cosmetic
[mcs.git] / tests / gtest-118.cs
blob321530c04f6c53da86f4cd5111d21adfb51216d6
1 //-- ex-gen-class-polynomial
3 using System;
5 // A type implements AddMul<A,R> if one can add an A to it, giving an R:
7 interface AddMul<A,R> {
8 R Add(A e); // Addition with A, giving R
9 R Mul(A e); // Multiplication with A, giving R
12 // Polynomials over E, Polynomial<E>:
14 // The base type E of the polynomial must support addition,
15 // multiplication and zero (via the nullary constructor). That's what
16 // the type parameter constraint on E says.
18 // In return, one can add an E or a polynomial over E to a polynomial
19 // over E. Similarly, a polynomial over E can be multiplied by an E
20 // or by a polynomial over E. That's what the interface clauses say.
22 class Polynomial<E> : AddMul<E,Polynomial<E>>,
23 AddMul<Polynomial<E>,Polynomial<E>>
24 where E : AddMul<E,E>, new() {
25 // cs contains coefficients of x^0, x^1, ...; absent coefficients are zero.
26 // Invariant: cs != null && cs.Length >= 0; cs.Length==0 represents zero.
27 private readonly E[] cs;
29 public Polynomial() {
30 this.cs = new E[0];
33 public Polynomial(E[] cs) {
34 this.cs = cs;
37 public Polynomial<E> Add(Polynomial<E> that) {
38 int newlen = Math.Max(this.cs.Length, that.cs.Length);
39 int minlen = Math.Min(this.cs.Length, that.cs.Length);
40 E[] newcs = new E[newlen];
41 if (this.cs.Length <= that.cs.Length) {
42 for (int i=0; i<minlen; i++)
43 newcs[i] = this.cs[i].Add(that.cs[i]);
44 for (int i=minlen; i<newlen; i++)
45 newcs[i] = that.cs[i];
46 } else {
47 for (int i=0; i<minlen; i++)
48 newcs[i] = this.cs[i].Add(that.cs[i]);
49 for (int i=minlen; i<newlen; i++)
50 newcs[i] = this.cs[i];
52 return new Polynomial<E>(newcs);
55 public Polynomial<E> Add(E that) {
56 return this.Add(new Polynomial<E>(new E[] { that }));
59 public Polynomial<E> Mul(E that) {
60 E[] newcs = new E[cs.Length];
61 for (int i=0; i<cs.Length; i++)
62 newcs[i] = that.Mul(cs[i]);
63 return new Polynomial<E>(newcs);
66 public Polynomial<E> Mul(Polynomial<E> that) {
67 int newlen = Math.Max(1, this.cs.Length + that.cs.Length - 1);
68 E[] newcs = new E[newlen];
69 for (int i=0; i<newlen; i++) {
70 E sum = new E(); // Permitted by constraint E : new()
71 int start = Math.Max(0, i-that.cs.Length+1);
72 int stop = Math.Min(i, this.cs.Length-1);
73 for (int j=start; j<=stop; j++) {
74 // assert 0<=j && j<this.cs.Length && 0<=i-j && i-j<that.cs.Length;
75 sum = sum.Add(this.cs[j].Mul(that.cs[i-j]));
77 newcs[i] = sum;
79 return new Polynomial<E>(newcs);
82 public E Eval(E x) {
83 E res = new E(); // Permitted by constraint E : new()
84 for (int j=cs.Length-1; j>=0; j--)
85 res = res.Mul(x).Add(cs[j]);
86 return res;
90 struct Int : AddMul<Int,Int> {
91 private readonly int i;
92 public Int(int i) {
93 this.i = i;
95 public Int Add(Int that) {
96 return new Int(this.i + that.i);
98 public Int Mul(Int that) {
99 return new Int(this.i * that.i);
101 public override String ToString() {
102 return i.ToString();
106 class TestPolynomial {
107 public static void Main(String[] args) {
108 // The integer polynomial 2 + 5x + x^2
109 Polynomial<Int> ip =
110 new Polynomial<Int>(new Int[] { new Int(2), new Int(5), new Int(1) });
111 Console.WriteLine(ip.Eval(new Int(10))); // 152
112 Console.WriteLine(ip.Add(ip).Eval(new Int(10))); // 304 = 152 + 152
113 Console.WriteLine(ip.Mul(ip).Eval(new Int(10))); // 23104 = 152 * 152