monotouch uses the real HttpWebRequest
[mcs.git] / mcs / expression.cs
blob4c09cfdb9ca9b3dff2378d149982d05decf25777
1 //
2 // expression.cs: Expression representation for the IL tree.
3 //
4 // Author:
5 // Miguel de Icaza (miguel@ximian.com)
6 // Marek Safar (marek.safar@gmail.com)
7 //
8 // Copyright 2001, 2002, 2003 Ximian, Inc.
9 // Copyright 2003-2008 Novell, Inc.
11 #define USE_OLD
13 namespace Mono.CSharp {
14 using System;
15 using System.Collections;
16 using System.Reflection;
17 using System.Reflection.Emit;
18 using System.Text;
21 // This is an user operator expression, automatically created during
22 // resolve phase
24 public class UserOperatorCall : Expression {
25 public delegate Expression ExpressionTreeExpression (EmitContext ec, MethodGroupExpr mg);
27 protected readonly Arguments arguments;
28 protected readonly MethodGroupExpr mg;
29 readonly ExpressionTreeExpression expr_tree;
31 public UserOperatorCall (MethodGroupExpr mg, Arguments args, ExpressionTreeExpression expr_tree, Location loc)
33 this.mg = mg;
34 this.arguments = args;
35 this.expr_tree = expr_tree;
37 type = TypeManager.TypeToCoreType (((MethodInfo) mg).ReturnType);
38 eclass = ExprClass.Value;
39 this.loc = loc;
42 public override Expression CreateExpressionTree (EmitContext ec)
44 if (expr_tree != null)
45 return expr_tree (ec, mg);
47 Arguments args = Arguments.CreateForExpressionTree (ec, arguments,
48 new NullLiteral (loc),
49 mg.CreateExpressionTree (ec));
51 return CreateExpressionFactoryCall ("Call", args);
54 protected override void CloneTo (CloneContext context, Expression target)
56 // Nothing to clone
59 public override Expression DoResolve (EmitContext ec)
62 // We are born fully resolved
64 return this;
67 public override void Emit (EmitContext ec)
69 mg.EmitCall (ec, arguments);
72 public MethodGroupExpr Method {
73 get { return mg; }
76 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
78 arguments.MutateHoistedGenericType (storey);
79 mg.MutateHoistedGenericType (storey);
83 public class ParenthesizedExpression : Expression
85 public Expression Expr;
87 public ParenthesizedExpression (Expression expr)
89 Expr = expr;
90 loc = expr.Location;
93 public override Expression CreateExpressionTree (EmitContext ec)
95 throw new NotSupportedException ("ET");
98 public override Expression DoResolve (EmitContext ec)
100 Expr = Expr.Resolve (ec);
101 return Expr;
104 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
106 return Expr.DoResolveLValue (ec, right_side);
109 public override void Emit (EmitContext ec)
111 throw new Exception ("Should not happen");
114 protected override void CloneTo (CloneContext clonectx, Expression t)
116 ParenthesizedExpression target = (ParenthesizedExpression) t;
118 target.Expr = Expr.Clone (clonectx);
123 // Unary implements unary expressions.
125 public class Unary : Expression
127 public enum Operator : byte {
128 UnaryPlus, UnaryNegation, LogicalNot, OnesComplement,
129 AddressOf, TOP
132 static Type [] [] predefined_operators;
134 public readonly Operator Oper;
135 public Expression Expr;
136 Expression enum_conversion;
138 public Unary (Operator op, Expression expr)
140 Oper = op;
141 Expr = expr;
142 loc = expr.Location;
145 // <summary>
146 // This routine will attempt to simplify the unary expression when the
147 // argument is a constant.
148 // </summary>
149 Constant TryReduceConstant (EmitContext ec, Constant e)
151 if (e is EmptyConstantCast)
152 return TryReduceConstant (ec, ((EmptyConstantCast) e).child);
154 if (e is SideEffectConstant) {
155 Constant r = TryReduceConstant (ec, ((SideEffectConstant) e).value);
156 return r == null ? null : new SideEffectConstant (r, e, r.Location);
159 Type expr_type = e.Type;
161 switch (Oper){
162 case Operator.UnaryPlus:
163 // Unary numeric promotions
164 if (expr_type == TypeManager.byte_type)
165 return new IntConstant (((ByteConstant)e).Value, e.Location);
166 if (expr_type == TypeManager.sbyte_type)
167 return new IntConstant (((SByteConstant)e).Value, e.Location);
168 if (expr_type == TypeManager.short_type)
169 return new IntConstant (((ShortConstant)e).Value, e.Location);
170 if (expr_type == TypeManager.ushort_type)
171 return new IntConstant (((UShortConstant)e).Value, e.Location);
172 if (expr_type == TypeManager.char_type)
173 return new IntConstant (((CharConstant)e).Value, e.Location);
175 // Predefined operators
176 if (expr_type == TypeManager.int32_type || expr_type == TypeManager.uint32_type ||
177 expr_type == TypeManager.int64_type || expr_type == TypeManager.uint64_type ||
178 expr_type == TypeManager.float_type || expr_type == TypeManager.double_type ||
179 expr_type == TypeManager.decimal_type) {
180 return e;
183 return null;
185 case Operator.UnaryNegation:
186 // Unary numeric promotions
187 if (expr_type == TypeManager.byte_type)
188 return new IntConstant (-((ByteConstant)e).Value, e.Location);
189 if (expr_type == TypeManager.sbyte_type)
190 return new IntConstant (-((SByteConstant)e).Value, e.Location);
191 if (expr_type == TypeManager.short_type)
192 return new IntConstant (-((ShortConstant)e).Value, e.Location);
193 if (expr_type == TypeManager.ushort_type)
194 return new IntConstant (-((UShortConstant)e).Value, e.Location);
195 if (expr_type == TypeManager.char_type)
196 return new IntConstant (-((CharConstant)e).Value, e.Location);
198 // Predefined operators
199 if (expr_type == TypeManager.int32_type) {
200 int value = ((IntConstant)e).Value;
201 if (value == int.MinValue) {
202 if (ec.ConstantCheckState) {
203 ConstantFold.Error_CompileTimeOverflow (loc);
204 return null;
206 return e;
208 return new IntConstant (-value, e.Location);
210 if (expr_type == TypeManager.int64_type) {
211 long value = ((LongConstant)e).Value;
212 if (value == long.MinValue) {
213 if (ec.ConstantCheckState) {
214 ConstantFold.Error_CompileTimeOverflow (loc);
215 return null;
217 return e;
219 return new LongConstant (-value, e.Location);
222 if (expr_type == TypeManager.uint32_type) {
223 UIntLiteral uil = e as UIntLiteral;
224 if (uil != null) {
225 if (uil.Value == 2147483648)
226 return new IntLiteral (int.MinValue, e.Location);
227 return new LongLiteral (-uil.Value, e.Location);
229 return new LongConstant (-((UIntConstant)e).Value, e.Location);
232 if (expr_type == TypeManager.uint64_type) {
233 ULongLiteral ull = e as ULongLiteral;
234 if (ull != null && ull.Value == 9223372036854775808)
235 return new LongLiteral (long.MinValue, e.Location);
236 return null;
239 if (expr_type == TypeManager.float_type) {
240 FloatLiteral fl = e as FloatLiteral;
241 // For better error reporting
242 if (fl != null)
243 return new FloatLiteral (-fl.Value, e.Location);
245 return new FloatConstant (-((FloatConstant)e).Value, e.Location);
247 if (expr_type == TypeManager.double_type) {
248 DoubleLiteral dl = e as DoubleLiteral;
249 // For better error reporting
250 if (dl != null)
251 return new DoubleLiteral (-dl.Value, e.Location);
253 return new DoubleConstant (-((DoubleConstant)e).Value, e.Location);
255 if (expr_type == TypeManager.decimal_type)
256 return new DecimalConstant (-((DecimalConstant)e).Value, e.Location);
258 return null;
260 case Operator.LogicalNot:
261 if (expr_type != TypeManager.bool_type)
262 return null;
264 bool b = (bool)e.GetValue ();
265 return new BoolConstant (!b, e.Location);
267 case Operator.OnesComplement:
268 // Unary numeric promotions
269 if (expr_type == TypeManager.byte_type)
270 return new IntConstant (~((ByteConstant)e).Value, e.Location);
271 if (expr_type == TypeManager.sbyte_type)
272 return new IntConstant (~((SByteConstant)e).Value, e.Location);
273 if (expr_type == TypeManager.short_type)
274 return new IntConstant (~((ShortConstant)e).Value, e.Location);
275 if (expr_type == TypeManager.ushort_type)
276 return new IntConstant (~((UShortConstant)e).Value, e.Location);
277 if (expr_type == TypeManager.char_type)
278 return new IntConstant (~((CharConstant)e).Value, e.Location);
280 // Predefined operators
281 if (expr_type == TypeManager.int32_type)
282 return new IntConstant (~((IntConstant)e).Value, e.Location);
283 if (expr_type == TypeManager.uint32_type)
284 return new UIntConstant (~((UIntConstant)e).Value, e.Location);
285 if (expr_type == TypeManager.int64_type)
286 return new LongConstant (~((LongConstant)e).Value, e.Location);
287 if (expr_type == TypeManager.uint64_type){
288 return new ULongConstant (~((ULongConstant)e).Value, e.Location);
290 if (e is EnumConstant) {
291 e = TryReduceConstant (ec, ((EnumConstant)e).Child);
292 if (e != null)
293 e = new EnumConstant (e, expr_type);
294 return e;
296 return null;
298 throw new Exception ("Can not constant fold: " + Oper.ToString());
301 protected Expression ResolveOperator (EmitContext ec, Expression expr)
303 eclass = ExprClass.Value;
305 if (predefined_operators == null)
306 CreatePredefinedOperatorsTable ();
308 Type expr_type = expr.Type;
309 Expression best_expr;
312 // Primitive types first
314 if (TypeManager.IsPrimitiveType (expr_type)) {
315 best_expr = ResolvePrimitivePredefinedType (expr);
316 if (best_expr == null)
317 return null;
319 type = best_expr.Type;
320 Expr = best_expr;
321 return this;
325 // E operator ~(E x);
327 if (Oper == Operator.OnesComplement && TypeManager.IsEnumType (expr_type))
328 return ResolveEnumOperator (ec, expr);
330 return ResolveUserType (ec, expr);
333 protected virtual Expression ResolveEnumOperator (EmitContext ec, Expression expr)
335 Type underlying_type = TypeManager.GetEnumUnderlyingType (expr.Type);
336 Expression best_expr = ResolvePrimitivePredefinedType (EmptyCast.Create (expr, underlying_type));
337 if (best_expr == null)
338 return null;
340 Expr = best_expr;
341 enum_conversion = Convert.ExplicitNumericConversion (new EmptyExpression (best_expr.Type), underlying_type);
342 type = expr.Type;
343 return EmptyCast.Create (this, type);
346 public override Expression CreateExpressionTree (EmitContext ec)
348 return CreateExpressionTree (ec, null);
351 Expression CreateExpressionTree (EmitContext ec, MethodGroupExpr user_op)
353 string method_name;
354 switch (Oper) {
355 case Operator.AddressOf:
356 Error_PointerInsideExpressionTree ();
357 return null;
358 case Operator.UnaryNegation:
359 if (ec.CheckState && user_op == null && !IsFloat (type))
360 method_name = "NegateChecked";
361 else
362 method_name = "Negate";
363 break;
364 case Operator.OnesComplement:
365 case Operator.LogicalNot:
366 method_name = "Not";
367 break;
368 case Operator.UnaryPlus:
369 method_name = "UnaryPlus";
370 break;
371 default:
372 throw new InternalErrorException ("Unknown unary operator " + Oper.ToString ());
375 Arguments args = new Arguments (2);
376 args.Add (new Argument (Expr.CreateExpressionTree (ec)));
377 if (user_op != null)
378 args.Add (new Argument (user_op.CreateExpressionTree (ec)));
379 return CreateExpressionFactoryCall (method_name, args);
382 static void CreatePredefinedOperatorsTable ()
384 predefined_operators = new Type [(int) Operator.TOP] [];
387 // 7.6.1 Unary plus operator
389 predefined_operators [(int) Operator.UnaryPlus] = new Type [] {
390 TypeManager.int32_type, TypeManager.uint32_type,
391 TypeManager.int64_type, TypeManager.uint64_type,
392 TypeManager.float_type, TypeManager.double_type,
393 TypeManager.decimal_type
397 // 7.6.2 Unary minus operator
399 predefined_operators [(int) Operator.UnaryNegation] = new Type [] {
400 TypeManager.int32_type,
401 TypeManager.int64_type,
402 TypeManager.float_type, TypeManager.double_type,
403 TypeManager.decimal_type
407 // 7.6.3 Logical negation operator
409 predefined_operators [(int) Operator.LogicalNot] = new Type [] {
410 TypeManager.bool_type
414 // 7.6.4 Bitwise complement operator
416 predefined_operators [(int) Operator.OnesComplement] = new Type [] {
417 TypeManager.int32_type, TypeManager.uint32_type,
418 TypeManager.int64_type, TypeManager.uint64_type
423 // Unary numeric promotions
425 static Expression DoNumericPromotion (Operator op, Expression expr)
427 Type expr_type = expr.Type;
428 if ((op == Operator.UnaryPlus || op == Operator.UnaryNegation || op == Operator.OnesComplement) &&
429 expr_type == TypeManager.byte_type || expr_type == TypeManager.sbyte_type ||
430 expr_type == TypeManager.short_type || expr_type == TypeManager.ushort_type ||
431 expr_type == TypeManager.char_type)
432 return Convert.ImplicitNumericConversion (expr, TypeManager.int32_type);
434 if (op == Operator.UnaryNegation && expr_type == TypeManager.uint32_type)
435 return Convert.ImplicitNumericConversion (expr, TypeManager.int64_type);
437 return expr;
440 public override Expression DoResolve (EmitContext ec)
442 if (Oper == Operator.AddressOf) {
443 return ResolveAddressOf (ec);
446 Expr = Expr.Resolve (ec);
447 if (Expr == null)
448 return null;
450 if (TypeManager.IsDynamicType (Expr.Type)) {
451 Arguments args = new Arguments (1);
452 args.Add (new Argument (Expr));
453 return new DynamicUnaryConversion (GetOperatorExpressionTypeName (), args, loc).DoResolve (ec);
456 if (TypeManager.IsNullableType (Expr.Type))
457 return new Nullable.LiftedUnaryOperator (Oper, Expr).Resolve (ec);
460 // Attempt to use a constant folding operation.
462 Constant cexpr = Expr as Constant;
463 if (cexpr != null) {
464 cexpr = TryReduceConstant (ec, cexpr);
465 if (cexpr != null)
466 return cexpr;
469 Expression expr = ResolveOperator (ec, Expr);
470 if (expr == null)
471 Error_OperatorCannotBeApplied (loc, OperName (Oper), Expr.Type);
474 // Reduce unary operator on predefined types
476 if (expr == this && Oper == Operator.UnaryPlus)
477 return Expr;
479 return expr;
482 public override Expression DoResolveLValue (EmitContext ec, Expression right)
484 return null;
487 public override void Emit (EmitContext ec)
489 EmitOperator (ec, type);
492 protected void EmitOperator (EmitContext ec, Type type)
494 ILGenerator ig = ec.ig;
496 switch (Oper) {
497 case Operator.UnaryPlus:
498 Expr.Emit (ec);
499 break;
501 case Operator.UnaryNegation:
502 if (ec.CheckState && !IsFloat (type)) {
503 ig.Emit (OpCodes.Ldc_I4_0);
504 if (type == TypeManager.int64_type)
505 ig.Emit (OpCodes.Conv_U8);
506 Expr.Emit (ec);
507 ig.Emit (OpCodes.Sub_Ovf);
508 } else {
509 Expr.Emit (ec);
510 ig.Emit (OpCodes.Neg);
513 break;
515 case Operator.LogicalNot:
516 Expr.Emit (ec);
517 ig.Emit (OpCodes.Ldc_I4_0);
518 ig.Emit (OpCodes.Ceq);
519 break;
521 case Operator.OnesComplement:
522 Expr.Emit (ec);
523 ig.Emit (OpCodes.Not);
524 break;
526 case Operator.AddressOf:
527 ((IMemoryLocation)Expr).AddressOf (ec, AddressOp.LoadStore);
528 break;
530 default:
531 throw new Exception ("This should not happen: Operator = "
532 + Oper.ToString ());
536 // Same trick as in Binary expression
538 if (enum_conversion != null)
539 enum_conversion.Emit (ec);
542 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
544 if (Oper == Operator.LogicalNot)
545 Expr.EmitBranchable (ec, target, !on_true);
546 else
547 base.EmitBranchable (ec, target, on_true);
550 public override void EmitSideEffect (EmitContext ec)
552 Expr.EmitSideEffect (ec);
555 public static void Error_OperatorCannotBeApplied (Location loc, string oper, Type t)
557 Report.Error (23, loc, "The `{0}' operator cannot be applied to operand of type `{1}'",
558 oper, TypeManager.CSharpName (t));
562 // Converts operator to System.Linq.Expressions.ExpressionType enum name
564 string GetOperatorExpressionTypeName ()
566 switch (Oper) {
567 case Operator.UnaryPlus:
568 return "UnaryPlus";
569 default:
570 throw new NotImplementedException ("Unknown express type operator " + Oper.ToString ());
574 static bool IsFloat (Type t)
576 return t == TypeManager.float_type || t == TypeManager.double_type;
580 // Returns a stringified representation of the Operator
582 public static string OperName (Operator oper)
584 switch (oper) {
585 case Operator.UnaryPlus:
586 return "+";
587 case Operator.UnaryNegation:
588 return "-";
589 case Operator.LogicalNot:
590 return "!";
591 case Operator.OnesComplement:
592 return "~";
593 case Operator.AddressOf:
594 return "&";
597 throw new NotImplementedException (oper.ToString ());
600 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
602 type = storey.MutateType (type);
603 Expr.MutateHoistedGenericType (storey);
606 Expression ResolveAddressOf (EmitContext ec)
608 if (!ec.InUnsafe)
609 UnsafeError (loc);
611 Expr = Expr.DoResolveLValue (ec, EmptyExpression.UnaryAddress);
612 if (Expr == null || Expr.eclass != ExprClass.Variable) {
613 Error (211, "Cannot take the address of the given expression");
614 return null;
617 if (!TypeManager.VerifyUnManaged (Expr.Type, loc)) {
618 return null;
621 IVariableReference vr = Expr as IVariableReference;
622 bool is_fixed;
623 if (vr != null) {
624 VariableInfo vi = vr.VariableInfo;
625 if (vi != null) {
626 if (vi.LocalInfo != null)
627 vi.LocalInfo.Used = true;
630 // A variable is considered definitely assigned if you take its address.
632 vi.SetAssigned (ec);
635 is_fixed = vr.IsFixed;
636 vr.SetHasAddressTaken ();
638 if (vr.IsHoisted) {
639 AnonymousMethodExpression.Error_AddressOfCapturedVar (vr, loc);
641 } else {
642 IFixedExpression fe = Expr as IFixedExpression;
643 is_fixed = fe != null && fe.IsFixed;
646 if (!is_fixed && !ec.InFixedInitializer) {
647 Error (212, "You can only take the address of unfixed expression inside of a fixed statement initializer");
650 type = TypeManager.GetPointerType (Expr.Type);
651 eclass = ExprClass.Value;
652 return this;
655 Expression ResolvePrimitivePredefinedType (Expression expr)
657 expr = DoNumericPromotion (Oper, expr);
658 Type expr_type = expr.Type;
659 Type[] predefined = predefined_operators [(int) Oper];
660 foreach (Type t in predefined) {
661 if (t == expr_type)
662 return expr;
664 return null;
668 // Perform user-operator overload resolution
670 protected virtual Expression ResolveUserOperator (EmitContext ec, Expression expr)
672 CSharp.Operator.OpType op_type;
673 switch (Oper) {
674 case Operator.LogicalNot:
675 op_type = CSharp.Operator.OpType.LogicalNot; break;
676 case Operator.OnesComplement:
677 op_type = CSharp.Operator.OpType.OnesComplement; break;
678 case Operator.UnaryNegation:
679 op_type = CSharp.Operator.OpType.UnaryNegation; break;
680 case Operator.UnaryPlus:
681 op_type = CSharp.Operator.OpType.UnaryPlus; break;
682 default:
683 throw new InternalErrorException (Oper.ToString ());
686 string op_name = CSharp.Operator.GetMetadataName (op_type);
687 MethodGroupExpr user_op = MemberLookup (ec.ContainerType, expr.Type, op_name, MemberTypes.Method, AllBindingFlags, expr.Location) as MethodGroupExpr;
688 if (user_op == null)
689 return null;
691 Arguments args = new Arguments (1);
692 args.Add (new Argument (expr));
693 user_op = user_op.OverloadResolve (ec, ref args, false, expr.Location);
695 if (user_op == null)
696 return null;
698 Expr = args [0].Expr;
699 return new UserOperatorCall (user_op, args, CreateExpressionTree, expr.Location);
703 // Unary user type overload resolution
705 Expression ResolveUserType (EmitContext ec, Expression expr)
707 Expression best_expr = ResolveUserOperator (ec, expr);
708 if (best_expr != null)
709 return best_expr;
711 Type[] predefined = predefined_operators [(int) Oper];
712 foreach (Type t in predefined) {
713 Expression oper_expr = Convert.UserDefinedConversion (ec, expr, t, expr.Location, false);
714 if (oper_expr == null)
715 continue;
718 // decimal type is predefined but has user-operators
720 if (oper_expr.Type == TypeManager.decimal_type)
721 oper_expr = ResolveUserType (ec, oper_expr);
722 else
723 oper_expr = ResolvePrimitivePredefinedType (oper_expr);
725 if (oper_expr == null)
726 continue;
728 if (best_expr == null) {
729 best_expr = oper_expr;
730 continue;
733 int result = MethodGroupExpr.BetterTypeConversion (ec, best_expr.Type, t);
734 if (result == 0) {
735 Report.Error (35, loc, "Operator `{0}' is ambiguous on an operand of type `{1}'",
736 OperName (Oper), TypeManager.CSharpName (expr.Type));
737 break;
740 if (result == 2)
741 best_expr = oper_expr;
744 if (best_expr == null)
745 return null;
748 // HACK: Decimal user-operator is included in standard operators
750 if (best_expr.Type == TypeManager.decimal_type)
751 return best_expr;
753 Expr = best_expr;
754 type = best_expr.Type;
755 return this;
758 protected override void CloneTo (CloneContext clonectx, Expression t)
760 Unary target = (Unary) t;
762 target.Expr = Expr.Clone (clonectx);
767 // Unary operators are turned into Indirection expressions
768 // after semantic analysis (this is so we can take the address
769 // of an indirection).
771 public class Indirection : Expression, IMemoryLocation, IAssignMethod, IFixedExpression {
772 Expression expr;
773 LocalTemporary temporary;
774 bool prepared;
776 public Indirection (Expression expr, Location l)
778 this.expr = expr;
779 loc = l;
782 public override Expression CreateExpressionTree (EmitContext ec)
784 Error_PointerInsideExpressionTree ();
785 return null;
788 protected override void CloneTo (CloneContext clonectx, Expression t)
790 Indirection target = (Indirection) t;
791 target.expr = expr.Clone (clonectx);
794 public override void Emit (EmitContext ec)
796 if (!prepared)
797 expr.Emit (ec);
799 LoadFromPtr (ec.ig, Type);
802 public void Emit (EmitContext ec, bool leave_copy)
804 Emit (ec);
805 if (leave_copy) {
806 ec.ig.Emit (OpCodes.Dup);
807 temporary = new LocalTemporary (expr.Type);
808 temporary.Store (ec);
812 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
814 prepared = prepare_for_load;
816 expr.Emit (ec);
818 if (prepare_for_load)
819 ec.ig.Emit (OpCodes.Dup);
821 source.Emit (ec);
822 if (leave_copy) {
823 ec.ig.Emit (OpCodes.Dup);
824 temporary = new LocalTemporary (expr.Type);
825 temporary.Store (ec);
828 StoreFromPtr (ec.ig, type);
830 if (temporary != null) {
831 temporary.Emit (ec);
832 temporary.Release (ec);
836 public void AddressOf (EmitContext ec, AddressOp Mode)
838 expr.Emit (ec);
841 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
843 return DoResolve (ec);
846 public override Expression DoResolve (EmitContext ec)
848 expr = expr.Resolve (ec);
849 if (expr == null)
850 return null;
852 if (!ec.InUnsafe)
853 UnsafeError (loc);
855 if (!expr.Type.IsPointer) {
856 Error (193, "The * or -> operator must be applied to a pointer");
857 return null;
860 if (expr.Type == TypeManager.void_ptr_type) {
861 Error (242, "The operation in question is undefined on void pointers");
862 return null;
865 type = TypeManager.GetElementType (expr.Type);
866 eclass = ExprClass.Variable;
867 return this;
870 public bool IsFixed {
871 get { return true; }
874 public override string ToString ()
876 return "*(" + expr + ")";
880 /// <summary>
881 /// Unary Mutator expressions (pre and post ++ and --)
882 /// </summary>
884 /// <remarks>
885 /// UnaryMutator implements ++ and -- expressions. It derives from
886 /// ExpressionStatement becuase the pre/post increment/decrement
887 /// operators can be used in a statement context.
889 /// FIXME: Idea, we could split this up in two classes, one simpler
890 /// for the common case, and one with the extra fields for more complex
891 /// classes (indexers require temporary access; overloaded require method)
893 /// </remarks>
894 public class UnaryMutator : ExpressionStatement {
895 [Flags]
896 public enum Mode : byte {
897 IsIncrement = 0,
898 IsDecrement = 1,
899 IsPre = 0,
900 IsPost = 2,
902 PreIncrement = 0,
903 PreDecrement = IsDecrement,
904 PostIncrement = IsPost,
905 PostDecrement = IsPost | IsDecrement
908 Mode mode;
909 bool is_expr = false;
910 bool recurse = false;
912 Expression expr;
915 // This is expensive for the simplest case.
917 UserOperatorCall method;
919 public UnaryMutator (Mode m, Expression e)
921 mode = m;
922 loc = e.Location;
923 expr = e;
926 static string OperName (Mode mode)
928 return (mode == Mode.PreIncrement || mode == Mode.PostIncrement) ?
929 "++" : "--";
932 /// <summary>
933 /// Returns whether an object of type `t' can be incremented
934 /// or decremented with add/sub (ie, basically whether we can
935 /// use pre-post incr-decr operations on it, but it is not a
936 /// System.Decimal, which we require operator overloading to catch)
937 /// </summary>
938 static bool IsIncrementableNumber (Type t)
940 return (t == TypeManager.sbyte_type) ||
941 (t == TypeManager.byte_type) ||
942 (t == TypeManager.short_type) ||
943 (t == TypeManager.ushort_type) ||
944 (t == TypeManager.int32_type) ||
945 (t == TypeManager.uint32_type) ||
946 (t == TypeManager.int64_type) ||
947 (t == TypeManager.uint64_type) ||
948 (t == TypeManager.char_type) ||
949 (TypeManager.IsSubclassOf (t, TypeManager.enum_type)) ||
950 (t == TypeManager.float_type) ||
951 (t == TypeManager.double_type) ||
952 (t.IsPointer && t != TypeManager.void_ptr_type);
955 Expression ResolveOperator (EmitContext ec)
957 type = expr.Type;
960 // The operand of the prefix/postfix increment decrement operators
961 // should be an expression that is classified as a variable,
962 // a property access or an indexer access
964 if (expr.eclass == ExprClass.Variable || expr.eclass == ExprClass.IndexerAccess || expr.eclass == ExprClass.PropertyAccess) {
965 expr = expr.ResolveLValue (ec, expr);
966 } else {
967 Report.Error (1059, loc, "The operand of an increment or decrement operator must be a variable, property or indexer");
971 // Step 1: Perform Operator Overload location
973 MethodGroupExpr mg;
974 string op_name;
976 if (mode == Mode.PreIncrement || mode == Mode.PostIncrement)
977 op_name = Operator.GetMetadataName (Operator.OpType.Increment);
978 else
979 op_name = Operator.GetMetadataName (Operator.OpType.Decrement);
981 mg = MemberLookup (ec.ContainerType, type, op_name, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
983 if (mg != null) {
984 Arguments args = new Arguments (1);
985 args.Add (new Argument (expr));
986 mg = mg.OverloadResolve (ec, ref args, false, loc);
987 if (mg == null)
988 return null;
990 method = new UserOperatorCall (mg, args, null, loc);
991 Convert.ImplicitConversionRequired (ec, method, type, loc);
992 return this;
995 if (!IsIncrementableNumber (type)) {
996 Error (187, "No such operator '" + OperName (mode) + "' defined for type '" +
997 TypeManager.CSharpName (type) + "'");
998 return null;
1001 return this;
1004 public override Expression CreateExpressionTree (EmitContext ec)
1006 return new SimpleAssign (this, this).CreateExpressionTree (ec);
1009 public override Expression DoResolve (EmitContext ec)
1011 expr = expr.Resolve (ec);
1013 if (expr == null)
1014 return null;
1016 eclass = ExprClass.Value;
1018 if (TypeManager.IsNullableType (expr.Type))
1019 return new Nullable.LiftedUnaryMutator (mode, expr, loc).Resolve (ec);
1021 return ResolveOperator (ec);
1025 // Loads the proper "1" into the stack based on the type, then it emits the
1026 // opcode for the operation requested
1028 void LoadOneAndEmitOp (EmitContext ec, Type t)
1031 // Measure if getting the typecode and using that is more/less efficient
1032 // that comparing types. t.GetTypeCode() is an internal call.
1034 ILGenerator ig = ec.ig;
1036 if (t == TypeManager.uint64_type || t == TypeManager.int64_type)
1037 LongConstant.EmitLong (ig, 1);
1038 else if (t == TypeManager.double_type)
1039 ig.Emit (OpCodes.Ldc_R8, 1.0);
1040 else if (t == TypeManager.float_type)
1041 ig.Emit (OpCodes.Ldc_R4, 1.0F);
1042 else if (t.IsPointer){
1043 Type et = TypeManager.GetElementType (t);
1044 int n = GetTypeSize (et);
1046 if (n == 0)
1047 ig.Emit (OpCodes.Sizeof, et);
1048 else {
1049 IntConstant.EmitInt (ig, n);
1050 ig.Emit (OpCodes.Conv_I);
1052 } else
1053 ig.Emit (OpCodes.Ldc_I4_1);
1056 // Now emit the operation
1059 Binary.Operator op = (mode & Mode.IsDecrement) != 0 ? Binary.Operator.Subtraction : Binary.Operator.Addition;
1060 Binary.EmitOperatorOpcode (ec, op, t);
1062 if (t == TypeManager.sbyte_type){
1063 if (ec.CheckState)
1064 ig.Emit (OpCodes.Conv_Ovf_I1);
1065 else
1066 ig.Emit (OpCodes.Conv_I1);
1067 } else if (t == TypeManager.byte_type){
1068 if (ec.CheckState)
1069 ig.Emit (OpCodes.Conv_Ovf_U1);
1070 else
1071 ig.Emit (OpCodes.Conv_U1);
1072 } else if (t == TypeManager.short_type){
1073 if (ec.CheckState)
1074 ig.Emit (OpCodes.Conv_Ovf_I2);
1075 else
1076 ig.Emit (OpCodes.Conv_I2);
1077 } else if (t == TypeManager.ushort_type || t == TypeManager.char_type){
1078 if (ec.CheckState)
1079 ig.Emit (OpCodes.Conv_Ovf_U2);
1080 else
1081 ig.Emit (OpCodes.Conv_U2);
1086 void EmitCode (EmitContext ec, bool is_expr)
1088 recurse = true;
1089 this.is_expr = is_expr;
1090 ((IAssignMethod) expr).EmitAssign (ec, this, is_expr && (mode == Mode.PreIncrement || mode == Mode.PreDecrement), true);
1093 public override void Emit (EmitContext ec)
1096 // We use recurse to allow ourselfs to be the source
1097 // of an assignment. This little hack prevents us from
1098 // having to allocate another expression
1100 if (recurse) {
1101 ((IAssignMethod) expr).Emit (ec, is_expr && (mode == Mode.PostIncrement || mode == Mode.PostDecrement));
1102 if (method == null)
1103 LoadOneAndEmitOp (ec, expr.Type);
1104 else
1105 ec.ig.Emit (OpCodes.Call, (MethodInfo)method.Method);
1106 recurse = false;
1107 return;
1110 EmitCode (ec, true);
1113 public override void EmitStatement (EmitContext ec)
1115 EmitCode (ec, false);
1118 protected override void CloneTo (CloneContext clonectx, Expression t)
1120 UnaryMutator target = (UnaryMutator) t;
1122 target.expr = expr.Clone (clonectx);
1126 /// <summary>
1127 /// Base class for the `Is' and `As' classes.
1128 /// </summary>
1130 /// <remarks>
1131 /// FIXME: Split this in two, and we get to save the `Operator' Oper
1132 /// size.
1133 /// </remarks>
1134 public abstract class Probe : Expression {
1135 public Expression ProbeType;
1136 protected Expression expr;
1137 protected TypeExpr probe_type_expr;
1139 public Probe (Expression expr, Expression probe_type, Location l)
1141 ProbeType = probe_type;
1142 loc = l;
1143 this.expr = expr;
1146 public Expression Expr {
1147 get {
1148 return expr;
1152 public override Expression DoResolve (EmitContext ec)
1154 probe_type_expr = ProbeType.ResolveAsTypeTerminal (ec, false);
1155 if (probe_type_expr == null)
1156 return null;
1158 expr = expr.Resolve (ec);
1159 if (expr == null)
1160 return null;
1162 if ((probe_type_expr.Type.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
1163 Report.Error (-244, loc, "The `{0}' operator cannot be applied to an operand of a static type",
1164 OperatorName);
1167 if (expr.Type.IsPointer || probe_type_expr.Type.IsPointer) {
1168 Report.Error (244, loc, "The `{0}' operator cannot be applied to an operand of pointer type",
1169 OperatorName);
1170 return null;
1173 if (expr.Type == InternalType.AnonymousMethod) {
1174 Report.Error (837, loc, "The `{0}' operator cannot be applied to a lambda expression or anonymous method",
1175 OperatorName);
1176 return null;
1179 return this;
1182 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1184 expr.MutateHoistedGenericType (storey);
1185 probe_type_expr.MutateHoistedGenericType (storey);
1188 protected abstract string OperatorName { get; }
1190 protected override void CloneTo (CloneContext clonectx, Expression t)
1192 Probe target = (Probe) t;
1194 target.expr = expr.Clone (clonectx);
1195 target.ProbeType = ProbeType.Clone (clonectx);
1200 /// <summary>
1201 /// Implementation of the `is' operator.
1202 /// </summary>
1203 public class Is : Probe {
1204 Nullable.Unwrap expr_unwrap;
1206 public Is (Expression expr, Expression probe_type, Location l)
1207 : base (expr, probe_type, l)
1211 public override Expression CreateExpressionTree (EmitContext ec)
1213 Arguments args = Arguments.CreateForExpressionTree (ec, null,
1214 expr.CreateExpressionTree (ec),
1215 new TypeOf (probe_type_expr, loc));
1217 return CreateExpressionFactoryCall ("TypeIs", args);
1220 public override void Emit (EmitContext ec)
1222 ILGenerator ig = ec.ig;
1223 if (expr_unwrap != null) {
1224 expr_unwrap.EmitCheck (ec);
1225 return;
1228 expr.Emit (ec);
1229 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1230 ig.Emit (OpCodes.Ldnull);
1231 ig.Emit (OpCodes.Cgt_Un);
1234 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
1236 ILGenerator ig = ec.ig;
1237 if (expr_unwrap != null) {
1238 expr_unwrap.EmitCheck (ec);
1239 } else {
1240 expr.Emit (ec);
1241 ig.Emit (OpCodes.Isinst, probe_type_expr.Type);
1243 ig.Emit (on_true ? OpCodes.Brtrue : OpCodes.Brfalse, target);
1246 Expression CreateConstantResult (bool result)
1248 if (result)
1249 Report.Warning (183, 1, loc, "The given expression is always of the provided (`{0}') type",
1250 TypeManager.CSharpName (probe_type_expr.Type));
1251 else
1252 Report.Warning (184, 1, loc, "The given expression is never of the provided (`{0}') type",
1253 TypeManager.CSharpName (probe_type_expr.Type));
1255 return ReducedExpression.Create (new BoolConstant (result, loc), this);
1258 public override Expression DoResolve (EmitContext ec)
1260 if (base.DoResolve (ec) == null)
1261 return null;
1263 Type d = expr.Type;
1264 bool d_is_nullable = false;
1267 // If E is a method group or the null literal, or if the type of E is a reference
1268 // type or a nullable type and the value of E is null, the result is false
1270 if (expr.IsNull || expr.eclass == ExprClass.MethodGroup)
1271 return CreateConstantResult (false);
1273 if (TypeManager.IsNullableType (d) && !TypeManager.ContainsGenericParameters (d)) {
1274 d = TypeManager.TypeToCoreType (TypeManager.GetTypeArguments (d) [0]);
1275 d_is_nullable = true;
1278 type = TypeManager.bool_type;
1279 eclass = ExprClass.Value;
1280 Type t = probe_type_expr.Type;
1281 bool t_is_nullable = false;
1282 if (TypeManager.IsNullableType (t) && !TypeManager.ContainsGenericParameters (t)) {
1283 t = TypeManager.TypeToCoreType (TypeManager.GetTypeArguments (t) [0]);
1284 t_is_nullable = true;
1287 if (TypeManager.IsStruct (t)) {
1288 if (d == t) {
1290 // D and T are the same value types but D can be null
1292 if (d_is_nullable && !t_is_nullable) {
1293 expr_unwrap = Nullable.Unwrap.Create (expr, false);
1294 return this;
1298 // The result is true if D and T are the same value types
1300 return CreateConstantResult (true);
1303 if (TypeManager.IsGenericParameter (d))
1304 return ResolveGenericParameter (t, d);
1307 // An unboxing conversion exists
1309 if (Convert.ExplicitReferenceConversionExists (d, t))
1310 return this;
1311 } else {
1312 if (TypeManager.IsGenericParameter (t))
1313 return ResolveGenericParameter (d, t);
1315 if (TypeManager.IsStruct (d)) {
1316 bool temp;
1317 if (Convert.ImplicitBoxingConversionExists (expr, t, out temp))
1318 return CreateConstantResult (true);
1319 } else {
1320 if (TypeManager.IsGenericParameter (d))
1321 return ResolveGenericParameter (t, d);
1323 if (TypeManager.ContainsGenericParameters (d))
1324 return this;
1326 if (Convert.ImplicitReferenceConversionExists (expr, t) ||
1327 Convert.ExplicitReferenceConversionExists (d, t)) {
1328 return this;
1333 return CreateConstantResult (false);
1336 Expression ResolveGenericParameter (Type d, Type t)
1338 GenericConstraints constraints = TypeManager.GetTypeParameterConstraints (t);
1339 if (constraints != null) {
1340 if (constraints.IsReferenceType && TypeManager.IsStruct (d))
1341 return CreateConstantResult (false);
1343 if (constraints.IsValueType && !TypeManager.IsStruct (d))
1344 return CreateConstantResult (TypeManager.IsEqual (d, t));
1347 if (TypeManager.IsGenericParameter (expr.Type))
1348 expr = new BoxedCast (expr, d);
1350 return this;
1353 protected override string OperatorName {
1354 get { return "is"; }
1358 /// <summary>
1359 /// Implementation of the `as' operator.
1360 /// </summary>
1361 public class As : Probe {
1362 bool do_isinst;
1363 Expression resolved_type;
1365 public As (Expression expr, Expression probe_type, Location l)
1366 : base (expr, probe_type, l)
1370 public override Expression CreateExpressionTree (EmitContext ec)
1372 Arguments args = Arguments.CreateForExpressionTree (ec, null,
1373 expr.CreateExpressionTree (ec),
1374 new TypeOf (probe_type_expr, loc));
1376 return CreateExpressionFactoryCall ("TypeAs", args);
1379 public override void Emit (EmitContext ec)
1381 ILGenerator ig = ec.ig;
1383 expr.Emit (ec);
1385 if (do_isinst)
1386 ig.Emit (OpCodes.Isinst, type);
1388 #if GMCS_SOURCE
1389 if (TypeManager.IsGenericParameter (type) || TypeManager.IsNullableType (type))
1390 ig.Emit (OpCodes.Unbox_Any, type);
1391 #endif
1394 public override Expression DoResolve (EmitContext ec)
1396 // Because expr is modified
1397 if (eclass != ExprClass.Invalid)
1398 return this;
1400 if (resolved_type == null) {
1401 resolved_type = base.DoResolve (ec);
1403 if (resolved_type == null)
1404 return null;
1407 type = probe_type_expr.Type;
1408 eclass = ExprClass.Value;
1409 Type etype = expr.Type;
1411 if (!TypeManager.IsReferenceType (type) && !TypeManager.IsNullableType (type)) {
1412 if (probe_type_expr is TypeParameterExpr) {
1413 Report.Error (413, loc,
1414 "The `as' operator cannot be used with a non-reference type parameter `{0}'. Consider adding `class' or a reference type constraint",
1415 probe_type_expr.GetSignatureForError ());
1416 } else {
1417 Report.Error (77, loc,
1418 "The `as' operator cannot be used with a non-nullable value type `{0}'",
1419 TypeManager.CSharpName (type));
1421 return null;
1424 if (expr.IsNull && TypeManager.IsNullableType (type)) {
1425 return Nullable.LiftedNull.CreateFromExpression (this);
1428 Expression e = Convert.ImplicitConversion (ec, expr, type, loc);
1429 if (e != null){
1430 expr = e;
1431 do_isinst = false;
1432 return this;
1435 if (Convert.ExplicitReferenceConversionExists (etype, type)){
1436 if (TypeManager.IsGenericParameter (etype))
1437 expr = new BoxedCast (expr, etype);
1439 do_isinst = true;
1440 return this;
1443 if (TypeManager.ContainsGenericParameters (etype) ||
1444 TypeManager.ContainsGenericParameters (type)) {
1445 expr = new BoxedCast (expr, etype);
1446 do_isinst = true;
1447 return this;
1450 Report.Error (39, loc, "Cannot convert type `{0}' to `{1}' via a built-in conversion",
1451 TypeManager.CSharpName (etype), TypeManager.CSharpName (type));
1453 return null;
1456 protected override string OperatorName {
1457 get { return "as"; }
1460 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1462 type = storey.MutateType (type);
1463 base.MutateHoistedGenericType (storey);
1466 public override bool GetAttributableValue (EmitContext ec, Type value_type, out object value)
1468 return expr.GetAttributableValue (ec, value_type, out value);
1472 /// <summary>
1473 /// This represents a typecast in the source language.
1475 /// FIXME: Cast expressions have an unusual set of parsing
1476 /// rules, we need to figure those out.
1477 /// </summary>
1478 public class Cast : Expression {
1479 Expression target_type;
1480 Expression expr;
1482 public Cast (Expression cast_type, Expression expr)
1483 : this (cast_type, expr, cast_type.Location)
1487 public Cast (Expression cast_type, Expression expr, Location loc)
1489 this.target_type = cast_type;
1490 this.expr = expr;
1491 this.loc = loc;
1494 public Expression TargetType {
1495 get { return target_type; }
1498 public Expression Expr {
1499 get { return expr; }
1502 public override Expression CreateExpressionTree (EmitContext ec)
1504 throw new NotSupportedException ("ET");
1507 public override Expression DoResolve (EmitContext ec)
1509 expr = expr.Resolve (ec);
1510 if (expr == null)
1511 return null;
1513 TypeExpr target = target_type.ResolveAsTypeTerminal (ec, false);
1514 if (target == null)
1515 return null;
1517 type = target.Type;
1519 if (type.IsAbstract && type.IsSealed) {
1520 Report.Error (716, loc, "Cannot convert to static type `{0}'", TypeManager.CSharpName (type));
1521 return null;
1524 eclass = ExprClass.Value;
1526 Constant c = expr as Constant;
1527 if (c != null) {
1528 c = c.TryReduce (ec, type, loc);
1529 if (c != null)
1530 return c;
1533 if (type.IsPointer && !ec.InUnsafe) {
1534 UnsafeError (loc);
1535 return null;
1537 expr = Convert.ExplicitConversion (ec, expr, type, loc);
1538 return expr;
1541 public override void Emit (EmitContext ec)
1543 throw new Exception ("Should not happen");
1546 protected override void CloneTo (CloneContext clonectx, Expression t)
1548 Cast target = (Cast) t;
1550 target.target_type = target_type.Clone (clonectx);
1551 target.expr = expr.Clone (clonectx);
1556 // C# 2.0 Default value expression
1558 public class DefaultValueExpression : Expression
1560 sealed class DefaultValueNullLiteral : NullLiteral
1562 public DefaultValueNullLiteral (DefaultValueExpression expr)
1563 : base (expr.type, expr.loc)
1567 public override void Error_ValueCannotBeConverted (EmitContext ec, Location loc, Type t, bool expl)
1569 Error_ValueCannotBeConvertedCore (ec, loc, t, expl);
1574 Expression expr;
1576 public DefaultValueExpression (Expression expr, Location loc)
1578 this.expr = expr;
1579 this.loc = loc;
1582 public override Expression CreateExpressionTree (EmitContext ec)
1584 Arguments args = new Arguments (2);
1585 args.Add (new Argument (this));
1586 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
1587 return CreateExpressionFactoryCall ("Constant", args);
1590 public override Expression DoResolve (EmitContext ec)
1592 TypeExpr texpr = expr.ResolveAsTypeTerminal (ec, false);
1593 if (texpr == null)
1594 return null;
1596 type = texpr.Type;
1598 if ((type.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
1599 Report.Error (-244, loc, "The `default value' operator cannot be applied to an operand of a static type");
1602 if (type.IsPointer)
1603 return new NullLiteral (Location).ConvertImplicitly (type);
1605 if (TypeManager.IsReferenceType (type))
1606 return new DefaultValueNullLiteral (this);
1608 Constant c = New.Constantify (type);
1609 if (c != null)
1610 return c;
1612 eclass = ExprClass.Variable;
1613 return this;
1616 public override void Emit (EmitContext ec)
1618 LocalTemporary temp_storage = new LocalTemporary(type);
1620 temp_storage.AddressOf(ec, AddressOp.LoadStore);
1621 ec.ig.Emit(OpCodes.Initobj, type);
1622 temp_storage.Emit(ec);
1625 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
1627 type = storey.MutateType (type);
1630 protected override void CloneTo (CloneContext clonectx, Expression t)
1632 DefaultValueExpression target = (DefaultValueExpression) t;
1634 target.expr = expr.Clone (clonectx);
1638 /// <summary>
1639 /// Binary operators
1640 /// </summary>
1641 public class Binary : Expression, IDynamicBinder
1644 protected class PredefinedOperator {
1645 protected readonly Type left;
1646 protected readonly Type right;
1647 public readonly Operator OperatorsMask;
1648 public Type ReturnType;
1650 public PredefinedOperator (Type ltype, Type rtype, Operator op_mask)
1651 : this (ltype, rtype, op_mask, ltype)
1655 public PredefinedOperator (Type type, Operator op_mask, Type return_type)
1656 : this (type, type, op_mask, return_type)
1660 public PredefinedOperator (Type type, Operator op_mask)
1661 : this (type, type, op_mask, type)
1665 public PredefinedOperator (Type ltype, Type rtype, Operator op_mask, Type return_type)
1667 if ((op_mask & Operator.ValuesOnlyMask) != 0)
1668 throw new InternalErrorException ("Only masked values can be used");
1670 this.left = ltype;
1671 this.right = rtype;
1672 this.OperatorsMask = op_mask;
1673 this.ReturnType = return_type;
1676 public virtual Expression ConvertResult (EmitContext ec, Binary b)
1678 b.type = ReturnType;
1680 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1681 b.right = Convert.ImplicitConversion (ec, b.right, right, b.right.Location);
1684 // A user operators does not support multiple user conversions, but decimal type
1685 // is considered to be predefined type therefore we apply predefined operators rules
1686 // and then look for decimal user-operator implementation
1688 if (left == TypeManager.decimal_type)
1689 return b.ResolveUserOperator (ec, b.left.Type, b.right.Type);
1691 return b;
1694 public bool IsPrimitiveApplicable (Type ltype, Type rtype)
1697 // We are dealing with primitive types only
1699 return left == ltype && ltype == rtype;
1702 public virtual bool IsApplicable (EmitContext ec, Expression lexpr, Expression rexpr)
1704 if (TypeManager.IsEqual (left, lexpr.Type) &&
1705 TypeManager.IsEqual (right, rexpr.Type))
1706 return true;
1708 return Convert.ImplicitConversionExists (ec, lexpr, left) &&
1709 Convert.ImplicitConversionExists (ec, rexpr, right);
1712 public PredefinedOperator ResolveBetterOperator (EmitContext ec, PredefinedOperator best_operator)
1714 int result = 0;
1715 if (left != null && best_operator.left != null) {
1716 result = MethodGroupExpr.BetterTypeConversion (ec, best_operator.left, left);
1720 // When second arguments are same as the first one, the result is same
1722 if (right != null && (left != right || best_operator.left != best_operator.right)) {
1723 result |= MethodGroupExpr.BetterTypeConversion (ec, best_operator.right, right);
1726 if (result == 0 || result > 2)
1727 return null;
1729 return result == 1 ? best_operator : this;
1733 class PredefinedStringOperator : PredefinedOperator {
1734 public PredefinedStringOperator (Type type, Operator op_mask)
1735 : base (type, op_mask, type)
1737 ReturnType = TypeManager.string_type;
1740 public PredefinedStringOperator (Type ltype, Type rtype, Operator op_mask)
1741 : base (ltype, rtype, op_mask)
1743 ReturnType = TypeManager.string_type;
1746 public override Expression ConvertResult (EmitContext ec, Binary b)
1749 // Use original expression for nullable arguments
1751 Nullable.Unwrap unwrap = b.left as Nullable.Unwrap;
1752 if (unwrap != null)
1753 b.left = unwrap.Original;
1755 unwrap = b.right as Nullable.Unwrap;
1756 if (unwrap != null)
1757 b.right = unwrap.Original;
1759 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1760 b.right = Convert.ImplicitConversion (ec, b.right, right, b.right.Location);
1763 // Start a new concat expression using converted expression
1765 return new StringConcat (ec, b.loc, b.left, b.right).Resolve (ec);
1769 class PredefinedShiftOperator : PredefinedOperator {
1770 public PredefinedShiftOperator (Type ltype, Operator op_mask) :
1771 base (ltype, TypeManager.int32_type, op_mask)
1775 public override Expression ConvertResult (EmitContext ec, Binary b)
1777 b.left = Convert.ImplicitConversion (ec, b.left, left, b.left.Location);
1779 Expression expr_tree_expr = EmptyCast.Create (b.right, TypeManager.int32_type);
1781 int right_mask = left == TypeManager.int32_type || left == TypeManager.uint32_type ? 0x1f : 0x3f;
1784 // b = b.left >> b.right & (0x1f|0x3f)
1786 b.right = new Binary (Operator.BitwiseAnd,
1787 b.right, new IntConstant (right_mask, b.right.Location)).Resolve (ec);
1790 // Expression tree representation does not use & mask
1792 b.right = ReducedExpression.Create (b.right, expr_tree_expr).Resolve (ec);
1793 b.type = ReturnType;
1794 return b;
1798 class PredefinedPointerOperator : PredefinedOperator {
1799 public PredefinedPointerOperator (Type ltype, Type rtype, Operator op_mask)
1800 : base (ltype, rtype, op_mask)
1804 public PredefinedPointerOperator (Type ltype, Type rtype, Operator op_mask, Type retType)
1805 : base (ltype, rtype, op_mask, retType)
1809 public PredefinedPointerOperator (Type type, Operator op_mask, Type return_type)
1810 : base (type, op_mask, return_type)
1814 public override bool IsApplicable (EmitContext ec, Expression lexpr, Expression rexpr)
1816 if (left == null) {
1817 if (!lexpr.Type.IsPointer)
1818 return false;
1819 } else {
1820 if (!Convert.ImplicitConversionExists (ec, lexpr, left))
1821 return false;
1824 if (right == null) {
1825 if (!rexpr.Type.IsPointer)
1826 return false;
1827 } else {
1828 if (!Convert.ImplicitConversionExists (ec, rexpr, right))
1829 return false;
1832 return true;
1835 public override Expression ConvertResult (EmitContext ec, Binary b)
1837 if (left != null) {
1838 b.left = EmptyCast.Create (b.left, left);
1839 } else if (right != null) {
1840 b.right = EmptyCast.Create (b.right, right);
1843 Type r_type = ReturnType;
1844 Expression left_arg, right_arg;
1845 if (r_type == null) {
1846 if (left == null) {
1847 left_arg = b.left;
1848 right_arg = b.right;
1849 r_type = b.left.Type;
1850 } else {
1851 left_arg = b.right;
1852 right_arg = b.left;
1853 r_type = b.right.Type;
1855 } else {
1856 left_arg = b.left;
1857 right_arg = b.right;
1860 return new PointerArithmetic (b.oper, left_arg, right_arg, r_type, b.loc).Resolve (ec);
1864 [Flags]
1865 public enum Operator {
1866 Multiply = 0 | ArithmeticMask,
1867 Division = 1 | ArithmeticMask,
1868 Modulus = 2 | ArithmeticMask,
1869 Addition = 3 | ArithmeticMask | AdditionMask,
1870 Subtraction = 4 | ArithmeticMask | SubtractionMask,
1872 LeftShift = 5 | ShiftMask,
1873 RightShift = 6 | ShiftMask,
1875 LessThan = 7 | ComparisonMask | RelationalMask,
1876 GreaterThan = 8 | ComparisonMask | RelationalMask,
1877 LessThanOrEqual = 9 | ComparisonMask | RelationalMask,
1878 GreaterThanOrEqual = 10 | ComparisonMask | RelationalMask,
1879 Equality = 11 | ComparisonMask | EqualityMask,
1880 Inequality = 12 | ComparisonMask | EqualityMask,
1882 BitwiseAnd = 13 | BitwiseMask,
1883 ExclusiveOr = 14 | BitwiseMask,
1884 BitwiseOr = 15 | BitwiseMask,
1886 LogicalAnd = 16 | LogicalMask,
1887 LogicalOr = 17 | LogicalMask,
1890 // Operator masks
1892 ValuesOnlyMask = ArithmeticMask - 1,
1893 ArithmeticMask = 1 << 5,
1894 ShiftMask = 1 << 6,
1895 ComparisonMask = 1 << 7,
1896 EqualityMask = 1 << 8,
1897 BitwiseMask = 1 << 9,
1898 LogicalMask = 1 << 10,
1899 AdditionMask = 1 << 11,
1900 SubtractionMask = 1 << 12,
1901 RelationalMask = 1 << 13
1904 readonly Operator oper;
1905 protected Expression left, right;
1906 readonly bool is_compound;
1907 Expression enum_conversion;
1909 static PredefinedOperator [] standard_operators;
1910 static PredefinedOperator [] pointer_operators;
1912 public Binary (Operator oper, Expression left, Expression right, bool isCompound)
1913 : this (oper, left, right)
1915 this.is_compound = isCompound;
1918 public Binary (Operator oper, Expression left, Expression right)
1920 this.oper = oper;
1921 this.left = left;
1922 this.right = right;
1923 this.loc = left.Location;
1926 public Operator Oper {
1927 get {
1928 return oper;
1932 /// <summary>
1933 /// Returns a stringified representation of the Operator
1934 /// </summary>
1935 string OperName (Operator oper)
1937 string s;
1938 switch (oper){
1939 case Operator.Multiply:
1940 s = "*";
1941 break;
1942 case Operator.Division:
1943 s = "/";
1944 break;
1945 case Operator.Modulus:
1946 s = "%";
1947 break;
1948 case Operator.Addition:
1949 s = "+";
1950 break;
1951 case Operator.Subtraction:
1952 s = "-";
1953 break;
1954 case Operator.LeftShift:
1955 s = "<<";
1956 break;
1957 case Operator.RightShift:
1958 s = ">>";
1959 break;
1960 case Operator.LessThan:
1961 s = "<";
1962 break;
1963 case Operator.GreaterThan:
1964 s = ">";
1965 break;
1966 case Operator.LessThanOrEqual:
1967 s = "<=";
1968 break;
1969 case Operator.GreaterThanOrEqual:
1970 s = ">=";
1971 break;
1972 case Operator.Equality:
1973 s = "==";
1974 break;
1975 case Operator.Inequality:
1976 s = "!=";
1977 break;
1978 case Operator.BitwiseAnd:
1979 s = "&";
1980 break;
1981 case Operator.BitwiseOr:
1982 s = "|";
1983 break;
1984 case Operator.ExclusiveOr:
1985 s = "^";
1986 break;
1987 case Operator.LogicalOr:
1988 s = "||";
1989 break;
1990 case Operator.LogicalAnd:
1991 s = "&&";
1992 break;
1993 default:
1994 s = oper.ToString ();
1995 break;
1998 if (is_compound)
1999 return s + "=";
2001 return s;
2004 public static void Error_OperatorCannotBeApplied (Expression left, Expression right, Operator oper, Location loc)
2006 new Binary (oper, left, right).Error_OperatorCannotBeApplied (left, right);
2009 public static void Error_OperatorCannotBeApplied (Expression left, Expression right, string oper, Location loc)
2011 string l, r;
2012 l = TypeManager.CSharpName (left.Type);
2013 r = TypeManager.CSharpName (right.Type);
2015 Report.Error (19, loc, "Operator `{0}' cannot be applied to operands of type `{1}' and `{2}'",
2016 oper, l, r);
2019 protected void Error_OperatorCannotBeApplied (Expression left, Expression right)
2021 Error_OperatorCannotBeApplied (left, right, OperName (oper), loc);
2025 // Converts operator to System.Linq.Expressions.ExpressionType enum name
2027 string GetOperatorExpressionTypeName ()
2029 switch (oper) {
2030 case Operator.Addition:
2031 return is_compound ? "AddAssign" : "Add";
2032 case Operator.Equality:
2033 return "Equal";
2034 case Operator.Multiply:
2035 return is_compound ? "MultiplyAssign" : "Multiply";
2036 default:
2037 throw new NotImplementedException ("Unknown expression type operator " + oper.ToString ());
2041 static string GetOperatorMetadataName (Operator op)
2043 CSharp.Operator.OpType op_type;
2044 switch (op) {
2045 case Operator.Addition:
2046 op_type = CSharp.Operator.OpType.Addition; break;
2047 case Operator.BitwiseAnd:
2048 op_type = CSharp.Operator.OpType.BitwiseAnd; break;
2049 case Operator.BitwiseOr:
2050 op_type = CSharp.Operator.OpType.BitwiseOr; break;
2051 case Operator.Division:
2052 op_type = CSharp.Operator.OpType.Division; break;
2053 case Operator.Equality:
2054 op_type = CSharp.Operator.OpType.Equality; break;
2055 case Operator.ExclusiveOr:
2056 op_type = CSharp.Operator.OpType.ExclusiveOr; break;
2057 case Operator.GreaterThan:
2058 op_type = CSharp.Operator.OpType.GreaterThan; break;
2059 case Operator.GreaterThanOrEqual:
2060 op_type = CSharp.Operator.OpType.GreaterThanOrEqual; break;
2061 case Operator.Inequality:
2062 op_type = CSharp.Operator.OpType.Inequality; break;
2063 case Operator.LeftShift:
2064 op_type = CSharp.Operator.OpType.LeftShift; break;
2065 case Operator.LessThan:
2066 op_type = CSharp.Operator.OpType.LessThan; break;
2067 case Operator.LessThanOrEqual:
2068 op_type = CSharp.Operator.OpType.LessThanOrEqual; break;
2069 case Operator.Modulus:
2070 op_type = CSharp.Operator.OpType.Modulus; break;
2071 case Operator.Multiply:
2072 op_type = CSharp.Operator.OpType.Multiply; break;
2073 case Operator.RightShift:
2074 op_type = CSharp.Operator.OpType.RightShift; break;
2075 case Operator.Subtraction:
2076 op_type = CSharp.Operator.OpType.Subtraction; break;
2077 default:
2078 throw new InternalErrorException (op.ToString ());
2081 return CSharp.Operator.GetMetadataName (op_type);
2084 public static void EmitOperatorOpcode (EmitContext ec, Operator oper, Type l)
2086 OpCode opcode;
2087 ILGenerator ig = ec.ig;
2089 switch (oper){
2090 case Operator.Multiply:
2091 if (ec.CheckState){
2092 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2093 opcode = OpCodes.Mul_Ovf;
2094 else if (!IsFloat (l))
2095 opcode = OpCodes.Mul_Ovf_Un;
2096 else
2097 opcode = OpCodes.Mul;
2098 } else
2099 opcode = OpCodes.Mul;
2101 break;
2103 case Operator.Division:
2104 if (IsUnsigned (l))
2105 opcode = OpCodes.Div_Un;
2106 else
2107 opcode = OpCodes.Div;
2108 break;
2110 case Operator.Modulus:
2111 if (IsUnsigned (l))
2112 opcode = OpCodes.Rem_Un;
2113 else
2114 opcode = OpCodes.Rem;
2115 break;
2117 case Operator.Addition:
2118 if (ec.CheckState){
2119 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2120 opcode = OpCodes.Add_Ovf;
2121 else if (!IsFloat (l))
2122 opcode = OpCodes.Add_Ovf_Un;
2123 else
2124 opcode = OpCodes.Add;
2125 } else
2126 opcode = OpCodes.Add;
2127 break;
2129 case Operator.Subtraction:
2130 if (ec.CheckState){
2131 if (l == TypeManager.int32_type || l == TypeManager.int64_type)
2132 opcode = OpCodes.Sub_Ovf;
2133 else if (!IsFloat (l))
2134 opcode = OpCodes.Sub_Ovf_Un;
2135 else
2136 opcode = OpCodes.Sub;
2137 } else
2138 opcode = OpCodes.Sub;
2139 break;
2141 case Operator.RightShift:
2142 if (IsUnsigned (l))
2143 opcode = OpCodes.Shr_Un;
2144 else
2145 opcode = OpCodes.Shr;
2146 break;
2148 case Operator.LeftShift:
2149 opcode = OpCodes.Shl;
2150 break;
2152 case Operator.Equality:
2153 opcode = OpCodes.Ceq;
2154 break;
2156 case Operator.Inequality:
2157 ig.Emit (OpCodes.Ceq);
2158 ig.Emit (OpCodes.Ldc_I4_0);
2160 opcode = OpCodes.Ceq;
2161 break;
2163 case Operator.LessThan:
2164 if (IsUnsigned (l))
2165 opcode = OpCodes.Clt_Un;
2166 else
2167 opcode = OpCodes.Clt;
2168 break;
2170 case Operator.GreaterThan:
2171 if (IsUnsigned (l))
2172 opcode = OpCodes.Cgt_Un;
2173 else
2174 opcode = OpCodes.Cgt;
2175 break;
2177 case Operator.LessThanOrEqual:
2178 if (IsUnsigned (l) || IsFloat (l))
2179 ig.Emit (OpCodes.Cgt_Un);
2180 else
2181 ig.Emit (OpCodes.Cgt);
2182 ig.Emit (OpCodes.Ldc_I4_0);
2184 opcode = OpCodes.Ceq;
2185 break;
2187 case Operator.GreaterThanOrEqual:
2188 if (IsUnsigned (l) || IsFloat (l))
2189 ig.Emit (OpCodes.Clt_Un);
2190 else
2191 ig.Emit (OpCodes.Clt);
2193 ig.Emit (OpCodes.Ldc_I4_0);
2195 opcode = OpCodes.Ceq;
2196 break;
2198 case Operator.BitwiseOr:
2199 opcode = OpCodes.Or;
2200 break;
2202 case Operator.BitwiseAnd:
2203 opcode = OpCodes.And;
2204 break;
2206 case Operator.ExclusiveOr:
2207 opcode = OpCodes.Xor;
2208 break;
2210 default:
2211 throw new InternalErrorException (oper.ToString ());
2214 ig.Emit (opcode);
2217 static bool IsUnsigned (Type t)
2219 if (t.IsPointer)
2220 return true;
2222 return (t == TypeManager.uint32_type || t == TypeManager.uint64_type ||
2223 t == TypeManager.ushort_type || t == TypeManager.byte_type);
2226 static bool IsFloat (Type t)
2228 return t == TypeManager.float_type || t == TypeManager.double_type;
2231 Expression ResolveOperator (EmitContext ec)
2233 Type l = left.Type;
2234 Type r = right.Type;
2235 Expression expr;
2236 bool primitives_only = false;
2238 if (standard_operators == null)
2239 CreateStandardOperatorsTable ();
2242 // Handles predefined primitive types
2244 if (TypeManager.IsPrimitiveType (l) && TypeManager.IsPrimitiveType (r)) {
2245 if ((oper & Operator.ShiftMask) == 0) {
2246 if (l != TypeManager.bool_type && !DoBinaryOperatorPromotion (ec))
2247 return null;
2249 primitives_only = true;
2251 } else {
2252 // Pointers
2253 if (l.IsPointer || r.IsPointer)
2254 return ResolveOperatorPointer (ec, l, r);
2256 // Enums
2257 bool lenum = TypeManager.IsEnumType (l);
2258 bool renum = TypeManager.IsEnumType (r);
2259 if (lenum || renum) {
2260 expr = ResolveOperatorEnum (ec, lenum, renum, l, r);
2262 // TODO: Can this be ambiguous
2263 if (expr != null)
2264 return expr;
2267 // Delegates
2268 if ((oper == Operator.Addition || oper == Operator.Subtraction || (oper & Operator.EqualityMask) != 0) &&
2269 (TypeManager.IsDelegateType (l) || TypeManager.IsDelegateType (r))) {
2271 expr = ResolveOperatorDelegate (ec, l, r);
2273 // TODO: Can this be ambiguous
2274 if (expr != null)
2275 return expr;
2278 // User operators
2279 expr = ResolveUserOperator (ec, l, r);
2280 if (expr != null)
2281 return expr;
2283 // Predefined reference types equality
2284 if ((oper & Operator.EqualityMask) != 0) {
2285 expr = ResolveOperatorEqualityRerefence (ec, l, r);
2286 if (expr != null)
2287 return expr;
2291 return ResolveOperatorPredefined (ec, standard_operators, primitives_only, null);
2294 // at least one of 'left' or 'right' is an enumeration constant (EnumConstant or SideEffectConstant or ...)
2295 // if 'left' is not an enumeration constant, create one from the type of 'right'
2296 Constant EnumLiftUp (EmitContext ec, Constant left, Constant right, Location loc)
2298 switch (oper) {
2299 case Operator.BitwiseOr:
2300 case Operator.BitwiseAnd:
2301 case Operator.ExclusiveOr:
2302 case Operator.Equality:
2303 case Operator.Inequality:
2304 case Operator.LessThan:
2305 case Operator.LessThanOrEqual:
2306 case Operator.GreaterThan:
2307 case Operator.GreaterThanOrEqual:
2308 if (TypeManager.IsEnumType (left.Type))
2309 return left;
2311 if (left.IsZeroInteger)
2312 return left.TryReduce (ec, right.Type, loc);
2314 break;
2316 case Operator.Addition:
2317 case Operator.Subtraction:
2318 return left;
2320 case Operator.Multiply:
2321 case Operator.Division:
2322 case Operator.Modulus:
2323 case Operator.LeftShift:
2324 case Operator.RightShift:
2325 if (TypeManager.IsEnumType (right.Type) || TypeManager.IsEnumType (left.Type))
2326 break;
2327 return left;
2329 Error_OperatorCannotBeApplied (this.left, this.right);
2330 return null;
2334 // The `|' operator used on types which were extended is dangerous
2336 void CheckBitwiseOrOnSignExtended ()
2338 OpcodeCast lcast = left as OpcodeCast;
2339 if (lcast != null) {
2340 if (IsUnsigned (lcast.UnderlyingType))
2341 lcast = null;
2344 OpcodeCast rcast = right as OpcodeCast;
2345 if (rcast != null) {
2346 if (IsUnsigned (rcast.UnderlyingType))
2347 rcast = null;
2350 if (lcast == null && rcast == null)
2351 return;
2353 // FIXME: consider constants
2355 Report.Warning (675, 3, loc,
2356 "The operator `|' used on the sign-extended type `{0}'. Consider casting to a smaller unsigned type first",
2357 TypeManager.CSharpName (lcast != null ? lcast.UnderlyingType : rcast.UnderlyingType));
2360 static void CreatePointerOperatorsTable ()
2362 ArrayList temp = new ArrayList ();
2365 // Pointer arithmetic:
2367 // T* operator + (T* x, int y); T* operator - (T* x, int y);
2368 // T* operator + (T* x, uint y); T* operator - (T* x, uint y);
2369 // T* operator + (T* x, long y); T* operator - (T* x, long y);
2370 // T* operator + (T* x, ulong y); T* operator - (T* x, ulong y);
2372 temp.Add (new PredefinedPointerOperator (null, TypeManager.int32_type, Operator.AdditionMask | Operator.SubtractionMask));
2373 temp.Add (new PredefinedPointerOperator (null, TypeManager.uint32_type, Operator.AdditionMask | Operator.SubtractionMask));
2374 temp.Add (new PredefinedPointerOperator (null, TypeManager.int64_type, Operator.AdditionMask | Operator.SubtractionMask));
2375 temp.Add (new PredefinedPointerOperator (null, TypeManager.uint64_type, Operator.AdditionMask | Operator.SubtractionMask));
2378 // T* operator + (int y, T* x);
2379 // T* operator + (uint y, T *x);
2380 // T* operator + (long y, T *x);
2381 // T* operator + (ulong y, T *x);
2383 temp.Add (new PredefinedPointerOperator (TypeManager.int32_type, null, Operator.AdditionMask, null));
2384 temp.Add (new PredefinedPointerOperator (TypeManager.uint32_type, null, Operator.AdditionMask, null));
2385 temp.Add (new PredefinedPointerOperator (TypeManager.int64_type, null, Operator.AdditionMask, null));
2386 temp.Add (new PredefinedPointerOperator (TypeManager.uint64_type, null, Operator.AdditionMask, null));
2389 // long operator - (T* x, T *y)
2391 temp.Add (new PredefinedPointerOperator (null, Operator.SubtractionMask, TypeManager.int64_type));
2393 pointer_operators = (PredefinedOperator []) temp.ToArray (typeof (PredefinedOperator));
2396 static void CreateStandardOperatorsTable ()
2398 ArrayList temp = new ArrayList ();
2399 Type bool_type = TypeManager.bool_type;
2401 temp.Add (new PredefinedOperator (TypeManager.int32_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2402 temp.Add (new PredefinedOperator (TypeManager.uint32_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2403 temp.Add (new PredefinedOperator (TypeManager.int64_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2404 temp.Add (new PredefinedOperator (TypeManager.uint64_type, Operator.ArithmeticMask | Operator.BitwiseMask));
2405 temp.Add (new PredefinedOperator (TypeManager.float_type, Operator.ArithmeticMask));
2406 temp.Add (new PredefinedOperator (TypeManager.double_type, Operator.ArithmeticMask));
2407 temp.Add (new PredefinedOperator (TypeManager.decimal_type, Operator.ArithmeticMask));
2409 temp.Add (new PredefinedOperator (TypeManager.int32_type, Operator.ComparisonMask, bool_type));
2410 temp.Add (new PredefinedOperator (TypeManager.uint32_type, Operator.ComparisonMask, bool_type));
2411 temp.Add (new PredefinedOperator (TypeManager.int64_type, Operator.ComparisonMask, bool_type));
2412 temp.Add (new PredefinedOperator (TypeManager.uint64_type, Operator.ComparisonMask, bool_type));
2413 temp.Add (new PredefinedOperator (TypeManager.float_type, Operator.ComparisonMask, bool_type));
2414 temp.Add (new PredefinedOperator (TypeManager.double_type, Operator.ComparisonMask, bool_type));
2415 temp.Add (new PredefinedOperator (TypeManager.decimal_type, Operator.ComparisonMask, bool_type));
2417 temp.Add (new PredefinedOperator (TypeManager.string_type, Operator.EqualityMask, bool_type));
2419 temp.Add (new PredefinedStringOperator (TypeManager.string_type, Operator.AdditionMask));
2420 temp.Add (new PredefinedStringOperator (TypeManager.string_type, TypeManager.object_type, Operator.AdditionMask));
2421 temp.Add (new PredefinedStringOperator (TypeManager.object_type, TypeManager.string_type, Operator.AdditionMask));
2423 temp.Add (new PredefinedOperator (bool_type,
2424 Operator.BitwiseMask | Operator.LogicalMask | Operator.EqualityMask, bool_type));
2426 temp.Add (new PredefinedShiftOperator (TypeManager.int32_type, Operator.ShiftMask));
2427 temp.Add (new PredefinedShiftOperator (TypeManager.uint32_type, Operator.ShiftMask));
2428 temp.Add (new PredefinedShiftOperator (TypeManager.int64_type, Operator.ShiftMask));
2429 temp.Add (new PredefinedShiftOperator (TypeManager.uint64_type, Operator.ShiftMask));
2431 standard_operators = (PredefinedOperator []) temp.ToArray (typeof (PredefinedOperator));
2435 // Rules used during binary numeric promotion
2437 static bool DoNumericPromotion (ref Expression prim_expr, ref Expression second_expr, Type type)
2439 Expression temp;
2440 Type etype;
2442 Constant c = prim_expr as Constant;
2443 if (c != null) {
2444 temp = c.ConvertImplicitly (type);
2445 if (temp != null) {
2446 prim_expr = temp;
2447 return true;
2451 if (type == TypeManager.uint32_type) {
2452 etype = prim_expr.Type;
2453 if (etype == TypeManager.int32_type || etype == TypeManager.short_type || etype == TypeManager.sbyte_type) {
2454 type = TypeManager.int64_type;
2456 if (type != second_expr.Type) {
2457 c = second_expr as Constant;
2458 if (c != null)
2459 temp = c.ConvertImplicitly (type);
2460 else
2461 temp = Convert.ImplicitNumericConversion (second_expr, type);
2462 if (temp == null)
2463 return false;
2464 second_expr = temp;
2467 } else if (type == TypeManager.uint64_type) {
2469 // A compile-time error occurs if the other operand is of type sbyte, short, int, or long
2471 if (type == TypeManager.int32_type || type == TypeManager.int64_type ||
2472 type == TypeManager.sbyte_type || type == TypeManager.sbyte_type)
2473 return false;
2476 temp = Convert.ImplicitNumericConversion (prim_expr, type);
2477 if (temp == null)
2478 return false;
2480 prim_expr = temp;
2481 return true;
2485 // 7.2.6.2 Binary numeric promotions
2487 public bool DoBinaryOperatorPromotion (EmitContext ec)
2489 Type ltype = left.Type;
2490 Type rtype = right.Type;
2491 Expression temp;
2493 foreach (Type t in ConstantFold.binary_promotions) {
2494 if (t == ltype)
2495 return t == rtype || DoNumericPromotion (ref right, ref left, t);
2497 if (t == rtype)
2498 return t == ltype || DoNumericPromotion (ref left, ref right, t);
2501 Type int32 = TypeManager.int32_type;
2502 if (ltype != int32) {
2503 Constant c = left as Constant;
2504 if (c != null)
2505 temp = c.ConvertImplicitly (int32);
2506 else
2507 temp = Convert.ImplicitNumericConversion (left, int32);
2509 if (temp == null)
2510 return false;
2511 left = temp;
2514 if (rtype != int32) {
2515 Constant c = right as Constant;
2516 if (c != null)
2517 temp = c.ConvertImplicitly (int32);
2518 else
2519 temp = Convert.ImplicitNumericConversion (right, int32);
2521 if (temp == null)
2522 return false;
2523 right = temp;
2526 return true;
2529 public override Expression DoResolve (EmitContext ec)
2531 if (left == null)
2532 return null;
2534 if ((oper == Operator.Subtraction) && (left is ParenthesizedExpression)) {
2535 left = ((ParenthesizedExpression) left).Expr;
2536 left = left.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.Type);
2537 if (left == null)
2538 return null;
2540 if (left.eclass == ExprClass.Type) {
2541 Report.Error (75, loc, "To cast a negative value, you must enclose the value in parentheses");
2542 return null;
2544 } else
2545 left = left.Resolve (ec);
2547 if (left == null)
2548 return null;
2550 Constant lc = left as Constant;
2552 if (lc != null && lc.Type == TypeManager.bool_type &&
2553 ((oper == Operator.LogicalAnd && lc.IsDefaultValue) ||
2554 (oper == Operator.LogicalOr && !lc.IsDefaultValue))) {
2556 // FIXME: resolve right expression as unreachable
2557 // right.Resolve (ec);
2559 Report.Warning (429, 4, loc, "Unreachable expression code detected");
2560 return left;
2563 right = right.Resolve (ec);
2564 if (right == null)
2565 return null;
2567 eclass = ExprClass.Value;
2568 Constant rc = right as Constant;
2570 // The conversion rules are ignored in enum context but why
2571 if (!ec.InEnumContext && lc != null && rc != null && (TypeManager.IsEnumType (left.Type) || TypeManager.IsEnumType (right.Type))) {
2572 lc = EnumLiftUp (ec, lc, rc, loc);
2573 if (lc != null)
2574 rc = EnumLiftUp (ec, rc, lc, loc);
2577 if (rc != null && lc != null) {
2578 int prev_e = Report.Errors;
2579 Expression e = ConstantFold.BinaryFold (
2580 ec, oper, lc, rc, loc);
2581 if (e != null || Report.Errors != prev_e)
2582 return e;
2583 } else {
2584 if ((oper == Operator.BitwiseAnd || oper == Operator.LogicalAnd) &&
2585 ((lc != null && lc.IsDefaultValue) || (rc != null && rc.IsDefaultValue))) {
2587 if ((ResolveOperator (ec)) == null) {
2588 Error_OperatorCannotBeApplied (left, right);
2589 return null;
2593 // The result is a constant with side-effect
2595 Constant side_effect = rc == null ?
2596 new SideEffectConstant (lc, right, loc) :
2597 new SideEffectConstant (rc, left, loc);
2599 return ReducedExpression.Create (side_effect, this);
2603 // Comparison warnings
2604 if ((oper & Operator.ComparisonMask) != 0) {
2605 if (left.Equals (right)) {
2606 Report.Warning (1718, 3, loc, "A comparison made to same variable. Did you mean to compare something else?");
2608 CheckUselessComparison (lc, right.Type);
2609 CheckUselessComparison (rc, left.Type);
2612 if (TypeManager.IsDynamicType (left.Type) || TypeManager.IsDynamicType (right.Type)) {
2613 Arguments args = new Arguments (2);
2614 args.Add (new Argument (left));
2615 args.Add (new Argument (right));
2616 return new DynamicExpressionStatement (this, args, loc).Resolve (ec);
2619 if (RootContext.Version >= LanguageVersion.ISO_2 &&
2620 ((TypeManager.IsNullableType (left.Type) && (right is NullLiteral || TypeManager.IsNullableType (right.Type) || TypeManager.IsValueType (right.Type))) ||
2621 (TypeManager.IsValueType (left.Type) && right is NullLiteral) ||
2622 (TypeManager.IsNullableType (right.Type) && (left is NullLiteral || TypeManager.IsNullableType (left.Type) || TypeManager.IsValueType (left.Type))) ||
2623 (TypeManager.IsValueType (right.Type) && left is NullLiteral)))
2624 return new Nullable.LiftedBinaryOperator (oper, left, right, loc).Resolve (ec);
2626 return DoResolveCore (ec, left, right);
2629 protected Expression DoResolveCore (EmitContext ec, Expression left_orig, Expression right_orig)
2631 Expression expr = ResolveOperator (ec);
2632 if (expr == null)
2633 Error_OperatorCannotBeApplied (left_orig, right_orig);
2635 if (left == null || right == null)
2636 throw new InternalErrorException ("Invalid conversion");
2638 if (oper == Operator.BitwiseOr)
2639 CheckBitwiseOrOnSignExtended ();
2641 return expr;
2644 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
2646 left.MutateHoistedGenericType (storey);
2647 right.MutateHoistedGenericType (storey);
2651 // D operator + (D x, D y)
2652 // D operator - (D x, D y)
2653 // bool operator == (D x, D y)
2654 // bool operator != (D x, D y)
2656 Expression ResolveOperatorDelegate (EmitContext ec, Type l, Type r)
2658 bool is_equality = (oper & Operator.EqualityMask) != 0;
2659 if (!TypeManager.IsEqual (l, r) && !TypeManager.IsVariantOf (r, l)) {
2660 Expression tmp;
2661 if (right.eclass == ExprClass.MethodGroup || (r == InternalType.AnonymousMethod && !is_equality)) {
2662 tmp = Convert.ImplicitConversionRequired (ec, right, l, loc);
2663 if (tmp == null)
2664 return null;
2665 right = tmp;
2666 r = right.Type;
2667 } else if (left.eclass == ExprClass.MethodGroup || (l == InternalType.AnonymousMethod && !is_equality)) {
2668 tmp = Convert.ImplicitConversionRequired (ec, left, r, loc);
2669 if (tmp == null)
2670 return null;
2671 left = tmp;
2672 l = left.Type;
2673 } else {
2674 return null;
2679 // Resolve delegate equality as a user operator
2681 if (is_equality)
2682 return ResolveUserOperator (ec, l, r);
2684 MethodInfo method;
2685 Arguments args = new Arguments (2);
2686 args.Add (new Argument (left));
2687 args.Add (new Argument (right));
2689 if (oper == Operator.Addition) {
2690 if (TypeManager.delegate_combine_delegate_delegate == null) {
2691 TypeManager.delegate_combine_delegate_delegate = TypeManager.GetPredefinedMethod (
2692 TypeManager.delegate_type, "Combine", loc, TypeManager.delegate_type, TypeManager.delegate_type);
2695 method = TypeManager.delegate_combine_delegate_delegate;
2696 } else {
2697 if (TypeManager.delegate_remove_delegate_delegate == null) {
2698 TypeManager.delegate_remove_delegate_delegate = TypeManager.GetPredefinedMethod (
2699 TypeManager.delegate_type, "Remove", loc, TypeManager.delegate_type, TypeManager.delegate_type);
2702 method = TypeManager.delegate_remove_delegate_delegate;
2705 MethodGroupExpr mg = new MethodGroupExpr (new MemberInfo [] { method }, TypeManager.delegate_type, loc);
2706 mg = mg.OverloadResolve (ec, ref args, false, loc);
2708 return new ClassCast (new UserOperatorCall (mg, args, CreateExpressionTree, loc), l);
2712 // Enumeration operators
2714 Expression ResolveOperatorEnum (EmitContext ec, bool lenum, bool renum, Type ltype, Type rtype)
2717 // bool operator == (E x, E y);
2718 // bool operator != (E x, E y);
2719 // bool operator < (E x, E y);
2720 // bool operator > (E x, E y);
2721 // bool operator <= (E x, E y);
2722 // bool operator >= (E x, E y);
2724 // E operator & (E x, E y);
2725 // E operator | (E x, E y);
2726 // E operator ^ (E x, E y);
2728 // U operator - (E e, E f)
2729 // E operator - (E e, U x)
2731 // E operator + (U x, E e)
2732 // E operator + (E e, U x)
2734 if (!((oper & (Operator.ComparisonMask | Operator.BitwiseMask)) != 0 ||
2735 (oper == Operator.Subtraction && lenum) || (oper == Operator.Addition && lenum != renum)))
2736 return null;
2738 Expression ltemp = left;
2739 Expression rtemp = right;
2740 Type underlying_type;
2741 Expression expr;
2743 if ((oper & Operator.ComparisonMask | Operator.BitwiseMask) != 0) {
2744 if (renum) {
2745 expr = Convert.ImplicitConversion (ec, left, rtype, loc);
2746 if (expr != null) {
2747 left = expr;
2748 ltype = expr.Type;
2750 } else if (lenum) {
2751 expr = Convert.ImplicitConversion (ec, right, ltype, loc);
2752 if (expr != null) {
2753 right = expr;
2754 rtype = expr.Type;
2759 if (TypeManager.IsEqual (ltype, rtype)) {
2760 underlying_type = TypeManager.GetEnumUnderlyingType (ltype);
2762 if (left is Constant)
2763 left = ((Constant) left).ConvertExplicitly (false, underlying_type);
2764 else
2765 left = EmptyCast.Create (left, underlying_type);
2767 if (right is Constant)
2768 right = ((Constant) right).ConvertExplicitly (false, underlying_type);
2769 else
2770 right = EmptyCast.Create (right, underlying_type);
2771 } else if (lenum) {
2772 underlying_type = TypeManager.GetEnumUnderlyingType (ltype);
2774 if (oper != Operator.Subtraction && oper != Operator.Addition) {
2775 Constant c = right as Constant;
2776 if (c == null || !c.IsDefaultValue)
2777 return null;
2778 } else {
2779 if (!Convert.ImplicitStandardConversionExists (right, underlying_type))
2780 return null;
2782 right = Convert.ImplicitConversionStandard (ec, right, underlying_type, right.Location);
2785 if (left is Constant)
2786 left = ((Constant) left).ConvertExplicitly (false, underlying_type);
2787 else
2788 left = EmptyCast.Create (left, underlying_type);
2790 } else if (renum) {
2791 underlying_type = TypeManager.GetEnumUnderlyingType (rtype);
2793 if (oper != Operator.Addition) {
2794 Constant c = left as Constant;
2795 if (c == null || !c.IsDefaultValue)
2796 return null;
2797 } else {
2798 if (!Convert.ImplicitStandardConversionExists (left, underlying_type))
2799 return null;
2801 left = Convert.ImplicitConversionStandard (ec, left, underlying_type, left.Location);
2804 if (right is Constant)
2805 right = ((Constant) right).ConvertExplicitly (false, underlying_type);
2806 else
2807 right = EmptyCast.Create (right, underlying_type);
2809 } else {
2810 return null;
2814 // C# specification uses explicit cast syntax which means binary promotion
2815 // should happen, however it seems that csc does not do that
2817 if (!DoBinaryOperatorPromotion (ec)) {
2818 left = ltemp;
2819 right = rtemp;
2820 return null;
2823 Type res_type = null;
2824 if ((oper & Operator.BitwiseMask) != 0 || oper == Operator.Subtraction || oper == Operator.Addition) {
2825 Type promoted_type = lenum ? left.Type : right.Type;
2826 enum_conversion = Convert.ExplicitNumericConversion (
2827 new EmptyExpression (promoted_type), underlying_type);
2829 if (oper == Operator.Subtraction && renum && lenum)
2830 res_type = underlying_type;
2831 else if (oper == Operator.Addition && renum)
2832 res_type = rtype;
2833 else
2834 res_type = ltype;
2837 expr = ResolveOperatorPredefined (ec, standard_operators, true, res_type);
2838 if (!is_compound || expr == null)
2839 return expr;
2842 // TODO: Need to corectly implemented Coumpound Assigment for all operators
2843 // Section: 7.16.2
2845 if (Convert.ImplicitConversionExists (ec, left, rtype))
2846 return expr;
2848 if (!Convert.ImplicitConversionExists (ec, ltemp, rtype))
2849 return null;
2851 expr = Convert.ExplicitConversion (ec, expr, rtype, loc);
2852 return expr;
2856 // 7.9.6 Reference type equality operators
2858 Binary ResolveOperatorEqualityRerefence (EmitContext ec, Type l, Type r)
2861 // operator != (object a, object b)
2862 // operator == (object a, object b)
2865 // TODO: this method is almost equivalent to Convert.ImplicitReferenceConversion
2867 if (left.eclass == ExprClass.MethodGroup || right.eclass == ExprClass.MethodGroup)
2868 return null;
2870 type = TypeManager.bool_type;
2871 GenericConstraints constraints;
2873 bool lgen = TypeManager.IsGenericParameter (l);
2875 if (TypeManager.IsEqual (l, r)) {
2876 if (lgen) {
2878 // Only allow to compare same reference type parameter
2880 if (TypeManager.IsReferenceType (l)) {
2881 left = new BoxedCast (left, TypeManager.object_type);
2882 right = new BoxedCast (right, TypeManager.object_type);
2883 return this;
2886 return null;
2889 if (l == InternalType.AnonymousMethod)
2890 return null;
2892 if (TypeManager.IsValueType (l))
2893 return null;
2895 return this;
2898 bool rgen = TypeManager.IsGenericParameter (r);
2901 // a, Both operands are reference-type values or the value null
2902 // b, One operand is a value of type T where T is a type-parameter and
2903 // the other operand is the value null. Furthermore T does not have the
2904 // value type constrain
2906 if (left is NullLiteral || right is NullLiteral) {
2907 if (lgen) {
2908 constraints = TypeManager.GetTypeParameterConstraints (l);
2909 if (constraints != null && constraints.HasValueTypeConstraint)
2910 return null;
2912 left = new BoxedCast (left, TypeManager.object_type);
2913 return this;
2916 if (rgen) {
2917 constraints = TypeManager.GetTypeParameterConstraints (r);
2918 if (constraints != null && constraints.HasValueTypeConstraint)
2919 return null;
2921 right = new BoxedCast (right, TypeManager.object_type);
2922 return this;
2927 // An interface is converted to the object before the
2928 // standard conversion is applied. It's not clear from the
2929 // standard but it looks like it works like that.
2931 if (lgen) {
2932 if (!TypeManager.IsReferenceType (l))
2933 return null;
2934 left = new BoxedCast (left, TypeManager.object_type);
2935 } else if (l.IsInterface) {
2936 l = TypeManager.object_type;
2937 } else if (TypeManager.IsStruct (l)) {
2938 return null;
2941 if (rgen) {
2942 if (!TypeManager.IsReferenceType (r))
2943 return null;
2944 right = new BoxedCast (right, TypeManager.object_type);
2945 } else if (r.IsInterface) {
2946 r = TypeManager.object_type;
2947 } else if (TypeManager.IsStruct (r)) {
2948 return null;
2952 const string ref_comparison = "Possible unintended reference comparison. " +
2953 "Consider casting the {0} side of the expression to `string' to compare the values";
2956 // A standard implicit conversion exists from the type of either
2957 // operand to the type of the other operand
2959 if (Convert.ImplicitReferenceConversionExists (left, r)) {
2960 if (l == TypeManager.string_type)
2961 Report.Warning (253, 2, loc, ref_comparison, "right");
2963 return this;
2966 if (Convert.ImplicitReferenceConversionExists (right, l)) {
2967 if (r == TypeManager.string_type)
2968 Report.Warning (252, 2, loc, ref_comparison, "left");
2970 return this;
2973 return null;
2977 Expression ResolveOperatorPointer (EmitContext ec, Type l, Type r)
2980 // bool operator == (void* x, void* y);
2981 // bool operator != (void* x, void* y);
2982 // bool operator < (void* x, void* y);
2983 // bool operator > (void* x, void* y);
2984 // bool operator <= (void* x, void* y);
2985 // bool operator >= (void* x, void* y);
2987 if ((oper & Operator.ComparisonMask) != 0) {
2988 Expression temp;
2989 if (!l.IsPointer) {
2990 temp = Convert.ImplicitConversion (ec, left, r, left.Location);
2991 if (temp == null)
2992 return null;
2993 left = temp;
2996 if (!r.IsPointer) {
2997 temp = Convert.ImplicitConversion (ec, right, l, right.Location);
2998 if (temp == null)
2999 return null;
3000 right = temp;
3003 type = TypeManager.bool_type;
3004 return this;
3007 if (pointer_operators == null)
3008 CreatePointerOperatorsTable ();
3010 return ResolveOperatorPredefined (ec, pointer_operators, false, null);
3014 // Build-in operators method overloading
3016 protected virtual Expression ResolveOperatorPredefined (EmitContext ec, PredefinedOperator [] operators, bool primitives_only, Type enum_type)
3018 PredefinedOperator best_operator = null;
3019 Type l = left.Type;
3020 Type r = right.Type;
3021 Operator oper_mask = oper & ~Operator.ValuesOnlyMask;
3023 foreach (PredefinedOperator po in operators) {
3024 if ((po.OperatorsMask & oper_mask) == 0)
3025 continue;
3027 if (primitives_only) {
3028 if (!po.IsPrimitiveApplicable (l, r))
3029 continue;
3030 } else {
3031 if (!po.IsApplicable (ec, left, right))
3032 continue;
3035 if (best_operator == null) {
3036 best_operator = po;
3037 if (primitives_only)
3038 break;
3040 continue;
3043 best_operator = po.ResolveBetterOperator (ec, best_operator);
3045 if (best_operator == null) {
3046 Report.Error (34, loc, "Operator `{0}' is ambiguous on operands of type `{1}' and `{2}'",
3047 OperName (oper), left.GetSignatureForError (), right.GetSignatureForError ());
3049 best_operator = po;
3050 break;
3054 if (best_operator == null)
3055 return null;
3057 Expression expr = best_operator.ConvertResult (ec, this);
3058 if (enum_type == null)
3059 return expr;
3062 // HACK: required by enum_conversion
3064 expr.Type = enum_type;
3065 return EmptyCast.Create (expr, enum_type);
3069 // Performs user-operator overloading
3071 protected virtual Expression ResolveUserOperator (EmitContext ec, Type l, Type r)
3073 Operator user_oper;
3074 if (oper == Operator.LogicalAnd)
3075 user_oper = Operator.BitwiseAnd;
3076 else if (oper == Operator.LogicalOr)
3077 user_oper = Operator.BitwiseOr;
3078 else
3079 user_oper = oper;
3081 string op = GetOperatorMetadataName (user_oper);
3083 MethodGroupExpr left_operators = MemberLookup (ec.ContainerType, l, op, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
3084 MethodGroupExpr right_operators = null;
3086 if (!TypeManager.IsEqual (r, l)) {
3087 right_operators = MemberLookup (ec.ContainerType, r, op, MemberTypes.Method, AllBindingFlags, loc) as MethodGroupExpr;
3088 if (right_operators == null && left_operators == null)
3089 return null;
3090 } else if (left_operators == null) {
3091 return null;
3094 Arguments args = new Arguments (2);
3095 Argument larg = new Argument (left);
3096 args.Add (larg);
3097 Argument rarg = new Argument (right);
3098 args.Add (rarg);
3100 MethodGroupExpr union;
3103 // User-defined operator implementations always take precedence
3104 // over predefined operator implementations
3106 if (left_operators != null && right_operators != null) {
3107 if (IsPredefinedUserOperator (l, user_oper)) {
3108 union = right_operators.OverloadResolve (ec, ref args, true, loc);
3109 if (union == null)
3110 union = left_operators;
3111 } else if (IsPredefinedUserOperator (r, user_oper)) {
3112 union = left_operators.OverloadResolve (ec, ref args, true, loc);
3113 if (union == null)
3114 union = right_operators;
3115 } else {
3116 union = MethodGroupExpr.MakeUnionSet (left_operators, right_operators, loc);
3118 } else if (left_operators != null) {
3119 union = left_operators;
3120 } else {
3121 union = right_operators;
3124 union = union.OverloadResolve (ec, ref args, true, loc);
3125 if (union == null)
3126 return null;
3128 Expression oper_expr;
3130 // TODO: CreateExpressionTree is allocated every time
3131 if (user_oper != oper) {
3132 oper_expr = new ConditionalLogicalOperator (union, args, CreateExpressionTree,
3133 oper == Operator.LogicalAnd, loc).Resolve (ec);
3134 } else {
3135 oper_expr = new UserOperatorCall (union, args, CreateExpressionTree, loc);
3138 // This is used to check if a test 'x == null' can be optimized to a reference equals,
3139 // and not invoke user operator
3141 if ((oper & Operator.EqualityMask) != 0) {
3142 if ((left is NullLiteral && IsBuildInEqualityOperator (r)) ||
3143 (right is NullLiteral && IsBuildInEqualityOperator (l))) {
3144 type = TypeManager.bool_type;
3145 if (left is NullLiteral || right is NullLiteral)
3146 oper_expr = ReducedExpression.Create (this, oper_expr).Resolve (ec);
3147 } else if (l != r) {
3148 MethodInfo mi = (MethodInfo) union;
3151 // Two System.Delegate(s) are never equal
3153 if (mi.DeclaringType == TypeManager.multicast_delegate_type)
3154 return null;
3159 left = larg.Expr;
3160 right = rarg.Expr;
3161 return oper_expr;
3164 public override TypeExpr ResolveAsTypeTerminal (IResolveContext ec, bool silent)
3166 return null;
3169 private void CheckUselessComparison (Constant c, Type type)
3171 if (c == null || !IsTypeIntegral (type)
3172 || c is StringConstant
3173 || c is BoolConstant
3174 || c is FloatConstant
3175 || c is DoubleConstant
3176 || c is DecimalConstant
3178 return;
3180 long value = 0;
3182 if (c is ULongConstant) {
3183 ulong uvalue = ((ULongConstant) c).Value;
3184 if (uvalue > long.MaxValue) {
3185 if (type == TypeManager.byte_type ||
3186 type == TypeManager.sbyte_type ||
3187 type == TypeManager.short_type ||
3188 type == TypeManager.ushort_type ||
3189 type == TypeManager.int32_type ||
3190 type == TypeManager.uint32_type ||
3191 type == TypeManager.int64_type ||
3192 type == TypeManager.char_type)
3193 WarnUselessComparison (type);
3194 return;
3196 value = (long) uvalue;
3198 else if (c is ByteConstant)
3199 value = ((ByteConstant) c).Value;
3200 else if (c is SByteConstant)
3201 value = ((SByteConstant) c).Value;
3202 else if (c is ShortConstant)
3203 value = ((ShortConstant) c).Value;
3204 else if (c is UShortConstant)
3205 value = ((UShortConstant) c).Value;
3206 else if (c is IntConstant)
3207 value = ((IntConstant) c).Value;
3208 else if (c is UIntConstant)
3209 value = ((UIntConstant) c).Value;
3210 else if (c is LongConstant)
3211 value = ((LongConstant) c).Value;
3212 else if (c is CharConstant)
3213 value = ((CharConstant)c).Value;
3215 if (value == 0)
3216 return;
3218 if (IsValueOutOfRange (value, type))
3219 WarnUselessComparison (type);
3222 static bool IsValueOutOfRange (long value, Type type)
3224 if (IsTypeUnsigned (type) && value < 0)
3225 return true;
3226 return type == TypeManager.sbyte_type && (value >= 0x80 || value < -0x80) ||
3227 type == TypeManager.byte_type && value >= 0x100 ||
3228 type == TypeManager.short_type && (value >= 0x8000 || value < -0x8000) ||
3229 type == TypeManager.ushort_type && value >= 0x10000 ||
3230 type == TypeManager.int32_type && (value >= 0x80000000 || value < -0x80000000) ||
3231 type == TypeManager.uint32_type && value >= 0x100000000;
3234 static bool IsBuildInEqualityOperator (Type t)
3236 return t == TypeManager.object_type || t == TypeManager.string_type ||
3237 t == TypeManager.delegate_type || TypeManager.IsDelegateType (t);
3240 static bool IsPredefinedUserOperator (Type t, Operator op)
3243 // Some predefined types have user operators
3245 return (op & Operator.EqualityMask) != 0 && (t == TypeManager.string_type || t == TypeManager.decimal_type);
3248 private static bool IsTypeIntegral (Type type)
3250 return type == TypeManager.uint64_type ||
3251 type == TypeManager.int64_type ||
3252 type == TypeManager.uint32_type ||
3253 type == TypeManager.int32_type ||
3254 type == TypeManager.ushort_type ||
3255 type == TypeManager.short_type ||
3256 type == TypeManager.sbyte_type ||
3257 type == TypeManager.byte_type ||
3258 type == TypeManager.char_type;
3261 private static bool IsTypeUnsigned (Type type)
3263 return type == TypeManager.uint64_type ||
3264 type == TypeManager.uint32_type ||
3265 type == TypeManager.ushort_type ||
3266 type == TypeManager.byte_type ||
3267 type == TypeManager.char_type;
3270 private void WarnUselessComparison (Type type)
3272 Report.Warning (652, 2, loc, "A comparison between a constant and a variable is useless. The constant is out of the range of the variable type `{0}'",
3273 TypeManager.CSharpName (type));
3276 /// <remarks>
3277 /// EmitBranchable is called from Statement.EmitBoolExpression in the
3278 /// context of a conditional bool expression. This function will return
3279 /// false if it is was possible to use EmitBranchable, or true if it was.
3281 /// The expression's code is generated, and we will generate a branch to `target'
3282 /// if the resulting expression value is equal to isTrue
3283 /// </remarks>
3284 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
3286 ILGenerator ig = ec.ig;
3289 // This is more complicated than it looks, but its just to avoid
3290 // duplicated tests: basically, we allow ==, !=, >, <, >= and <=
3291 // but on top of that we want for == and != to use a special path
3292 // if we are comparing against null
3294 if ((oper == Operator.Equality || oper == Operator.Inequality) && (left is Constant || right is Constant)) {
3295 bool my_on_true = oper == Operator.Inequality ? on_true : !on_true;
3298 // put the constant on the rhs, for simplicity
3300 if (left is Constant) {
3301 Expression swap = right;
3302 right = left;
3303 left = swap;
3306 if (((Constant) right).IsZeroInteger) {
3307 left.EmitBranchable (ec, target, my_on_true);
3308 return;
3310 if (right.Type == TypeManager.bool_type) {
3311 // right is a boolean, and it's not 'false' => it is 'true'
3312 left.EmitBranchable (ec, target, !my_on_true);
3313 return;
3316 } else if (oper == Operator.LogicalAnd) {
3318 if (on_true) {
3319 Label tests_end = ig.DefineLabel ();
3321 left.EmitBranchable (ec, tests_end, false);
3322 right.EmitBranchable (ec, target, true);
3323 ig.MarkLabel (tests_end);
3324 } else {
3326 // This optimizes code like this
3327 // if (true && i > 4)
3329 if (!(left is Constant))
3330 left.EmitBranchable (ec, target, false);
3332 if (!(right is Constant))
3333 right.EmitBranchable (ec, target, false);
3336 return;
3338 } else if (oper == Operator.LogicalOr){
3339 if (on_true) {
3340 left.EmitBranchable (ec, target, true);
3341 right.EmitBranchable (ec, target, true);
3343 } else {
3344 Label tests_end = ig.DefineLabel ();
3345 left.EmitBranchable (ec, tests_end, true);
3346 right.EmitBranchable (ec, target, false);
3347 ig.MarkLabel (tests_end);
3350 return;
3352 } else if (!(oper == Operator.LessThan || oper == Operator.GreaterThan ||
3353 oper == Operator.LessThanOrEqual || oper == Operator.GreaterThanOrEqual ||
3354 oper == Operator.Equality || oper == Operator.Inequality)) {
3355 base.EmitBranchable (ec, target, on_true);
3356 return;
3359 left.Emit (ec);
3360 right.Emit (ec);
3362 Type t = left.Type;
3363 bool is_float = IsFloat (t);
3364 bool is_unsigned = is_float || IsUnsigned (t);
3366 switch (oper){
3367 case Operator.Equality:
3368 if (on_true)
3369 ig.Emit (OpCodes.Beq, target);
3370 else
3371 ig.Emit (OpCodes.Bne_Un, target);
3372 break;
3374 case Operator.Inequality:
3375 if (on_true)
3376 ig.Emit (OpCodes.Bne_Un, target);
3377 else
3378 ig.Emit (OpCodes.Beq, target);
3379 break;
3381 case Operator.LessThan:
3382 if (on_true)
3383 if (is_unsigned && !is_float)
3384 ig.Emit (OpCodes.Blt_Un, target);
3385 else
3386 ig.Emit (OpCodes.Blt, target);
3387 else
3388 if (is_unsigned)
3389 ig.Emit (OpCodes.Bge_Un, target);
3390 else
3391 ig.Emit (OpCodes.Bge, target);
3392 break;
3394 case Operator.GreaterThan:
3395 if (on_true)
3396 if (is_unsigned && !is_float)
3397 ig.Emit (OpCodes.Bgt_Un, target);
3398 else
3399 ig.Emit (OpCodes.Bgt, target);
3400 else
3401 if (is_unsigned)
3402 ig.Emit (OpCodes.Ble_Un, target);
3403 else
3404 ig.Emit (OpCodes.Ble, target);
3405 break;
3407 case Operator.LessThanOrEqual:
3408 if (on_true)
3409 if (is_unsigned && !is_float)
3410 ig.Emit (OpCodes.Ble_Un, target);
3411 else
3412 ig.Emit (OpCodes.Ble, target);
3413 else
3414 if (is_unsigned)
3415 ig.Emit (OpCodes.Bgt_Un, target);
3416 else
3417 ig.Emit (OpCodes.Bgt, target);
3418 break;
3421 case Operator.GreaterThanOrEqual:
3422 if (on_true)
3423 if (is_unsigned && !is_float)
3424 ig.Emit (OpCodes.Bge_Un, target);
3425 else
3426 ig.Emit (OpCodes.Bge, target);
3427 else
3428 if (is_unsigned)
3429 ig.Emit (OpCodes.Blt_Un, target);
3430 else
3431 ig.Emit (OpCodes.Blt, target);
3432 break;
3433 default:
3434 throw new InternalErrorException (oper.ToString ());
3438 public override void Emit (EmitContext ec)
3440 EmitOperator (ec, left.Type);
3443 protected virtual void EmitOperator (EmitContext ec, Type l)
3445 ILGenerator ig = ec.ig;
3448 // Handle short-circuit operators differently
3449 // than the rest
3451 if ((oper & Operator.LogicalMask) != 0) {
3452 Label load_result = ig.DefineLabel ();
3453 Label end = ig.DefineLabel ();
3455 bool is_or = oper == Operator.LogicalOr;
3456 left.EmitBranchable (ec, load_result, is_or);
3457 right.Emit (ec);
3458 ig.Emit (OpCodes.Br_S, end);
3460 ig.MarkLabel (load_result);
3461 ig.Emit (is_or ? OpCodes.Ldc_I4_1 : OpCodes.Ldc_I4_0);
3462 ig.MarkLabel (end);
3463 return;
3466 left.Emit (ec);
3469 // Optimize zero-based operations
3471 // TODO: Implement more optimizations, but it should probably go to PredefinedOperators
3473 if ((oper & Operator.ShiftMask) != 0 || oper == Operator.Addition || oper == Operator.Subtraction) {
3474 Constant rc = right as Constant;
3475 if (rc != null && rc.IsDefaultValue) {
3476 return;
3480 right.Emit (ec);
3481 EmitOperatorOpcode (ec, oper, l);
3484 // Nullable enum could require underlying type cast and we cannot simply wrap binary
3485 // expression because that would wrap lifted binary operation
3487 if (enum_conversion != null)
3488 enum_conversion.Emit (ec);
3491 public override void EmitSideEffect (EmitContext ec)
3493 if ((oper & Operator.LogicalMask) != 0 ||
3494 (ec.CheckState && (oper == Operator.Multiply || oper == Operator.Addition || oper == Operator.Subtraction))) {
3495 base.EmitSideEffect (ec);
3496 } else {
3497 left.EmitSideEffect (ec);
3498 right.EmitSideEffect (ec);
3502 protected override void CloneTo (CloneContext clonectx, Expression t)
3504 Binary target = (Binary) t;
3506 target.left = left.Clone (clonectx);
3507 target.right = right.Clone (clonectx);
3510 public Expression CreateCallSiteBinder (EmitContext ec, Arguments args)
3512 Arguments binder_args = new Arguments (4);
3514 MemberAccess sle = new MemberAccess (new MemberAccess (
3515 new QualifiedAliasMember (QualifiedAliasMember.GlobalAlias, "System", loc), "Linq", loc), "Expressions", loc);
3517 MemberAccess binder = DynamicExpressionStatement.GetBinderNamespace (loc);
3519 binder_args.Add (new Argument (new MemberAccess (new MemberAccess (sle, "ExpressionType", loc), GetOperatorExpressionTypeName (), loc)));
3520 binder_args.Add (new Argument (new BoolLiteral (ec.CheckState, loc)));
3522 bool member_access = left is DynamicMemberBinder || right is DynamicMemberBinder;
3523 binder_args.Add (new Argument (new BoolLiteral (member_access, loc)));
3524 binder_args.Add (new Argument (new ImplicitlyTypedArrayCreation ("[]", args.CreateDynamicBinderArguments (), loc)));
3526 return new New (new MemberAccess (binder, "CSharpBinaryOperationBinder", loc), binder_args, loc);
3529 public override Expression CreateExpressionTree (EmitContext ec)
3531 return CreateExpressionTree (ec, null);
3534 Expression CreateExpressionTree (EmitContext ec, MethodGroupExpr method)
3536 string method_name;
3537 bool lift_arg = false;
3539 switch (oper) {
3540 case Operator.Addition:
3541 if (method == null && ec.CheckState && !IsFloat (type))
3542 method_name = "AddChecked";
3543 else
3544 method_name = "Add";
3545 break;
3546 case Operator.BitwiseAnd:
3547 method_name = "And";
3548 break;
3549 case Operator.BitwiseOr:
3550 method_name = "Or";
3551 break;
3552 case Operator.Division:
3553 method_name = "Divide";
3554 break;
3555 case Operator.Equality:
3556 method_name = "Equal";
3557 lift_arg = true;
3558 break;
3559 case Operator.ExclusiveOr:
3560 method_name = "ExclusiveOr";
3561 break;
3562 case Operator.GreaterThan:
3563 method_name = "GreaterThan";
3564 lift_arg = true;
3565 break;
3566 case Operator.GreaterThanOrEqual:
3567 method_name = "GreaterThanOrEqual";
3568 lift_arg = true;
3569 break;
3570 case Operator.Inequality:
3571 method_name = "NotEqual";
3572 lift_arg = true;
3573 break;
3574 case Operator.LeftShift:
3575 method_name = "LeftShift";
3576 break;
3577 case Operator.LessThan:
3578 method_name = "LessThan";
3579 lift_arg = true;
3580 break;
3581 case Operator.LessThanOrEqual:
3582 method_name = "LessThanOrEqual";
3583 lift_arg = true;
3584 break;
3585 case Operator.LogicalAnd:
3586 method_name = "AndAlso";
3587 break;
3588 case Operator.LogicalOr:
3589 method_name = "OrElse";
3590 break;
3591 case Operator.Modulus:
3592 method_name = "Modulo";
3593 break;
3594 case Operator.Multiply:
3595 if (method == null && ec.CheckState && !IsFloat (type))
3596 method_name = "MultiplyChecked";
3597 else
3598 method_name = "Multiply";
3599 break;
3600 case Operator.RightShift:
3601 method_name = "RightShift";
3602 break;
3603 case Operator.Subtraction:
3604 if (method == null && ec.CheckState && !IsFloat (type))
3605 method_name = "SubtractChecked";
3606 else
3607 method_name = "Subtract";
3608 break;
3610 default:
3611 throw new InternalErrorException ("Unknown expression tree binary operator " + oper);
3614 Arguments args = new Arguments (2);
3615 args.Add (new Argument (left.CreateExpressionTree (ec)));
3616 args.Add (new Argument (right.CreateExpressionTree (ec)));
3617 if (method != null) {
3618 if (lift_arg)
3619 args.Add (new Argument (new BoolConstant (false, loc)));
3621 args.Add (new Argument (method.CreateExpressionTree (ec)));
3624 return CreateExpressionFactoryCall (method_name, args);
3629 // Represents the operation a + b [+ c [+ d [+ ...]]], where a is a string
3630 // b, c, d... may be strings or objects.
3632 public class StringConcat : Expression {
3633 Arguments arguments;
3635 public StringConcat (EmitContext ec, Location loc, Expression left, Expression right)
3637 this.loc = loc;
3638 type = TypeManager.string_type;
3639 eclass = ExprClass.Value;
3641 arguments = new Arguments (2);
3642 Append (ec, left);
3643 Append (ec, right);
3646 public override Expression CreateExpressionTree (EmitContext ec)
3648 Argument arg = arguments [0];
3649 return CreateExpressionAddCall (ec, arg, arg.CreateExpressionTree (ec), 1);
3653 // Creates nested calls tree from an array of arguments used for IL emit
3655 Expression CreateExpressionAddCall (EmitContext ec, Argument left, Expression left_etree, int pos)
3657 Arguments concat_args = new Arguments (2);
3658 Arguments add_args = new Arguments (3);
3660 concat_args.Add (left);
3661 add_args.Add (new Argument (left_etree));
3663 concat_args.Add (arguments [pos]);
3664 add_args.Add (new Argument (arguments [pos].CreateExpressionTree (ec)));
3666 MethodGroupExpr method = CreateConcatMemberExpression ().Resolve (ec) as MethodGroupExpr;
3667 if (method == null)
3668 return null;
3670 method = method.OverloadResolve (ec, ref concat_args, false, loc);
3671 if (method == null)
3672 return null;
3674 add_args.Add (new Argument (method.CreateExpressionTree (ec)));
3676 Expression expr = CreateExpressionFactoryCall ("Add", add_args);
3677 if (++pos == arguments.Count)
3678 return expr;
3680 left = new Argument (new EmptyExpression (((MethodInfo)method).ReturnType));
3681 return CreateExpressionAddCall (ec, left, expr, pos);
3684 public override Expression DoResolve (EmitContext ec)
3686 return this;
3689 public void Append (EmitContext ec, Expression operand)
3692 // Constant folding
3694 StringConstant sc = operand as StringConstant;
3695 if (sc != null) {
3696 if (arguments.Count != 0) {
3697 Argument last_argument = arguments [arguments.Count - 1];
3698 StringConstant last_expr_constant = last_argument.Expr as StringConstant;
3699 if (last_expr_constant != null) {
3700 last_argument.Expr = new StringConstant (
3701 last_expr_constant.Value + sc.Value, sc.Location);
3702 return;
3705 } else {
3707 // Multiple (3+) concatenation are resolved as multiple StringConcat instances
3709 StringConcat concat_oper = operand as StringConcat;
3710 if (concat_oper != null) {
3711 arguments.AddRange (concat_oper.arguments);
3712 return;
3716 arguments.Add (new Argument (operand));
3719 Expression CreateConcatMemberExpression ()
3721 return new MemberAccess (new MemberAccess (new QualifiedAliasMember ("global", "System", loc), "String", loc), "Concat", loc);
3724 public override void Emit (EmitContext ec)
3726 Expression concat = new Invocation (CreateConcatMemberExpression (), arguments, true);
3727 concat = concat.Resolve (ec);
3728 if (concat != null)
3729 concat.Emit (ec);
3732 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
3734 arguments.MutateHoistedGenericType (storey);
3739 // User-defined conditional logical operator
3741 public class ConditionalLogicalOperator : UserOperatorCall {
3742 readonly bool is_and;
3743 Expression oper;
3745 public ConditionalLogicalOperator (MethodGroupExpr oper_method, Arguments arguments,
3746 ExpressionTreeExpression expr_tree, bool is_and, Location loc)
3747 : base (oper_method, arguments, expr_tree, loc)
3749 this.is_and = is_and;
3752 public override Expression DoResolve (EmitContext ec)
3754 MethodInfo method = (MethodInfo)mg;
3755 type = TypeManager.TypeToCoreType (method.ReturnType);
3756 AParametersCollection pd = TypeManager.GetParameterData (method);
3757 if (!TypeManager.IsEqual (type, type) || !TypeManager.IsEqual (type, pd.Types [0]) || !TypeManager.IsEqual (type, pd.Types [1])) {
3758 Report.Error (217, loc,
3759 "A user-defined operator `{0}' must have parameters and return values of the same type in order to be applicable as a short circuit operator",
3760 TypeManager.CSharpSignature (method));
3761 return null;
3764 Expression left_dup = new EmptyExpression (type);
3765 Expression op_true = GetOperatorTrue (ec, left_dup, loc);
3766 Expression op_false = GetOperatorFalse (ec, left_dup, loc);
3767 if (op_true == null || op_false == null) {
3768 Report.Error (218, loc,
3769 "The type `{0}' must have operator `true' and operator `false' defined when `{1}' is used as a short circuit operator",
3770 TypeManager.CSharpName (type), TypeManager.CSharpSignature (method));
3771 return null;
3774 oper = is_and ? op_false : op_true;
3775 eclass = ExprClass.Value;
3776 return this;
3779 public override void Emit (EmitContext ec)
3781 ILGenerator ig = ec.ig;
3782 Label end_target = ig.DefineLabel ();
3785 // Emit and duplicate left argument
3787 arguments [0].Expr.Emit (ec);
3788 ig.Emit (OpCodes.Dup);
3789 arguments.RemoveAt (0);
3791 oper.EmitBranchable (ec, end_target, true);
3792 base.Emit (ec);
3793 ig.MarkLabel (end_target);
3797 public class PointerArithmetic : Expression {
3798 Expression left, right;
3799 Binary.Operator op;
3802 // We assume that `l' is always a pointer
3804 public PointerArithmetic (Binary.Operator op, Expression l, Expression r, Type t, Location loc)
3806 type = t;
3807 this.loc = loc;
3808 left = l;
3809 right = r;
3810 this.op = op;
3813 public override Expression CreateExpressionTree (EmitContext ec)
3815 Error_PointerInsideExpressionTree ();
3816 return null;
3819 public override Expression DoResolve (EmitContext ec)
3821 eclass = ExprClass.Variable;
3823 if (left.Type == TypeManager.void_ptr_type) {
3824 Error (242, "The operation in question is undefined on void pointers");
3825 return null;
3828 return this;
3831 public override void Emit (EmitContext ec)
3833 Type op_type = left.Type;
3834 ILGenerator ig = ec.ig;
3836 // It must be either array or fixed buffer
3837 Type element;
3838 if (TypeManager.HasElementType (op_type)) {
3839 element = TypeManager.GetElementType (op_type);
3840 } else {
3841 FieldExpr fe = left as FieldExpr;
3842 if (fe != null)
3843 element = AttributeTester.GetFixedBuffer (fe.FieldInfo).ElementType;
3844 else
3845 element = op_type;
3848 int size = GetTypeSize (element);
3849 Type rtype = right.Type;
3851 if ((op & Binary.Operator.SubtractionMask) != 0 && rtype.IsPointer){
3853 // handle (pointer - pointer)
3855 left.Emit (ec);
3856 right.Emit (ec);
3857 ig.Emit (OpCodes.Sub);
3859 if (size != 1){
3860 if (size == 0)
3861 ig.Emit (OpCodes.Sizeof, element);
3862 else
3863 IntLiteral.EmitInt (ig, size);
3864 ig.Emit (OpCodes.Div);
3866 ig.Emit (OpCodes.Conv_I8);
3867 } else {
3869 // handle + and - on (pointer op int)
3871 Constant left_const = left as Constant;
3872 if (left_const != null) {
3874 // Optimize ((T*)null) pointer operations
3876 if (left_const.IsDefaultValue) {
3877 left = EmptyExpression.Null;
3878 } else {
3879 left_const = null;
3883 left.Emit (ec);
3885 Constant right_const = right as Constant;
3886 if (right_const != null) {
3888 // Optimize 0-based arithmetic
3890 if (right_const.IsDefaultValue)
3891 return;
3893 if (size != 0) {
3894 right = ConstantFold.BinaryFold (ec, Binary.Operator.Multiply, new IntConstant (size, right.Location), right_const, loc);
3895 if (right == null)
3896 return;
3897 } else {
3898 ig.Emit (OpCodes.Sizeof, element);
3899 right = EmptyExpression.Null;
3903 right.Emit (ec);
3904 if (rtype == TypeManager.sbyte_type || rtype == TypeManager.byte_type ||
3905 rtype == TypeManager.short_type || rtype == TypeManager.ushort_type) {
3906 ig.Emit (OpCodes.Conv_I);
3907 } else if (rtype == TypeManager.uint32_type) {
3908 ig.Emit (OpCodes.Conv_U);
3911 if (right_const == null && size != 1){
3912 if (size == 0)
3913 ig.Emit (OpCodes.Sizeof, element);
3914 else
3915 IntLiteral.EmitInt (ig, size);
3916 if (rtype == TypeManager.int64_type || rtype == TypeManager.uint64_type)
3917 ig.Emit (OpCodes.Conv_I8);
3919 Binary.EmitOperatorOpcode (ec, Binary.Operator.Multiply, rtype);
3922 if (left_const == null) {
3923 if (rtype == TypeManager.int64_type)
3924 ig.Emit (OpCodes.Conv_I);
3925 else if (rtype == TypeManager.uint64_type)
3926 ig.Emit (OpCodes.Conv_U);
3928 Binary.EmitOperatorOpcode (ec, op, op_type);
3934 /// <summary>
3935 /// Implements the ternary conditional operator (?:)
3936 /// </summary>
3937 public class Conditional : Expression {
3938 Expression expr, true_expr, false_expr;
3940 public Conditional (Expression expr, Expression true_expr, Expression false_expr)
3942 this.expr = expr;
3943 this.true_expr = true_expr;
3944 this.false_expr = false_expr;
3945 this.loc = expr.Location;
3948 public Expression Expr {
3949 get {
3950 return expr;
3954 public Expression TrueExpr {
3955 get {
3956 return true_expr;
3960 public Expression FalseExpr {
3961 get {
3962 return false_expr;
3966 public override Expression CreateExpressionTree (EmitContext ec)
3968 Arguments args = new Arguments (3);
3969 args.Add (new Argument (expr.CreateExpressionTree (ec)));
3970 args.Add (new Argument (true_expr.CreateExpressionTree (ec)));
3971 args.Add (new Argument (false_expr.CreateExpressionTree (ec)));
3972 return CreateExpressionFactoryCall ("Condition", args);
3975 public override Expression DoResolve (EmitContext ec)
3977 expr = Expression.ResolveBoolean (ec, expr, loc);
3979 Assign ass = expr as Assign;
3980 if (ass != null && ass.Source is Constant) {
3981 Report.Warning (665, 3, loc, "Assignment in conditional expression is always constant; did you mean to use == instead of = ?");
3984 true_expr = true_expr.Resolve (ec);
3985 false_expr = false_expr.Resolve (ec);
3987 if (true_expr == null || false_expr == null || expr == null)
3988 return null;
3990 eclass = ExprClass.Value;
3991 Type true_type = true_expr.Type;
3992 Type false_type = false_expr.Type;
3993 type = true_type;
3996 // First, if an implicit conversion exists from true_expr
3997 // to false_expr, then the result type is of type false_expr.Type
3999 if (!TypeManager.IsEqual (true_type, false_type)) {
4000 Expression conv = Convert.ImplicitConversion (ec, true_expr, false_type, loc);
4001 if (conv != null) {
4003 // Check if both can convert implicitl to each other's type
4005 if (Convert.ImplicitConversion (ec, false_expr, true_type, loc) != null) {
4006 Error (172,
4007 "Can not compute type of conditional expression " +
4008 "as `" + TypeManager.CSharpName (true_expr.Type) +
4009 "' and `" + TypeManager.CSharpName (false_expr.Type) +
4010 "' convert implicitly to each other");
4011 return null;
4013 type = false_type;
4014 true_expr = conv;
4015 } else if ((conv = Convert.ImplicitConversion (ec, false_expr, true_type, loc)) != null) {
4016 false_expr = conv;
4017 } else {
4018 Report.Error (173, loc,
4019 "Type of conditional expression cannot be determined because there is no implicit conversion between `{0}' and `{1}'",
4020 true_expr.GetSignatureForError (), false_expr.GetSignatureForError ());
4021 return null;
4025 // Dead code optimalization
4026 Constant c = expr as Constant;
4027 if (c != null){
4028 bool is_false = c.IsDefaultValue;
4029 Report.Warning (429, 4, is_false ? true_expr.Location : false_expr.Location, "Unreachable expression code detected");
4030 return ReducedExpression.Create (is_false ? false_expr : true_expr, this).Resolve (ec);
4033 return this;
4036 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
4038 expr.MutateHoistedGenericType (storey);
4039 true_expr.MutateHoistedGenericType (storey);
4040 false_expr.MutateHoistedGenericType (storey);
4041 type = storey.MutateType (type);
4044 public override TypeExpr ResolveAsTypeTerminal (IResolveContext ec, bool silent)
4046 return null;
4049 public override void Emit (EmitContext ec)
4051 ILGenerator ig = ec.ig;
4052 Label false_target = ig.DefineLabel ();
4053 Label end_target = ig.DefineLabel ();
4055 expr.EmitBranchable (ec, false_target, false);
4056 true_expr.Emit (ec);
4058 if (type.IsInterface) {
4059 LocalBuilder temp = ec.GetTemporaryLocal (type);
4060 ig.Emit (OpCodes.Stloc, temp);
4061 ig.Emit (OpCodes.Ldloc, temp);
4062 ec.FreeTemporaryLocal (temp, type);
4065 ig.Emit (OpCodes.Br, end_target);
4066 ig.MarkLabel (false_target);
4067 false_expr.Emit (ec);
4068 ig.MarkLabel (end_target);
4071 protected override void CloneTo (CloneContext clonectx, Expression t)
4073 Conditional target = (Conditional) t;
4075 target.expr = expr.Clone (clonectx);
4076 target.true_expr = true_expr.Clone (clonectx);
4077 target.false_expr = false_expr.Clone (clonectx);
4081 public abstract class VariableReference : Expression, IAssignMethod, IMemoryLocation, IVariableReference {
4082 LocalTemporary temp;
4084 #region Abstract
4085 public abstract HoistedVariable GetHoistedVariable (EmitContext ec);
4086 public abstract bool IsFixed { get; }
4087 public abstract bool IsRef { get; }
4088 public abstract string Name { get; }
4089 public abstract void SetHasAddressTaken ();
4092 // Variable IL data, it has to be protected to encapsulate hoisted variables
4094 protected abstract ILocalVariable Variable { get; }
4097 // Variable flow-analysis data
4099 public abstract VariableInfo VariableInfo { get; }
4100 #endregion
4102 public void AddressOf (EmitContext ec, AddressOp mode)
4104 HoistedVariable hv = GetHoistedVariable (ec);
4105 if (hv != null) {
4106 hv.AddressOf (ec, mode);
4107 return;
4110 Variable.EmitAddressOf (ec);
4113 public override void Emit (EmitContext ec)
4115 Emit (ec, false);
4118 public override void EmitSideEffect (EmitContext ec)
4120 // do nothing
4124 // This method is used by parameters that are references, that are
4125 // being passed as references: we only want to pass the pointer (that
4126 // is already stored in the parameter, not the address of the pointer,
4127 // and not the value of the variable).
4129 public void EmitLoad (EmitContext ec)
4131 Variable.Emit (ec);
4134 public void Emit (EmitContext ec, bool leave_copy)
4136 Report.Debug (64, "VARIABLE EMIT", this, Variable, type, IsRef, loc);
4138 HoistedVariable hv = GetHoistedVariable (ec);
4139 if (hv != null) {
4140 hv.Emit (ec, leave_copy);
4141 return;
4144 EmitLoad (ec);
4146 if (IsRef) {
4148 // If we are a reference, we loaded on the stack a pointer
4149 // Now lets load the real value
4151 LoadFromPtr (ec.ig, type);
4154 if (leave_copy) {
4155 ec.ig.Emit (OpCodes.Dup);
4157 if (IsRef) {
4158 temp = new LocalTemporary (Type);
4159 temp.Store (ec);
4164 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy,
4165 bool prepare_for_load)
4167 HoistedVariable hv = GetHoistedVariable (ec);
4168 if (hv != null) {
4169 hv.EmitAssign (ec, source, leave_copy, prepare_for_load);
4170 return;
4173 New n_source = source as New;
4174 if (n_source != null) {
4175 if (!n_source.Emit (ec, this)) {
4176 if (leave_copy)
4177 EmitLoad (ec);
4178 return;
4180 } else {
4181 if (IsRef)
4182 EmitLoad (ec);
4184 source.Emit (ec);
4187 if (leave_copy) {
4188 ec.ig.Emit (OpCodes.Dup);
4189 if (IsRef) {
4190 temp = new LocalTemporary (Type);
4191 temp.Store (ec);
4195 if (IsRef)
4196 StoreFromPtr (ec.ig, type);
4197 else
4198 Variable.EmitAssign (ec);
4200 if (temp != null) {
4201 temp.Emit (ec);
4202 temp.Release (ec);
4206 public bool IsHoisted {
4207 get { return GetHoistedVariable (null) != null; }
4210 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
4212 type = storey.MutateType (type);
4216 /// <summary>
4217 /// Local variables
4218 /// </summary>
4219 public class LocalVariableReference : VariableReference {
4220 readonly string name;
4221 public Block Block;
4222 public LocalInfo local_info;
4223 bool is_readonly;
4224 bool resolved; // TODO: merge with eclass
4226 public LocalVariableReference (Block block, string name, Location l)
4228 Block = block;
4229 this.name = name;
4230 loc = l;
4234 // Setting `is_readonly' to false will allow you to create a writable
4235 // reference to a read-only variable. This is used by foreach and using.
4237 public LocalVariableReference (Block block, string name, Location l,
4238 LocalInfo local_info, bool is_readonly)
4239 : this (block, name, l)
4241 this.local_info = local_info;
4242 this.is_readonly = is_readonly;
4245 public override VariableInfo VariableInfo {
4246 get { return local_info.VariableInfo; }
4249 public override HoistedVariable GetHoistedVariable (EmitContext ec)
4251 return local_info.HoistedVariableReference;
4255 // A local variable is always fixed
4257 public override bool IsFixed {
4258 get { return true; }
4261 public override bool IsRef {
4262 get { return false; }
4265 public bool IsReadOnly {
4266 get { return is_readonly; }
4269 public override string Name {
4270 get { return name; }
4273 public bool VerifyAssigned (EmitContext ec)
4275 VariableInfo variable_info = local_info.VariableInfo;
4276 return variable_info == null || variable_info.IsAssigned (ec, loc);
4279 void ResolveLocalInfo ()
4281 if (local_info == null) {
4282 local_info = Block.GetLocalInfo (Name);
4283 type = local_info.VariableType;
4284 is_readonly = local_info.ReadOnly;
4288 public override void SetHasAddressTaken ()
4290 local_info.AddressTaken = true;
4293 public override Expression CreateExpressionTree (EmitContext ec)
4295 HoistedVariable hv = GetHoistedVariable (ec);
4296 if (hv != null)
4297 return hv.CreateExpressionTree (ec);
4299 Arguments arg = new Arguments (1);
4300 arg.Add (new Argument (this));
4301 return CreateExpressionFactoryCall ("Constant", arg);
4304 Expression DoResolveBase (EmitContext ec)
4306 type = local_info.VariableType;
4308 Expression e = Block.GetConstantExpression (Name);
4309 if (e != null)
4310 return e.Resolve (ec);
4312 VerifyAssigned (ec);
4315 // If we are referencing a variable from the external block
4316 // flag it for capturing
4318 if (ec.MustCaptureVariable (local_info)) {
4319 if (local_info.AddressTaken)
4320 AnonymousMethodExpression.Error_AddressOfCapturedVar (this, loc);
4322 if (ec.IsVariableCapturingRequired) {
4323 AnonymousMethodStorey storey = local_info.Block.Explicit.CreateAnonymousMethodStorey (ec);
4324 storey.CaptureLocalVariable (ec, local_info);
4328 resolved |= ec.DoFlowAnalysis;
4329 eclass = ExprClass.Variable;
4330 return this;
4333 public override Expression DoResolve (EmitContext ec)
4335 if (resolved)
4336 return this;
4338 ResolveLocalInfo ();
4339 local_info.Used = true;
4341 if (type == null && local_info.Type is VarExpr) {
4342 local_info.VariableType = TypeManager.object_type;
4343 Error_VariableIsUsedBeforeItIsDeclared (Name);
4344 return null;
4347 return DoResolveBase (ec);
4350 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
4352 ResolveLocalInfo ();
4354 // is out param
4355 if (right_side == EmptyExpression.OutAccess)
4356 local_info.Used = true;
4358 // Infer implicitly typed local variable
4359 if (type == null) {
4360 VarExpr ve = local_info.Type as VarExpr;
4361 if (ve != null) {
4362 if (!ve.InferType (ec, right_side))
4363 return null;
4364 type = local_info.VariableType = ve.Type;
4368 if (is_readonly) {
4369 int code;
4370 string msg;
4371 if (right_side == EmptyExpression.OutAccess) {
4372 code = 1657; msg = "Cannot pass `{0}' as a ref or out argument because it is a `{1}'";
4373 } else if (right_side == EmptyExpression.LValueMemberAccess) {
4374 code = 1654; msg = "Cannot assign to members of `{0}' because it is a `{1}'";
4375 } else if (right_side == EmptyExpression.LValueMemberOutAccess) {
4376 code = 1655; msg = "Cannot pass members of `{0}' as ref or out arguments because it is a `{1}'";
4377 } else if (right_side == EmptyExpression.UnaryAddress) {
4378 code = 459; msg = "Cannot take the address of {1} `{0}'";
4379 } else {
4380 code = 1656; msg = "Cannot assign to `{0}' because it is a `{1}'";
4382 Report.Error (code, loc, msg, Name, local_info.GetReadOnlyContext ());
4383 } else if (VariableInfo != null) {
4384 VariableInfo.SetAssigned (ec);
4387 return DoResolveBase (ec);
4390 public override int GetHashCode ()
4392 return Name.GetHashCode ();
4395 public override bool Equals (object obj)
4397 LocalVariableReference lvr = obj as LocalVariableReference;
4398 if (lvr == null)
4399 return false;
4401 return Name == lvr.Name && Block == lvr.Block;
4404 protected override ILocalVariable Variable {
4405 get { return local_info; }
4408 public override string ToString ()
4410 return String.Format ("{0} ({1}:{2})", GetType (), Name, loc);
4413 protected override void CloneTo (CloneContext clonectx, Expression t)
4415 LocalVariableReference target = (LocalVariableReference) t;
4417 target.Block = clonectx.LookupBlock (Block);
4418 if (local_info != null)
4419 target.local_info = clonectx.LookupVariable (local_info);
4423 /// <summary>
4424 /// This represents a reference to a parameter in the intermediate
4425 /// representation.
4426 /// </summary>
4427 public class ParameterReference : VariableReference {
4428 readonly ToplevelParameterInfo pi;
4430 public ParameterReference (ToplevelParameterInfo pi, Location loc)
4432 this.pi = pi;
4433 this.loc = loc;
4436 public override bool IsRef {
4437 get { return (pi.Parameter.ModFlags & Parameter.Modifier.ISBYREF) != 0; }
4440 bool HasOutModifier {
4441 get { return pi.Parameter.ModFlags == Parameter.Modifier.OUT; }
4444 public override HoistedVariable GetHoistedVariable (EmitContext ec)
4446 return pi.Parameter.HoistedVariableReference;
4450 // A ref or out parameter is classified as a moveable variable, even
4451 // if the argument given for the parameter is a fixed variable
4453 public override bool IsFixed {
4454 get { return !IsRef; }
4457 public override string Name {
4458 get { return Parameter.Name; }
4461 public Parameter Parameter {
4462 get { return pi.Parameter; }
4465 public override VariableInfo VariableInfo {
4466 get { return pi.VariableInfo; }
4469 protected override ILocalVariable Variable {
4470 get { return Parameter; }
4473 public bool IsAssigned (EmitContext ec, Location loc)
4475 // HACK: Variables are not captured in probing mode
4476 if (ec.IsInProbingMode)
4477 return true;
4479 if (!ec.DoFlowAnalysis || !HasOutModifier || ec.CurrentBranching.IsAssigned (VariableInfo))
4480 return true;
4482 Report.Error (269, loc, "Use of unassigned out parameter `{0}'", Name);
4483 return false;
4486 public override void SetHasAddressTaken ()
4488 Parameter.HasAddressTaken = true;
4491 void SetAssigned (EmitContext ec)
4493 if (HasOutModifier && ec.DoFlowAnalysis)
4494 ec.CurrentBranching.SetAssigned (VariableInfo);
4497 bool DoResolveBase (EmitContext ec)
4499 type = pi.ParameterType;
4500 eclass = ExprClass.Variable;
4502 AnonymousExpression am = ec.CurrentAnonymousMethod;
4503 if (am == null)
4504 return true;
4506 Block b = ec.CurrentBlock;
4507 while (b != null) {
4508 IParameterData[] p = b.Toplevel.Parameters.FixedParameters;
4509 for (int i = 0; i < p.Length; ++i) {
4510 if (p [i] != Parameter)
4511 continue;
4514 // Skip closest anonymous method parameters
4516 if (b == ec.CurrentBlock && !am.IsIterator)
4517 return true;
4519 if (IsRef) {
4520 Report.Error (1628, loc,
4521 "Parameter `{0}' cannot be used inside `{1}' when using `ref' or `out' modifier",
4522 Name, am.ContainerType);
4525 b = null;
4526 break;
4529 if (b != null)
4530 b = b.Toplevel.Parent;
4533 if (pi.Parameter.HasAddressTaken)
4534 AnonymousMethodExpression.Error_AddressOfCapturedVar (this, loc);
4536 if (ec.IsVariableCapturingRequired) {
4537 AnonymousMethodStorey storey = pi.Block.CreateAnonymousMethodStorey (ec);
4538 storey.CaptureParameter (ec, this);
4541 return true;
4544 public override int GetHashCode ()
4546 return Name.GetHashCode ();
4549 public override bool Equals (object obj)
4551 ParameterReference pr = obj as ParameterReference;
4552 if (pr == null)
4553 return false;
4555 return Name == pr.Name;
4558 protected override void CloneTo (CloneContext clonectx, Expression target)
4560 // Nothing to clone
4563 public override Expression CreateExpressionTree (EmitContext ec)
4565 HoistedVariable hv = GetHoistedVariable (ec);
4566 if (hv != null)
4567 return hv.CreateExpressionTree (ec);
4569 return Parameter.ExpressionTreeVariableReference ();
4573 // Notice that for ref/out parameters, the type exposed is not the
4574 // same type exposed externally.
4576 // for "ref int a":
4577 // externally we expose "int&"
4578 // here we expose "int".
4580 // We record this in "is_ref". This means that the type system can treat
4581 // the type as it is expected, but when we generate the code, we generate
4582 // the alternate kind of code.
4584 public override Expression DoResolve (EmitContext ec)
4586 if (!DoResolveBase (ec))
4587 return null;
4589 // HACK: Variables are not captured in probing mode
4590 if (ec.IsInProbingMode)
4591 return this;
4593 if (HasOutModifier && ec.DoFlowAnalysis &&
4594 (!ec.OmitStructFlowAnalysis || !VariableInfo.TypeInfo.IsStruct) && !IsAssigned (ec, loc))
4595 return null;
4597 return this;
4600 override public Expression DoResolveLValue (EmitContext ec, Expression right_side)
4602 if (!DoResolveBase (ec))
4603 return null;
4605 // HACK: parameters are not captured when probing is on
4606 if (!ec.IsInProbingMode)
4607 SetAssigned (ec);
4609 return this;
4612 static public void EmitLdArg (ILGenerator ig, int x)
4614 switch (x) {
4615 case 0: ig.Emit (OpCodes.Ldarg_0); break;
4616 case 1: ig.Emit (OpCodes.Ldarg_1); break;
4617 case 2: ig.Emit (OpCodes.Ldarg_2); break;
4618 case 3: ig.Emit (OpCodes.Ldarg_3); break;
4619 default:
4620 if (x > byte.MaxValue)
4621 ig.Emit (OpCodes.Ldarg, x);
4622 else
4623 ig.Emit (OpCodes.Ldarg_S, (byte) x);
4624 break;
4629 /// <summary>
4630 /// Invocation of methods or delegates.
4631 /// </summary>
4632 public class Invocation : ExpressionStatement
4634 protected Arguments arguments;
4635 protected Expression expr;
4636 protected MethodGroupExpr mg;
4637 bool arguments_resolved;
4640 // arguments is an ArrayList, but we do not want to typecast,
4641 // as it might be null.
4643 public Invocation (Expression expr, Arguments arguments)
4645 SimpleName sn = expr as SimpleName;
4646 if (sn != null)
4647 this.expr = sn.GetMethodGroup ();
4648 else
4649 this.expr = expr;
4651 this.arguments = arguments;
4652 if (expr != null)
4653 loc = expr.Location;
4656 public Invocation (Expression expr, Arguments arguments, bool arguments_resolved)
4657 : this (expr, arguments)
4659 this.arguments_resolved = arguments_resolved;
4662 public override Expression CreateExpressionTree (EmitContext ec)
4664 Arguments args;
4667 // Special conversion for nested expression trees
4669 if (TypeManager.DropGenericTypeArguments (type) == TypeManager.expression_type) {
4670 args = new Arguments (1);
4671 args.Add (new Argument (this));
4672 return CreateExpressionFactoryCall ("Quote", args);
4675 Expression instance = mg.IsInstance ?
4676 mg.InstanceExpression.CreateExpressionTree (ec) :
4677 new NullLiteral (loc);
4679 args = Arguments.CreateForExpressionTree (ec, arguments,
4680 instance,
4681 mg.CreateExpressionTree (ec));
4683 if (mg.IsBase)
4684 MemberExpr.Error_BaseAccessInExpressionTree (loc);
4686 return CreateExpressionFactoryCall ("Call", args);
4689 public override Expression DoResolve (EmitContext ec)
4691 // Don't resolve already resolved expression
4692 if (eclass != ExprClass.Invalid)
4693 return this;
4695 Expression expr_resolved = expr.Resolve (ec, ResolveFlags.VariableOrValue | ResolveFlags.MethodGroup);
4696 if (expr_resolved == null)
4697 return null;
4700 // Next, evaluate all the expressions in the argument list
4702 bool dynamic_arg = false;
4703 if (arguments != null && !arguments_resolved)
4704 arguments.Resolve (ec, out dynamic_arg);
4706 Type expr_type = expr_resolved.Type;
4707 mg = expr_resolved as MethodGroupExpr;
4709 if (dynamic_arg || TypeManager.IsDynamicType (expr_type)) {
4710 if (mg != null && mg.IsBase) {
4711 Report.Error (1971, loc,
4712 "The base call to method `{0}' cannot be dynamically dispatched. Consider casting the dynamic arguments or eliminating the base access",
4713 mg.Name);
4714 return null;
4717 Arguments args = ((DynamicMemberBinder) expr_resolved).Arguments;
4718 return new DynamicInvocation (expr as MemberAccess, args, loc).Resolve (ec);
4721 if (mg == null) {
4722 if (expr_type != null && TypeManager.IsDelegateType (expr_type)){
4723 return (new DelegateInvocation (
4724 expr_resolved, arguments, loc)).Resolve (ec);
4727 MemberExpr me = expr_resolved as MemberExpr;
4728 if (me == null) {
4729 expr_resolved.Error_UnexpectedKind (ResolveFlags.MethodGroup, loc);
4730 return null;
4733 mg = ec.TypeContainer.LookupExtensionMethod (me.Type, me.Name, loc);
4734 if (mg == null) {
4735 Report.Error (1955, loc, "The member `{0}' cannot be used as method or delegate",
4736 expr_resolved.GetSignatureForError ());
4737 return null;
4740 ((ExtensionMethodGroupExpr)mg).ExtensionExpression = me.InstanceExpression;
4743 mg = DoResolveOverload (ec);
4744 if (mg == null)
4745 return null;
4747 MethodInfo method = (MethodInfo)mg;
4748 if (method != null) {
4749 type = TypeManager.TypeToCoreType (method.ReturnType);
4751 // TODO: this is a copy of mg.ResolveMemberAccess method
4752 Expression iexpr = mg.InstanceExpression;
4753 if (method.IsStatic) {
4754 if (iexpr == null ||
4755 iexpr is This || iexpr is EmptyExpression ||
4756 mg.IdenticalTypeName) {
4757 mg.InstanceExpression = null;
4758 } else {
4759 MemberExpr.error176 (loc, mg.GetSignatureForError ());
4760 return null;
4762 } else {
4763 if (iexpr == null || iexpr == EmptyExpression.Null) {
4764 SimpleName.Error_ObjectRefRequired (ec, loc, mg.GetSignatureForError ());
4769 if (type.IsPointer){
4770 if (!ec.InUnsafe){
4771 UnsafeError (loc);
4772 return null;
4777 // Only base will allow this invocation to happen.
4779 if (mg.IsBase && method.IsAbstract){
4780 Error_CannotCallAbstractBase (TypeManager.CSharpSignature (method));
4781 return null;
4784 if (arguments == null && method.DeclaringType == TypeManager.object_type && method.Name == Destructor.MetadataName) {
4785 if (mg.IsBase)
4786 Report.Error (250, loc, "Do not directly call your base class Finalize method. It is called automatically from your destructor");
4787 else
4788 Report.Error (245, loc, "Destructors and object.Finalize cannot be called directly. Consider calling IDisposable.Dispose if available");
4789 return null;
4792 IsSpecialMethodInvocation (method, loc);
4794 if (mg.InstanceExpression != null)
4795 mg.InstanceExpression.CheckMarshalByRefAccess (ec);
4797 eclass = ExprClass.Value;
4798 return this;
4801 protected virtual MethodGroupExpr DoResolveOverload (EmitContext ec)
4803 return mg.OverloadResolve (ec, ref arguments, false, loc);
4806 public static bool IsSpecialMethodInvocation (MethodBase method, Location loc)
4808 if (!TypeManager.IsSpecialMethod (method))
4809 return false;
4811 Report.SymbolRelatedToPreviousError (method);
4812 Report.Error (571, loc, "`{0}': cannot explicitly call operator or accessor",
4813 TypeManager.CSharpSignature (method, true));
4815 return true;
4818 static Type[] GetVarargsTypes (MethodBase mb, Arguments arguments)
4820 AParametersCollection pd = TypeManager.GetParameterData (mb);
4822 Argument a = arguments [pd.Count - 1];
4823 Arglist list = (Arglist) a.Expr;
4825 return list.ArgumentTypes;
4828 /// <summary>
4829 /// This checks the ConditionalAttribute on the method
4830 /// </summary>
4831 public static bool IsMethodExcluded (MethodBase method, Location loc)
4833 if (method.IsConstructor)
4834 return false;
4836 method = TypeManager.DropGenericMethodArguments (method);
4837 if (method.DeclaringType.Module == RootContext.ToplevelTypes.Builder) {
4838 IMethodData md = TypeManager.GetMethod (method);
4839 if (md != null)
4840 return md.IsExcluded ();
4842 // For some methods (generated by delegate class) GetMethod returns null
4843 // because they are not included in builder_to_method table
4844 return false;
4847 return AttributeTester.IsConditionalMethodExcluded (method, loc);
4850 /// <remarks>
4851 /// is_base tells whether we want to force the use of the `call'
4852 /// opcode instead of using callvirt. Call is required to call
4853 /// a specific method, while callvirt will always use the most
4854 /// recent method in the vtable.
4856 /// is_static tells whether this is an invocation on a static method
4858 /// instance_expr is an expression that represents the instance
4859 /// it must be non-null if is_static is false.
4861 /// method is the method to invoke.
4863 /// Arguments is the list of arguments to pass to the method or constructor.
4864 /// </remarks>
4865 public static void EmitCall (EmitContext ec, bool is_base,
4866 Expression instance_expr,
4867 MethodBase method, Arguments Arguments, Location loc)
4869 EmitCall (ec, is_base, instance_expr, method, Arguments, loc, false, false);
4872 // `dup_args' leaves an extra copy of the arguments on the stack
4873 // `omit_args' does not leave any arguments at all.
4874 // So, basically, you could make one call with `dup_args' set to true,
4875 // and then another with `omit_args' set to true, and the two calls
4876 // would have the same set of arguments. However, each argument would
4877 // only have been evaluated once.
4878 public static void EmitCall (EmitContext ec, bool is_base,
4879 Expression instance_expr,
4880 MethodBase method, Arguments Arguments, Location loc,
4881 bool dup_args, bool omit_args)
4883 ILGenerator ig = ec.ig;
4884 bool struct_call = false;
4885 bool this_call = false;
4886 LocalTemporary this_arg = null;
4888 Type decl_type = method.DeclaringType;
4890 if (IsMethodExcluded (method, loc))
4891 return;
4893 bool is_static = method.IsStatic;
4894 if (!is_static){
4895 this_call = instance_expr is This;
4896 if (TypeManager.IsStruct (decl_type) || TypeManager.IsEnumType (decl_type))
4897 struct_call = true;
4900 // If this is ourselves, push "this"
4902 if (!omit_args) {
4903 Type t = null;
4904 Type iexpr_type = instance_expr.Type;
4907 // Push the instance expression
4909 if (TypeManager.IsValueType (iexpr_type) || TypeManager.IsGenericParameter (iexpr_type)) {
4911 // Special case: calls to a function declared in a
4912 // reference-type with a value-type argument need
4913 // to have their value boxed.
4914 if (TypeManager.IsStruct (decl_type) ||
4915 TypeManager.IsGenericParameter (iexpr_type)) {
4917 // If the expression implements IMemoryLocation, then
4918 // we can optimize and use AddressOf on the
4919 // return.
4921 // If not we have to use some temporary storage for
4922 // it.
4923 if (instance_expr is IMemoryLocation) {
4924 ((IMemoryLocation)instance_expr).
4925 AddressOf (ec, AddressOp.LoadStore);
4926 } else {
4927 LocalTemporary temp = new LocalTemporary (iexpr_type);
4928 instance_expr.Emit (ec);
4929 temp.Store (ec);
4930 temp.AddressOf (ec, AddressOp.Load);
4933 // avoid the overhead of doing this all the time.
4934 if (dup_args)
4935 t = TypeManager.GetReferenceType (iexpr_type);
4936 } else {
4937 instance_expr.Emit (ec);
4939 // FIXME: should use instance_expr is IMemoryLocation + constraint.
4940 // to help JIT to produce better code
4941 ig.Emit (OpCodes.Box, instance_expr.Type);
4942 t = TypeManager.object_type;
4944 } else {
4945 instance_expr.Emit (ec);
4946 t = instance_expr.Type;
4949 if (dup_args) {
4950 ig.Emit (OpCodes.Dup);
4951 if (Arguments != null && Arguments.Count != 0) {
4952 this_arg = new LocalTemporary (t);
4953 this_arg.Store (ec);
4959 if (!omit_args && Arguments != null)
4960 Arguments.Emit (ec, dup_args, this_arg);
4962 OpCode call_op;
4963 if (is_static || struct_call || is_base || (this_call && !method.IsVirtual)) {
4964 call_op = OpCodes.Call;
4965 } else {
4966 call_op = OpCodes.Callvirt;
4968 #if GMCS_SOURCE
4969 if ((instance_expr != null) && (instance_expr.Type.IsGenericParameter))
4970 ig.Emit (OpCodes.Constrained, instance_expr.Type);
4971 #endif
4974 if ((method.CallingConvention & CallingConventions.VarArgs) != 0) {
4975 Type[] varargs_types = GetVarargsTypes (method, Arguments);
4976 ig.EmitCall (call_op, (MethodInfo) method, varargs_types);
4977 return;
4981 // If you have:
4982 // this.DoFoo ();
4983 // and DoFoo is not virtual, you can omit the callvirt,
4984 // because you don't need the null checking behavior.
4986 if (method is MethodInfo)
4987 ig.Emit (call_op, (MethodInfo) method);
4988 else
4989 ig.Emit (call_op, (ConstructorInfo) method);
4992 public override void Emit (EmitContext ec)
4994 mg.EmitCall (ec, arguments);
4997 public override void EmitStatement (EmitContext ec)
4999 Emit (ec);
5002 // Pop the return value if there is one
5004 if (TypeManager.TypeToCoreType (type) != TypeManager.void_type)
5005 ec.ig.Emit (OpCodes.Pop);
5008 protected override void CloneTo (CloneContext clonectx, Expression t)
5010 Invocation target = (Invocation) t;
5012 if (arguments != null)
5013 target.arguments = arguments.Clone (clonectx);
5015 target.expr = expr.Clone (clonectx);
5018 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5020 mg.MutateHoistedGenericType (storey);
5021 type = storey.MutateType (type);
5022 if (arguments != null) {
5023 arguments.MutateHoistedGenericType (storey);
5029 // It's either a cast or delegate invocation
5031 public class InvocationOrCast : ExpressionStatement
5033 Expression expr;
5034 Expression argument;
5036 public InvocationOrCast (Expression expr, Expression argument)
5038 this.expr = expr;
5039 this.argument = argument;
5040 this.loc = expr.Location;
5043 public override Expression CreateExpressionTree (EmitContext ec)
5045 throw new NotSupportedException ("ET");
5048 public override Expression DoResolve (EmitContext ec)
5050 Expression e = ResolveCore (ec);
5051 if (e == null)
5052 return null;
5054 return e.Resolve (ec);
5057 Expression ResolveCore (EmitContext ec)
5060 // First try to resolve it as a cast.
5062 TypeExpr te = expr.ResolveAsBaseTerminal (ec, true);
5063 if (te != null) {
5064 return new Cast (te, argument, loc);
5068 // This can either be a type or a delegate invocation.
5069 // Let's just resolve it and see what we'll get.
5071 expr = expr.Resolve (ec, ResolveFlags.Type | ResolveFlags.VariableOrValue);
5072 if (expr == null)
5073 return null;
5076 // Ok, so it's a Cast.
5078 if (expr.eclass == ExprClass.Type || expr.eclass == ExprClass.TypeParameter) {
5079 return new Cast (expr, argument, loc);
5082 if (expr.eclass == ExprClass.Namespace) {
5083 expr.Error_UnexpectedKind (null, "type", loc);
5084 return null;
5088 // It's a delegate invocation.
5090 if (!TypeManager.IsDelegateType (expr.Type)) {
5091 Error (149, "Method name expected");
5092 return null;
5095 ArrayList args = new ArrayList (1);
5096 args.Add (new Argument (argument, Argument.AType.Expression));
5097 return new DelegateInvocation (expr, args, loc);
5100 public override ExpressionStatement ResolveStatement (EmitContext ec)
5102 Expression e = ResolveCore (ec);
5103 if (e == null)
5104 return null;
5106 ExpressionStatement s = e as ExpressionStatement;
5107 if (s == null) {
5108 Error_InvalidExpressionStatement ();
5109 return null;
5112 return s.ResolveStatement (ec);
5115 public override void Emit (EmitContext ec)
5117 throw new Exception ("Cannot happen");
5120 public override void EmitStatement (EmitContext ec)
5122 throw new Exception ("Cannot happen");
5125 protected override void CloneTo (CloneContext clonectx, Expression t)
5127 InvocationOrCast target = (InvocationOrCast) t;
5129 target.expr = expr.Clone (clonectx);
5130 target.argument = argument.Clone (clonectx);
5135 /// <summary>
5136 /// Implements the new expression
5137 /// </summary>
5138 public class New : ExpressionStatement, IMemoryLocation {
5139 Arguments Arguments;
5142 // During bootstrap, it contains the RequestedType,
5143 // but if `type' is not null, it *might* contain a NewDelegate
5144 // (because of field multi-initialization)
5146 Expression RequestedType;
5148 MethodGroupExpr method;
5150 bool is_type_parameter;
5152 public New (Expression requested_type, Arguments arguments, Location l)
5154 RequestedType = requested_type;
5155 Arguments = arguments;
5156 loc = l;
5159 /// <summary>
5160 /// Converts complex core type syntax like 'new int ()' to simple constant
5161 /// </summary>
5162 public static Constant Constantify (Type t)
5164 if (t == TypeManager.int32_type)
5165 return new IntConstant (0, Location.Null);
5166 if (t == TypeManager.uint32_type)
5167 return new UIntConstant (0, Location.Null);
5168 if (t == TypeManager.int64_type)
5169 return new LongConstant (0, Location.Null);
5170 if (t == TypeManager.uint64_type)
5171 return new ULongConstant (0, Location.Null);
5172 if (t == TypeManager.float_type)
5173 return new FloatConstant (0, Location.Null);
5174 if (t == TypeManager.double_type)
5175 return new DoubleConstant (0, Location.Null);
5176 if (t == TypeManager.short_type)
5177 return new ShortConstant (0, Location.Null);
5178 if (t == TypeManager.ushort_type)
5179 return new UShortConstant (0, Location.Null);
5180 if (t == TypeManager.sbyte_type)
5181 return new SByteConstant (0, Location.Null);
5182 if (t == TypeManager.byte_type)
5183 return new ByteConstant (0, Location.Null);
5184 if (t == TypeManager.char_type)
5185 return new CharConstant ('\0', Location.Null);
5186 if (t == TypeManager.bool_type)
5187 return new BoolConstant (false, Location.Null);
5188 if (t == TypeManager.decimal_type)
5189 return new DecimalConstant (0, Location.Null);
5190 if (TypeManager.IsEnumType (t))
5191 return new EnumConstant (Constantify (TypeManager.GetEnumUnderlyingType (t)), t);
5192 if (TypeManager.IsNullableType (t))
5193 return Nullable.LiftedNull.Create (t, Location.Null);
5195 return null;
5199 // Checks whether the type is an interface that has the
5200 // [ComImport, CoClass] attributes and must be treated
5201 // specially
5203 public Expression CheckComImport (EmitContext ec)
5205 if (!type.IsInterface)
5206 return null;
5209 // Turn the call into:
5210 // (the-interface-stated) (new class-referenced-in-coclassattribute ())
5212 Type real_class = AttributeTester.GetCoClassAttribute (type);
5213 if (real_class == null)
5214 return null;
5216 New proxy = new New (new TypeExpression (real_class, loc), Arguments, loc);
5217 Cast cast = new Cast (new TypeExpression (type, loc), proxy, loc);
5218 return cast.Resolve (ec);
5221 public override Expression CreateExpressionTree (EmitContext ec)
5223 Arguments args;
5224 if (method == null) {
5225 args = new Arguments (1);
5226 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
5227 } else {
5228 args = Arguments.CreateForExpressionTree (ec, Arguments,
5229 method.CreateExpressionTree (ec));
5232 return CreateExpressionFactoryCall ("New", args);
5235 public override Expression DoResolve (EmitContext ec)
5238 // The New DoResolve might be called twice when initializing field
5239 // expressions (see EmitFieldInitializers, the call to
5240 // GetInitializerExpression will perform a resolve on the expression,
5241 // and later the assign will trigger another resolution
5243 // This leads to bugs (#37014)
5245 if (type != null){
5246 if (RequestedType is NewDelegate)
5247 return RequestedType;
5248 return this;
5251 TypeExpr texpr = RequestedType.ResolveAsTypeTerminal (ec, false);
5252 if (texpr == null)
5253 return null;
5255 type = texpr.Type;
5257 if (type.IsPointer) {
5258 Report.Error (1919, loc, "Unsafe type `{0}' cannot be used in an object creation expression",
5259 TypeManager.CSharpName (type));
5260 return null;
5263 if (Arguments == null) {
5264 Constant c = Constantify (type);
5265 if (c != null)
5266 return ReducedExpression.Create (c, this);
5269 if (TypeManager.IsDelegateType (type)) {
5270 return (new NewDelegate (type, Arguments, loc)).Resolve (ec);
5273 if (TypeManager.IsGenericParameter (type)) {
5274 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (type);
5276 if ((gc == null) || (!gc.HasConstructorConstraint && !gc.IsValueType)) {
5277 Error (304, String.Format (
5278 "Cannot create an instance of the " +
5279 "variable type '{0}' because it " +
5280 "doesn't have the new() constraint",
5281 type));
5282 return null;
5285 if ((Arguments != null) && (Arguments.Count != 0)) {
5286 Error (417, String.Format (
5287 "`{0}': cannot provide arguments " +
5288 "when creating an instance of a " +
5289 "variable type.", type));
5290 return null;
5293 if (TypeManager.activator_create_instance == null) {
5294 Type activator_type = TypeManager.CoreLookupType ("System", "Activator", Kind.Class, true);
5295 if (activator_type != null) {
5296 TypeManager.activator_create_instance = TypeManager.GetPredefinedMethod (
5297 activator_type, "CreateInstance", loc, Type.EmptyTypes);
5301 is_type_parameter = true;
5302 eclass = ExprClass.Value;
5303 return this;
5306 if (type.IsAbstract && type.IsSealed) {
5307 Report.SymbolRelatedToPreviousError (type);
5308 Report.Error (712, loc, "Cannot create an instance of the static class `{0}'", TypeManager.CSharpName (type));
5309 return null;
5312 if (type.IsInterface || type.IsAbstract){
5313 if (!TypeManager.IsGenericType (type)) {
5314 RequestedType = CheckComImport (ec);
5315 if (RequestedType != null)
5316 return RequestedType;
5319 Report.SymbolRelatedToPreviousError (type);
5320 Report.Error (144, loc, "Cannot create an instance of the abstract class or interface `{0}'", TypeManager.CSharpName (type));
5321 return null;
5324 bool is_struct = TypeManager.IsStruct (type);
5325 eclass = ExprClass.Value;
5328 // SRE returns a match for .ctor () on structs (the object constructor),
5329 // so we have to manually ignore it.
5331 if (is_struct && Arguments == null)
5332 return this;
5334 // For member-lookup, treat 'new Foo (bar)' as call to 'foo.ctor (bar)', where 'foo' is of type 'Foo'.
5335 Expression ml = MemberLookupFinal (ec, type, type, ConstructorInfo.ConstructorName,
5336 MemberTypes.Constructor, AllBindingFlags | BindingFlags.DeclaredOnly, loc);
5338 if (Arguments != null) {
5339 bool dynamic;
5340 Arguments.Resolve (ec, out dynamic);
5342 if (dynamic) {
5343 Arguments.Insert (0, new Argument (new TypeOf (texpr, loc).Resolve (ec)));
5344 return new DynamicInvocation (new SimpleName (ConstructorInfo.ConstructorName, loc), Arguments, type, loc).Resolve (ec);
5348 if (ml == null)
5349 return null;
5351 method = ml as MethodGroupExpr;
5352 if (method == null) {
5353 ml.Error_UnexpectedKind (ec.DeclContainer, "method group", loc);
5354 return null;
5357 method = method.OverloadResolve (ec, ref Arguments, false, loc);
5358 if (method == null)
5359 return null;
5361 return this;
5364 bool DoEmitTypeParameter (EmitContext ec)
5366 #if GMCS_SOURCE
5367 ILGenerator ig = ec.ig;
5368 // IMemoryLocation ml;
5370 MethodInfo ci = TypeManager.activator_create_instance.MakeGenericMethod (
5371 new Type [] { type });
5373 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (type);
5374 if (gc.HasReferenceTypeConstraint || gc.HasClassConstraint) {
5375 ig.Emit (OpCodes.Call, ci);
5376 return true;
5379 // Allow DoEmit() to be called multiple times.
5380 // We need to create a new LocalTemporary each time since
5381 // you can't share LocalBuilders among ILGeneators.
5382 LocalTemporary temp = new LocalTemporary (type);
5384 Label label_activator = ig.DefineLabel ();
5385 Label label_end = ig.DefineLabel ();
5387 temp.AddressOf (ec, AddressOp.Store);
5388 ig.Emit (OpCodes.Initobj, type);
5390 temp.Emit (ec);
5391 ig.Emit (OpCodes.Box, type);
5392 ig.Emit (OpCodes.Brfalse, label_activator);
5394 temp.AddressOf (ec, AddressOp.Store);
5395 ig.Emit (OpCodes.Initobj, type);
5396 temp.Emit (ec);
5397 ig.Emit (OpCodes.Br_S, label_end);
5399 ig.MarkLabel (label_activator);
5401 ig.Emit (OpCodes.Call, ci);
5402 ig.MarkLabel (label_end);
5403 return true;
5404 #else
5405 throw new InternalErrorException ();
5406 #endif
5410 // This Emit can be invoked in two contexts:
5411 // * As a mechanism that will leave a value on the stack (new object)
5412 // * As one that wont (init struct)
5414 // If we are dealing with a ValueType, we have a few
5415 // situations to deal with:
5417 // * The target is a ValueType, and we have been provided
5418 // the instance (this is easy, we are being assigned).
5420 // * The target of New is being passed as an argument,
5421 // to a boxing operation or a function that takes a
5422 // ValueType.
5424 // In this case, we need to create a temporary variable
5425 // that is the argument of New.
5427 // Returns whether a value is left on the stack
5429 // *** Implementation note ***
5431 // To benefit from this optimization, each assignable expression
5432 // has to manually cast to New and call this Emit.
5434 // TODO: It's worth to implement it for arrays and fields
5436 public virtual bool Emit (EmitContext ec, IMemoryLocation target)
5438 bool is_value_type = TypeManager.IsValueType (type);
5439 ILGenerator ig = ec.ig;
5440 VariableReference vr = target as VariableReference;
5442 if (target != null && is_value_type && (vr != null || method == null)) {
5443 target.AddressOf (ec, AddressOp.Store);
5444 } else if (vr != null && vr.IsRef) {
5445 vr.EmitLoad (ec);
5448 if (Arguments != null)
5449 Arguments.Emit (ec);
5451 if (is_value_type) {
5452 if (method == null) {
5453 ig.Emit (OpCodes.Initobj, type);
5454 return false;
5457 if (vr != null) {
5458 ig.Emit (OpCodes.Call, (ConstructorInfo) method);
5459 return false;
5463 if (is_type_parameter)
5464 return DoEmitTypeParameter (ec);
5466 ConstructorInfo ci = (ConstructorInfo) method;
5467 #if MS_COMPATIBLE
5468 if (TypeManager.IsGenericType (type))
5469 ci = TypeBuilder.GetConstructor (type, ci);
5470 #endif
5472 ig.Emit (OpCodes.Newobj, ci);
5473 return true;
5476 public override void Emit (EmitContext ec)
5478 LocalTemporary v = null;
5479 if (method == null && TypeManager.IsValueType (type)) {
5480 // TODO: Use temporary variable from pool
5481 v = new LocalTemporary (type);
5484 if (!Emit (ec, v))
5485 v.Emit (ec);
5488 public override void EmitStatement (EmitContext ec)
5490 LocalTemporary v = null;
5491 if (method == null && TypeManager.IsValueType (type)) {
5492 // TODO: Use temporary variable from pool
5493 v = new LocalTemporary (type);
5496 if (Emit (ec, v))
5497 ec.ig.Emit (OpCodes.Pop);
5500 public bool IsDefaultValueType {
5501 get {
5502 return TypeManager.IsValueType (type) && !HasInitializer && Arguments == null;
5506 public virtual bool HasInitializer {
5507 get {
5508 return false;
5512 public void AddressOf (EmitContext ec, AddressOp mode)
5514 EmitAddressOf (ec, mode);
5517 protected virtual IMemoryLocation EmitAddressOf (EmitContext ec, AddressOp mode)
5519 LocalTemporary value_target = new LocalTemporary (type);
5521 if (is_type_parameter) {
5522 DoEmitTypeParameter (ec);
5523 value_target.Store (ec);
5524 value_target.AddressOf (ec, mode);
5525 return value_target;
5528 if (!TypeManager.IsStruct (type)){
5530 // We throw an exception. So far, I believe we only need to support
5531 // value types:
5532 // foreach (int j in new StructType ())
5533 // see bug 42390
5535 throw new Exception ("AddressOf should not be used for classes");
5538 value_target.AddressOf (ec, AddressOp.Store);
5540 if (method == null) {
5541 ec.ig.Emit (OpCodes.Initobj, type);
5542 } else {
5543 if (Arguments != null)
5544 Arguments.Emit (ec);
5546 ec.ig.Emit (OpCodes.Call, (ConstructorInfo) method);
5549 value_target.AddressOf (ec, mode);
5550 return value_target;
5553 protected override void CloneTo (CloneContext clonectx, Expression t)
5555 New target = (New) t;
5557 target.RequestedType = RequestedType.Clone (clonectx);
5558 if (Arguments != null){
5559 target.Arguments = Arguments.Clone (clonectx);
5563 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
5565 if (method != null) {
5566 method.MutateHoistedGenericType (storey);
5567 if (Arguments != null) {
5568 Arguments.MutateHoistedGenericType (storey);
5572 type = storey.MutateType (type);
5576 /// <summary>
5577 /// 14.5.10.2: Represents an array creation expression.
5578 /// </summary>
5580 /// <remarks>
5581 /// There are two possible scenarios here: one is an array creation
5582 /// expression that specifies the dimensions and optionally the
5583 /// initialization data and the other which does not need dimensions
5584 /// specified but where initialization data is mandatory.
5585 /// </remarks>
5586 public class ArrayCreation : Expression {
5587 FullNamedExpression requested_base_type;
5588 ArrayList initializers;
5591 // The list of Argument types.
5592 // This is used to construct the `newarray' or constructor signature
5594 protected ArrayList arguments;
5596 protected Type array_element_type;
5597 bool expect_initializers = false;
5598 int num_arguments = 0;
5599 protected int dimensions;
5600 protected readonly string rank;
5602 protected ArrayList array_data;
5604 IDictionary bounds;
5606 // The number of constants in array initializers
5607 int const_initializers_count;
5608 bool only_constant_initializers;
5610 public ArrayCreation (FullNamedExpression requested_base_type, ArrayList exprs, string rank, ArrayList initializers, Location l)
5612 this.requested_base_type = requested_base_type;
5613 this.initializers = initializers;
5614 this.rank = rank;
5615 loc = l;
5617 arguments = new ArrayList (exprs.Count);
5619 foreach (Expression e in exprs) {
5620 arguments.Add (e);
5621 num_arguments++;
5625 public ArrayCreation (FullNamedExpression requested_base_type, string rank, ArrayList initializers, Location l)
5627 this.requested_base_type = requested_base_type;
5628 this.initializers = initializers;
5629 this.rank = rank;
5630 loc = l;
5632 //this.rank = rank.Substring (0, rank.LastIndexOf ('['));
5634 //string tmp = rank.Substring (rank.LastIndexOf ('['));
5636 //dimensions = tmp.Length - 1;
5637 expect_initializers = true;
5640 public static void Error_IncorrectArrayInitializer (Location loc)
5642 Report.Error (178, loc, "Invalid rank specifier: expected `,' or `]'");
5645 protected override void Error_NegativeArrayIndex (Location loc)
5647 Report.Error (248, loc, "Cannot create an array with a negative size");
5650 bool CheckIndices (EmitContext ec, ArrayList probe, int idx, bool specified_dims, int child_bounds)
5652 if (specified_dims) {
5653 Expression a = (Expression) arguments [idx];
5654 a = a.Resolve (ec);
5655 if (a == null)
5656 return false;
5658 Constant c = a as Constant;
5659 if (c != null) {
5660 c = c.ImplicitConversionRequired (ec, TypeManager.int32_type, a.Location);
5663 if (c == null) {
5664 Report.Error (150, a.Location, "A constant value is expected");
5665 return false;
5668 int value = (int) c.GetValue ();
5670 if (value != probe.Count) {
5671 Report.Error (847, loc, "An array initializer of length `{0}' was expected", value);
5672 return false;
5675 bounds [idx] = value;
5678 only_constant_initializers = true;
5679 for (int i = 0; i < probe.Count; ++i) {
5680 object o = probe [i];
5681 if (o is ArrayList) {
5682 ArrayList sub_probe = o as ArrayList;
5683 if (idx + 1 >= dimensions){
5684 Error (623, "Array initializers can only be used in a variable or field initializer. Try using a new expression instead");
5685 return false;
5688 bool ret = CheckIndices (ec, sub_probe, idx + 1, specified_dims, child_bounds - 1);
5689 if (!ret)
5690 return false;
5691 } else if (child_bounds > 1) {
5692 Report.Error (846, ((Expression) o).Location, "A nested array initializer was expected");
5693 } else {
5694 Expression element = ResolveArrayElement (ec, (Expression) o);
5695 if (element == null)
5696 continue;
5698 // Initializers with the default values can be ignored
5699 Constant c = element as Constant;
5700 if (c != null) {
5701 if (c.IsDefaultInitializer (array_element_type)) {
5702 element = null;
5704 else {
5705 ++const_initializers_count;
5707 } else {
5708 only_constant_initializers = false;
5711 array_data.Add (element);
5715 return true;
5718 public override Expression CreateExpressionTree (EmitContext ec)
5720 Arguments args;
5722 if (array_data == null) {
5723 args = new Arguments (arguments.Count + 1);
5724 args.Add (new Argument (new TypeOf (new TypeExpression (array_element_type, loc), loc)));
5725 foreach (Expression a in arguments) {
5726 if (arguments.Count == 1) {
5727 Constant c = a as Constant;
5728 if (c.IsDefaultValue)
5729 return CreateExpressionFactoryCall ("NewArrayInit", args);
5731 args.Add (new Argument (a.CreateExpressionTree (ec)));
5734 return CreateExpressionFactoryCall ("NewArrayBounds", args);
5737 if (dimensions > 1) {
5738 Report.Error (838, loc, "An expression tree cannot contain a multidimensional array initializer");
5739 return null;
5742 args = new Arguments (array_data == null ? 1 : array_data.Count + 1);
5743 args.Add (new Argument (new TypeOf (new TypeExpression (array_element_type, loc), loc)));
5744 if (array_data != null) {
5745 for (int i = 0; i < array_data.Count; ++i) {
5746 Expression e = (Expression) array_data [i];
5747 if (e == null)
5748 e = Convert.ImplicitConversion (ec, (Expression) initializers [i], array_element_type, loc);
5750 args.Add (new Argument (e.CreateExpressionTree (ec)));
5754 return CreateExpressionFactoryCall ("NewArrayInit", args);
5757 public void UpdateIndices ()
5759 int i = 0;
5760 for (ArrayList probe = initializers; probe != null;) {
5761 if (probe.Count > 0 && probe [0] is ArrayList) {
5762 Expression e = new IntConstant (probe.Count, Location.Null);
5763 arguments.Add (e);
5765 bounds [i++] = probe.Count;
5767 probe = (ArrayList) probe [0];
5769 } else {
5770 Expression e = new IntConstant (probe.Count, Location.Null);
5771 arguments.Add (e);
5773 bounds [i++] = probe.Count;
5774 return;
5780 Expression first_emit;
5781 LocalTemporary first_emit_temp;
5783 protected virtual Expression ResolveArrayElement (EmitContext ec, Expression element)
5785 element = element.Resolve (ec);
5786 if (element == null)
5787 return null;
5789 if (element is CompoundAssign.TargetExpression) {
5790 if (first_emit != null)
5791 throw new InternalErrorException ("Can only handle one mutator at a time");
5792 first_emit = element;
5793 element = first_emit_temp = new LocalTemporary (element.Type);
5796 return Convert.ImplicitConversionRequired (
5797 ec, element, array_element_type, loc);
5800 protected bool ResolveInitializers (EmitContext ec)
5802 if (initializers == null) {
5803 return !expect_initializers;
5807 // We use this to store all the date values in the order in which we
5808 // will need to store them in the byte blob later
5810 array_data = new ArrayList ();
5811 bounds = new System.Collections.Specialized.HybridDictionary ();
5813 if (arguments != null)
5814 return CheckIndices (ec, initializers, 0, true, dimensions);
5816 arguments = new ArrayList ();
5818 if (!CheckIndices (ec, initializers, 0, false, dimensions))
5819 return false;
5821 UpdateIndices ();
5823 return true;
5827 // Resolved the type of the array
5829 bool ResolveArrayType (EmitContext ec)
5831 if (requested_base_type == null) {
5832 Report.Error (622, loc, "Can only use array initializer expressions to assign to array types. Try using a new expression instead");
5833 return false;
5836 if (requested_base_type is VarExpr) {
5837 Report.Error (820, loc, "An implicitly typed local variable declarator cannot use an array initializer");
5838 return false;
5841 StringBuilder array_qualifier = new StringBuilder (rank);
5844 // `In the first form allocates an array instace of the type that results
5845 // from deleting each of the individual expression from the expression list'
5847 if (num_arguments > 0) {
5848 array_qualifier.Append ("[");
5849 for (int i = num_arguments-1; i > 0; i--)
5850 array_qualifier.Append (",");
5851 array_qualifier.Append ("]");
5855 // Lookup the type
5857 TypeExpr array_type_expr;
5858 array_type_expr = new ComposedCast (requested_base_type, array_qualifier.ToString (), loc);
5859 array_type_expr = array_type_expr.ResolveAsTypeTerminal (ec, false);
5860 if (array_type_expr == null)
5861 return false;
5863 type = array_type_expr.Type;
5864 array_element_type = TypeManager.GetElementType (type);
5865 dimensions = type.GetArrayRank ();
5867 return true;
5870 public override Expression DoResolve (EmitContext ec)
5872 if (type != null)
5873 return this;
5875 if (!ResolveArrayType (ec))
5876 return null;
5879 // First step is to validate the initializers and fill
5880 // in any missing bits
5882 if (!ResolveInitializers (ec))
5883 return null;
5885 for (int i = 0; i < arguments.Count; ++i) {
5886 Expression e = ((Expression) arguments[i]).Resolve (ec);
5887 if (e == null)
5888 continue;
5890 arguments [i] = ConvertExpressionToArrayIndex (ec, e);
5893 eclass = ExprClass.Value;
5894 return this;
5897 MethodInfo GetArrayMethod (int arguments)
5899 ModuleBuilder mb = RootContext.ToplevelTypes.Builder;
5901 Type[] arg_types = new Type[arguments];
5902 for (int i = 0; i < arguments; i++)
5903 arg_types[i] = TypeManager.int32_type;
5905 MethodInfo mi = mb.GetArrayMethod (type, ".ctor", CallingConventions.HasThis, null,
5906 arg_types);
5908 if (mi == null) {
5909 Report.Error (-6, "New invocation: Can not find a constructor for " +
5910 "this argument list");
5911 return null;
5914 return mi;
5917 byte [] MakeByteBlob ()
5919 int factor;
5920 byte [] data;
5921 byte [] element;
5922 int count = array_data.Count;
5924 if (TypeManager.IsEnumType (array_element_type))
5925 array_element_type = TypeManager.GetEnumUnderlyingType (array_element_type);
5927 factor = GetTypeSize (array_element_type);
5928 if (factor == 0)
5929 throw new Exception ("unrecognized type in MakeByteBlob: " + array_element_type);
5931 data = new byte [(count * factor + 3) & ~3];
5932 int idx = 0;
5934 for (int i = 0; i < count; ++i) {
5935 object v = array_data [i];
5937 if (v is EnumConstant)
5938 v = ((EnumConstant) v).Child;
5940 if (v is Constant && !(v is StringConstant))
5941 v = ((Constant) v).GetValue ();
5942 else {
5943 idx += factor;
5944 continue;
5947 if (array_element_type == TypeManager.int64_type){
5948 if (!(v is Expression)){
5949 long val = (long) v;
5951 for (int j = 0; j < factor; ++j) {
5952 data [idx + j] = (byte) (val & 0xFF);
5953 val = (val >> 8);
5956 } else if (array_element_type == TypeManager.uint64_type){
5957 if (!(v is Expression)){
5958 ulong val = (ulong) v;
5960 for (int j = 0; j < factor; ++j) {
5961 data [idx + j] = (byte) (val & 0xFF);
5962 val = (val >> 8);
5965 } else if (array_element_type == TypeManager.float_type) {
5966 if (!(v is Expression)){
5967 element = BitConverter.GetBytes ((float) v);
5969 for (int j = 0; j < factor; ++j)
5970 data [idx + j] = element [j];
5971 if (!BitConverter.IsLittleEndian)
5972 System.Array.Reverse (data, idx, 4);
5974 } else if (array_element_type == TypeManager.double_type) {
5975 if (!(v is Expression)){
5976 element = BitConverter.GetBytes ((double) v);
5978 for (int j = 0; j < factor; ++j)
5979 data [idx + j] = element [j];
5981 // FIXME: Handle the ARM float format.
5982 if (!BitConverter.IsLittleEndian)
5983 System.Array.Reverse (data, idx, 8);
5985 } else if (array_element_type == TypeManager.char_type){
5986 if (!(v is Expression)){
5987 int val = (int) ((char) v);
5989 data [idx] = (byte) (val & 0xff);
5990 data [idx+1] = (byte) (val >> 8);
5992 } else if (array_element_type == TypeManager.short_type){
5993 if (!(v is Expression)){
5994 int val = (int) ((short) v);
5996 data [idx] = (byte) (val & 0xff);
5997 data [idx+1] = (byte) (val >> 8);
5999 } else if (array_element_type == TypeManager.ushort_type){
6000 if (!(v is Expression)){
6001 int val = (int) ((ushort) v);
6003 data [idx] = (byte) (val & 0xff);
6004 data [idx+1] = (byte) (val >> 8);
6006 } else if (array_element_type == TypeManager.int32_type) {
6007 if (!(v is Expression)){
6008 int val = (int) v;
6010 data [idx] = (byte) (val & 0xff);
6011 data [idx+1] = (byte) ((val >> 8) & 0xff);
6012 data [idx+2] = (byte) ((val >> 16) & 0xff);
6013 data [idx+3] = (byte) (val >> 24);
6015 } else if (array_element_type == TypeManager.uint32_type) {
6016 if (!(v is Expression)){
6017 uint val = (uint) v;
6019 data [idx] = (byte) (val & 0xff);
6020 data [idx+1] = (byte) ((val >> 8) & 0xff);
6021 data [idx+2] = (byte) ((val >> 16) & 0xff);
6022 data [idx+3] = (byte) (val >> 24);
6024 } else if (array_element_type == TypeManager.sbyte_type) {
6025 if (!(v is Expression)){
6026 sbyte val = (sbyte) v;
6027 data [idx] = (byte) val;
6029 } else if (array_element_type == TypeManager.byte_type) {
6030 if (!(v is Expression)){
6031 byte val = (byte) v;
6032 data [idx] = (byte) val;
6034 } else if (array_element_type == TypeManager.bool_type) {
6035 if (!(v is Expression)){
6036 bool val = (bool) v;
6037 data [idx] = (byte) (val ? 1 : 0);
6039 } else if (array_element_type == TypeManager.decimal_type){
6040 if (!(v is Expression)){
6041 int [] bits = Decimal.GetBits ((decimal) v);
6042 int p = idx;
6044 // FIXME: For some reason, this doesn't work on the MS runtime.
6045 int [] nbits = new int [4];
6046 nbits [0] = bits [3];
6047 nbits [1] = bits [2];
6048 nbits [2] = bits [0];
6049 nbits [3] = bits [1];
6051 for (int j = 0; j < 4; j++){
6052 data [p++] = (byte) (nbits [j] & 0xff);
6053 data [p++] = (byte) ((nbits [j] >> 8) & 0xff);
6054 data [p++] = (byte) ((nbits [j] >> 16) & 0xff);
6055 data [p++] = (byte) (nbits [j] >> 24);
6058 } else
6059 throw new Exception ("Unrecognized type in MakeByteBlob: " + array_element_type);
6061 idx += factor;
6064 return data;
6067 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6069 array_element_type = storey.MutateType (array_element_type);
6070 type = storey.MutateType (type);
6071 if (arguments != null) {
6072 foreach (Expression e in arguments)
6073 e.MutateHoistedGenericType (storey);
6076 if (array_data != null) {
6077 foreach (Expression e in array_data) {
6078 // Don't mutate values optimized away
6079 if (e == null)
6080 continue;
6082 e.MutateHoistedGenericType (storey);
6088 // Emits the initializers for the array
6090 void EmitStaticInitializers (EmitContext ec)
6092 // FIXME: This should go to Resolve !
6093 if (TypeManager.void_initializearray_array_fieldhandle == null) {
6094 TypeManager.void_initializearray_array_fieldhandle = TypeManager.GetPredefinedMethod (
6095 TypeManager.runtime_helpers_type, "InitializeArray", loc,
6096 TypeManager.array_type, TypeManager.runtime_field_handle_type);
6097 if (TypeManager.void_initializearray_array_fieldhandle == null)
6098 return;
6102 // First, the static data
6104 FieldBuilder fb;
6105 ILGenerator ig = ec.ig;
6107 byte [] data = MakeByteBlob ();
6109 fb = RootContext.MakeStaticData (data);
6111 ig.Emit (OpCodes.Dup);
6112 ig.Emit (OpCodes.Ldtoken, fb);
6113 ig.Emit (OpCodes.Call,
6114 TypeManager.void_initializearray_array_fieldhandle);
6118 // Emits pieces of the array that can not be computed at compile
6119 // time (variables and string locations).
6121 // This always expect the top value on the stack to be the array
6123 void EmitDynamicInitializers (EmitContext ec, bool emitConstants)
6125 ILGenerator ig = ec.ig;
6126 int dims = bounds.Count;
6127 int [] current_pos = new int [dims];
6129 MethodInfo set = null;
6131 if (dims != 1){
6132 Type [] args = new Type [dims + 1];
6134 for (int j = 0; j < dims; j++)
6135 args [j] = TypeManager.int32_type;
6136 args [dims] = array_element_type;
6138 set = RootContext.ToplevelTypes.Builder.GetArrayMethod (
6139 type, "Set",
6140 CallingConventions.HasThis | CallingConventions.Standard,
6141 TypeManager.void_type, args);
6144 for (int i = 0; i < array_data.Count; i++){
6146 Expression e = (Expression)array_data [i];
6148 // Constant can be initialized via StaticInitializer
6149 if (e != null && !(!emitConstants && e is Constant)) {
6150 Type etype = e.Type;
6152 ig.Emit (OpCodes.Dup);
6154 for (int idx = 0; idx < dims; idx++)
6155 IntConstant.EmitInt (ig, current_pos [idx]);
6158 // If we are dealing with a struct, get the
6159 // address of it, so we can store it.
6161 if ((dims == 1) && TypeManager.IsStruct (etype) &&
6162 (!TypeManager.IsBuiltinOrEnum (etype) ||
6163 etype == TypeManager.decimal_type)) {
6165 ig.Emit (OpCodes.Ldelema, etype);
6168 e.Emit (ec);
6170 if (dims == 1) {
6171 bool is_stobj, has_type_arg;
6172 OpCode op = ArrayAccess.GetStoreOpcode (etype, out is_stobj, out has_type_arg);
6173 if (is_stobj)
6174 ig.Emit (OpCodes.Stobj, etype);
6175 else if (has_type_arg)
6176 ig.Emit (op, etype);
6177 else
6178 ig.Emit (op);
6179 } else
6180 ig.Emit (OpCodes.Call, set);
6185 // Advance counter
6187 for (int j = dims - 1; j >= 0; j--){
6188 current_pos [j]++;
6189 if (current_pos [j] < (int) bounds [j])
6190 break;
6191 current_pos [j] = 0;
6196 public override void Emit (EmitContext ec)
6198 ILGenerator ig = ec.ig;
6200 if (first_emit != null) {
6201 first_emit.Emit (ec);
6202 first_emit_temp.Store (ec);
6205 foreach (Expression e in arguments)
6206 e.Emit (ec);
6208 if (arguments.Count == 1)
6209 ig.Emit (OpCodes.Newarr, array_element_type);
6210 else {
6211 ig.Emit (OpCodes.Newobj, GetArrayMethod (arguments.Count));
6214 if (initializers == null)
6215 return;
6217 // Emit static initializer for arrays which have contain more than 4 items and
6218 // the static initializer will initialize at least 25% of array values.
6219 // NOTE: const_initializers_count does not contain default constant values.
6220 if (const_initializers_count >= 4 && const_initializers_count * 4 > (array_data.Count) &&
6221 TypeManager.IsPrimitiveType (array_element_type)) {
6222 EmitStaticInitializers (ec);
6224 if (!only_constant_initializers)
6225 EmitDynamicInitializers (ec, false);
6226 } else {
6227 EmitDynamicInitializers (ec, true);
6230 if (first_emit_temp != null)
6231 first_emit_temp.Release (ec);
6234 public override bool GetAttributableValue (EmitContext ec, Type value_type, out object value)
6236 if (arguments.Count != 1) {
6237 // Report.Error (-211, Location, "attribute can not encode multi-dimensional arrays");
6238 return base.GetAttributableValue (ec, null, out value);
6241 if (array_data == null) {
6242 Constant c = (Constant) arguments [0];
6243 if (c.IsDefaultValue) {
6244 value = Array.CreateInstance (array_element_type, 0);
6245 return true;
6247 // Report.Error (-212, Location, "array should be initialized when passing it to an attribute");
6248 return base.GetAttributableValue (ec, null, out value);
6251 Array ret = Array.CreateInstance (array_element_type, array_data.Count);
6252 object element_value;
6253 for (int i = 0; i < ret.Length; ++i)
6255 Expression e = (Expression)array_data [i];
6257 // Is null when an initializer is optimized (value == predefined value)
6258 if (e == null)
6259 continue;
6261 if (!e.GetAttributableValue (ec, array_element_type, out element_value)) {
6262 value = null;
6263 return false;
6265 ret.SetValue (element_value, i);
6267 value = ret;
6268 return true;
6271 protected override void CloneTo (CloneContext clonectx, Expression t)
6273 ArrayCreation target = (ArrayCreation) t;
6275 if (requested_base_type != null)
6276 target.requested_base_type = (FullNamedExpression)requested_base_type.Clone (clonectx);
6278 if (arguments != null){
6279 target.arguments = new ArrayList (arguments.Count);
6280 foreach (Expression e in arguments)
6281 target.arguments.Add (e.Clone (clonectx));
6284 if (initializers != null){
6285 target.initializers = new ArrayList (initializers.Count);
6286 foreach (object initializer in initializers)
6287 if (initializer is ArrayList) {
6288 ArrayList this_al = (ArrayList)initializer;
6289 ArrayList al = new ArrayList (this_al.Count);
6290 target.initializers.Add (al);
6291 foreach (Expression e in this_al)
6292 al.Add (e.Clone (clonectx));
6293 } else {
6294 target.initializers.Add (((Expression)initializer).Clone (clonectx));
6301 // Represents an implicitly typed array epxression
6303 public class ImplicitlyTypedArrayCreation : ArrayCreation
6305 public ImplicitlyTypedArrayCreation (string rank, ArrayList initializers, Location loc)
6306 : base (null, rank, initializers, loc)
6308 if (RootContext.Version <= LanguageVersion.ISO_2)
6309 Report.FeatureIsNotAvailable (loc, "implicitly typed arrays");
6311 if (rank.Length > 2) {
6312 while (rank [++dimensions] == ',');
6313 } else {
6314 dimensions = 1;
6318 public override Expression DoResolve (EmitContext ec)
6320 if (type != null)
6321 return this;
6323 if (!ResolveInitializers (ec))
6324 return null;
6326 if (array_element_type == null || array_element_type == TypeManager.null_type ||
6327 array_element_type == TypeManager.void_type || array_element_type == InternalType.AnonymousMethod ||
6328 arguments.Count != dimensions) {
6329 Error_NoBestType ();
6330 return null;
6334 // At this point we found common base type for all initializer elements
6335 // but we have to be sure that all static initializer elements are of
6336 // same type
6338 UnifyInitializerElement (ec);
6340 type = TypeManager.GetConstructedType (array_element_type, rank);
6341 eclass = ExprClass.Value;
6342 return this;
6345 void Error_NoBestType ()
6347 Report.Error (826, loc,
6348 "The type of an implicitly typed array cannot be inferred from the initializer. Try specifying array type explicitly");
6352 // Converts static initializer only
6354 void UnifyInitializerElement (EmitContext ec)
6356 for (int i = 0; i < array_data.Count; ++i) {
6357 Expression e = (Expression)array_data[i];
6358 if (e != null)
6359 array_data [i] = Convert.ImplicitConversion (ec, e, array_element_type, Location.Null);
6363 protected override Expression ResolveArrayElement (EmitContext ec, Expression element)
6365 element = element.Resolve (ec);
6366 if (element == null)
6367 return null;
6369 if (array_element_type == null) {
6370 if (element.Type != TypeManager.null_type)
6371 array_element_type = element.Type;
6373 return element;
6376 if (Convert.ImplicitConversionExists (ec, element, array_element_type)) {
6377 return element;
6380 if (Convert.ImplicitConversionExists (ec, new TypeExpression (array_element_type, loc), element.Type)) {
6381 array_element_type = element.Type;
6382 return element;
6385 Error_NoBestType ();
6386 return null;
6390 public sealed class CompilerGeneratedThis : This
6392 public static This Instance = new CompilerGeneratedThis ();
6394 private CompilerGeneratedThis ()
6395 : base (Location.Null)
6399 public CompilerGeneratedThis (Type type, Location loc)
6400 : base (loc)
6402 this.type = type;
6405 public override Expression DoResolve (EmitContext ec)
6407 eclass = ExprClass.Variable;
6408 if (type == null)
6409 type = ec.ContainerType;
6410 return this;
6413 public override HoistedVariable GetHoistedVariable (EmitContext ec)
6415 return null;
6419 /// <summary>
6420 /// Represents the `this' construct
6421 /// </summary>
6423 public class This : VariableReference
6425 sealed class ThisVariable : ILocalVariable
6427 public static readonly ILocalVariable Instance = new ThisVariable ();
6429 public void Emit (EmitContext ec)
6431 ec.ig.Emit (OpCodes.Ldarg_0);
6434 public void EmitAssign (EmitContext ec)
6436 throw new InvalidOperationException ();
6439 public void EmitAddressOf (EmitContext ec)
6441 ec.ig.Emit (OpCodes.Ldarg_0);
6445 Block block;
6446 VariableInfo variable_info;
6447 bool is_struct;
6449 public This (Block block, Location loc)
6451 this.loc = loc;
6452 this.block = block;
6455 public This (Location loc)
6457 this.loc = loc;
6460 public override VariableInfo VariableInfo {
6461 get { return variable_info; }
6464 public override bool IsFixed {
6465 get { return false; }
6468 public override HoistedVariable GetHoistedVariable (EmitContext ec)
6470 // Is null when probing IsHoisted
6471 if (ec == null)
6472 return null;
6474 if (ec.CurrentAnonymousMethod == null)
6475 return null;
6477 AnonymousMethodStorey storey = ec.CurrentAnonymousMethod.Storey;
6478 while (storey != null) {
6479 AnonymousMethodStorey temp = storey.Parent as AnonymousMethodStorey;
6480 if (temp == null)
6481 return storey.HoistedThis;
6483 storey = temp;
6486 return null;
6489 public override bool IsRef {
6490 get { return is_struct; }
6493 protected override ILocalVariable Variable {
6494 get { return ThisVariable.Instance; }
6497 public static bool IsThisAvailable (EmitContext ec)
6499 if (ec.IsStatic || ec.IsInFieldInitializer)
6500 return false;
6502 if (ec.CurrentAnonymousMethod == null)
6503 return true;
6505 if (ec.TypeContainer is Struct && ec.CurrentIterator == null)
6506 return false;
6508 return true;
6511 public bool ResolveBase (EmitContext ec)
6513 if (eclass != ExprClass.Invalid)
6514 return true;
6516 eclass = ExprClass.Variable;
6518 if (ec.TypeContainer.CurrentType != null)
6519 type = ec.TypeContainer.CurrentType;
6520 else
6521 type = ec.ContainerType;
6523 if (!IsThisAvailable (ec)) {
6524 if (ec.IsStatic) {
6525 Error (26, "Keyword `this' is not valid in a static property, static method, or static field initializer");
6526 } else {
6527 Report.Error (1673, loc,
6528 "Anonymous methods inside structs cannot access instance members of `this'. " +
6529 "Consider copying `this' to a local variable outside the anonymous method and using the local instead");
6533 is_struct = ec.TypeContainer is Struct;
6535 if (block != null) {
6536 if (block.Toplevel.ThisVariable != null)
6537 variable_info = block.Toplevel.ThisVariable.VariableInfo;
6539 AnonymousExpression am = ec.CurrentAnonymousMethod;
6540 if (am != null && ec.IsVariableCapturingRequired) {
6541 am.SetHasThisAccess ();
6545 return true;
6549 // Called from Invocation to check if the invocation is correct
6551 public override void CheckMarshalByRefAccess (EmitContext ec)
6553 if ((variable_info != null) && !(TypeManager.IsStruct (type) && ec.OmitStructFlowAnalysis) &&
6554 !variable_info.IsAssigned (ec)) {
6555 Error (188, "The `this' object cannot be used before all of its " +
6556 "fields are assigned to");
6557 variable_info.SetAssigned (ec);
6561 public override Expression CreateExpressionTree (EmitContext ec)
6563 Arguments args = new Arguments (1);
6564 args.Add (new Argument (this));
6566 // Use typeless constant for ldarg.0 to save some
6567 // space and avoid problems with anonymous stories
6568 return CreateExpressionFactoryCall ("Constant", args);
6571 public override Expression DoResolve (EmitContext ec)
6573 if (!ResolveBase (ec))
6574 return null;
6577 if (ec.IsInFieldInitializer) {
6578 Error (27, "Keyword `this' is not available in the current context");
6579 return null;
6582 return this;
6585 override public Expression DoResolveLValue (EmitContext ec, Expression right_side)
6587 if (!ResolveBase (ec))
6588 return null;
6590 if (variable_info != null)
6591 variable_info.SetAssigned (ec);
6593 if (ec.TypeContainer is Class){
6594 if (right_side == EmptyExpression.UnaryAddress)
6595 Report.Error (459, loc, "Cannot take the address of `this' because it is read-only");
6596 else if (right_side == EmptyExpression.OutAccess)
6597 Report.Error (1605, loc, "Cannot pass `this' as a ref or out argument because it is read-only");
6598 else
6599 Report.Error (1604, loc, "Cannot assign to `this' because it is read-only");
6602 return this;
6605 public override int GetHashCode()
6607 return block.GetHashCode ();
6610 public override string Name {
6611 get { return "this"; }
6614 public override bool Equals (object obj)
6616 This t = obj as This;
6617 if (t == null)
6618 return false;
6620 return block == t.block;
6623 protected override void CloneTo (CloneContext clonectx, Expression t)
6625 This target = (This) t;
6627 target.block = clonectx.LookupBlock (block);
6630 public override void SetHasAddressTaken ()
6632 // Nothing
6636 /// <summary>
6637 /// Represents the `__arglist' construct
6638 /// </summary>
6639 public class ArglistAccess : Expression
6641 public ArglistAccess (Location loc)
6643 this.loc = loc;
6646 public override Expression CreateExpressionTree (EmitContext ec)
6648 throw new NotSupportedException ("ET");
6651 public override Expression DoResolve (EmitContext ec)
6653 eclass = ExprClass.Variable;
6654 type = TypeManager.runtime_argument_handle_type;
6656 if (ec.IsInFieldInitializer || !ec.CurrentBlock.Toplevel.Parameters.HasArglist)
6658 Error (190, "The __arglist construct is valid only within " +
6659 "a variable argument method");
6660 return this;
6663 return this;
6666 public override void Emit (EmitContext ec)
6668 ec.ig.Emit (OpCodes.Arglist);
6671 protected override void CloneTo (CloneContext clonectx, Expression target)
6673 // nothing.
6677 /// <summary>
6678 /// Represents the `__arglist (....)' construct
6679 /// </summary>
6680 class Arglist : Expression
6682 Arguments Arguments;
6684 public Arglist (Location loc)
6685 : this (null, loc)
6689 public Arglist (Arguments args, Location l)
6691 Arguments = args;
6692 loc = l;
6695 public Type[] ArgumentTypes {
6696 get {
6697 if (Arguments == null)
6698 return Type.EmptyTypes;
6700 Type[] retval = new Type [Arguments.Count];
6701 for (int i = 0; i < retval.Length; i++)
6702 retval [i] = Arguments [i].Expr.Type;
6704 return retval;
6708 public override Expression CreateExpressionTree (EmitContext ec)
6710 Report.Error (1952, loc, "An expression tree cannot contain a method with variable arguments");
6711 return null;
6714 public override Expression DoResolve (EmitContext ec)
6716 eclass = ExprClass.Variable;
6717 type = InternalType.Arglist;
6718 if (Arguments != null) {
6719 bool dynamic; // Can be ignored as there is always only 1 overload
6720 Arguments.Resolve (ec, out dynamic);
6723 return this;
6726 public override void Emit (EmitContext ec)
6728 if (Arguments != null)
6729 Arguments.Emit (ec);
6732 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6734 if (Arguments != null)
6735 Arguments.MutateHoistedGenericType (storey);
6738 protected override void CloneTo (CloneContext clonectx, Expression t)
6740 Arglist target = (Arglist) t;
6742 if (Arguments != null)
6743 target.Arguments = Arguments.Clone (clonectx);
6747 /// <summary>
6748 /// Implements the typeof operator
6749 /// </summary>
6750 public class TypeOf : Expression {
6751 Expression QueriedType;
6752 protected Type typearg;
6754 public TypeOf (Expression queried_type, Location l)
6756 QueriedType = queried_type;
6757 loc = l;
6760 public override Expression CreateExpressionTree (EmitContext ec)
6762 Arguments args = new Arguments (2);
6763 args.Add (new Argument (this));
6764 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
6765 return CreateExpressionFactoryCall ("Constant", args);
6768 public override Expression DoResolve (EmitContext ec)
6770 if (eclass != ExprClass.Invalid)
6771 return this;
6773 TypeExpr texpr = QueriedType.ResolveAsTypeTerminal (ec, false);
6774 if (texpr == null)
6775 return null;
6777 typearg = texpr.Type;
6779 if (typearg == TypeManager.void_type) {
6780 Error (673, "System.Void cannot be used from C#. Use typeof (void) to get the void type object");
6781 return null;
6784 if (typearg.IsPointer && !ec.InUnsafe){
6785 UnsafeError (loc);
6786 return null;
6789 type = TypeManager.type_type;
6791 return DoResolveBase ();
6794 protected Expression DoResolveBase ()
6796 if (TypeManager.system_type_get_type_from_handle == null) {
6797 TypeManager.system_type_get_type_from_handle = TypeManager.GetPredefinedMethod (
6798 TypeManager.type_type, "GetTypeFromHandle", loc, TypeManager.runtime_handle_type);
6801 // Even though what is returned is a type object, it's treated as a value by the compiler.
6802 // In particular, 'typeof (Foo).X' is something totally different from 'Foo.X'.
6803 eclass = ExprClass.Value;
6804 return this;
6807 public override void Emit (EmitContext ec)
6809 ec.ig.Emit (OpCodes.Ldtoken, typearg);
6810 ec.ig.Emit (OpCodes.Call, TypeManager.system_type_get_type_from_handle);
6813 public override bool GetAttributableValue (EmitContext ec, Type value_type, out object value)
6815 if (TypeManager.ContainsGenericParameters (typearg) &&
6816 !TypeManager.IsGenericTypeDefinition (typearg)) {
6817 Report.SymbolRelatedToPreviousError (typearg);
6818 Report.Error (416, loc, "`{0}': an attribute argument cannot use type parameters",
6819 TypeManager.CSharpName (typearg));
6820 value = null;
6821 return false;
6824 if (value_type == TypeManager.object_type) {
6825 value = (object)typearg;
6826 return true;
6828 value = typearg;
6829 return true;
6832 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
6834 typearg = storey.MutateType (typearg);
6837 public Type TypeArgument {
6838 get {
6839 return typearg;
6843 protected override void CloneTo (CloneContext clonectx, Expression t)
6845 TypeOf target = (TypeOf) t;
6846 if (QueriedType != null)
6847 target.QueriedType = QueriedType.Clone (clonectx);
6851 /// <summary>
6852 /// Implements the `typeof (void)' operator
6853 /// </summary>
6854 public class TypeOfVoid : TypeOf {
6855 public TypeOfVoid (Location l) : base (null, l)
6857 loc = l;
6860 public override Expression DoResolve (EmitContext ec)
6862 type = TypeManager.type_type;
6863 typearg = TypeManager.void_type;
6865 return DoResolveBase ();
6869 class TypeOfMethod : TypeOfMember
6871 public TypeOfMethod (MethodBase method, Location loc)
6872 : base (method, loc)
6876 public override Expression DoResolve (EmitContext ec)
6878 if (member is MethodInfo) {
6879 type = TypeManager.methodinfo_type;
6880 if (type == null)
6881 type = TypeManager.methodinfo_type = TypeManager.CoreLookupType ("System.Reflection", "MethodInfo", Kind.Class, true);
6882 } else {
6883 type = TypeManager.ctorinfo_type;
6884 if (type == null)
6885 type = TypeManager.ctorinfo_type = TypeManager.CoreLookupType ("System.Reflection", "ConstructorInfo", Kind.Class, true);
6888 return base.DoResolve (ec);
6891 public override void Emit (EmitContext ec)
6893 if (member is ConstructorInfo)
6894 ec.ig.Emit (OpCodes.Ldtoken, (ConstructorInfo) member);
6895 else
6896 ec.ig.Emit (OpCodes.Ldtoken, (MethodInfo) member);
6898 base.Emit (ec);
6899 ec.ig.Emit (OpCodes.Castclass, type);
6902 protected override string GetMethodName {
6903 get { return "GetMethodFromHandle"; }
6906 protected override string RuntimeHandleName {
6907 get { return "RuntimeMethodHandle"; }
6910 protected override MethodInfo TypeFromHandle {
6911 get {
6912 return TypeManager.methodbase_get_type_from_handle;
6914 set {
6915 TypeManager.methodbase_get_type_from_handle = value;
6919 protected override MethodInfo TypeFromHandleGeneric {
6920 get {
6921 return TypeManager.methodbase_get_type_from_handle_generic;
6923 set {
6924 TypeManager.methodbase_get_type_from_handle_generic = value;
6928 protected override string TypeName {
6929 get { return "MethodBase"; }
6933 abstract class TypeOfMember : Expression
6935 protected readonly MemberInfo member;
6937 protected TypeOfMember (MemberInfo member, Location loc)
6939 this.member = member;
6940 this.loc = loc;
6943 public override Expression CreateExpressionTree (EmitContext ec)
6945 Arguments args = new Arguments (2);
6946 args.Add (new Argument (this));
6947 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
6948 return CreateExpressionFactoryCall ("Constant", args);
6951 public override Expression DoResolve (EmitContext ec)
6953 bool is_generic = TypeManager.IsGenericType (member.DeclaringType);
6954 MethodInfo mi = is_generic ? TypeFromHandleGeneric : TypeFromHandle;
6956 if (mi == null) {
6957 Type t = TypeManager.CoreLookupType ("System.Reflection", TypeName, Kind.Class, true);
6958 Type handle_type = TypeManager.CoreLookupType ("System", RuntimeHandleName, Kind.Class, true);
6960 if (t == null || handle_type == null)
6961 return null;
6963 mi = TypeManager.GetPredefinedMethod (t, GetMethodName, loc,
6964 is_generic ?
6965 new Type[] { handle_type, TypeManager.runtime_handle_type } :
6966 new Type[] { handle_type } );
6968 if (is_generic)
6969 TypeFromHandleGeneric = mi;
6970 else
6971 TypeFromHandle = mi;
6974 eclass = ExprClass.Value;
6975 return this;
6978 public override void Emit (EmitContext ec)
6980 bool is_generic = TypeManager.IsGenericType (member.DeclaringType);
6981 MethodInfo mi;
6982 if (is_generic) {
6983 mi = TypeFromHandleGeneric;
6984 ec.ig.Emit (OpCodes.Ldtoken, member.DeclaringType);
6985 } else {
6986 mi = TypeFromHandle;
6989 ec.ig.Emit (OpCodes.Call, mi);
6992 protected abstract string GetMethodName { get; }
6993 protected abstract string RuntimeHandleName { get; }
6994 protected abstract MethodInfo TypeFromHandle { get; set; }
6995 protected abstract MethodInfo TypeFromHandleGeneric { get; set; }
6996 protected abstract string TypeName { get; }
6999 class TypeOfField : TypeOfMember
7001 public TypeOfField (FieldInfo field, Location loc)
7002 : base (field, loc)
7006 public override Expression DoResolve (EmitContext ec)
7008 if (TypeManager.fieldinfo_type == null)
7009 TypeManager.fieldinfo_type = TypeManager.CoreLookupType ("System.Reflection", TypeName, Kind.Class, true);
7011 type = TypeManager.fieldinfo_type;
7012 return base.DoResolve (ec);
7015 public override void Emit (EmitContext ec)
7017 ec.ig.Emit (OpCodes.Ldtoken, (FieldInfo) member);
7018 base.Emit (ec);
7021 protected override string GetMethodName {
7022 get { return "GetFieldFromHandle"; }
7025 protected override string RuntimeHandleName {
7026 get { return "RuntimeFieldHandle"; }
7029 protected override MethodInfo TypeFromHandle {
7030 get {
7031 return TypeManager.fieldinfo_get_field_from_handle;
7033 set {
7034 TypeManager.fieldinfo_get_field_from_handle = value;
7038 protected override MethodInfo TypeFromHandleGeneric {
7039 get {
7040 return TypeManager.fieldinfo_get_field_from_handle_generic;
7042 set {
7043 TypeManager.fieldinfo_get_field_from_handle_generic = value;
7047 protected override string TypeName {
7048 get { return "FieldInfo"; }
7052 /// <summary>
7053 /// Implements the sizeof expression
7054 /// </summary>
7055 public class SizeOf : Expression {
7056 readonly Expression QueriedType;
7057 Type type_queried;
7059 public SizeOf (Expression queried_type, Location l)
7061 this.QueriedType = queried_type;
7062 loc = l;
7065 public override Expression CreateExpressionTree (EmitContext ec)
7067 Error_PointerInsideExpressionTree ();
7068 return null;
7071 public override Expression DoResolve (EmitContext ec)
7073 TypeExpr texpr = QueriedType.ResolveAsTypeTerminal (ec, false);
7074 if (texpr == null)
7075 return null;
7077 type_queried = texpr.Type;
7078 if (TypeManager.IsEnumType (type_queried))
7079 type_queried = TypeManager.GetEnumUnderlyingType (type_queried);
7081 int size_of = GetTypeSize (type_queried);
7082 if (size_of > 0) {
7083 return new IntConstant (size_of, loc);
7086 if (!TypeManager.VerifyUnManaged (type_queried, loc)){
7087 return null;
7090 if (!ec.InUnsafe) {
7091 Report.Error (233, loc,
7092 "`{0}' does not have a predefined size, therefore sizeof can only be used in an unsafe context (consider using System.Runtime.InteropServices.Marshal.SizeOf)",
7093 TypeManager.CSharpName (type_queried));
7096 type = TypeManager.int32_type;
7097 eclass = ExprClass.Value;
7098 return this;
7101 public override void Emit (EmitContext ec)
7103 int size = GetTypeSize (type_queried);
7105 if (size == 0)
7106 ec.ig.Emit (OpCodes.Sizeof, type_queried);
7107 else
7108 IntConstant.EmitInt (ec.ig, size);
7111 protected override void CloneTo (CloneContext clonectx, Expression t)
7116 /// <summary>
7117 /// Implements the qualified-alias-member (::) expression.
7118 /// </summary>
7119 public class QualifiedAliasMember : MemberAccess
7121 readonly string alias;
7122 public static readonly string GlobalAlias = "global";
7124 public QualifiedAliasMember (string alias, string identifier, TypeArguments targs, Location l)
7125 : base (null, identifier, targs, l)
7127 this.alias = alias;
7130 public QualifiedAliasMember (string alias, string identifier, Location l)
7131 : base (null, identifier, l)
7133 this.alias = alias;
7136 public override FullNamedExpression ResolveAsTypeStep (IResolveContext ec, bool silent)
7138 if (alias == GlobalAlias) {
7139 expr = GlobalRootNamespace.Instance;
7140 return base.ResolveAsTypeStep (ec, silent);
7143 int errors = Report.Errors;
7144 expr = ec.DeclContainer.NamespaceEntry.LookupAlias (alias);
7145 if (expr == null) {
7146 if (errors == Report.Errors)
7147 Report.Error (432, loc, "Alias `{0}' not found", alias);
7148 return null;
7151 FullNamedExpression fne = base.ResolveAsTypeStep (ec, silent);
7152 if (fne == null)
7153 return null;
7155 if (expr.eclass == ExprClass.Type) {
7156 if (!silent) {
7157 Report.Error (431, loc,
7158 "Alias `{0}' cannot be used with '::' since it denotes a type. Consider replacing '::' with '.'", alias);
7160 return null;
7163 return fne;
7166 public override Expression DoResolve (EmitContext ec)
7168 return ResolveAsTypeStep (ec, false);
7171 protected override void Error_IdentifierNotFound (IResolveContext rc, FullNamedExpression expr_type, string identifier)
7173 Report.Error (687, loc,
7174 "A namespace alias qualifier `{0}' did not resolve to a namespace or a type",
7175 GetSignatureForError ());
7178 public override string GetSignatureForError ()
7180 string name = Name;
7181 if (targs != null) {
7182 name = TypeManager.RemoveGenericArity (Name) + "<" +
7183 targs.GetSignatureForError () + ">";
7186 return alias + "::" + name;
7189 protected override void CloneTo (CloneContext clonectx, Expression t)
7191 // Nothing
7195 /// <summary>
7196 /// Implements the member access expression
7197 /// </summary>
7198 public class MemberAccess : ATypeNameExpression {
7199 protected Expression expr;
7201 public MemberAccess (Expression expr, string id)
7202 : base (id, expr.Location)
7204 this.expr = expr;
7207 public MemberAccess (Expression expr, string identifier, Location loc)
7208 : base (identifier, loc)
7210 this.expr = expr;
7213 public MemberAccess (Expression expr, string identifier, TypeArguments args, Location loc)
7214 : base (identifier, args, loc)
7216 this.expr = expr;
7219 Expression DoResolve (EmitContext ec, Expression right_side)
7221 if (type != null)
7222 throw new Exception ();
7225 // Resolve the expression with flow analysis turned off, we'll do the definite
7226 // assignment checks later. This is because we don't know yet what the expression
7227 // will resolve to - it may resolve to a FieldExpr and in this case we must do the
7228 // definite assignment check on the actual field and not on the whole struct.
7231 SimpleName original = expr as SimpleName;
7232 Expression expr_resolved = expr.Resolve (ec,
7233 ResolveFlags.VariableOrValue | ResolveFlags.Type |
7234 ResolveFlags.Intermediate | ResolveFlags.DisableStructFlowAnalysis);
7236 if (expr_resolved == null)
7237 return null;
7239 string LookupIdentifier = MemberName.MakeName (Name, targs);
7241 Namespace ns = expr_resolved as Namespace;
7242 if (ns != null) {
7243 FullNamedExpression retval = ns.Lookup (ec.DeclContainer, LookupIdentifier, loc);
7245 if (retval == null)
7246 ns.Error_NamespaceDoesNotExist (ec.DeclContainer, loc, LookupIdentifier);
7247 else if (targs != null)
7248 retval = new GenericTypeExpr (retval.Type, targs, loc).ResolveAsTypeStep (ec, false);
7250 return retval;
7253 Type expr_type = expr_resolved.Type;
7254 if (TypeManager.IsDynamicType (expr_type)) {
7255 Arguments args = new Arguments (2);
7256 args.Add (new Argument (expr_resolved.Resolve (ec)));
7257 if (right_side != null)
7258 args.Add (new Argument (right_side));
7260 return new DynamicMemberBinder (right_side != null, Name, args, loc).Resolve (ec);
7263 if (expr_type.IsPointer || expr_type == TypeManager.void_type ||
7264 expr_type == TypeManager.null_type || expr_type == InternalType.AnonymousMethod) {
7265 Unary.Error_OperatorCannotBeApplied (loc, ".", expr_type);
7266 return null;
7269 Constant c = expr_resolved as Constant;
7270 if (c != null && c.GetValue () == null) {
7271 Report.Warning (1720, 1, loc, "Expression will always cause a `{0}'",
7272 "System.NullReferenceException");
7275 if (targs != null) {
7276 if (!targs.Resolve (ec))
7277 return null;
7280 Expression member_lookup;
7281 member_lookup = MemberLookup (
7282 ec.ContainerType, expr_type, expr_type, Name, loc);
7284 if (member_lookup == null && targs != null) {
7285 member_lookup = MemberLookup (
7286 ec.ContainerType, expr_type, expr_type, LookupIdentifier, loc);
7289 if (member_lookup == null) {
7290 ExprClass expr_eclass = expr_resolved.eclass;
7293 // Extension methods are not allowed on all expression types
7295 if (expr_eclass == ExprClass.Value || expr_eclass == ExprClass.Variable ||
7296 expr_eclass == ExprClass.IndexerAccess || expr_eclass == ExprClass.PropertyAccess ||
7297 expr_eclass == ExprClass.EventAccess) {
7298 ExtensionMethodGroupExpr ex_method_lookup = ec.TypeContainer.LookupExtensionMethod (expr_type, Name, loc);
7299 if (ex_method_lookup != null) {
7300 ex_method_lookup.ExtensionExpression = expr_resolved;
7302 if (targs != null) {
7303 ex_method_lookup.SetTypeArguments (targs);
7306 return ex_method_lookup.DoResolve (ec);
7310 expr = expr_resolved;
7311 member_lookup = Error_MemberLookupFailed (
7312 ec.ContainerType, expr_type, expr_type, Name, null,
7313 AllMemberTypes, AllBindingFlags);
7314 if (member_lookup == null)
7315 return null;
7318 TypeExpr texpr = member_lookup as TypeExpr;
7319 if (texpr != null) {
7320 if (!(expr_resolved is TypeExpr) &&
7321 (original == null || !original.IdenticalNameAndTypeName (ec, expr_resolved, loc))) {
7322 Report.Error (572, loc, "`{0}': cannot reference a type through an expression; try `{1}' instead",
7323 Name, member_lookup.GetSignatureForError ());
7324 return null;
7327 if (!texpr.CheckAccessLevel (ec.DeclContainer)) {
7328 Report.SymbolRelatedToPreviousError (member_lookup.Type);
7329 ErrorIsInaccesible (loc, TypeManager.CSharpName (member_lookup.Type));
7330 return null;
7333 GenericTypeExpr ct = expr_resolved as GenericTypeExpr;
7334 if (ct != null) {
7336 // When looking up a nested type in a generic instance
7337 // via reflection, we always get a generic type definition
7338 // and not a generic instance - so we have to do this here.
7340 // See gtest-172-lib.cs and gtest-172.cs for an example.
7342 ct = new GenericTypeExpr (
7343 member_lookup.Type, ct.TypeArguments, loc);
7345 return ct.ResolveAsTypeStep (ec, false);
7348 return member_lookup;
7351 MemberExpr me = (MemberExpr) member_lookup;
7352 me = me.ResolveMemberAccess (ec, expr_resolved, loc, original);
7353 if (me == null)
7354 return null;
7356 if (targs != null) {
7357 me.SetTypeArguments (targs);
7360 if (original != null && !TypeManager.IsValueType (expr_type)) {
7361 if (me.IsInstance) {
7362 LocalVariableReference var = expr_resolved as LocalVariableReference;
7363 if (var != null && !var.VerifyAssigned (ec))
7364 return null;
7368 // The following DoResolve/DoResolveLValue will do the definite assignment
7369 // check.
7371 if (right_side != null)
7372 return me.DoResolveLValue (ec, right_side);
7373 else
7374 return me.DoResolve (ec);
7377 public override Expression DoResolve (EmitContext ec)
7379 return DoResolve (ec, null);
7382 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
7384 return DoResolve (ec, right_side);
7387 public override FullNamedExpression ResolveAsTypeStep (IResolveContext ec, bool silent)
7389 return ResolveNamespaceOrType (ec, silent);
7392 public FullNamedExpression ResolveNamespaceOrType (IResolveContext rc, bool silent)
7394 FullNamedExpression expr_resolved = expr.ResolveAsTypeStep (rc, silent);
7396 if (expr_resolved == null)
7397 return null;
7399 string LookupIdentifier = MemberName.MakeName (Name, targs);
7401 Namespace ns = expr_resolved as Namespace;
7402 if (ns != null) {
7403 FullNamedExpression retval = ns.Lookup (rc.DeclContainer, LookupIdentifier, loc);
7405 if (retval == null && !silent)
7406 ns.Error_NamespaceDoesNotExist (rc.DeclContainer, loc, LookupIdentifier);
7407 else if (targs != null)
7408 retval = new GenericTypeExpr (retval.Type, targs, loc).ResolveAsTypeStep (rc, silent);
7410 return retval;
7413 TypeExpr tnew_expr = expr_resolved.ResolveAsTypeTerminal (rc, false);
7414 if (tnew_expr == null)
7415 return null;
7417 if (tnew_expr is TypeParameterExpr) {
7418 Report.Error (704, loc, "A nested type cannot be specified through a type parameter `{0}'",
7419 tnew_expr.GetSignatureForError ());
7420 return null;
7423 Type expr_type = tnew_expr.Type;
7424 Expression member_lookup = MemberLookup (
7425 rc.DeclContainer.TypeBuilder, expr_type, expr_type, LookupIdentifier,
7426 MemberTypes.NestedType, BindingFlags.Public | BindingFlags.NonPublic, loc);
7427 if (member_lookup == null) {
7428 if (silent)
7429 return null;
7431 Error_IdentifierNotFound (rc, expr_resolved, LookupIdentifier);
7432 return null;
7435 TypeExpr texpr = member_lookup.ResolveAsTypeTerminal (rc, false);
7436 if (texpr == null)
7437 return null;
7439 TypeArguments the_args = targs;
7440 Type declaring_type = texpr.Type.DeclaringType;
7441 if (TypeManager.HasGenericArguments (declaring_type) && !TypeManager.IsGenericTypeDefinition (expr_type)) {
7442 while (!TypeManager.IsEqual (TypeManager.DropGenericTypeArguments (expr_type), declaring_type)) {
7443 expr_type = expr_type.BaseType;
7446 TypeArguments new_args = new TypeArguments ();
7447 foreach (Type decl in TypeManager.GetTypeArguments (expr_type))
7448 new_args.Add (new TypeExpression (TypeManager.TypeToCoreType (decl), loc));
7450 if (targs != null)
7451 new_args.Add (targs);
7453 the_args = new_args;
7456 if (the_args != null) {
7457 GenericTypeExpr ctype = new GenericTypeExpr (texpr.Type, the_args, loc);
7458 return ctype.ResolveAsTypeStep (rc, false);
7461 return texpr;
7464 protected virtual void Error_IdentifierNotFound (IResolveContext rc, FullNamedExpression expr_type, string identifier)
7466 Expression member_lookup = MemberLookup (
7467 rc.DeclContainer.TypeBuilder, expr_type.Type, expr_type.Type, SimpleName.RemoveGenericArity (identifier),
7468 MemberTypes.NestedType, BindingFlags.Public | BindingFlags.NonPublic, loc);
7470 if (member_lookup != null) {
7471 expr_type = member_lookup.ResolveAsTypeTerminal (rc, false);
7472 if (expr_type == null)
7473 return;
7475 Namespace.Error_TypeArgumentsCannotBeUsed (expr_type, loc);
7476 return;
7479 member_lookup = MemberLookup (
7480 rc.DeclContainer.TypeBuilder, expr_type.Type, expr_type.Type, identifier,
7481 MemberTypes.All, BindingFlags.Public | BindingFlags.NonPublic, loc);
7483 if (member_lookup == null) {
7484 Report.Error (426, loc, "The nested type `{0}' does not exist in the type `{1}'",
7485 Name, expr_type.GetSignatureForError ());
7486 } else {
7487 // TODO: Report.SymbolRelatedToPreviousError
7488 member_lookup.Error_UnexpectedKind (null, "type", loc);
7492 protected override void Error_TypeDoesNotContainDefinition (Type type, string name)
7494 if (RootContext.Version > LanguageVersion.ISO_2 &&
7495 ((expr.eclass & (ExprClass.Value | ExprClass.Variable)) != 0)) {
7496 Report.Error (1061, loc, "Type `{0}' does not contain a definition for `{1}' and no " +
7497 "extension method `{1}' of type `{0}' could be found " +
7498 "(are you missing a using directive or an assembly reference?)",
7499 TypeManager.CSharpName (type), name);
7500 return;
7503 base.Error_TypeDoesNotContainDefinition (type, name);
7506 public override string GetSignatureForError ()
7508 return expr.GetSignatureForError () + "." + base.GetSignatureForError ();
7511 protected override void CloneTo (CloneContext clonectx, Expression t)
7513 MemberAccess target = (MemberAccess) t;
7515 target.expr = expr.Clone (clonectx);
7519 /// <summary>
7520 /// Implements checked expressions
7521 /// </summary>
7522 public class CheckedExpr : Expression {
7524 public Expression Expr;
7526 public CheckedExpr (Expression e, Location l)
7528 Expr = e;
7529 loc = l;
7532 public override Expression CreateExpressionTree (EmitContext ec)
7534 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7535 return Expr.CreateExpressionTree (ec);
7538 public override Expression DoResolve (EmitContext ec)
7540 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7541 Expr = Expr.Resolve (ec);
7543 if (Expr == null)
7544 return null;
7546 if (Expr is Constant || Expr is MethodGroupExpr || Expr is AnonymousMethodExpression || Expr is DefaultValueExpression)
7547 return Expr;
7549 eclass = Expr.eclass;
7550 type = Expr.Type;
7551 return this;
7554 public override void Emit (EmitContext ec)
7556 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7557 Expr.Emit (ec);
7560 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
7562 using (ec.With (EmitContext.Flags.AllCheckStateFlags, true))
7563 Expr.EmitBranchable (ec, target, on_true);
7566 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7568 Expr.MutateHoistedGenericType (storey);
7571 protected override void CloneTo (CloneContext clonectx, Expression t)
7573 CheckedExpr target = (CheckedExpr) t;
7575 target.Expr = Expr.Clone (clonectx);
7579 /// <summary>
7580 /// Implements the unchecked expression
7581 /// </summary>
7582 public class UnCheckedExpr : Expression {
7584 public Expression Expr;
7586 public UnCheckedExpr (Expression e, Location l)
7588 Expr = e;
7589 loc = l;
7592 public override Expression CreateExpressionTree (EmitContext ec)
7594 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7595 return Expr.CreateExpressionTree (ec);
7598 public override Expression DoResolve (EmitContext ec)
7600 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7601 Expr = Expr.Resolve (ec);
7603 if (Expr == null)
7604 return null;
7606 if (Expr is Constant || Expr is MethodGroupExpr || Expr is AnonymousMethodExpression || Expr is DefaultValueExpression)
7607 return Expr;
7609 eclass = Expr.eclass;
7610 type = Expr.Type;
7611 return this;
7614 public override void Emit (EmitContext ec)
7616 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7617 Expr.Emit (ec);
7620 public override void EmitBranchable (EmitContext ec, Label target, bool on_true)
7622 using (ec.With (EmitContext.Flags.AllCheckStateFlags, false))
7623 Expr.EmitBranchable (ec, target, on_true);
7626 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
7628 Expr.MutateHoistedGenericType (storey);
7631 protected override void CloneTo (CloneContext clonectx, Expression t)
7633 UnCheckedExpr target = (UnCheckedExpr) t;
7635 target.Expr = Expr.Clone (clonectx);
7639 /// <summary>
7640 /// An Element Access expression.
7642 /// During semantic analysis these are transformed into
7643 /// IndexerAccess, ArrayAccess or a PointerArithmetic.
7644 /// </summary>
7645 public class ElementAccess : Expression {
7646 public Arguments Arguments;
7647 public Expression Expr;
7649 public ElementAccess (Expression e, Arguments args)
7651 Expr = e;
7652 loc = e.Location;
7653 this.Arguments = args;
7656 public override Expression CreateExpressionTree (EmitContext ec)
7658 Arguments args = Arguments.CreateForExpressionTree (ec, Arguments,
7659 Expr.CreateExpressionTree (ec));
7661 return CreateExpressionFactoryCall ("ArrayIndex", args);
7664 Expression MakePointerAccess (EmitContext ec, Type t)
7666 if (Arguments.Count != 1){
7667 Error (196, "A pointer must be indexed by only one value");
7668 return null;
7671 if (Arguments [0] is NamedArgument)
7672 Error_NamedArgument ((NamedArgument) Arguments[0]);
7674 Expression p = new PointerArithmetic (Binary.Operator.Addition, Expr, Arguments [0].Expr.Resolve (ec), t, loc);
7675 return new Indirection (p, loc).Resolve (ec);
7678 public override Expression DoResolve (EmitContext ec)
7680 Expr = Expr.Resolve (ec);
7681 if (Expr == null)
7682 return null;
7685 // We perform some simple tests, and then to "split" the emit and store
7686 // code we create an instance of a different class, and return that.
7688 // I am experimenting with this pattern.
7690 Type t = Expr.Type;
7692 if (t == TypeManager.array_type){
7693 Report.Error (21, loc, "Cannot apply indexing with [] to an expression of type `System.Array'");
7694 return null;
7697 if (t.IsArray)
7698 return (new ArrayAccess (this, loc)).Resolve (ec);
7699 if (t.IsPointer)
7700 return MakePointerAccess (ec, t);
7702 FieldExpr fe = Expr as FieldExpr;
7703 if (fe != null) {
7704 IFixedBuffer ff = AttributeTester.GetFixedBuffer (fe.FieldInfo);
7705 if (ff != null) {
7706 return MakePointerAccess (ec, ff.ElementType);
7709 return (new IndexerAccess (this, loc)).Resolve (ec);
7712 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
7714 Expr = Expr.Resolve (ec);
7715 if (Expr == null)
7716 return null;
7718 type = Expr.Type;
7719 if (type.IsArray)
7720 return (new ArrayAccess (this, loc)).DoResolveLValue (ec, right_side);
7722 if (type.IsPointer)
7723 return MakePointerAccess (ec, type);
7725 if (Expr.eclass != ExprClass.Variable && TypeManager.IsStruct (type))
7726 Error_CannotModifyIntermediateExpressionValue (ec);
7728 return (new IndexerAccess (this, loc)).DoResolveLValue (ec, right_side);
7731 public override void Emit (EmitContext ec)
7733 throw new Exception ("Should never be reached");
7736 public static void Error_NamedArgument (NamedArgument na)
7738 Report.Error (1742, na.Name.Location, "An element access expression cannot use named argument");
7741 public override string GetSignatureForError ()
7743 return Expr.GetSignatureForError ();
7746 protected override void CloneTo (CloneContext clonectx, Expression t)
7748 ElementAccess target = (ElementAccess) t;
7750 target.Expr = Expr.Clone (clonectx);
7751 if (Arguments != null)
7752 target.Arguments = Arguments.Clone (clonectx);
7756 /// <summary>
7757 /// Implements array access
7758 /// </summary>
7759 public class ArrayAccess : Expression, IAssignMethod, IMemoryLocation {
7761 // Points to our "data" repository
7763 ElementAccess ea;
7765 LocalTemporary temp;
7767 bool prepared;
7769 public ArrayAccess (ElementAccess ea_data, Location l)
7771 ea = ea_data;
7772 loc = l;
7775 public override Expression CreateExpressionTree (EmitContext ec)
7777 return ea.CreateExpressionTree (ec);
7780 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
7782 return DoResolve (ec);
7785 public override Expression DoResolve (EmitContext ec)
7787 #if false
7788 ExprClass eclass = ea.Expr.eclass;
7790 // As long as the type is valid
7791 if (!(eclass == ExprClass.Variable || eclass == ExprClass.PropertyAccess ||
7792 eclass == ExprClass.Value)) {
7793 ea.Expr.Error_UnexpectedKind ("variable or value");
7794 return null;
7796 #endif
7798 if (eclass != ExprClass.Invalid)
7799 return this;
7801 // dynamic is used per argument in ConvertExpressionToArrayIndex case
7802 bool dynamic;
7803 ea.Arguments.Resolve (ec, out dynamic);
7805 Type t = ea.Expr.Type;
7806 int rank = ea.Arguments.Count;
7807 if (t.GetArrayRank () != rank) {
7808 Report.Error (22, ea.Location, "Wrong number of indexes `{0}' inside [], expected `{1}'",
7809 ea.Arguments.Count.ToString (), t.GetArrayRank ().ToString ());
7810 return null;
7813 type = TypeManager.GetElementType (t);
7814 if (type.IsPointer && !ec.InUnsafe) {
7815 UnsafeError (ea.Location);
7818 foreach (Argument a in ea.Arguments) {
7819 if (a is NamedArgument)
7820 ElementAccess.Error_NamedArgument ((NamedArgument) a);
7822 a.Expr = ConvertExpressionToArrayIndex (ec, a.Expr);
7825 eclass = ExprClass.Variable;
7827 return this;
7830 /// <summary>
7831 /// Emits the right opcode to load an object of Type `t'
7832 /// from an array of T
7833 /// </summary>
7834 void EmitLoadOpcode (ILGenerator ig, Type type, int rank)
7836 if (rank > 1) {
7837 MethodInfo get = FetchGetMethod ();
7838 ig.Emit (OpCodes.Call, get);
7839 return;
7842 if (type == TypeManager.byte_type || type == TypeManager.bool_type)
7843 ig.Emit (OpCodes.Ldelem_U1);
7844 else if (type == TypeManager.sbyte_type)
7845 ig.Emit (OpCodes.Ldelem_I1);
7846 else if (type == TypeManager.short_type)
7847 ig.Emit (OpCodes.Ldelem_I2);
7848 else if (type == TypeManager.ushort_type || type == TypeManager.char_type)
7849 ig.Emit (OpCodes.Ldelem_U2);
7850 else if (type == TypeManager.int32_type)
7851 ig.Emit (OpCodes.Ldelem_I4);
7852 else if (type == TypeManager.uint32_type)
7853 ig.Emit (OpCodes.Ldelem_U4);
7854 else if (type == TypeManager.uint64_type)
7855 ig.Emit (OpCodes.Ldelem_I8);
7856 else if (type == TypeManager.int64_type)
7857 ig.Emit (OpCodes.Ldelem_I8);
7858 else if (type == TypeManager.float_type)
7859 ig.Emit (OpCodes.Ldelem_R4);
7860 else if (type == TypeManager.double_type)
7861 ig.Emit (OpCodes.Ldelem_R8);
7862 else if (type == TypeManager.intptr_type)
7863 ig.Emit (OpCodes.Ldelem_I);
7864 else if (TypeManager.IsEnumType (type)){
7865 EmitLoadOpcode (ig, TypeManager.GetEnumUnderlyingType (type), rank);
7866 } else if (TypeManager.IsStruct (type)){
7867 ig.Emit (OpCodes.Ldelema, type);
7868 ig.Emit (OpCodes.Ldobj, type);
7869 #if GMCS_SOURCE
7870 } else if (type.IsGenericParameter) {
7871 ig.Emit (OpCodes.Ldelem, type);
7872 #endif
7873 } else if (type.IsPointer)
7874 ig.Emit (OpCodes.Ldelem_I);
7875 else
7876 ig.Emit (OpCodes.Ldelem_Ref);
7879 protected override void Error_NegativeArrayIndex (Location loc)
7881 Report.Warning (251, 2, loc, "Indexing an array with a negative index (array indices always start at zero)");
7884 /// <summary>
7885 /// Returns the right opcode to store an object of Type `t'
7886 /// from an array of T.
7887 /// </summary>
7888 static public OpCode GetStoreOpcode (Type t, out bool is_stobj, out bool has_type_arg)
7890 //Console.WriteLine (new System.Diagnostics.StackTrace ());
7891 has_type_arg = false; is_stobj = false;
7892 t = TypeManager.TypeToCoreType (t);
7893 if (TypeManager.IsEnumType (t))
7894 t = TypeManager.GetEnumUnderlyingType (t);
7895 if (t == TypeManager.byte_type || t == TypeManager.sbyte_type ||
7896 t == TypeManager.bool_type)
7897 return OpCodes.Stelem_I1;
7898 else if (t == TypeManager.short_type || t == TypeManager.ushort_type ||
7899 t == TypeManager.char_type)
7900 return OpCodes.Stelem_I2;
7901 else if (t == TypeManager.int32_type || t == TypeManager.uint32_type)
7902 return OpCodes.Stelem_I4;
7903 else if (t == TypeManager.int64_type || t == TypeManager.uint64_type)
7904 return OpCodes.Stelem_I8;
7905 else if (t == TypeManager.float_type)
7906 return OpCodes.Stelem_R4;
7907 else if (t == TypeManager.double_type)
7908 return OpCodes.Stelem_R8;
7909 else if (t == TypeManager.intptr_type) {
7910 has_type_arg = true;
7911 is_stobj = true;
7912 return OpCodes.Stobj;
7913 } else if (TypeManager.IsStruct (t)) {
7914 has_type_arg = true;
7915 is_stobj = true;
7916 return OpCodes.Stobj;
7917 #if GMCS_SOURCE
7918 } else if (t.IsGenericParameter) {
7919 has_type_arg = true;
7920 return OpCodes.Stelem;
7921 #endif
7923 } else if (t.IsPointer)
7924 return OpCodes.Stelem_I;
7925 else
7926 return OpCodes.Stelem_Ref;
7929 MethodInfo FetchGetMethod ()
7931 ModuleBuilder mb = RootContext.ToplevelTypes.Builder;
7932 int arg_count = ea.Arguments.Count;
7933 Type [] args = new Type [arg_count];
7934 MethodInfo get;
7936 for (int i = 0; i < arg_count; i++){
7937 //args [i++] = a.Type;
7938 args [i] = TypeManager.int32_type;
7941 get = mb.GetArrayMethod (
7942 ea.Expr.Type, "Get",
7943 CallingConventions.HasThis |
7944 CallingConventions.Standard,
7945 type, args);
7946 return get;
7950 MethodInfo FetchAddressMethod ()
7952 ModuleBuilder mb = RootContext.ToplevelTypes.Builder;
7953 int arg_count = ea.Arguments.Count;
7954 Type [] args = new Type [arg_count];
7955 MethodInfo address;
7956 Type ret_type;
7958 ret_type = TypeManager.GetReferenceType (type);
7960 for (int i = 0; i < arg_count; i++){
7961 //args [i++] = a.Type;
7962 args [i] = TypeManager.int32_type;
7965 address = mb.GetArrayMethod (
7966 ea.Expr.Type, "Address",
7967 CallingConventions.HasThis |
7968 CallingConventions.Standard,
7969 ret_type, args);
7971 return address;
7975 // Load the array arguments into the stack.
7977 void LoadArrayAndArguments (EmitContext ec)
7979 ea.Expr.Emit (ec);
7981 for (int i = 0; i < ea.Arguments.Count; ++i) {
7982 ea.Arguments [i].Emit (ec);
7986 public void Emit (EmitContext ec, bool leave_copy)
7988 int rank = ea.Expr.Type.GetArrayRank ();
7989 ILGenerator ig = ec.ig;
7991 if (prepared) {
7992 LoadFromPtr (ig, this.type);
7993 } else {
7994 LoadArrayAndArguments (ec);
7995 EmitLoadOpcode (ig, type, rank);
7998 if (leave_copy) {
7999 ig.Emit (OpCodes.Dup);
8000 temp = new LocalTemporary (this.type);
8001 temp.Store (ec);
8005 public override void Emit (EmitContext ec)
8007 Emit (ec, false);
8010 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
8012 int rank = ea.Expr.Type.GetArrayRank ();
8013 ILGenerator ig = ec.ig;
8014 Type t = source.Type;
8015 prepared = prepare_for_load;
8017 if (prepared) {
8018 AddressOf (ec, AddressOp.LoadStore);
8019 ec.ig.Emit (OpCodes.Dup);
8020 } else {
8021 LoadArrayAndArguments (ec);
8024 if (rank == 1) {
8025 bool is_stobj, has_type_arg;
8026 OpCode op = GetStoreOpcode (t, out is_stobj, out has_type_arg);
8028 if (!prepared) {
8030 // The stobj opcode used by value types will need
8031 // an address on the stack, not really an array/array
8032 // pair
8034 if (is_stobj)
8035 ig.Emit (OpCodes.Ldelema, t);
8038 source.Emit (ec);
8039 if (leave_copy) {
8040 ec.ig.Emit (OpCodes.Dup);
8041 temp = new LocalTemporary (this.type);
8042 temp.Store (ec);
8045 if (prepared)
8046 StoreFromPtr (ig, t);
8047 else if (is_stobj)
8048 ig.Emit (OpCodes.Stobj, t);
8049 else if (has_type_arg)
8050 ig.Emit (op, t);
8051 else
8052 ig.Emit (op);
8053 } else {
8054 source.Emit (ec);
8055 if (leave_copy) {
8056 ec.ig.Emit (OpCodes.Dup);
8057 temp = new LocalTemporary (this.type);
8058 temp.Store (ec);
8061 if (prepared) {
8062 StoreFromPtr (ig, t);
8063 } else {
8064 int arg_count = ea.Arguments.Count;
8065 Type [] args = new Type [arg_count + 1];
8066 for (int i = 0; i < arg_count; i++) {
8067 //args [i++] = a.Type;
8068 args [i] = TypeManager.int32_type;
8070 args [arg_count] = type;
8072 MethodInfo set = RootContext.ToplevelTypes.Builder.GetArrayMethod (
8073 ea.Expr.Type, "Set",
8074 CallingConventions.HasThis |
8075 CallingConventions.Standard,
8076 TypeManager.void_type, args);
8078 ig.Emit (OpCodes.Call, set);
8082 if (temp != null) {
8083 temp.Emit (ec);
8084 temp.Release (ec);
8088 public void EmitNew (EmitContext ec, New source, bool leave_copy)
8090 if (!source.Emit (ec, this)) {
8091 if (leave_copy)
8092 throw new NotImplementedException ();
8094 return;
8097 throw new NotImplementedException ();
8100 public void AddressOf (EmitContext ec, AddressOp mode)
8102 int rank = ea.Expr.Type.GetArrayRank ();
8103 ILGenerator ig = ec.ig;
8105 LoadArrayAndArguments (ec);
8107 if (rank == 1){
8108 ig.Emit (OpCodes.Ldelema, type);
8109 } else {
8110 MethodInfo address = FetchAddressMethod ();
8111 ig.Emit (OpCodes.Call, address);
8115 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8117 type = storey.MutateType (type);
8118 ea.Expr.Type = storey.MutateType (ea.Expr.Type);
8122 /// <summary>
8123 /// Expressions that represent an indexer call.
8124 /// </summary>
8125 public class IndexerAccess : Expression, IAssignMethod
8127 class IndexerMethodGroupExpr : MethodGroupExpr
8129 public IndexerMethodGroupExpr (Indexers indexers, Location loc)
8130 : base (null, loc)
8132 Methods = (MethodBase []) indexers.Methods.ToArray (typeof (MethodBase));
8135 public override string Name {
8136 get {
8137 return "this";
8141 protected override int GetApplicableParametersCount (MethodBase method, AParametersCollection parameters)
8144 // Here is the trick, decrease number of arguments by 1 when only
8145 // available property method is setter. This makes overload resolution
8146 // work correctly for indexers.
8149 if (method.Name [0] == 'g')
8150 return parameters.Count;
8152 return parameters.Count - 1;
8156 class Indexers
8158 // Contains either property getter or setter
8159 public ArrayList Methods;
8160 public ArrayList Properties;
8162 Indexers ()
8166 void Append (Type caller_type, MemberInfo [] mi)
8168 if (mi == null)
8169 return;
8171 foreach (PropertyInfo property in mi) {
8172 MethodInfo accessor = property.GetGetMethod (true);
8173 if (accessor == null)
8174 accessor = property.GetSetMethod (true);
8176 if (Methods == null) {
8177 Methods = new ArrayList ();
8178 Properties = new ArrayList ();
8181 Methods.Add (accessor);
8182 Properties.Add (property);
8186 static MemberInfo [] GetIndexersForTypeOrInterface (Type caller_type, Type lookup_type)
8188 string p_name = TypeManager.IndexerPropertyName (lookup_type);
8190 return TypeManager.MemberLookup (
8191 caller_type, caller_type, lookup_type, MemberTypes.Property,
8192 BindingFlags.Public | BindingFlags.Instance |
8193 BindingFlags.DeclaredOnly, p_name, null);
8196 public static Indexers GetIndexersForType (Type caller_type, Type lookup_type)
8198 Indexers ix = new Indexers ();
8200 if (TypeManager.IsGenericParameter (lookup_type)) {
8201 GenericConstraints gc = TypeManager.GetTypeParameterConstraints (lookup_type);
8202 if (gc == null)
8203 return ix;
8205 if (gc.HasClassConstraint) {
8206 Type class_contraint = gc.ClassConstraint;
8207 while (class_contraint != TypeManager.object_type && class_contraint != null) {
8208 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, class_contraint));
8209 class_contraint = class_contraint.BaseType;
8213 Type[] ifaces = gc.InterfaceConstraints;
8214 foreach (Type itype in ifaces)
8215 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, itype));
8217 return ix;
8220 Type copy = lookup_type;
8221 while (copy != TypeManager.object_type && copy != null){
8222 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, copy));
8223 copy = copy.BaseType;
8226 if (lookup_type.IsInterface) {
8227 Type [] ifaces = TypeManager.GetInterfaces (lookup_type);
8228 if (ifaces != null) {
8229 foreach (Type itype in ifaces)
8230 ix.Append (caller_type, GetIndexersForTypeOrInterface (caller_type, itype));
8234 return ix;
8238 enum AccessorType
8240 Get,
8245 // Points to our "data" repository
8247 MethodInfo get, set;
8248 bool is_base_indexer;
8249 bool prepared;
8250 LocalTemporary temp;
8251 LocalTemporary prepared_value;
8252 Expression set_expr;
8254 protected Type indexer_type;
8255 protected Type current_type;
8256 protected Expression instance_expr;
8257 protected Arguments arguments;
8259 public IndexerAccess (ElementAccess ea, Location loc)
8260 : this (ea.Expr, false, loc)
8262 this.arguments = ea.Arguments;
8265 protected IndexerAccess (Expression instance_expr, bool is_base_indexer,
8266 Location loc)
8268 this.instance_expr = instance_expr;
8269 this.is_base_indexer = is_base_indexer;
8270 this.eclass = ExprClass.Value;
8271 this.loc = loc;
8274 static string GetAccessorName (AccessorType at)
8276 if (at == AccessorType.Set)
8277 return "set";
8279 if (at == AccessorType.Get)
8280 return "get";
8282 throw new NotImplementedException (at.ToString ());
8285 public override Expression CreateExpressionTree (EmitContext ec)
8287 Arguments args = Arguments.CreateForExpressionTree (ec, arguments,
8288 instance_expr.CreateExpressionTree (ec),
8289 new TypeOfMethod (get, loc));
8291 return CreateExpressionFactoryCall ("Call", args);
8294 protected virtual void CommonResolve (EmitContext ec)
8296 indexer_type = instance_expr.Type;
8297 current_type = ec.ContainerType;
8300 public override Expression DoResolve (EmitContext ec)
8302 return ResolveAccessor (ec, AccessorType.Get, null);
8305 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
8307 if (right_side == EmptyExpression.OutAccess) {
8308 Report.Error (206, loc, "A property or indexer `{0}' may not be passed as an out or ref parameter",
8309 GetSignatureForError ());
8310 return null;
8313 // if the indexer returns a value type, and we try to set a field in it
8314 if (right_side == EmptyExpression.LValueMemberAccess || right_side == EmptyExpression.LValueMemberOutAccess) {
8315 Error_CannotModifyIntermediateExpressionValue (ec);
8318 Expression e = ResolveAccessor (ec, AccessorType.Set, right_side);
8319 if (e == null)
8320 return null;
8322 set_expr = Convert.ImplicitConversion (ec, right_side, type, loc);
8323 return e;
8326 Expression ResolveAccessor (EmitContext ec, AccessorType accessorType, Expression right_side)
8328 bool dynamic;
8329 arguments.Resolve (ec, out dynamic);
8330 if (dynamic || TypeManager.IsDynamicType (indexer_type)) {
8331 int additional = right_side == null ? 1 : 2;
8332 Arguments args = new Arguments (arguments.Count + additional);
8333 if (is_base_indexer) {
8334 Report.Error (1972, loc, "The indexer base access cannot be dynamically dispatched. Consider casting the dynamic arguments or eliminating the base access");
8335 } else {
8336 args.Add (new Argument (instance_expr));
8338 args.AddRange (arguments);
8339 if (right_side != null)
8340 args.Add (new Argument (right_side));
8342 return new DynamicIndexBinder (accessorType == AccessorType.Set, args, loc).Resolve (ec);
8345 CommonResolve (ec);
8347 Indexers ilist = Indexers.GetIndexersForType (current_type, indexer_type);
8348 if (ilist.Methods == null) {
8349 Report.Error (21, loc, "Cannot apply indexing with [] to an expression of type `{0}'",
8350 TypeManager.CSharpName (indexer_type));
8351 return null;
8354 MethodGroupExpr mg = new IndexerMethodGroupExpr (ilist, loc);
8355 mg = mg.OverloadResolve (ec, ref arguments, false, loc);
8356 if (mg == null)
8357 return null;
8359 MethodInfo mi = (MethodInfo) mg;
8360 PropertyInfo pi = null;
8361 for (int i = 0; i < ilist.Methods.Count; ++i) {
8362 if (ilist.Methods [i] == mi) {
8363 pi = (PropertyInfo) ilist.Properties [i];
8364 break;
8368 type = TypeManager.TypeToCoreType (pi.PropertyType);
8369 if (type.IsPointer && !ec.InUnsafe)
8370 UnsafeError (loc);
8372 MethodInfo accessor;
8373 if (accessorType == AccessorType.Get) {
8374 accessor = get = pi.GetGetMethod (true);
8375 } else {
8376 accessor = set = pi.GetSetMethod (true);
8377 if (accessor == null && pi.GetGetMethod (true) != null) {
8378 Report.SymbolRelatedToPreviousError (pi);
8379 Report.Error (200, loc, "The read only property or indexer `{0}' cannot be assigned to",
8380 TypeManager.GetFullNameSignature (pi));
8381 return null;
8385 if (accessor == null) {
8386 Report.SymbolRelatedToPreviousError (pi);
8387 Report.Error (154, loc, "The property or indexer `{0}' cannot be used in this context because it lacks a `{1}' accessor",
8388 TypeManager.GetFullNameSignature (pi), GetAccessorName (accessorType));
8389 return null;
8393 // Only base will allow this invocation to happen.
8395 if (accessor.IsAbstract && this is BaseIndexerAccess) {
8396 Error_CannotCallAbstractBase (TypeManager.GetFullNameSignature (pi));
8399 bool must_do_cs1540_check;
8400 if (!IsAccessorAccessible (ec.ContainerType, accessor, out must_do_cs1540_check)) {
8401 if (set == null)
8402 set = pi.GetSetMethod (true);
8403 else
8404 get = pi.GetGetMethod (true);
8406 if (set != null && get != null &&
8407 (set.Attributes & MethodAttributes.MemberAccessMask) != (get.Attributes & MethodAttributes.MemberAccessMask)) {
8408 Report.SymbolRelatedToPreviousError (accessor);
8409 Report.Error (271, loc, "The property or indexer `{0}' cannot be used in this context because a `{1}' accessor is inaccessible",
8410 TypeManager.GetFullNameSignature (pi), GetAccessorName (accessorType));
8411 } else {
8412 Report.SymbolRelatedToPreviousError (pi);
8413 ErrorIsInaccesible (loc, TypeManager.GetFullNameSignature (pi));
8417 instance_expr.CheckMarshalByRefAccess (ec);
8418 eclass = ExprClass.IndexerAccess;
8419 return this;
8422 public void Emit (EmitContext ec, bool leave_copy)
8424 if (prepared) {
8425 prepared_value.Emit (ec);
8426 } else {
8427 Invocation.EmitCall (ec, is_base_indexer, instance_expr, get,
8428 arguments, loc, false, false);
8431 if (leave_copy) {
8432 ec.ig.Emit (OpCodes.Dup);
8433 temp = new LocalTemporary (Type);
8434 temp.Store (ec);
8439 // source is ignored, because we already have a copy of it from the
8440 // LValue resolution and we have already constructed a pre-cached
8441 // version of the arguments (ea.set_arguments);
8443 public void EmitAssign (EmitContext ec, Expression source, bool leave_copy, bool prepare_for_load)
8445 prepared = prepare_for_load;
8446 Expression value = set_expr;
8448 if (prepared) {
8449 Invocation.EmitCall (ec, is_base_indexer, instance_expr, get,
8450 arguments, loc, true, false);
8452 prepared_value = new LocalTemporary (type);
8453 prepared_value.Store (ec);
8454 source.Emit (ec);
8455 prepared_value.Release (ec);
8457 if (leave_copy) {
8458 ec.ig.Emit (OpCodes.Dup);
8459 temp = new LocalTemporary (Type);
8460 temp.Store (ec);
8462 } else if (leave_copy) {
8463 temp = new LocalTemporary (Type);
8464 source.Emit (ec);
8465 temp.Store (ec);
8466 value = temp;
8469 if (!prepared)
8470 arguments.Add (new Argument (value));
8472 Invocation.EmitCall (ec, is_base_indexer, instance_expr, set, arguments, loc, false, prepared);
8474 if (temp != null) {
8475 temp.Emit (ec);
8476 temp.Release (ec);
8480 public override void Emit (EmitContext ec)
8482 Emit (ec, false);
8485 public override string GetSignatureForError ()
8487 return TypeManager.CSharpSignature (get != null ? get : set, false);
8490 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8492 if (get != null)
8493 get = storey.MutateGenericMethod (get);
8494 if (set != null)
8495 set = storey.MutateGenericMethod (set);
8497 instance_expr.MutateHoistedGenericType (storey);
8498 if (arguments != null)
8499 arguments.MutateHoistedGenericType (storey);
8501 type = storey.MutateType (type);
8504 protected override void CloneTo (CloneContext clonectx, Expression t)
8506 IndexerAccess target = (IndexerAccess) t;
8508 if (arguments != null)
8509 target.arguments = arguments.Clone (clonectx);
8511 if (instance_expr != null)
8512 target.instance_expr = instance_expr.Clone (clonectx);
8516 /// <summary>
8517 /// The base operator for method names
8518 /// </summary>
8519 public class BaseAccess : Expression {
8520 public readonly string Identifier;
8521 TypeArguments args;
8523 public BaseAccess (string member, Location l)
8525 this.Identifier = member;
8526 loc = l;
8529 public BaseAccess (string member, TypeArguments args, Location l)
8530 : this (member, l)
8532 this.args = args;
8535 public override Expression CreateExpressionTree (EmitContext ec)
8537 throw new NotSupportedException ("ET");
8540 public override Expression DoResolve (EmitContext ec)
8542 Expression c = CommonResolve (ec);
8544 if (c == null)
8545 return null;
8548 // MethodGroups use this opportunity to flag an error on lacking ()
8550 if (!(c is MethodGroupExpr))
8551 return c.Resolve (ec);
8552 return c;
8555 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
8557 Expression c = CommonResolve (ec);
8559 if (c == null)
8560 return null;
8563 // MethodGroups use this opportunity to flag an error on lacking ()
8565 if (! (c is MethodGroupExpr))
8566 return c.DoResolveLValue (ec, right_side);
8568 return c;
8571 Expression CommonResolve (EmitContext ec)
8573 Expression member_lookup;
8574 Type current_type = ec.ContainerType;
8575 Type base_type = current_type.BaseType;
8577 if (!This.IsThisAvailable (ec)) {
8578 if (ec.IsStatic) {
8579 Error (1511, "Keyword `base' is not available in a static method");
8580 } else {
8581 Error (1512, "Keyword `base' is not available in the current context");
8583 return null;
8586 member_lookup = MemberLookup (ec.ContainerType, null, base_type, Identifier,
8587 AllMemberTypes, AllBindingFlags, loc);
8588 if (member_lookup == null) {
8589 Error_MemberLookupFailed (ec.ContainerType, base_type, base_type, Identifier,
8590 null, AllMemberTypes, AllBindingFlags);
8591 return null;
8594 Expression left;
8596 if (ec.IsStatic)
8597 left = new TypeExpression (base_type, loc);
8598 else
8599 left = ec.GetThis (loc);
8601 MemberExpr me = (MemberExpr) member_lookup;
8602 me = me.ResolveMemberAccess (ec, left, loc, null);
8603 if (me == null)
8604 return null;
8606 me.IsBase = true;
8607 if (args != null) {
8608 args.Resolve (ec);
8609 me.SetTypeArguments (args);
8612 return me;
8615 public override void Emit (EmitContext ec)
8617 throw new Exception ("Should never be called");
8620 protected override void CloneTo (CloneContext clonectx, Expression t)
8622 BaseAccess target = (BaseAccess) t;
8624 if (args != null)
8625 target.args = args.Clone ();
8629 /// <summary>
8630 /// The base indexer operator
8631 /// </summary>
8632 public class BaseIndexerAccess : IndexerAccess {
8633 public BaseIndexerAccess (Arguments args, Location loc)
8634 : base (null, true, loc)
8636 this.arguments = args;
8639 protected override void CommonResolve (EmitContext ec)
8641 instance_expr = ec.GetThis (loc);
8643 current_type = ec.ContainerType.BaseType;
8644 indexer_type = current_type;
8647 public override Expression CreateExpressionTree (EmitContext ec)
8649 MemberExpr.Error_BaseAccessInExpressionTree (loc);
8650 return base.CreateExpressionTree (ec);
8654 /// <summary>
8655 /// This class exists solely to pass the Type around and to be a dummy
8656 /// that can be passed to the conversion functions (this is used by
8657 /// foreach implementation to typecast the object return value from
8658 /// get_Current into the proper type. All code has been generated and
8659 /// we only care about the side effect conversions to be performed
8661 /// This is also now used as a placeholder where a no-action expression
8662 /// is needed (the `New' class).
8663 /// </summary>
8664 public class EmptyExpression : Expression {
8665 public static readonly Expression Null = new EmptyExpression ();
8667 public static readonly EmptyExpression OutAccess = new EmptyExpression ();
8668 public static readonly EmptyExpression LValueMemberAccess = new EmptyExpression ();
8669 public static readonly EmptyExpression LValueMemberOutAccess = new EmptyExpression ();
8670 public static readonly EmptyExpression UnaryAddress = new EmptyExpression ();
8672 static EmptyExpression temp = new EmptyExpression ();
8673 public static EmptyExpression Grab ()
8675 EmptyExpression retval = temp == null ? new EmptyExpression () : temp;
8676 temp = null;
8677 return retval;
8680 public static void Release (EmptyExpression e)
8682 temp = e;
8685 EmptyExpression ()
8687 // FIXME: Don't set to object
8688 type = TypeManager.object_type;
8689 eclass = ExprClass.Value;
8690 loc = Location.Null;
8693 public EmptyExpression (Type t)
8695 type = t;
8696 eclass = ExprClass.Value;
8697 loc = Location.Null;
8700 public override Expression CreateExpressionTree (EmitContext ec)
8702 throw new NotSupportedException ("ET");
8705 public override Expression DoResolve (EmitContext ec)
8707 return this;
8710 public override void Emit (EmitContext ec)
8712 // nothing, as we only exist to not do anything.
8715 public override void EmitSideEffect (EmitContext ec)
8720 // This is just because we might want to reuse this bad boy
8721 // instead of creating gazillions of EmptyExpressions.
8722 // (CanImplicitConversion uses it)
8724 public void SetType (Type t)
8726 type = t;
8731 // Empty statement expression
8733 public sealed class EmptyExpressionStatement : ExpressionStatement
8735 public static readonly EmptyExpressionStatement Instance = new EmptyExpressionStatement ();
8737 private EmptyExpressionStatement ()
8739 eclass = ExprClass.Value;
8740 loc = Location.Null;
8743 public override Expression CreateExpressionTree (EmitContext ec)
8745 return null;
8748 public override void EmitStatement (EmitContext ec)
8750 // Do nothing
8753 public override Expression DoResolve (EmitContext ec)
8755 type = TypeManager.object_type;
8756 return this;
8759 public override void Emit (EmitContext ec)
8761 // Do nothing
8765 public class UserCast : Expression {
8766 MethodInfo method;
8767 Expression source;
8769 public UserCast (MethodInfo method, Expression source, Location l)
8771 this.method = method;
8772 this.source = source;
8773 type = TypeManager.TypeToCoreType (method.ReturnType);
8774 loc = l;
8777 public Expression Source {
8778 get {
8779 return source;
8783 public override Expression CreateExpressionTree (EmitContext ec)
8785 Arguments args = new Arguments (3);
8786 args.Add (new Argument (source.CreateExpressionTree (ec)));
8787 args.Add (new Argument (new TypeOf (new TypeExpression (type, loc), loc)));
8788 args.Add (new Argument (new TypeOfMethod (method, loc)));
8789 return CreateExpressionFactoryCall ("Convert", args);
8792 public override Expression DoResolve (EmitContext ec)
8794 ObsoleteAttribute oa = AttributeTester.GetMethodObsoleteAttribute (method);
8795 if (oa != null)
8796 AttributeTester.Report_ObsoleteMessage (oa, GetSignatureForError (), loc);
8798 eclass = ExprClass.Value;
8799 return this;
8802 public override void Emit (EmitContext ec)
8804 source.Emit (ec);
8805 ec.ig.Emit (OpCodes.Call, method);
8808 public override string GetSignatureForError ()
8810 return TypeManager.CSharpSignature (method);
8813 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
8815 source.MutateHoistedGenericType (storey);
8816 method = storey.MutateGenericMethod (method);
8820 // <summary>
8821 // This class is used to "construct" the type during a typecast
8822 // operation. Since the Type.GetType class in .NET can parse
8823 // the type specification, we just use this to construct the type
8824 // one bit at a time.
8825 // </summary>
8826 public class ComposedCast : TypeExpr {
8827 FullNamedExpression left;
8828 string dim;
8830 public ComposedCast (FullNamedExpression left, string dim)
8831 : this (left, dim, left.Location)
8835 public ComposedCast (FullNamedExpression left, string dim, Location l)
8837 this.left = left;
8838 this.dim = dim;
8839 loc = l;
8842 protected override TypeExpr DoResolveAsTypeStep (IResolveContext ec)
8844 TypeExpr lexpr = left.ResolveAsTypeTerminal (ec, false);
8845 if (lexpr == null)
8846 return null;
8848 Type ltype = lexpr.Type;
8849 if ((dim.Length > 0) && (dim [0] == '?')) {
8850 TypeExpr nullable = new Nullable.NullableType (lexpr, loc);
8851 if (dim.Length > 1)
8852 nullable = new ComposedCast (nullable, dim.Substring (1), loc);
8853 return nullable.ResolveAsTypeTerminal (ec, false);
8856 if (dim == "*" && !TypeManager.VerifyUnManaged (ltype, loc))
8857 return null;
8859 if (dim.Length != 0 && dim [0] == '[') {
8860 if (TypeManager.IsSpecialType (ltype)) {
8861 Report.Error (611, loc, "Array elements cannot be of type `{0}'", TypeManager.CSharpName (ltype));
8862 return null;
8865 if ((ltype.Attributes & Class.StaticClassAttribute) == Class.StaticClassAttribute) {
8866 Report.SymbolRelatedToPreviousError (ltype);
8867 Report.Error (719, loc, "Array elements cannot be of static type `{0}'",
8868 TypeManager.CSharpName (ltype));
8872 if (dim != "")
8873 type = TypeManager.GetConstructedType (ltype, dim);
8874 else
8875 type = ltype;
8877 if (type == null)
8878 throw new InternalErrorException ("Couldn't create computed type " + ltype + dim);
8880 if (type.IsPointer && !ec.IsInUnsafeScope){
8881 UnsafeError (loc);
8884 eclass = ExprClass.Type;
8885 return this;
8888 public override string GetSignatureForError ()
8890 return left.GetSignatureForError () + dim;
8893 public override TypeExpr ResolveAsTypeTerminal (IResolveContext ec, bool silent)
8895 return ResolveAsBaseTerminal (ec, silent);
8899 public class FixedBufferPtr : Expression {
8900 Expression array;
8902 public FixedBufferPtr (Expression array, Type array_type, Location l)
8904 this.array = array;
8905 this.loc = l;
8907 type = TypeManager.GetPointerType (array_type);
8908 eclass = ExprClass.Value;
8911 public override Expression CreateExpressionTree (EmitContext ec)
8913 Error_PointerInsideExpressionTree ();
8914 return null;
8917 public override void Emit(EmitContext ec)
8919 array.Emit (ec);
8922 public override Expression DoResolve (EmitContext ec)
8925 // We are born fully resolved
8927 return this;
8933 // This class is used to represent the address of an array, used
8934 // only by the Fixed statement, this generates "&a [0]" construct
8935 // for fixed (char *pa = a)
8937 public class ArrayPtr : FixedBufferPtr {
8938 Type array_type;
8940 public ArrayPtr (Expression array, Type array_type, Location l):
8941 base (array, array_type, l)
8943 this.array_type = array_type;
8946 public override void Emit (EmitContext ec)
8948 base.Emit (ec);
8950 ILGenerator ig = ec.ig;
8951 IntLiteral.EmitInt (ig, 0);
8952 ig.Emit (OpCodes.Ldelema, array_type);
8957 // Encapsulates a conversion rules required for array indexes
8959 public class ArrayIndexCast : TypeCast
8961 public ArrayIndexCast (Expression expr)
8962 : base (expr, expr.Type)
8966 public override Expression CreateExpressionTree (EmitContext ec)
8968 Arguments args = new Arguments (2);
8969 args.Add (new Argument (child.CreateExpressionTree (ec)));
8970 args.Add (new Argument (new TypeOf (new TypeExpression (TypeManager.int32_type, loc), loc)));
8971 return CreateExpressionFactoryCall ("ConvertChecked", args);
8974 public override void Emit (EmitContext ec)
8976 child.Emit (ec);
8978 if (type == TypeManager.int32_type)
8979 return;
8981 if (type == TypeManager.uint32_type)
8982 ec.ig.Emit (OpCodes.Conv_U);
8983 else if (type == TypeManager.int64_type)
8984 ec.ig.Emit (OpCodes.Conv_Ovf_I);
8985 else if (type == TypeManager.uint64_type)
8986 ec.ig.Emit (OpCodes.Conv_Ovf_I_Un);
8987 else
8988 throw new InternalErrorException ("Cannot emit cast to unknown array element type", type);
8993 // Implements the `stackalloc' keyword
8995 public class StackAlloc : Expression {
8996 Type otype;
8997 Expression t;
8998 Expression count;
9000 public StackAlloc (Expression type, Expression count, Location l)
9002 t = type;
9003 this.count = count;
9004 loc = l;
9007 public override Expression CreateExpressionTree (EmitContext ec)
9009 throw new NotSupportedException ("ET");
9012 public override Expression DoResolve (EmitContext ec)
9014 count = count.Resolve (ec);
9015 if (count == null)
9016 return null;
9018 if (count.Type != TypeManager.uint32_type){
9019 count = Convert.ImplicitConversionRequired (ec, count, TypeManager.int32_type, loc);
9020 if (count == null)
9021 return null;
9024 Constant c = count as Constant;
9025 if (c != null && c.IsNegative) {
9026 Report.Error (247, loc, "Cannot use a negative size with stackalloc");
9027 return null;
9030 if (ec.InCatch || ec.InFinally) {
9031 Error (255, "Cannot use stackalloc in finally or catch");
9032 return null;
9035 TypeExpr texpr = t.ResolveAsTypeTerminal (ec, false);
9036 if (texpr == null)
9037 return null;
9039 otype = texpr.Type;
9041 if (!TypeManager.VerifyUnManaged (otype, loc))
9042 return null;
9044 type = TypeManager.GetPointerType (otype);
9045 eclass = ExprClass.Value;
9047 return this;
9050 public override void Emit (EmitContext ec)
9052 int size = GetTypeSize (otype);
9053 ILGenerator ig = ec.ig;
9055 count.Emit (ec);
9057 if (size == 0)
9058 ig.Emit (OpCodes.Sizeof, otype);
9059 else
9060 IntConstant.EmitInt (ig, size);
9062 ig.Emit (OpCodes.Mul_Ovf_Un);
9063 ig.Emit (OpCodes.Localloc);
9066 protected override void CloneTo (CloneContext clonectx, Expression t)
9068 StackAlloc target = (StackAlloc) t;
9069 target.count = count.Clone (clonectx);
9070 target.t = t.Clone (clonectx);
9075 // An object initializer expression
9077 public class ElementInitializer : Assign
9079 public readonly string Name;
9081 public ElementInitializer (string name, Expression initializer, Location loc)
9082 : base (null, initializer, loc)
9084 this.Name = name;
9087 protected override void CloneTo (CloneContext clonectx, Expression t)
9089 ElementInitializer target = (ElementInitializer) t;
9090 target.source = source.Clone (clonectx);
9093 public override Expression CreateExpressionTree (EmitContext ec)
9095 Arguments args = new Arguments (2);
9096 FieldExpr fe = target as FieldExpr;
9097 if (fe != null)
9098 args.Add (new Argument (fe.CreateTypeOfExpression ()));
9099 else
9100 args.Add (new Argument (((PropertyExpr)target).CreateSetterTypeOfExpression ()));
9102 args.Add (new Argument (source.CreateExpressionTree (ec)));
9103 return CreateExpressionFactoryCall (
9104 source is CollectionOrObjectInitializers ? "ListBind" : "Bind",
9105 args);
9108 public override Expression DoResolve (EmitContext ec)
9110 if (source == null)
9111 return EmptyExpressionStatement.Instance;
9113 MemberExpr me = MemberLookupFinal (ec, ec.CurrentInitializerVariable.Type, ec.CurrentInitializerVariable.Type,
9114 Name, MemberTypes.Field | MemberTypes.Property, BindingFlags.Public | BindingFlags.Instance, loc) as MemberExpr;
9116 if (me == null)
9117 return null;
9119 target = me;
9120 me.InstanceExpression = ec.CurrentInitializerVariable;
9122 if (source is CollectionOrObjectInitializers) {
9123 Expression previous = ec.CurrentInitializerVariable;
9124 ec.CurrentInitializerVariable = target;
9125 source = source.Resolve (ec);
9126 ec.CurrentInitializerVariable = previous;
9127 if (source == null)
9128 return null;
9130 eclass = source.eclass;
9131 type = source.Type;
9132 return this;
9135 Expression expr = base.DoResolve (ec);
9136 if (expr == null)
9137 return null;
9140 // Ignore field initializers with default value
9142 Constant c = source as Constant;
9143 if (c != null && c.IsDefaultInitializer (type) && target.eclass == ExprClass.Variable)
9144 return EmptyExpressionStatement.Instance.DoResolve (ec);
9146 return expr;
9149 protected override Expression Error_MemberLookupFailed (Type type, MemberInfo[] members)
9151 MemberInfo member = members [0];
9152 if (member.MemberType != MemberTypes.Property && member.MemberType != MemberTypes.Field)
9153 Report.Error (1913, loc, "Member `{0}' cannot be initialized. An object " +
9154 "initializer may only be used for fields, or properties", TypeManager.GetFullNameSignature (member));
9155 else
9156 Report.Error (1914, loc, " Static field or property `{0}' cannot be assigned in an object initializer",
9157 TypeManager.GetFullNameSignature (member));
9159 return null;
9162 public override void EmitStatement (EmitContext ec)
9164 if (source is CollectionOrObjectInitializers)
9165 source.Emit (ec);
9166 else
9167 base.EmitStatement (ec);
9172 // A collection initializer expression
9174 class CollectionElementInitializer : Invocation
9176 public class ElementInitializerArgument : Argument
9178 public ElementInitializerArgument (Expression e)
9179 : base (e)
9184 sealed class AddMemberAccess : MemberAccess
9186 public AddMemberAccess (Expression expr, Location loc)
9187 : base (expr, "Add", loc)
9191 protected override void Error_TypeDoesNotContainDefinition (Type type, string name)
9193 if (TypeManager.HasElementType (type))
9194 return;
9196 base.Error_TypeDoesNotContainDefinition (type, name);
9200 public CollectionElementInitializer (Expression argument)
9201 : base (null, new Arguments (1))
9203 base.arguments.Add (new ElementInitializerArgument (argument));
9204 this.loc = argument.Location;
9207 public CollectionElementInitializer (ArrayList arguments, Location loc)
9208 : base (null, new Arguments (arguments.Count))
9210 foreach (Expression e in arguments)
9211 base.arguments.Add (new ElementInitializerArgument (e));
9213 this.loc = loc;
9216 public override Expression CreateExpressionTree (EmitContext ec)
9218 Arguments args = new Arguments (2);
9219 args.Add (new Argument (mg.CreateExpressionTree (ec)));
9221 ArrayList expr_initializers = new ArrayList (arguments.Count);
9222 foreach (Argument a in arguments)
9223 expr_initializers.Add (a.CreateExpressionTree (ec));
9225 args.Add (new Argument (new ArrayCreation (
9226 CreateExpressionTypeExpression (loc), "[]", expr_initializers, loc)));
9227 return CreateExpressionFactoryCall ("ElementInit", args);
9230 protected override void CloneTo (CloneContext clonectx, Expression t)
9232 CollectionElementInitializer target = (CollectionElementInitializer) t;
9233 if (arguments != null)
9234 target.arguments = arguments.Clone (clonectx);
9237 public override Expression DoResolve (EmitContext ec)
9239 if (eclass != ExprClass.Invalid)
9240 return this;
9242 base.expr = new AddMemberAccess (ec.CurrentInitializerVariable, loc);
9244 return base.DoResolve (ec);
9249 // A block of object or collection initializers
9251 public class CollectionOrObjectInitializers : ExpressionStatement
9253 ArrayList initializers;
9254 bool is_collection_initialization;
9256 public static readonly CollectionOrObjectInitializers Empty =
9257 new CollectionOrObjectInitializers (new ArrayList (0), Location.Null);
9259 public CollectionOrObjectInitializers (ArrayList initializers, Location loc)
9261 this.initializers = initializers;
9262 this.loc = loc;
9265 public bool IsEmpty {
9266 get {
9267 return initializers.Count == 0;
9271 public bool IsCollectionInitializer {
9272 get {
9273 return is_collection_initialization;
9277 protected override void CloneTo (CloneContext clonectx, Expression target)
9279 CollectionOrObjectInitializers t = (CollectionOrObjectInitializers) target;
9281 t.initializers = new ArrayList (initializers.Count);
9282 foreach (Expression e in initializers)
9283 t.initializers.Add (e.Clone (clonectx));
9286 public override Expression CreateExpressionTree (EmitContext ec)
9288 ArrayList expr_initializers = new ArrayList (initializers.Count);
9289 foreach (Expression e in initializers) {
9290 Expression expr = e.CreateExpressionTree (ec);
9291 if (expr != null)
9292 expr_initializers.Add (expr);
9295 return new ImplicitlyTypedArrayCreation ("[]", expr_initializers, loc);
9298 public override Expression DoResolve (EmitContext ec)
9300 if (eclass != ExprClass.Invalid)
9301 return this;
9303 ArrayList element_names = null;
9304 for (int i = 0; i < initializers.Count; ++i) {
9305 Expression initializer = (Expression) initializers [i];
9306 ElementInitializer element_initializer = initializer as ElementInitializer;
9308 if (i == 0) {
9309 if (element_initializer != null) {
9310 element_names = new ArrayList (initializers.Count);
9311 element_names.Add (element_initializer.Name);
9312 } else if (initializer is CompletingExpression){
9313 initializer.Resolve (ec);
9314 throw new InternalErrorException ("This line should never be reached");
9315 } else {
9316 if (!TypeManager.ImplementsInterface (ec.CurrentInitializerVariable.Type, TypeManager.ienumerable_type)) {
9317 Report.Error (1922, loc, "A field or property `{0}' cannot be initialized with a collection " +
9318 "object initializer because type `{1}' does not implement `{2}' interface",
9319 ec.CurrentInitializerVariable.GetSignatureForError (),
9320 TypeManager.CSharpName (ec.CurrentInitializerVariable.Type),
9321 TypeManager.CSharpName (TypeManager.ienumerable_type));
9322 return null;
9324 is_collection_initialization = true;
9326 } else {
9327 if (is_collection_initialization != (element_initializer == null)) {
9328 Report.Error (747, initializer.Location, "Inconsistent `{0}' member declaration",
9329 is_collection_initialization ? "collection initializer" : "object initializer");
9330 continue;
9333 if (!is_collection_initialization) {
9334 if (element_names.Contains (element_initializer.Name)) {
9335 Report.Error (1912, element_initializer.Location,
9336 "An object initializer includes more than one member `{0}' initialization",
9337 element_initializer.Name);
9338 } else {
9339 element_names.Add (element_initializer.Name);
9344 Expression e = initializer.Resolve (ec);
9345 if (e == EmptyExpressionStatement.Instance)
9346 initializers.RemoveAt (i--);
9347 else
9348 initializers [i] = e;
9351 type = ec.CurrentInitializerVariable.Type;
9352 if (is_collection_initialization) {
9353 if (TypeManager.HasElementType (type)) {
9354 Report.Error (1925, loc, "Cannot initialize object of type `{0}' with a collection initializer",
9355 TypeManager.CSharpName (type));
9359 eclass = ExprClass.Variable;
9360 return this;
9363 public override void Emit (EmitContext ec)
9365 EmitStatement (ec);
9368 public override void EmitStatement (EmitContext ec)
9370 foreach (ExpressionStatement e in initializers)
9371 e.EmitStatement (ec);
9374 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9376 foreach (Expression e in initializers)
9377 e.MutateHoistedGenericType (storey);
9382 // New expression with element/object initializers
9384 public class NewInitialize : New
9387 // This class serves as a proxy for variable initializer target instances.
9388 // A real variable is assigned later when we resolve left side of an
9389 // assignment
9391 sealed class InitializerTargetExpression : Expression, IMemoryLocation
9393 NewInitialize new_instance;
9395 public InitializerTargetExpression (NewInitialize newInstance)
9397 this.type = newInstance.type;
9398 this.loc = newInstance.loc;
9399 this.eclass = newInstance.eclass;
9400 this.new_instance = newInstance;
9403 public override Expression CreateExpressionTree (EmitContext ec)
9405 // Should not be reached
9406 throw new NotSupportedException ("ET");
9409 public override Expression DoResolve (EmitContext ec)
9411 return this;
9414 public override Expression DoResolveLValue (EmitContext ec, Expression right_side)
9416 return this;
9419 public override void Emit (EmitContext ec)
9421 Expression e = (Expression) new_instance.instance;
9422 e.Emit (ec);
9425 #region IMemoryLocation Members
9427 public void AddressOf (EmitContext ec, AddressOp mode)
9429 new_instance.instance.AddressOf (ec, mode);
9432 #endregion
9435 CollectionOrObjectInitializers initializers;
9436 IMemoryLocation instance;
9438 public NewInitialize (Expression requested_type, Arguments arguments, CollectionOrObjectInitializers initializers, Location l)
9439 : base (requested_type, arguments, l)
9441 this.initializers = initializers;
9444 protected override IMemoryLocation EmitAddressOf (EmitContext ec, AddressOp Mode)
9446 instance = base.EmitAddressOf (ec, Mode);
9448 if (!initializers.IsEmpty)
9449 initializers.Emit (ec);
9451 return instance;
9454 protected override void CloneTo (CloneContext clonectx, Expression t)
9456 base.CloneTo (clonectx, t);
9458 NewInitialize target = (NewInitialize) t;
9459 target.initializers = (CollectionOrObjectInitializers) initializers.Clone (clonectx);
9462 public override Expression CreateExpressionTree (EmitContext ec)
9464 Arguments args = new Arguments (2);
9465 args.Add (new Argument (base.CreateExpressionTree (ec)));
9466 if (!initializers.IsEmpty)
9467 args.Add (new Argument (initializers.CreateExpressionTree (ec)));
9469 return CreateExpressionFactoryCall (
9470 initializers.IsCollectionInitializer ? "ListInit" : "MemberInit",
9471 args);
9474 public override Expression DoResolve (EmitContext ec)
9476 if (eclass != ExprClass.Invalid)
9477 return this;
9479 Expression e = base.DoResolve (ec);
9480 if (type == null)
9481 return null;
9483 Expression previous = ec.CurrentInitializerVariable;
9484 ec.CurrentInitializerVariable = new InitializerTargetExpression (this);
9485 initializers.Resolve (ec);
9486 ec.CurrentInitializerVariable = previous;
9487 return e;
9490 public override bool Emit (EmitContext ec, IMemoryLocation target)
9492 bool left_on_stack = base.Emit (ec, target);
9494 if (initializers.IsEmpty)
9495 return left_on_stack;
9497 LocalTemporary temp = target as LocalTemporary;
9498 if (temp == null) {
9499 if (!left_on_stack) {
9500 VariableReference vr = target as VariableReference;
9502 // FIXME: This still does not work correctly for pre-set variables
9503 if (vr != null && vr.IsRef)
9504 target.AddressOf (ec, AddressOp.Load);
9506 ((Expression) target).Emit (ec);
9507 left_on_stack = true;
9510 temp = new LocalTemporary (type);
9513 instance = temp;
9514 if (left_on_stack)
9515 temp.Store (ec);
9517 initializers.Emit (ec);
9519 if (left_on_stack) {
9520 temp.Emit (ec);
9521 temp.Release (ec);
9524 return left_on_stack;
9527 public override bool HasInitializer {
9528 get {
9529 return !initializers.IsEmpty;
9533 public override void MutateHoistedGenericType (AnonymousMethodStorey storey)
9535 base.MutateHoistedGenericType (storey);
9536 initializers.MutateHoistedGenericType (storey);
9540 public class AnonymousTypeDeclaration : Expression
9542 ArrayList parameters;
9543 readonly TypeContainer parent;
9544 static readonly ArrayList EmptyParameters = new ArrayList (0);
9546 public AnonymousTypeDeclaration (ArrayList parameters, TypeContainer parent, Location loc)
9548 this.parameters = parameters;
9549 this.parent = parent;
9550 this.loc = loc;
9553 protected override void CloneTo (CloneContext clonectx, Expression target)
9555 if (parameters == null)
9556 return;
9558 AnonymousTypeDeclaration t = (AnonymousTypeDeclaration) target;
9559 t.parameters = new ArrayList (parameters.Count);
9560 foreach (AnonymousTypeParameter atp in parameters)
9561 t.parameters.Add (atp.Clone (clonectx));
9564 AnonymousTypeClass CreateAnonymousType (ArrayList parameters)
9566 AnonymousTypeClass type = parent.Module.GetAnonymousType (parameters);
9567 if (type != null)
9568 return type;
9570 type = AnonymousTypeClass.Create (parent, parameters, loc);
9571 if (type == null)
9572 return null;
9574 type.DefineType ();
9575 type.Define ();
9576 type.EmitType ();
9577 if (Report.Errors == 0)
9578 type.CloseType ();
9580 parent.Module.AddAnonymousType (type);
9581 return type;
9584 public override Expression CreateExpressionTree (EmitContext ec)
9586 throw new NotSupportedException ("ET");
9589 public override Expression DoResolve (EmitContext ec)
9591 AnonymousTypeClass anonymous_type;
9593 if (!ec.IsAnonymousMethodAllowed) {
9594 Report.Error (836, loc, "Anonymous types cannot be used in this expression");
9595 return null;
9598 if (parameters == null) {
9599 anonymous_type = CreateAnonymousType (EmptyParameters);
9600 return new New (new TypeExpression (anonymous_type.TypeBuilder, loc),
9601 null, loc).Resolve (ec);
9604 bool error = false;
9605 Arguments arguments = new Arguments (parameters.Count);
9606 TypeExpression [] t_args = new TypeExpression [parameters.Count];
9607 for (int i = 0; i < parameters.Count; ++i) {
9608 Expression e = ((AnonymousTypeParameter) parameters [i]).Resolve (ec);
9609 if (e == null) {
9610 error = true;
9611 continue;
9614 arguments.Add (new Argument (e));
9615 t_args [i] = new TypeExpression (e.Type, e.Location);
9618 if (error)
9619 return null;
9621 anonymous_type = CreateAnonymousType (parameters);
9622 if (anonymous_type == null)
9623 return null;
9625 GenericTypeExpr te = new GenericTypeExpr (anonymous_type.TypeBuilder,
9626 new TypeArguments (t_args), loc);
9628 return new New (te, arguments, loc).Resolve (ec);
9631 public override void Emit (EmitContext ec)
9633 throw new InternalErrorException ("Should not be reached");
9637 public class AnonymousTypeParameter : Expression
9639 public readonly string Name;
9640 Expression initializer;
9642 public AnonymousTypeParameter (Expression initializer, string name, Location loc)
9644 this.Name = name;
9645 this.loc = loc;
9646 this.initializer = initializer;
9649 public AnonymousTypeParameter (Parameter parameter)
9651 this.Name = parameter.Name;
9652 this.loc = parameter.Location;
9653 this.initializer = new SimpleName (Name, loc);
9656 protected override void CloneTo (CloneContext clonectx, Expression target)
9658 AnonymousTypeParameter t = (AnonymousTypeParameter) target;
9659 t.initializer = initializer.Clone (clonectx);
9662 public override Expression CreateExpressionTree (EmitContext ec)
9664 throw new NotSupportedException ("ET");
9667 public override bool Equals (object o)
9669 AnonymousTypeParameter other = o as AnonymousTypeParameter;
9670 return other != null && Name == other.Name;
9673 public override int GetHashCode ()
9675 return Name.GetHashCode ();
9678 public override Expression DoResolve (EmitContext ec)
9680 Expression e = initializer.Resolve (ec);
9681 if (e == null)
9682 return null;
9684 if (e.eclass == ExprClass.MethodGroup) {
9685 Error_InvalidInitializer (e.ExprClassName);
9686 return null;
9689 type = e.Type;
9690 if (type == TypeManager.void_type || type == TypeManager.null_type ||
9691 type == InternalType.AnonymousMethod || type.IsPointer) {
9692 Error_InvalidInitializer (e.GetSignatureForError ());
9693 return null;
9696 return e;
9699 protected virtual void Error_InvalidInitializer (string initializer)
9701 Report.Error (828, loc, "An anonymous type property `{0}' cannot be initialized with `{1}'",
9702 Name, initializer);
9705 public override void Emit (EmitContext ec)
9707 throw new InternalErrorException ("Should not be reached");