1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
13 (macsyma-module troper
)
15 ;;; The basic OPERATORS properties translators.
18 (setq form
(translate (cadr form
)))
19 (cond ((numberp (cdr form
))
20 `(,(car form
) .
,(- (cdr form
))))
21 ((eq '$fixnum
(car form
)) `($fixnum -
,(cdr form
)))
22 ((eq '$float
(car form
)) `($float -
,(cdr form
)))
23 ((eq '$number
(car form
)) `($number -
,(cdr form
)))
24 ((eq '$rational
(car form
))
25 (cond ((and (not (atom (caddr form
))) (eq 'rat
(caar (caddr form
))))
26 (setq form
(cdaddr form
))
27 `($rational quote
((rat) ,(- (car form
)) ,(cadr form
))))
28 (t `($rational rtimes -
1 ,(cdr form
)))))
29 (t `($any .
(*mminus
,(cdr form
))))))
33 (do ((l (cdr form
) (cdr l
))) ((null l
))
34 (setq args
(cons (translate (car l
)) args
)
35 mode
(*union-mode
(car (car args
)) mode
)))
36 (setq args
(nreverse args
))
37 (cond ((eq '$fixnum mode
) `($fixnum
+ .
,(mapcar #'cdr args
)))
38 ((eq '$float mode
) `($float
+ .
,(mapcar #'dconv-$float args
)))
39 ((eq '$rational mode
) `($rational rplus .
,(mapcar #'cdr args
)))
40 ((eq '$number mode
) `($number
+ .
,(mapcar #'cdr args
)))
41 (t `($any add
* .
,(mapcar #'dconvx args
))))))
45 (cond ((equal -
1 (cadr form
))
46 (translate `((mminus) ((mtimes) .
,(cddr form
)))))
48 (do ((l (cdr form
) (cdr l
)))
50 (setq args
(cons (translate (car l
)) args
)
51 mode
(*union-mode
(car (car args
)) mode
)))
52 (setq args
(nreverse args
))
53 (cond ((eq '$fixnum mode
) `($fixnum
* .
,(mapcar #'cdr args
)))
54 ((eq '$float mode
) `($float
* .
,(mapcar #'dconv-$float args
)))
55 ((eq '$rational mode
) `($rational rtimes .
,(mapcar #'cdr args
)))
56 ((eq '$number mode
) `($number
* .
,(mapcar #'cdr args
)))
57 (t `($any mul
* .
,(mapcar #'dconvx args
))))))))
60 (def%tr mquotient
(form)
62 (setq arg1
(translate (cadr form
))
63 arg2
(translate (caddr form
))
64 mode
(*union-mode
(car arg1
) (car arg2
))
65 arg1
(dconv arg1 mode
)
66 arg2
(dconv arg2 mode
))
67 (cond ((eq '$float mode
)
68 (setq arg1
(if (member arg1
'(1 1.0) :test
#'equal
)
72 ((and (eq mode
'$fixnum
) $tr_numer
)
73 `($float .
(/ (float ,arg1
) (float ,arg2
))))
74 ((member mode
'($fixnum $rational
) :test
#'eq
)
75 `($rational rremainder
,arg1
,arg2
))
76 (t `($any div
,arg1
,arg2
)))))
78 (defvar $tr_exponent nil
79 "If True it allows translation of x^n to generate (expt $x $n) if $n is fixnum and $x is fixnum, or number")
82 (if (eq '$%e
(cadr form
))
83 (translate `(($exp
) ,(caddr form
)))
84 (let ((bas (translate (cadr form
)))
85 (exp (translate (caddr form
))))
87 ((eq '$fixnum
(car exp
))
89 (cond ((eq '$float
(car bas
))
90 `($float expt
,(cdr bas
) ,exp
))
91 ((and (eq (car bas
) '$fixnum
)
93 ;; when NUMER:TRUE we have 1/2 evaluating to 0.5
94 ;; therefore we have a TR_NUMER switch to control
95 ;; this form numerical hackers at translate time
96 ;; where it does the most good. -gjc
97 `($float .
(expt (float ,(cdr bas
)) ,exp
)))
98 ;;It seems to me we can do this,
99 ;; although 2^-3 would result in a "cl rat'l number"
100 ((and $tr_exponent
(member (car bas
) '($fixnum $number
) :test
#'eq
))
101 `($number expt
,(cdr bas
) ,exp
))
102 (t `($any power
,(cdr bas
) ,exp
))))
104 ((and (eq '$float
(car bas
))
105 (eq '$rational
(car exp
))
106 (not (atom (caddr exp
)))
107 (cond ((equal 2 (caddr (caddr exp
)))
108 (setq exp
(cadr (caddr exp
)))
109 (cond ((= 1 exp
) `($float sqrt
,(cdr bas
)))
110 ((= -
1 exp
) `($float
/ (sqrt ,(cdr bas
))))
111 (t `($float expt
(sqrt ,(cdr bas
)) ,exp
))))
112 ((eq 'rat
(caar (caddr exp
)))
113 `($float expt
,(cdr bas
) ,($float
(caddr exp
)))))))
115 ;; If the exponent is a float, we can't just translate straight to a
116 ;; float because the base might be negative. However, if the base
117 ;; happens to be a literal then we can check its sign. If it's
118 ;; non-negative we know that the result of calling POWER will indeed
120 ((and (eq '$float
(car exp
))
121 (or (numberp (car bas
))
122 (and (eq '$rational
(car bas
))
123 (eq 'quote
(second bas
))
124 (not (atom (third bas
)))
125 (eq 'rat
(caar (third bas
)))
126 (integerp (second (third bas
)))
127 (integerp (third (third bas
))))
128 (and (memq (car bas
) '($float $fixnum
))
129 (numberp (cdr bas
)))))
134 ((eq '$rational
(car bas
))
135 (/ (second (third bas
)) (third (third bas
))))
139 `($any power
,(cdr bas
) ,(cdr exp
))
140 `($float power
,(cdr bas
) ,(cdr exp
)))))
142 (t `($any power
,(cdr bas
) ,(cdr exp
)))))))
145 `($rational .
',form
))
147 (def%tr bigfloat
(form)
151 (setq form
(translate (cadr form
)))
152 (if (covers '$number
(car form
)) (list (car form
) 'abs
(cdr form
))
153 `($any simplify
(list '(mabs) ,(dconvx form
)))))
155 (def%tr %signum
(form)
156 (destructuring-let (( (mode . arg
) (translate (cadr form
))))
157 (cond ((member mode
'($fixnum $float
) :test
#'eq
)
158 `(,mode .
(cl:signum
,arg
)))
160 ;; even in this unknown case we can do a hell
161 ;; of a lot better than consing up a form to
162 ;; call the macsyma simplifier. I mean, shoot
163 ;; have a little SUBR called SIG-NUM or something.
164 `($any simplify
(list '(%signum
) ,arg
))))))
166 ;; The optimization of using -1.0, +1.0 and 0.0 cannot be made unless we
167 ;; know the TARGET MODE. The action of the simplifier is that
168 ;; SIGNUM(3.3) => 1 , SIGNUM(3.3) does not give 0.0
169 ;; Maybe this is a bug in the simplifier, maybe not. -gjc
171 ;; There are many possible non-trivial optimizations possible involving
172 ;; SIGNUM. MODE TARGETING must be built in to get these easily of course,
173 ;; examples are: SIGNUM(X*Y); No need to multiple X and Y, just multiply
174 ;; there SIGN's, which is a conditional and comparisons. However, these
175 ;; are only optimizations if X and Y are numeric. What if
176 ;; X:'a,Y:'B, ASSUME(A*B>0), SIGNUM(X*Y). Well, here
177 ;; SIGNUM(X)*SIGNUM(Y) won't be the same as SIGNUM(X*Y). -gjc
179 ;; just to show the kind of brain damage...
180 ;;(DEF%TR %SIGNUM (FORM)
181 ;; (SETQ FORM (TRANSLATE (CADR FORM)))
182 ;; (COND ((MEMber (CAR FORM)
183 ;; (LET ((X (CDR FORM)) (MODE (CAR FORM))
184 ;; (ONE 1) (MINUS1 -1) (ZERO 0) (VAR '%%N)
185 ;; (DECLARE-TYPE 'FIXNUM) COND-CLAUSE)
186 ;; (IF (EQ '$FLOAT MODE) (SETQ ONE 1.0 MINUS1 -1.0 ZERO 0.0 VAR '$$X
187 ;; DECLARE-TYPE 'FLONUM))
188 ;; (SETQ COND-CLAUSE `(COND ((MINUSP ,X) ,MINUS1)
191 ;; (IF (ATOM (CDR FORM)) `(,MODE . ,COND-CLAUSE)
192 ;; (PUSHNEW `(,DECLARE-TYPE ,VAR) DECLARES)
193 ;; `(,MODE (LAMBDA (,VAR) ,COND-CLAUSE) ,X))))
194 ;; (T `($ANY SIMPLIFY (LIST '(%SIGNUM) ,(CDR FORM))))))
197 (def%tr $entier
(form)
198 (setq form
(translate (cadr form
)))
199 (cond ((eq '$fixnum
(car form
)) form
)
200 ((member (car form
) '($float $number
) :test
#'eq
)
201 (if (eq 'sqrt
(cadr form
))
202 `($fixnum $isqrt
,(caddr form
))
203 `($fixnum floor
,(cdr form
))))
204 (t `(,(if (eq (car form
) '$rational
) '$fixnum
'$any
)
205 $entier
,(cdr form
)))))
207 (def%tr $float
(form)
208 (setq form
(translate (cadr form
)))
209 (if (covers '$float
(car form
))
210 (cons '$float
(dconv-$float form
))
211 `($any $float
,(cdr form
))))
213 (def%tr $atan2
(form)
214 (setq form
(cdr form
))
215 (let ((x (translate (car form
))) (y (translate (cadr form
))))
216 (if (eq '$float
(*union-mode
(car x
) (car y
)))
217 `($float atan
,(dconv-$float x
) ,(dconv-$float y
))
218 `($any simplify
(list '($atan2
) ,(cdr x
) ,(cdr y
))))))