na.Location,
4649 "The delegate `{0}' does not contain a parameter named `{1}'",
4650 TypeManager.CSharpName (DeclaringType), na.Name);
4651 } else {
4652 ec.Report.SymbolRelatedToPreviousError (best_candidate);
4653 ec.Report.Error (1739, na.Location,
4654 "The best overloaded method match for `{0}' does not contain a parameter named `{1}'",
4655 TypeManager.CSharpSignature (method), na.Name);
4657 } else if (arguments[name_index] != a) {
4658 if (DeclaringType != null && TypeManager.IsDelegateType (DeclaringType))
4659 ec.Report.SymbolRelatedToPreviousError (DeclaringType);
4660 else
4661 ec.Report.SymbolRelatedToPreviousError (best_candidate);
4663 ec.Report.Error (1744, na.Location,
4664 "Named argument `{0}' cannot be used for a parameter which has positional argument specified",
4665 na.Name);
4670 if (TypeManager.IsDynamicType (a.Expr.Type))
4671 continue;
4673 if (delegate_type != null && !Delegate.IsTypeCovariant (a.Expr, pt))
4674 break;
4676 Expression conv = Convert.ImplicitConversion (ec, a.Expr, pt, loc);
4677 if (conv == null)
4678 break;
4681 // Convert params arguments to an array initializer
4683 if (params_initializers != null) {
4684 // we choose to use 'a.Expr' rather than 'conv' so that
4685 // we don't hide the kind of expression we have (esp. CompoundAssign.Helper)
4686 params_initializers.Add (a.Expr);
4687 arguments.RemoveAt (a_idx--);
4688 --arg_count;
4689 continue;
4692 // Update the argument with the implicit conversion
4693 a.Expr = conv;
4696 if (a_idx != arg_count) {
4697 if (!may_fail && ec.Report.Errors == errors) {
4698 if (CustomErrorHandler != null)
4699 CustomErrorHandler.NoExactMatch (ec, best_candidate);
4700 else
4701 Error_InvalidArguments (ec, loc, a_pos, method, a, pd, pt);
4703 return false;
4707 // Fill not provided arguments required by params modifier
4709 if (params_initializers == null && pd.HasParams && arg_count + 1 == param_count) {
4710 if (arguments == null)
4711 arguments = new Arguments (1);
4713 pt = pd.Types [param_count - 1];
4714 pt = TypeManager.GetElementType (pt);
4715 has_unsafe_arg |= pt.IsPointer;
4716 params_initializers = new ArrayInitializer (0, loc);
4720 // Append an array argument with all params arguments
4722 if (params_initializers != null) {
4723 arguments.Add (new Argument (
4724 new ArrayCreation (new TypeExpression (pt, loc), "[]", params_initializers, loc).Resolve (ec)));
4725 arg_count++;
4728 if (arg_count < param_count) {
4729 if (!may_fail)
4730 Error_ArgumentCountWrong (ec, arg_count);
4731 return false;
4734 if (has_unsafe_arg && !ec.IsUnsafe) {
4735 if (!may_fail)
4736 UnsafeError (ec, loc);
4737 return false;
4740 return true;
4744 public class ConstantExpr : MemberExpr
4746 FieldInfo constant;
4748 public ConstantExpr (FieldInfo constant, Location loc)
4750 this.constant = constant;
4751 this.loc = loc;
4754 public override string Name {
4755 get { throw new NotImplementedException (); }
4758 public override bool IsInstance {
4759 get { return !IsStatic; }
4762 public override bool IsStatic {
4763 get { return constant.IsStatic; }
4766 public override Type DeclaringType {
4767 get { return constant.DeclaringType; }
4770 public override MemberExpr ResolveMemberAccess (ResolveContext ec, Expression left, Location loc, SimpleName original)
4772 constant = TypeManager.GetGenericFieldDefinition (constant);
4774 IConstant ic = TypeManager.GetConstant (constant);
4775 if (ic == null) {
4776 if (constant.IsLiteral) {
4777 ic = new ExternalConstant (constant, ec.Compiler);
4778 } else {
4779 ic = ExternalConstant.CreateDecimal (constant, ec);
4780 // HACK: decimal field was not resolved as constant
4781 if (ic == null)
4782 return new FieldExpr (constant, loc).ResolveMemberAccess (ec, left, loc, original);
4784 TypeManager.RegisterConstant (constant, ic);
4787 return base.ResolveMemberAccess (ec, left, loc, original);
4790 public override Expression CreateExpressionTree (ResolveContext ec)
4792 throw new NotSupportedException ("ET");
4795 protected override Expression DoResolve (ResolveContext rc)
4797 IConstant ic = TypeManager.GetConstant (constant);
4798 if (ic.ResolveValue ()) {
4799 if (!rc.IsObsolete)
4800 ic.CheckObsoleteness (loc);
4803 return ic.CreateConstantReference (rc, loc);
4806 public override void Emit (EmitContext ec)
4808 throw new NotSupportedException ();
4811 public override string GetSignatureForError ()
4813 return TypeManager.GetFullNameSignature (constant);
4817 /// <summary>
4818 /// Fully resolved expression that evaluates to a Field
4819 /// </summary>
4820 public class FieldExpr : MemberExpr, IDynamicAssign, IMemoryLocation, IVariableReference {
4821 public FieldInfo FieldInfo;
4822 readonly Type constructed_generic_type;
4823 VariableInfo variable_info;
4825 LocalTemporary temp;
4826 bool prepared;
4828 protected FieldExpr (Location l)
4830 loc = l;
4833 public FieldExpr (FieldInfo fi, Location l)
4835 FieldInfo = fi;
4836 type = TypeManager.TypeToCoreType (fi.FieldType);
4837 loc = l;
4840 public FieldExpr (FieldInfo fi, Type genericType, Location l)
4841 : this (fi, l)
4843 if (TypeManager.IsGenericTypeDefinition (genericType))
4844 return;
4845 this.constructed_generic_type = genericType;
4848 public override string Name {
4849 get {
4850 return FieldInfo.Name;
4854 public override bool IsInstance {
4855 get {
4856 return !FieldInfo.IsStatic;
4860 public override bool IsStatic {
4861 get {
4862 return FieldInfo.IsStatic;
4866 public override Type DeclaringType {
4867 get {
4868 return FieldInfo.DeclaringType;
4872 public override string GetSignatureForError ()
4874 return TypeManager.GetFullNameSignature (FieldInfo);
4877 public VariableInfo VariableInfo {
4878 get {
4879 return variable_info;
4883 public override MemberExpr ResolveMemberAccess (ResolveContext ec, Expression left, Location loc,
4884 SimpleName original)
4886 FieldInfo fi = TypeManager.GetGenericFieldDefinition (FieldInfo);
4887 Type t = fi.FieldType;
4889 if (t.IsPointer && !ec.IsUnsafe) {
4890 UnsafeError (ec, loc);
4893 return base.ResolveMemberAccess (ec, left, loc, original);
4896 public void SetHasAddressTaken ()
4898 IVariableReference vr = InstanceExpression as IVariableReference;
4899 if (vr != null)
4900 vr.SetHasAddressTaken ();
4903 public override Expression CreateExpressionTree (ResolveContext ec)
4905 Expression instance;
4906 if (InstanceExpression == null) {
4907 instance = new NullLiteral (loc);
4908 } else {
4909 instance = InstanceExpression.CreateExpressionTree (ec);
4912 Arguments args = Arguments.CreateForExpressionTree (ec, null,
4913 instance,
4914 CreateTypeOfExpression ());
4916 return CreateExpressionFactoryCall (ec, "Field", args);
4919 public Expression CreateTypeOfExpression ()
4921 return new TypeOfField (GetConstructedFieldInfo (), loc);
4924 protected override Expression DoResolve (ResolveContext ec)
4926 return DoResolve (ec, false, false);
4929 Expression DoResolve (ResolveContext ec, bool lvalue_instance, bool out_access)
4931 if (!FieldInfo.IsStatic){
4932 if (InstanceExpression == null){
4934 // This can happen when referencing an instance field using
4935 // a fully qualified type expression: TypeName.InstanceField = xxx
4937 SimpleName.Error_ObjectRefRequired (ec, loc, GetSignatureForError ());
4938 return null;
4941 // Resolve the field's instance expression while flow analysis is turned
4942 // off: when accessing a field "a.b", we must check whether the field
4943 // "a.b" is initialized, not whether the whole struct "a" is initialized.
4945 if (lvalue_instance) {
4946 using (ec.With (ResolveContext.Options.DoFlowAnalysis, false)) {
4947 Expression right_side =
4948 out_access ? EmptyExpression.LValueMemberOutAccess : EmptyExpression.LValueMemberAccess;
4950 if (InstanceExpression != EmptyExpression.Null)
4951 InstanceExpression = InstanceExpression.ResolveLValue (ec, right_side);
4953 } else {
4954 if (InstanceExpression != EmptyExpression.Null) {
4955 using (ec.With (ResolveContext.Options.DoFlowAnalysis, false)) {
4956 InstanceExpression = InstanceExpression.Resolve (ec, ResolveFlags.VariableOrValue);
4961 if (InstanceExpression == null)
4962 return null;
4964 using (ec.Set (ResolveContext.Options.OmitStructFlowAnalysis)) {
4965 InstanceExpression.CheckMarshalByRefAccess (ec);
4969 if (!ec.IsObsolete) {
4970 FieldBase f = TypeManager.GetField (FieldInfo);
4971 if (f != null) {
4972 f.CheckObsoleteness (loc);
4973 } else {
4974 ObsoleteAttribute oa = AttributeTester.GetMemberObsoleteAttribute (FieldInfo);
4975 if (oa != null)
4976 AttributeTester.Report_ObsoleteMessage (oa, TypeManager.GetFullNameSignature (FieldInfo), loc, ec.Report);
4980 IFixedBuffer fb = AttributeTester.GetFixedBuffer (FieldInfo);
4981 IVariableReference var = InstanceExpression as IVariableReference;
4983 if (fb != null) {
4984 IFixedExpression fe = InstanceExpression as IFixedExpression;
4985 if (!ec.HasSet (ResolveContext.Options.FixedInitializerScope) && (fe == null || !fe.IsFixed)) {
4986 ec.Report.Error (1666, loc, "You cannot use fixed size buffers contained in unfixed expressions. Try using the fixed statement");
4989 if (InstanceExpression.eclass != ExprClass.Variable) {
4990 ec.Report.SymbolRelatedToPreviousError (FieldInfo);
4991 ec.Report.Error (1708, loc, "`{0}': Fixed size buffers can only be accessed through locals or fields",
4992 TypeManager.GetFullNameSignature (FieldInfo));
4993 } else if (var != null && var.IsHoisted) {
4994 AnonymousMethodExpression.Error_AddressOfCapturedVar (ec, var, loc);
4997 return new FixedBufferPtr (this, fb.ElementType, loc).Resolve (ec);
5000 eclass = ExprClass.Variable;
5002 // If the instance expression is a local variable or parameter.
5003 if (var == null || var.VariableInfo == null)
5004 return this;
5006 VariableInfo vi = var.VariableInfo;
5007 if (!vi.IsFieldAssigned (ec, FieldInfo.Name, loc))
5008 return null;
5010 variable_info = vi.GetSubStruct (FieldInfo.Name);
5011 return this;
5014 static readonly int [] codes = {
5015 191, // instance, write access
5016 192, // instance, out access
5017 198, // static, write access
5018 199, // static, out access
5019 1648, // member of value instance, write access
5020 1649, // member of value instance, out access
5021 1650, // member of value static, write access
5022 1651 // member of value static, out access
5025 static readonly string [] msgs = {
5026 /*0191*/ "A readonly field `{0}' cannot be assigned to (except in a constructor or a variable initializer)",
5027 /*0192*/ "A readonly field `{0}' cannot be passed ref or out (except in a constructor)",
5028 /*0198*/ "A static readonly field `{0}' cannot be assigned to (except in a static constructor or a variable initializer)",
5029 /*0199*/ "A static readonly field `{0}' cannot be passed ref or out (except in a static constructor)",
5030 /*1648*/ "Members of readonly field `{0}' cannot be modified (except in a constructor or a variable initializer)",
5031 /*1649*/ "Members of readonly field `{0}' cannot be passed ref or out (except in a constructor)",
5032 /*1650*/ "Fields of static readonly field `{0}' cannot be assigned to (except in a static constructor or a variable initializer)",
5033 /*1651*/ "Fields of static readonly field `{0}' cannot be passed ref or out (except in a static constructor)"
5036 // The return value is always null. Returning a value simplifies calling code.
5037 Expression Report_AssignToReadonly (ResolveContext ec, Expression right_side)
5039 int i = 0;
5040 if (right_side == EmptyExpression.OutAccess.Instance || right_side == EmptyExpression.LValueMemberOutAccess)
5041 i += 1;
5042 if (IsStatic)
5043 i += 2;
5044 if (right_side == EmptyExpression.LValueMemberAccess || right_side == EmptyExpression.LValueMemberOutAccess)
5045 i += 4;
5046 ec.Report.Error (codes [i], loc, msgs [i], GetSignatureForError ());
5048 return null;
5051 override public Expression DoResolveLValue (ResolveContext ec, Expression right_side)
5053 IVariableReference var = InstanceExpression as IVariableReference;
5054 if (var != null && var.VariableInfo != null)
5055 var.VariableInfo.SetFieldAssigned (ec, FieldInfo.Name);
5057 bool lvalue_instance = !FieldInfo.IsStatic && TypeManager.IsValueType (FieldInfo.DeclaringType);
5058 bool out_access = right_side == EmptyExpression.OutAccess.Instance || right_side == EmptyExpression.LValueMemberOutAccess;
5060 Expression e = DoResolve (ec, lvalue_instance, out_access);
5062 if (e == null)
5063 return null;
5065 FieldBase fb = TypeManager.GetField (FieldInfo);
5066 if (fb != null) {
5067 fb.SetAssigned ();
5069 if ((right_side == EmptyExpression.UnaryAddress || right_side == EmptyExpression.OutAccess.Instance) &&
5070 (fb.ModFlags & Modifiers.VOLATILE) != 0) {
5071 ec.Report.Warning (420, 1, loc,
5072 "`{0}': A volatile field references will not be treated as volatile",
5073 fb.GetSignatureForError ());
5077 if (FieldInfo.IsInitOnly) {
5078 // InitOnly fields can only be assigned in constructors or initializers
5079 if (!ec.HasAny (ResolveContext.Options.FieldInitializerScope | ResolveContext.Options.ConstructorScope))
5080 return Report_AssignToReadonly (ec, right_side);
5082 if (ec.HasSet (ResolveContext.Options.ConstructorScope)) {
5083 Type ctype = ec.CurrentType;
5085 // InitOnly fields cannot be assigned-to in a different constructor from their declaring type
5086 if (!TypeManager.IsEqual (ctype, FieldInfo.DeclaringType))
5087 return Report_AssignToReadonly (ec, right_side);
5088 // static InitOnly fields cannot be assigned-to in an instance constructor
5089 if (IsStatic && !ec.IsStatic)
5090 return Report_AssignToReadonly (ec, right_side);
5091 // instance constructors can't modify InitOnly fields of other instances of the same type
5092 if (!IsStatic && !(InstanceExpression is This))
5093 return Report_AssignToReadonly (ec, right_side);
5097 if (right_side == EmptyExpression.OutAccess.Instance &&
5098 !IsStatic && !(InstanceExpression is This) && TypeManager.mbr_type != null && TypeManager.IsSubclassOf (DeclaringType, TypeManager.mbr_type)) {
5099 ec.Report.SymbolRelatedToPreviousError (DeclaringType);
5100 ec.Report.Warning (197, 1, loc,
5101 "Passing `{0}' as ref or out or taking its address may cause a runtime exception because it is a field of a marshal-by-reference class",
5102 GetSignatureForError ());
5105 eclass = ExprClass.Variable;
5106 return this;
5109 bool is_marshal_by_ref ()
5111 return !IsStatic && TypeManager.IsStruct (Type) && TypeManager.mbr_type != null && TypeManager.IsSubclassOf (DeclaringType, TypeManager.mbr_type);
5114 public override void CheckMarshalByRefAccess (ResolveContext ec)
5116 if (is_marshal_by_ref () && !(InstanceExpression is This)) {
5117 ec.Report.SymbolRelatedToPreviousError (DeclaringType);
5118 ec.Report.Warning (1690, 1, loc, "Cannot call methods, properties, or indexers on `{0}' because it is a value type member of a marshal-by-reference class",
5119 GetSignatureForError ());
5123 public override int GetHashCode ()
5125 return FieldInfo.GetHashCode ();
5128 public bool IsFixed {
5129 get {
5131 // A variable of the form V.I is fixed when V is a fixed variable of a struct type
5133 IVariableReference variable = InstanceExpression as IVariableReference;
5134 if (variable != null)
5135 return TypeManager.IsStruct (InstanceExpression.Type) && variable.IsFixed;
5137 IFixedExpression fe = InstanceExpression as IFixedExpression;
5138 return fe != null && fe.IsFixed;
5142 public bool IsHoisted {
5143 get {
5144 IVariableReference hv = InstanceExpression as IVariableReference;
5145 return hv != null && hv.IsHoisted;
5149 public override bool Equals (object obj)
5151 FieldExpr fe = obj as FieldExpr;
5152 if (fe == null)
5153 return false;
5155 if (FieldInfo != fe.FieldInfo)
5156 return false;
5158 if (InstanceExpression == null || fe.InstanceExpression == null)
5159 return true;
5161 return InstanceExpression.Equals (fe.InstanceExpression);
5164 public void Emit (EmitContext ec, bool leave_copy)
5166 ILGenerator ig = ec.ig;
5167 bool is_volatile = false;
5169 FieldBase f = TypeManager.GetField (FieldInfo);
5170 if (f != null){
5171 if ((f.ModFlags & Modifiers.VOLATILE) != 0)
5172 is_volatile = true;
5174 f.SetMemberIsUsed ();
5177 if (FieldInfo.IsStatic){
5178 if (is_volatile)
5179 ig.Emit (OpCodes.Volatile);
5181 ig.Emit (OpCodes.Ldsfld, GetConstructedFieldInfo ());
5182 } else {
5183 if (!prepared)
5184 EmitInstance (ec, false);
5186 // Optimization for build-in types
5187 if (TypeManager.IsStruct (type) && TypeManager.IsEqual (type, ec.MemberContext.CurrentType)) {
5188 LoadFromPtr (ig, type);
5189 } else {
5190 IFixedBuffer ff = AttributeTester.GetFixedBuffer (FieldInfo);
5191 if (ff != null) {
5192 ig.Emit (OpCodes.Ldflda, GetConstructedFieldInfo ());
5193 ig.Emit (OpCodes.Ldflda, ff.Element);
5194 } else {
5195 if (is_volatile)
5196 ig.Emit (OpCodes.Volatile);
5198 ig.Emit (OpCodes.Ldfld, GetConstructedFieldInfo ());
5203 if (leave_copy) {
5204 ec.ig.Emit (OpCodes.Dup);
5205 if (!FieldInfo.IsStatic) {
5206 temp = new LocalTemporary (this.Type);
5207 temp.Store (ec);
5212 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
5214 FieldAttributes fa = FieldInfo.Attributes;
5215 bool is_static = (fa & FieldAttributes.Static) != 0;
5216 ILGenerator ig = ec.ig;
5218 prepared = prepare_for_load;
5219 EmitInstance (ec, prepared);
5221 source.Emit (ec);
5222 if (leave_copy) {
5223 ec.ig.Emit (OpCodes.Dup);
5224 if (!FieldInfo.IsStatic) {
5225 temp = new LocalTemporary (this.Type);
5226 temp.Store (ec);
5230 FieldBase f = TypeManager.GetField (FieldInfo);
5231 if (f != null){
5232 if ((f.ModFlags & Modifiers.VOLATILE) != 0)
5233 ig.Emit (OpCodes.Volatile);
5235 f.SetAssigned ();
5238 if (is_static)
5239 ig.Emit (OpCodes.Stsfld, GetConstructedFieldInfo ());
5240 else
5241 ig.Emit (OpCodes.Stfld, GetConstructedFieldInfo ());
5243 if (temp != null) {
5244 temp.Emit (ec);
5245 temp.Release (ec);
5246 temp = null;
5250 public override void Emit (EmitContext ec)
5252 Emit (ec, false);
5255 public override void EmitSideEffect (EmitContext ec)
5257 FieldBase f = TypeManager.GetField (FieldInfo);
5258 bool is_volatile = f != null && (f.ModFlags & Modifiers.VOLATILE) != 0;
5260 if (is_volatile || is_marshal_by_ref ())
5261 base.EmitSideEffect (ec);
5264 public override void Error_VariableIsUsedBeforeItIsDeclared (Report r, string name)
5266 r.Error (844, loc,
5267 "A local variable `{0}' cannot be used before it is declared. Consider renaming the local variable when it hides the field `{1}'",
5268 name, GetSignatureForError ());
5271 public void AddressOf (EmitContext ec, AddressOp mode)
5273 ILGenerator ig = ec.ig;
5275 FieldBase f = TypeManager.GetField (FieldInfo);
5276 if (f != null){
5277 if ((mode & AddressOp.Store) != 0)
5278 f.SetAssigned ();
5279 if ((mode & AddressOp.Load) != 0)
5280 f.SetMemberIsUsed ();
5284 // Handle initonly fields specially: make a copy and then
5285 // get the address of the copy.
5287 bool need_copy;
5288 if (FieldInfo.IsInitOnly){
5289 need_copy = true;
5290 if (ec.HasSet (EmitContext.Options.ConstructorScope)){
5291 if (FieldInfo.IsStatic){
5292 if (ec.IsStatic)
5293 need_copy = false;
5294 } else
5295 need_copy = false;
5297 } else
5298 need_copy = false;
5300 if (need_copy){
5301 LocalBuilder local;
5302 Emit (ec);
5303 local = ig.DeclareLocal (type);
5304 ig.Emit (OpCodes.Stloc, local);
5305 ig.Emit (OpCodes.Ldloca, local);
5306 return;
5310 if (FieldInfo.IsStatic){
5311 ig.Emit (OpCodes.Ldsflda, GetConstructedFieldInfo ());
5312 } else {
5313 if (!prepared)
5314 EmitInstance (ec, false);
5315 ig.Emit (OpCodes.Ldflda, GetConstructedFieldInfo ());
5319 FieldInfo GetConstructedFieldInfo ()
5321 if (constructed_generic_type == null)
5322 return FieldInfo;
5324 return TypeBuilder.GetField (constructed_generic_type, FieldInfo);
5327 public SLE.Expression MakeAssignExpression (BuilderContext ctx)
5329 return MakeExpression (ctx);
5332 public override SLE.Expression MakeExpression (BuilderContext ctx)
5334 return SLE.Expression.Field (InstanceExpression.MakeExpression (ctx), FieldInfo);
5337 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5339 FieldInfo = storey.MutateField (FieldInfo);
5340 base.MutateHoistedGenericType (storey);
5345 /// <summary>
5346 /// Expression that evaluates to a Property. The Assign class
5347 /// might set the `Value' expression if we are in an assignment.
5349 /// This is not an LValue because we need to re-write the expression, we
5350 /// can not take data from the stack and store it.
5351 /// </summary>
5352 public class PropertyExpr : MemberExpr, IDynamicAssign
5354 public readonly PropertyInfo PropertyInfo;
5355 MethodInfo getter, setter;
5356 bool is_static;
5358 TypeArguments targs;
5360 LocalTemporary temp;
5361 bool prepared;
5363 public PropertyExpr (Type container_type, PropertyInfo pi, Location l)
5365 PropertyInfo = pi;
5366 is_static = false;
5367 loc = l;
5369 type = TypeManager.TypeToCoreType (pi.PropertyType);
5371 ResolveAccessors (container_type);
5374 public override string Name {
5375 get {
5376 return PropertyInfo.Name;
5380 public override bool IsInstance {
5381 get {
5382 return !is_static;
5386 public override bool IsStatic {
5387 get {
5388 return is_static;
5392 public override Expression CreateExpressionTree (ResolveContext ec)
5394 Arguments args;
5395 if (IsSingleDimensionalArrayLength ()) {
5396 args = new Arguments (1);
5397 args.Add (new Argument (InstanceExpression.CreateExpressionTree (ec)));
5398 return CreateExpressionFactoryCall (ec, "ArrayLength", args);
5401 if (is_base) {
5402 Error_BaseAccessInExpressionTree (ec, loc);
5403 return null;
5406 args = new Arguments (2);
5407 if (InstanceExpression == null)
5408 args.Add (new Argument (new NullLiteral (loc)));
5409 else
5410 args.Add (new Argument (InstanceExpression.CreateExpressionTree (ec)));
5411 args.Add (new Argument (new TypeOfMethod (getter, loc)));
5412 return CreateExpressionFactoryCall (ec, "Property", args);
5415 public Expression CreateSetterTypeOfExpression ()
5417 return new TypeOfMethod (setter, loc);
5420 public override Type DeclaringType {
5421 get {
5422 return PropertyInfo.DeclaringType;
5426 public override string GetSignatureForError ()
5428 return TypeManager.GetFullNameSignature (PropertyInfo);
5431 void FindAccessors (Type invocation_type)
5433 const BindingFlags flags = BindingFlags.Public | BindingFlags.NonPublic |
5434 BindingFlags.Static | BindingFlags.Instance |
5435 BindingFlags.DeclaredOnly;
5437 Type current = PropertyInfo.DeclaringType;
5438 for (; current != null; current = current.BaseType) {
5439 MemberInfo[] group = TypeManager.MemberLookup (
5440 invocation_type, invocation_type, current,
5441 MemberTypes.Property, flags, PropertyInfo.Name, null);
5443 if (group == null)
5444 continue;
5446 if (group.Length != 1)
5447 // Oooops, can this ever happen ?
5448 return;
5450 PropertyInfo pi = (PropertyInfo) group [0];
5452 if (getter == null)
5453 getter = pi.GetGetMethod (true);
5455 if (setter == null)
5456 setter = pi.GetSetMethod (true);
5458 MethodInfo accessor = getter != null ? getter : setter;
5460 if (!accessor.IsVirtual)
5461 return;
5466 // We also perform the permission checking here, as the PropertyInfo does not
5467 // hold the information for the accessibility of its setter/getter
5469 // TODO: Refactor to use some kind of cache together with GetPropertyFromAccessor
5470 void ResolveAccessors (Type container_type)
5472 FindAccessors (container_type);
5474 if (getter != null) {
5475 MethodBase the_getter = TypeManager.DropGenericMethodArguments (getter);
5476 IMethodData md = TypeManager.GetMethod (the_getter);
5477 if (md != null)
5478 md.SetMemberIsUsed ();
5480 is_static = getter.IsStatic;
5483 if (setter != null) {
5484 MethodBase the_setter = TypeManager.DropGenericMethodArguments (setter);
5485 IMethodData md = TypeManager.GetMethod (the_setter);
5486 if (md != null)
5487 md.SetMemberIsUsed ();
5489 is_static = setter.IsStatic;
5493 public SLE.Expression MakeAssignExpression (BuilderContext ctx)
5495 return SLE.Expression.Property (InstanceExpression.MakeExpression (ctx), setter);
5498 public override SLE.Expression MakeExpression (BuilderContext ctx)
5500 return SLE.Expression.Property (InstanceExpression.MakeExpression (ctx), getter);
5503 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5505 if (InstanceExpression != null)
5506 InstanceExpression.MutateHoistedGenericType (storey);
5508 type = storey.MutateType (type);
5509 if (getter != null)
5510 getter = storey.MutateGenericMethod (getter);
5511 if (setter != null)
5512 setter = storey.MutateGenericMethod (setter);
5515 bool InstanceResolve (ResolveContext ec, bool lvalue_instance, bool must_do_cs1540_check)
5517 if (is_static) {
5518 InstanceExpression = null;
5519 return true;
5522 if (InstanceExpression == null) {
5523 SimpleName.Error_ObjectRefRequired (ec, loc, GetSignatureForError ());
5524 return false;
5527 InstanceExpression = InstanceExpression.Resolve (ec);
5528 if (lvalue_instance && InstanceExpression != null)
5529 InstanceExpression = InstanceExpression.ResolveLValue (ec, EmptyExpression.LValueMemberAccess);
5531 if (InstanceExpression == null)
5532 return false;
5534 InstanceExpression.CheckMarshalByRefAccess (ec);
5536 if (must_do_cs1540_check && (InstanceExpression != EmptyExpression.Null) &&
5537 !TypeManager.IsInstantiationOfSameGenericType (InstanceExpression.Type, ec.CurrentType) &&
5538 !TypeManager.IsNestedChildOf (ec.CurrentType, InstanceExpression.Type) &&
5539 !TypeManager.IsSubclassOf (InstanceExpression.Type, ec.CurrentType)) {
5540 ec.Report.SymbolRelatedToPreviousError (PropertyInfo);
5541 Error_CannotAccessProtected (ec, loc, PropertyInfo, InstanceExpression.Type, ec.CurrentType);
5542 return false;
5545 return true;
5548 void Error_PropertyNotFound (ResolveContext ec, MethodInfo mi, bool getter)
5550 // TODO: correctly we should compare arguments but it will lead to bigger changes
5551 if (mi is MethodBuilder) {
5552 Error_TypeDoesNotContainDefinition (ec, loc, PropertyInfo.DeclaringType, Name);
5553 return;
5556 StringBuilder sig = new StringBuilder (TypeManager.CSharpName (mi.DeclaringType));
5557 sig.Append ('.');
5558 AParametersCollection iparams = TypeManager.GetParameterData (mi);
5559 sig.Append (getter ? "get_" : "set_");
5560 sig.Append (Name);
5561 sig.Append (iparams.GetSignatureForError ());
5563 ec.Report.SymbolRelatedToPreviousError (mi);
5564 ec.Report.Error (1546, loc, "Property `{0}' is not supported by the C# language. Try to call the accessor method `{1}' directly",
5565 Name, sig.ToString ());
5568 public bool IsAccessibleFrom (Type invocation_type, bool lvalue)
5570 bool dummy;
5571 MethodInfo accessor = lvalue ? setter : getter;
5572 if (accessor == null && lvalue)
5573 accessor = getter;
5574 return accessor != null && IsAccessorAccessible (invocation_type, accessor, out dummy);
5577 bool IsSingleDimensionalArrayLength ()
5579 if (DeclaringType != TypeManager.array_type || getter == null || Name != "Length")
5580 return false;
5582 string t_name = InstanceExpression.Type.Name;
5583 int t_name_len = t_name.Length;
5584 return t_name_len > 2 && t_name [t_name_len - 2] == '[';
5587 protected override Expression DoResolve (ResolveContext ec)
5589 eclass = ExprClass.PropertyAccess;
5591 bool must_do_cs1540_check = false;
5592 ec.Report.DisableReporting ();
5593 bool res = ResolveGetter (ec, ref must_do_cs1540_check);
5594 ec.Report.EnableReporting ();
5596 if (!res) {
5597 if (InstanceExpression != null) {
5598 Type expr_type = InstanceExpression.Type;
5599 ExtensionMethodGroupExpr ex_method_lookup = ec.LookupExtensionMethod (expr_type, Name, loc);
5600 if (ex_method_lookup != null) {
5601 ex_method_lookup.ExtensionExpression = InstanceExpression;
5602 ex_method_lookup.SetTypeArguments (ec, targs);
5603 return ex_method_lookup.Resolve (ec);
5607 ResolveGetter (ec, ref must_do_cs1540_check);
5608 return null;
5611 if (!InstanceResolve (ec, false, must_do_cs1540_check))
5612 return null;
5615 // Only base will allow this invocation to happen.
5617 if (IsBase && getter.IsAbstract) {
5618 Error_CannotCallAbstractBase (ec, TypeManager.GetFullNameSignature (PropertyInfo));
5621 if (PropertyInfo.PropertyType.IsPointer && !ec.IsUnsafe){
5622 UnsafeError (ec, loc);
5625 if (!ec.IsObsolete) {
5626 PropertyBase pb = TypeManager.GetProperty (PropertyInfo);
5627 if (pb != null) {
5628 pb.CheckObsoleteness (loc);
5629 } else {
5630 ObsoleteAttribute oa = AttributeTester.GetMemberObsoleteAttribute (PropertyInfo);
5631 if (oa != null)
5632 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc, ec.Report);
5636 return this;
5639 override public Expression DoResolveLValue (ResolveContext ec, Expression right_side)
5641 eclass = ExprClass.PropertyAccess;
5643 if (right_side == EmptyExpression.OutAccess.Instance) {
5644 if (ec.CurrentBlock.Toplevel.GetParameterReference (PropertyInfo.Name, loc) is MemberAccess) {
5645 ec.Report.Error (1939, loc, "A range variable `{0}' may not be passes as `ref' or `out' parameter",
5646 PropertyInfo.Name);
5647 } else {
5648 right_side.DoResolveLValue (ec, this);
5650 return null;
5653 if (right_side == EmptyExpression.LValueMemberAccess || right_side == EmptyExpression.LValueMemberOutAccess) {
5654 Error_CannotModifyIntermediateExpressionValue (ec);
5657 if (setter == null){
5659 // The following condition happens if the PropertyExpr was
5660 // created, but is invalid (ie, the property is inaccessible),
5661 // and we did not want to embed the knowledge about this in
5662 // the caller routine. This only avoids double error reporting.
5664 if (getter == null)
5665 return null;
5667 if (ec.CurrentBlock.Toplevel.GetParameterReference (PropertyInfo.Name, loc) is MemberAccess) {
5668 ec.Report.Error (1947, loc, "A range variable `{0}' cannot be assigned to. Consider using `let' clause to store the value",
5669 PropertyInfo.Name);
5670 } else {
5671 ec.Report.Error (200, loc, "Property or indexer `{0}' cannot be assigned to (it is read only)",
5672 GetSignatureForError ());
5674 return null;
5677 if (targs != null) {
5678 base.SetTypeArguments (ec, targs);
5679 return null;
5682 if (TypeManager.GetParameterData (setter).Count != 1){
5683 Error_PropertyNotFound (ec, setter, false);
5684 return null;
5687 bool must_do_cs1540_check;
5688 if (!IsAccessorAccessible (ec.CurrentType, setter, out must_do_cs1540_check)) {
5689 PropertyBase.PropertyMethod pm = TypeManager.GetMethod (setter) as PropertyBase.PropertyMethod;
5690 if (pm != null && pm.HasCustomAccessModifier) {
5691 ec.Report.SymbolRelatedToPreviousError (pm);
5692 ec.Report.Error (272, loc, "The property or indexer `{0}' cannot be used in this context because the set accessor is inaccessible",
5693 TypeManager.CSharpSignature (setter));
5695 else {
5696 ec.Report.SymbolRelatedToPreviousError (setter);
5697 ErrorIsInaccesible (loc, TypeManager.CSharpSignature (setter), ec.Report);
5699 return null;
5702 if (!InstanceResolve (ec, TypeManager.IsStruct (PropertyInfo.DeclaringType), must_do_cs1540_check))
5703 return null;
5706 // Only base will allow this invocation to happen.
5708 if (IsBase && setter.IsAbstract){
5709 Error_CannotCallAbstractBase (ec, TypeManager.GetFullNameSignature (PropertyInfo));
5712 if (PropertyInfo.PropertyType.IsPointer && !ec.IsUnsafe) {
5713 UnsafeError (ec, loc);
5716 if (!ec.IsObsolete) {
5717 PropertyBase pb = TypeManager.GetProperty (PropertyInfo);
5718 if (pb != null) {
5719 pb.CheckObsoleteness (loc);
5720 } else {
5721 ObsoleteAttribute oa = AttributeTester.GetMemberObsoleteAttribute (PropertyInfo);
5722 if (oa != null)
5723 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc, ec.Report);
5727 return this;
5730 public override void Emit (EmitContext ec)
5732 Emit (ec, false);
5735 public void Emit (EmitContext ec, bool leave_copy)
5738 // Special case: length of single dimension array property is turned into ldlen
5740 if (IsSingleDimensionalArrayLength ()) {
5741 if (!prepared)
5742 EmitInstance (ec, false);
5743 ec.ig.Emit (OpCodes.Ldlen);
5744 ec.ig.Emit (OpCodes.Conv_I4);
5745 return;
5748 Invocation.EmitCall (ec, IsBase, InstanceExpression, getter, null, loc, prepared, false);
5750 if (leave_copy) {
5751 ec.ig.Emit (OpCodes.Dup);
5752 if (!is_static) {
5753 temp = new LocalTemporary (this.Type);
5754 temp.Store (ec);
5760 // Implements the IAssignMethod interface for assignments
5762 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
5764 Expression my_source = source;
5766 if (prepare_for_load) {
5767 prepared = true;
5768 source.Emit (ec);
5770 if (leave_copy) {
5771 ec.ig.Emit (OpCodes.Dup);
5772 if (!is_static) {
5773 temp = new LocalTemporary (this.Type);
5774 temp.Store (ec);
5777 } else if (leave_copy) {
5778 source.Emit (ec);
5779 temp = new LocalTemporary (this.Type);
5780 temp.Store (ec);
5781 my_source = temp;
5784 Arguments args = new Arguments (1);
5785 args.Add (new Argument (my_source));
5787 Invocation.EmitCall (ec, IsBase, InstanceExpression, setter, args, loc, false, prepared);
5789 if (temp != null) {
5790 temp.Emit (ec);
5791 temp.Release (ec);
5795 bool ResolveGetter (ResolveContext ec, ref bool must_do_cs1540_check)
5797 if (targs != null) {
5798 base.SetTypeArguments (ec, targs);
5799 return false;
5802 if (getter != null) {
5803 if (TypeManager.GetParameterData (getter).Count != 0) {
5804 Error_PropertyNotFound (ec, getter, true);
5805 return false;
5809 if (getter == null) {
5811 // The following condition happens if the PropertyExpr was
5812 // created, but is invalid (ie, the property is inaccessible),
5813 // and we did not want to embed the knowledge about this in
5814 // the caller routine. This only avoids double error reporting.
5816 if (setter == null)
5817 return false;
5819 if (InstanceExpression != EmptyExpression.Null) {
5820 ec.Report.Error (154, loc, "The property or indexer `{0}' cannot be used in this context because it lacks the `get' accessor",
5821 TypeManager.GetFullNameSignature (PropertyInfo));
5822 return false;
5826 if (getter != null &&
5827 !IsAccessorAccessible (ec.CurrentType, getter, out must_do_cs1540_check)) {
5828 PropertyBase.PropertyMethod pm = TypeManager.GetMethod (getter) as PropertyBase.PropertyMethod;
5829 if (pm != null && pm.HasCustomAccessModifier) {
5830 ec.Report.SymbolRelatedToPreviousError (pm);
5831 ec.Report.Error (271, loc, "The property or indexer `{0}' cannot be used in this context because the get accessor is inaccessible",
5832 TypeManager.CSharpSignature (getter));
5833 } else {
5834 ec.Report.SymbolRelatedToPreviousError (getter);
5835 ErrorIsInaccesible (loc, TypeManager.CSharpSignature (getter), ec.Report);
5838 return false;
5841 return true;
5844 public override void SetTypeArguments (ResolveContext ec, TypeArguments ta)
5846 targs = ta;
5850 /// <summary>
5851 /// Fully resolved expression that evaluates to an Event
5852 /// </summary>
5853 public class EventExpr : MemberExpr {
5854 public readonly EventInfo EventInfo;
5856 bool is_static;
5857 MethodInfo add_accessor, remove_accessor;
5859 public EventExpr (EventInfo ei, Location loc)
5861 EventInfo = ei;
5862 this.loc = loc;
5864 add_accessor = TypeManager.GetAddMethod (ei);
5865 remove_accessor = TypeManager.GetRemoveMethod (ei);
5866 if (add_accessor.IsStatic || remove_accessor.IsStatic)
5867 is_static = true;
5869 if (EventInfo is MyEventBuilder){
5870 MyEventBuilder eb = (MyEventBuilder) EventInfo;
5871 type = eb.EventType;
5872 eb.SetUsed ();
5873 } else
5874 type = EventInfo.EventHandlerType;
5877 public override string Name {
5878 get {
5879 return EventInfo.Name;
5883 public override bool IsInstance {
5884 get {
5885 return !is_static;
5889 public override bool IsStatic {
5890 get {
5891 return is_static;
5895 public override Type DeclaringType {
5896 get {
5897 return EventInfo.DeclaringType;
5901 public void Error_AssignmentEventOnly (ResolveContext ec)
5903 ec.Report.Error (79, loc, "The event `{0}' can only appear on the left hand side of `+=' or `-=' operator",
5904 GetSignatureForError ());
5907 public override MemberExpr ResolveMemberAccess (ResolveContext ec, Expression left, Location loc,
5908 SimpleName original)
5911 // If the event is local to this class, we transform ourselves into a FieldExpr
5914 if (EventInfo.DeclaringType == ec.CurrentType ||
5915 TypeManager.IsNestedChildOf(ec.CurrentType, EventInfo.DeclaringType)) {
5917 // TODO: Breaks dynamic binder as currect context fields are imported and not compiled
5918 EventField mi = TypeManager.GetEventField (EventInfo);
5920 if (mi != null) {
5921 if (!ec.IsObsolete)
5922 mi.CheckObsoleteness (loc);
5924 if ((mi.ModFlags & (Modifiers.ABSTRACT | Modifiers.EXTERN)) != 0 && !ec.HasSet (ResolveContext.Options.CompoundAssignmentScope))
5925 Error_AssignmentEventOnly (ec);
5927 FieldExpr ml = new FieldExpr (mi.BackingField.FieldBuilder, loc);
5929 InstanceExpression = null;
5931 return ml.ResolveMemberAccess (ec, left, loc, original);
5935 if (left is This && !ec.HasSet (ResolveContext.Options.CompoundAssignmentScope))
5936 Error_AssignmentEventOnly (ec);
5938 return base.ResolveMemberAccess (ec, left, loc, original);
5941 bool InstanceResolve (ResolveContext ec, bool must_do_cs1540_check)
5943 if (is_static) {
5944 InstanceExpression = null;
5945 return true;
5948 if (InstanceExpression == null) {
5949 SimpleName.Error_ObjectRefRequired (ec, loc, GetSignatureForError ());
5950 return false;
5953 InstanceExpression = InstanceExpression.Resolve (ec);
5954 if (InstanceExpression == null)
5955 return false;
5957 if (IsBase && add_accessor.IsAbstract) {
5958 Error_CannotCallAbstractBase (ec, TypeManager.CSharpSignature(add_accessor));
5959 return false;
5963 // This is using the same mechanism as the CS1540 check in PropertyExpr.
5964 // However, in the Event case, we reported a CS0122 instead.
5966 // TODO: Exact copy from PropertyExpr
5968 if (must_do_cs1540_check && InstanceExpression != EmptyExpression.Null &&
5969 !TypeManager.IsInstantiationOfSameGenericType (InstanceExpression.Type, ec.CurrentType) &&
5970 !TypeManager.IsNestedChildOf (ec.CurrentType, InstanceExpression.Type) &&
5971 !TypeManager.IsSubclassOf (InstanceExpression.Type, ec.CurrentType)) {
5972 ec.Report.SymbolRelatedToPreviousError (EventInfo);
5973 ErrorIsInaccesible (loc, TypeManager.CSharpSignature (EventInfo), ec.Report);
5974 return false;
5977 return true;
5980 public bool IsAccessibleFrom (Type invocation_type)
5982 bool dummy;
5983 return IsAccessorAccessible (invocation_type, add_accessor, out dummy) &&
5984 IsAccessorAccessible (invocation_type, remove_accessor, out dummy);
5987 public override Expression CreateExpressionTree (ResolveContext ec)
5989 throw new NotSupportedException ("ET");
5992 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
5994 // contexts where an LValue is valid have already devolved to FieldExprs
5995 Error_CannotAssign (ec);
5996 return null;
5999 protected override Expression DoResolve (ResolveContext ec)
6001 eclass = ExprClass.EventAccess;
6003 bool must_do_cs1540_check;
6004 if (!(IsAccessorAccessible (ec.CurrentType, add_accessor, out must_do_cs1540_check) &&
6005 IsAccessorAccessible (ec.CurrentType, remove_accessor, out must_do_cs1540_check))) {
6006 ec.Report.SymbolRelatedToPreviousError (EventInfo);
6007 ErrorIsInaccesible (loc, TypeManager.CSharpSignature (EventInfo), ec.Report);
6008 return null;
6011 if (!InstanceResolve (ec, must_do_cs1540_check))
6012 return null;
6014 if (!ec.HasSet (ResolveContext.Options.CompoundAssignmentScope)) {
6015 Error_CannotAssign (ec);
6016 return null;
6019 if (!ec.IsObsolete) {
6020 EventField ev = TypeManager.GetEventField (EventInfo);
6021 if (ev != null) {
6022 ev.CheckObsoleteness (loc);
6023 } else {
6024 ObsoleteAttribute oa = AttributeTester.GetMemberObsoleteAttribute (EventInfo);
6025 if (oa != null)
6026 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc, ec.Report);
6030 return this;
6033 public override void Emit (EmitContext ec)
6035 throw new NotSupportedException ();
6036 //Error_CannotAssign ();
6039 public void Error_CannotAssign (ResolveContext ec)
6041 ec.Report.Error (70, loc,
6042 "The event `{0}' can only appear on the left hand side of += or -= when used outside of the type `{1}'",
6043 GetSignatureForError (), TypeManager.CSharpName (EventInfo.DeclaringType));
6046 public override string GetSignatureForError ()
6048 return TypeManager.CSharpSignature (EventInfo);
6051 public void EmitAddOrRemove (EmitContext ec, bool is_add, Expression source)
6053 Arguments args = new Arguments (1);
6054 args.Add (new Argument (source));
6055 Invocation.EmitCall (ec, IsBase, InstanceExpression, is_add ? add_accessor : remove_accessor, args, loc);
6059 public class TemporaryVariable : VariableReference
6061 LocalInfo li;
6063 public TemporaryVariable (Type type, Location loc)
6065 this.type = type;
6066 this.loc = loc;
6069 public override Expression CreateExpressionTree (ResolveContext ec)
6071 throw new NotSupportedException ("ET");
6074 protected override Expression DoResolve (ResolveContext ec)
6076 eclass = ExprClass.Variable;
6078 TypeExpr te = new TypeExpression (type, loc);
6079 li = ec.CurrentBlock.AddTemporaryVariable (te, loc);
6080 if (!li.Resolve (ec))
6081 return null;
6084 // Don't capture temporary variables except when using
6085 // iterator redirection
6087 if (ec.CurrentAnonymousMethod != null && ec.CurrentAnonymousMethod.IsIterator && ec.IsVariableCapturingRequired) {
6088 AnonymousMethodStorey storey = li.Block.Explicit.CreateAnonymousMethodStorey (ec);
6089 storey.CaptureLocalVariable (ec, li);
6092 return this;
6095 public override Expression DoResolveLValue (ResolveContext ec, Expression right_side)
6097 return Resolve (ec);
6100 public override void Emit (EmitContext ec)
6102 Emit (ec, false);
6105 public void EmitAssign (EmitContext ec, Expression source)
6107 EmitAssign (ec, source, false, false);
6110 public override HoistedVariable GetHoistedVariable (AnonymousExpression ae)
6112 return li.HoistedVariant;
6115 public override bool IsFixed {
6116 get { return true; }
6119 public override bool IsRef {
6120 get { return false; }
6123 public override string Name {
6124 get { throw new NotImplementedException (); }
6127 public override void SetHasAddressTaken ()
6129 throw new NotImplementedException ();
6132 protected override ILocalVariable Variable {
6133 get { return li; }
6136 public override VariableInfo VariableInfo {
6137 get { throw new NotImplementedException (); }
6141 ///
6142 /// Handles `var' contextual keyword; var becomes a keyword only
6143 /// if no type called var exists in a variable scope
6144 ///
6145 class VarExpr : SimpleName
6147 // Used for error reporting only
6148 int initializers_count;
6150 public VarExpr (Location loc)
6151 : base ("var", loc)
6153 initializers_count = 1;
6156 public int VariableInitializersCount {
6157 set {
6158 this.initializers_count = value;
6162 public bool InferType (ResolveContext ec, Expression right_side)
6164 if (type != null)
6165 throw new InternalErrorException ("An implicitly typed local variable could not be redefined");
6167 type = right_side.Type;
6168 if (type == TypeManager.null_type || type == TypeManager.void_type || type == InternalType.AnonymousMethod || type == InternalType.MethodGroup) {
6169 ec.Report.Error (815, loc, "An implicitly typed local variable declaration cannot be initialized with `{0}'",
6170 right_side.GetSignatureForError ());
6171 return false;
6174 eclass = ExprClass.Variable;
6175 return true;
6178 protected override void Error_TypeOrNamespaceNotFound (IMemberContext ec)
6180 if (RootContext.Version < LanguageVersion.V_3)
6181 base.Error_TypeOrNamespaceNotFound (ec);
6182 else
6183 ec.Compiler.Report.Error (825, loc, "The contextual keyword `var' may only appear within a local variable declaration");
6186 public override TypeExpr ResolveAsContextualType (IMemberContext rc, bool silent)
6188 TypeExpr te = base.ResolveAsContextualType (rc, true);
6189 if (te != null)
6190 return te;
6192 if (RootContext.Version < LanguageVersion.V_3)
6193 rc.Compiler.Report.FeatureIsNotAvailable (loc, "implicitly typed local variable");
6195 if (initializers_count == 1)
6196 return null;
6198 if (initializers_count > 1) {
6199 rc.Compiler.Report.Error (819, loc, "An implicitly typed local variable declaration cannot include multiple declarators");
6200 initializers_count = 1;
6201 return null;
6204 if (initializers_count == 0) {
6205 initializers_count = 1;
6206 rc.Compiler.Report.Error (818, loc, "An implicitly typed local variable declarator must include an initializer");
6207 return null;
6210 return null;