Replace Python program auto-generated for documentation categories
[maxima/cygwin.git] / src / trigi.lisp
blob6ffd4f1d65d2592271bbfb2ae873bf7b30c69935
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module trigi)
15 (load-macsyma-macros mrgmac)
17 (declare-top (special errorsw $demoivre 1//2 -1//2))
19 (defmvar $%piargs t)
20 (defmvar $%iargs t)
21 (defmvar $triginverses t)
22 (defmvar $trigexpand nil)
23 (defmvar $trigexpandplus t)
24 (defmvar $trigexpandtimes t)
25 (defmvar $trigsign t)
26 (defmvar $exponentialize nil)
27 (defmvar $logarc nil)
28 (defmvar $halfangles nil)
30 ;; Simplified shortcuts for constant expressions.
31 (defvar %pi//4 '((mtimes simp) ((rat simp) 1 4.) $%pi))
32 (defvar %pi//2 '((mtimes simp) ((rat simp) 1 2) $%pi))
33 (defvar sqrt3//2 '((mtimes simp)
34 ((rat simp) 1 2)
35 ((mexpt simp) 3 ((rat simp) 1 2))))
36 (defvar -sqrt3//2 '((mtimes simp)
37 ((rat simp) -1 2)
38 ((mexpt simp) 3 ((rat simp) 1 2))))
40 ;;; Arithmetic utilities.
42 (defun sqrt1-x^2 (x)
43 (power (sub 1 (power x 2)) 1//2))
45 (defun sqrt1+x^2 (x)
46 (power (add 1 (power x 2)) 1//2))
48 (defun sqrtx^2-1 (x)
49 (power (add (power x 2) -1) 1//2))
51 (defun sq-sumsq (x y)
52 (power (add (power x 2) (power y 2)) 1//2))
54 (defun trigp (func)
55 (member func '(%sin %cos %tan %csc %sec %cot %sinh %cosh %tanh %csch %sech %coth)
56 :test #'eq))
58 (defun arcp (func)
59 (member func '(%asin %acos %atan %acsc %asec %acot %asinh %acosh %atanh %acsch %asech %acoth)
60 :test #'eq))
62 ;;; The trigonometric functions distribute of lists, matrices and equations.
64 (dolist (x '(%sin %cos %tan %cot %csc %sec
65 %sinh %cosh %tanh %coth %csch %sech
66 %asin %acos %atan %acot %acsc %asec
67 %asinh %acosh %atanh %acoth %acsch %asech))
68 (setf (get x 'distribute_over) '(mlist $matrix mequal)))
70 (defun domain-error (x f)
71 (merror (intl:gettext "~A: argument ~:M isn't in the domain of ~A.") f (complexify x) f))
73 ;; Build hash tables '*flonum-op*' and '*big-float-op*' that map Maxima
74 ;; function names to their corresponding Lisp functions.
76 (defvar *flonum-op* (make-hash-table :size 64)
77 "Hash table mapping a maxima function to a corresponding Lisp
78 function to evaluate the maxima function numerically with
79 flonum precision.")
81 (defvar *big-float-op* (make-hash-table)
82 "Hash table mapping a maxima function to a corresponding Lisp
83 function to evaluate the maxima function numerically with
84 big-float precision.")
86 ;; Some Lisp implementations goof up branch cuts for ASIN, ACOS, and/or ATANH.
87 ;; Here are definitions which have the right branch cuts
88 ;; (assuming LOG, PHASE, and SQRT have the right branch cuts).
89 ;; Don't bother trying to sort out which implementations get it right or wrong;
90 ;; we'll make all implementations use these functions.
92 ;; Apply formula from CLHS if X falls on a branch cut.
93 ;; Otherwise punt to CL:ASIN.
94 (defun maxima-branch-asin (x)
95 ;; Test for (IMAGPART X) is EQUAL because signed zero is EQUAL to zero.
96 (if (and (> (abs (realpart x)) 1.0) (equal (imagpart x) 0.0))
97 ;; The formula from CLHS is asin(x) = -%i*log(%i*x+sqrt(1-x^2)).
98 ;; This has problems with overflow for large x.
100 ;; Let's rewrite it, where abs(x)>1
102 ;; asin(x) = -%i*log(%i*x+abs(x)*sqrt(1-1/x^2))
103 ;; = -%i*log(%i*x*(1+abs(x)/x*sqrt(1-1/x^2)))
104 ;; = -%i*[log(abs(x)*abs(1+abs(x)/x*sqrt(1-1/x^2)))
105 ;; + %i*arg(%i*x*(1+abs(x)/x*sqrt(1-1/x^2)))]
106 ;; = -%i*[log(abs(x)*(1+abs(x)/x*sqrt(1-1/x^2)))
107 ;; + %i*%pi/2*sign(x)]
108 ;; = %pi/2*sign(x) - %i*[log(abs(x)*(1+abs(x)/x*sqrt(1-1/x^2))]
110 ;; Now, look at log part. If x > 0, we have
112 ;; log(x*(1+sqrt(1-1/x^2)))
114 ;; which is just fine. For x < 0, we have
116 ;; log(abs(x)*(1-sqrt(1-1/x^2))).
118 ;; But
119 ;; 1-sqrt(1-1/x^2) = (1-sqrt(1-1/x^2))*(1+sqrt(1-1/x^2))/(1+sqrt(1-1/x^2))
120 ;; = (1-(1-1/x^2))/(1+sqrt(1-1/x^2))
121 ;; = 1/x^2/(1+sqrt(1-1/x^2))
123 ;; So
125 ;; log(abs(x)*(1-sqrt(1-1/x^2)))
126 ;; = log(abs(x)/x^2/(1+sqrt(1-1/x^2)))
127 ;; = -log(x^2/abs(x)*(1+sqrt(1-1/x^2))
128 ;; = -log(abs(x)*(1+sqrt(1-1/x^2)))
130 ;; Thus, for x < 0,
132 ;; asin(x) = -%pi/2+%i*log(abs(x)*(1+sqrt(1-1/x^2)))
133 ;; = -asin(-x)
135 ;; If we had an accurate f(x) = log(1+x) function, we should
136 ;; probably evaluate log(1+sqrt(1-1/x^2)) via f(x) instead of
137 ;; log. One other accuracy change is to evaluate sqrt(1-1/x^2)
138 ;; as sqrt(1-1/x)*sqrt(1+1/x), because 1/x^2 won't underflow as
139 ;; soon as 1/x.
140 (let* ((absx (abs x))
141 (recip (/ absx))
142 (result (complex (/ #.(float pi) 2)
143 (- (log (* absx
144 (1+ (* (sqrt (+ 1 recip))
145 (sqrt (- 1 recip))))))))))
146 (if (minusp x)
147 (- result)
148 result))
149 (cl:asin x)))
151 ;; Apply formula from CLHS if X falls on a branch cut.
152 ;; Otherwise punt to CL:ACOS.
153 (defun maxima-branch-acos (x)
154 ; Test for (IMAGPART X) is EQUAL because signed zero is EQUAL to zero.
155 (if (and (> (abs (realpart x)) 1.0) (equal (imagpart x) 0.0))
156 (- #.(/ (float pi) 2) (maxima-branch-asin x))
157 (cl:acos x)))
159 (defun maxima-branch-acot (x)
160 ;; Allow 0.0 in domain of acot, otherwise use atan(1/x)
161 (if (and (equal (realpart x) 0.0) (equal (imagpart x) 0.0))
162 #.(/ (float pi) 2)
163 (cl:atan (/ 1 x))))
165 ;; Apply formula from CLHS if X falls on a branch cut.
166 ;; Otherwise punt to CL:ATANH.
167 (defun maxima-branch-atanh (x)
168 ; Test for (IMAGPART X) is EQUAL because signed zero is EQUAL to zero.
169 (if (and (> (abs (realpart x)) 1.0) (equal (imagpart x) 0.0))
170 (/ (- (cl:log (+ 1 x)) (cl:log (- 1 x))) 2)
171 (cl:atanh x)))
173 ;; Fill the hash table.
174 (macrolet ((frob (mfun dfun) `(setf (gethash ',mfun *flonum-op*) ,dfun)))
175 (frob mplus #'+)
176 (frob mtimes #'*)
177 (frob mquotient #'/)
178 (frob mminus #'-)
180 (frob %cos #'cl:cos)
181 (frob %sin #'cl:sin)
182 (frob %tan #'cl:tan)
184 (frob %sec #'(lambda (x)
185 (let ((y (ignore-errors (/ 1 (cl:cos x)))))
186 (if y y (domain-error x 'sec)))))
188 (frob %csc #'(lambda (x)
189 (let ((y (ignore-errors (/ 1 (cl:sin x)))))
190 (if y y (domain-error x 'csc)))))
192 (frob %cot #'(lambda (x)
193 (let ((y (ignore-errors (/ 1 (cl:tan x)))))
194 (if y y (domain-error x 'cot)))))
196 (frob %acos #'maxima-branch-acos)
197 (frob %asin #'maxima-branch-asin)
199 (frob %atan #'cl:atan)
201 (frob %asec #'(lambda (x)
202 (let ((y (ignore-errors (maxima-branch-acos (/ 1 x)))))
203 (if y y (domain-error x 'asec)))))
205 (frob %acsc #'(lambda (x)
206 (let ((y (ignore-errors (maxima-branch-asin (/ 1 x)))))
207 (if y y (domain-error x 'acsc)))))
209 (frob %acot #'(lambda (x)
210 (let ((y (ignore-errors (maxima-branch-acot x))))
211 (if y y (domain-error x 'acot)))))
213 (frob %cosh #'cl:cosh)
214 (frob %sinh #'cl:sinh)
215 (frob %tanh #'cl:tanh)
217 (frob %sech #'(lambda (x)
218 (let ((y (ignore-errors (/ 1 (cl:cosh x)))))
219 (if y y (domain-error x 'sech)))))
221 (frob %csch #'(lambda (x)
222 (let ((y (ignore-errors (/ 1 (cl:sinh x)))))
223 (if y y (domain-error x 'csch)))))
225 (frob %coth #'(lambda (x)
226 (let ((y (ignore-errors (/ 1 (cl:tanh x)))))
227 (if y y (domain-error x 'coth)))))
229 (frob %acosh #'cl:acosh)
230 (frob %asinh #'cl:asinh)
232 (frob %atanh #'maxima-branch-atanh)
234 (frob %asech #'(lambda (x)
235 (let ((y (ignore-errors (cl:acosh (/ 1 x)))))
236 (if y y (domain-error x 'asech)))))
238 (frob %acsch #'(lambda (x)
239 (let ((y (ignore-errors (cl:asinh (/ 1 x)))))
240 (if y y (domain-error x 'acsch)))))
242 (frob %acoth #'(lambda (x)
243 (let ((y (ignore-errors (maxima-branch-atanh (/ 1 x)))))
244 (if y y (domain-error x 'acoth)))))
246 (frob mabs #'cl:abs)
247 (frob %exp #'cl:exp)
248 (frob mexpt #'cl:expt)
249 (frob %sqrt #'cl:sqrt)
250 (frob %log #'(lambda (x)
251 (let ((y (ignore-errors (cl:log x))))
252 (if y y (domain-error x 'log)))))
254 (frob %plog #'(lambda (x)
255 (let ((y (ignore-errors (cl:log x))))
256 (if y y (domain-error x 'log)))))
258 (frob $conjugate #'cl:conjugate)
259 (frob $floor #'cl:ffloor)
260 (frob $ceiling #'cl:fceiling)
261 (frob $realpart #'cl:realpart)
262 (frob $imagpart #'cl:imagpart)
263 (frob $max #'cl:max)
264 (frob $min #'cl:min)
265 (frob %signum #'cl:signum)
266 (frob $atan2 #'cl:atan))
268 (macrolet ((frob (mfun dfun) `(setf (gethash ',mfun *big-float-op*) ,dfun)))
269 ;; All big-float implementation functions MUST support a required x
270 ;; arg and an optional y arg for the real and imaginary parts. The
271 ;; imaginary part does not have to be given.
272 (frob %asin #'big-float-asin)
273 (frob %sinh #'big-float-sinh)
274 (frob %asinh #'big-float-asinh)
275 (frob %tanh #'big-float-tanh)
276 (frob %atanh #'big-float-atanh)
277 (frob %acos 'big-float-acos)
278 (frob %log 'big-float-log)
279 (frob %sqrt 'big-float-sqrt))
281 ;; Here is a general scheme for defining and applying reflection rules. A
282 ;; reflection rule is something like f(-x) --> f(x), or f(-x) --> %pi - f(x).
284 ;; We define functions for the two most common reflection rules; these
285 ;; are the odd function rule (f(-x) --> -f(x)) and the even function rule
286 ;; (f(-x) --> f(x)). A reflection rule takes two arguments (the operator and
287 ;; the operand).
289 (defun odd-function-reflect (op x)
290 (neg (take (list op) (neg x))))
292 (defun even-function-reflect (op x)
293 (take (list op) (neg x)))
295 ;; Put the reflection rule on the property list of the exponential-like
296 ;; functions.
298 (setf (get '%cos 'reflection-rule) #'even-function-reflect)
299 (setf (get '%sin 'reflection-rule) #'odd-function-reflect)
300 (setf (get '%tan 'reflection-rule) #'odd-function-reflect)
301 (setf (get '%sec 'reflection-rule) #'even-function-reflect)
302 (setf (get '%csc 'reflection-rule) #'odd-function-reflect)
303 (setf (get '%cot 'reflection-rule) #'odd-function-reflect)
305 ;; See A&S 4.4.14--4.4.19
307 (setf (get '%acos 'reflection-rule) #'(lambda (op x) (sub '$%pi (take (list op) (neg x)))))
308 (setf (get '%asin 'reflection-rule) #'odd-function-reflect)
309 (setf (get '%atan 'reflection-rule) #'odd-function-reflect)
310 (setf (get '%asec 'reflection-rule) #'(lambda (op x) (sub '$%pi (take (list op) (neg x)))))
311 (setf (get '%acsc 'reflection-rule) #'odd-function-reflect)
312 (setf (get '%acot 'reflection-rule) #'odd-function-reflect)
314 (setf (get '%cosh 'reflection-rule) #'even-function-reflect)
315 (setf (get '%sinh 'reflection-rule) #'odd-function-reflect)
316 (setf (get '%tanh 'reflection-rule) #'odd-function-reflect)
317 (setf (get '%sech 'reflection-rule) #'even-function-reflect)
318 (setf (get '%csch 'reflection-rule) #'odd-function-reflect)
319 (setf (get '%coth 'reflection-rule) #'odd-function-reflect)
321 (setf (get '%asinh 'reflection-rule) #'odd-function-reflect)
322 (setf (get '%atanh 'reflection-rule) #'odd-function-reflect)
323 (setf (get '%asech 'reflection-rule) #'even-function-reflect)
324 (setf (get '%acsch 'reflection-rule) #'odd-function-reflect)
325 (setf (get '%acoth 'reflection-rule) #'odd-function-reflect)
327 ;; When b is nil, do not apply the reflection rule. For trigonometric like
328 ;; functions, b is $trigsign. This function uses 'great' to decide when to
329 ;; apply the rule. Another possibility is to apply the rule when (mminusp* x)
330 ;; evaluates to true. Maxima <= 5.9.3 uses this scheme; with this method, we have
331 ;; assume(z < 0), cos(z) --> cos(-z). I (Barton Willis) think this goofy.
333 ;; The function 'great' is non-transitive. I don't think this bug will cause
334 ;; trouble for this function. If there is an expression such that both
335 ;; (great (neg x) x) and (great x (neg x)) evaluate to true, this function
336 ;; could cause an infinite loop. I could protect against this possibility with
337 ;; (and b f (great (neg x) x) (not (great x (neg x))).
339 (defun apply-reflection-simp (op x &optional (b t))
340 (let ((f (get op 'reflection-rule)))
341 (if (and b f (great (neg x) x)) (funcall f op x) nil)))
343 (defun taylorize (op x)
344 (if ($taylorp x)
345 (mfuncall '$apply '$taylor `((mlist) ((,op) ,($ratdisrep x)) ,@(cdr ($taylorinfo x)))) nil))
347 (defun float-or-rational-p (x)
348 (or (floatp x) ($ratnump x)))
350 (defun bigfloat-or-number-p (x)
351 (or ($bfloatp x) (numberp x) ($ratnump x)))
353 ;; When z is a Maxima complex float or when 'numer' is true and z is a
354 ;; Maxima complex number, evaluate (op z) by applying the mapping from
355 ;; the Maxima operator 'op' to the operator in the hash table
356 ;; '*flonum-op*'. When z isn't a Maxima complex number, return
357 ;; nil.
359 (defun flonum-eval (op z)
360 (let ((op (gethash op *flonum-op*)))
361 (when op
362 (multiple-value-bind (bool R I)
363 (complex-number-p z #'float-or-rational-p)
364 (when (and bool (or $numer (floatp R) (floatp I)))
365 (setq R ($float R))
366 (setq I ($float I))
367 (complexify (funcall op (if (zerop I) R (complex R I)))))))))
369 ;; For now, big float evaluation of trig-like functions for complex
370 ;; big floats uses rectform. I suspect that for some functions (not
371 ;; all of them) rectform generates expressions that are poorly suited
372 ;; for numerical evaluation. For better accuracy, these functions
373 ;; (maybe acosh, for one) may need to be special cased. If they are
374 ;; special-cased, the *big-float-op* hash table contains the special
375 ;; cases.
377 (defun big-float-eval (op z)
378 (when (complex-number-p z 'bigfloat-or-number-p)
379 (let ((x ($realpart z))
380 (y ($imagpart z))
381 (bop (gethash op *big-float-op*)))
382 ;; If bop is non-NIL, we want to try that first. If bop
383 ;; declines (by returning NIL), we silently give up and use the
384 ;; rectform version.
385 (cond ((and ($bfloatp x) (like 0 y))
386 (or (and bop (funcall bop x))
387 ($bfloat `((,op simp) ,x))))
388 ((or ($bfloatp x) ($bfloatp y))
389 (or (and bop (funcall bop ($bfloat x) ($bfloat y)))
390 (let ((z (add ($bfloat x) (mul '$%i ($bfloat y)))))
391 (setq z ($rectform `((,op simp) ,z)))
392 ($bfloat z))))))))
394 ;; For complex big float evaluation, it's important to check the
395 ;; simp flag -- otherwise Maxima can get stuck in an infinite loop:
396 ;; asin(1.23b0 + %i * 4.56b0) ---> (simp-%asin ((%asin) ...) -->
397 ;; (big-float-eval ((%asin) ...) --> (risplit ((%asin simp) ...) -->
398 ;; (simp-%asin ((%asin simp) ...). If the simp flag is ignored, we've
399 ;; got trouble.
401 (def-simplifier sin (y)
402 (let (z)
403 (cond ((flonum-eval (mop form) y))
404 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
405 ((taylorize (mop form) (second form)))
406 ((and $%piargs (cond ((zerop1 y) 0)
407 ((has-const-or-int-term y '$%pi) (%piargs-sin/cos y)))))
408 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%sinh (coeff y '$%i 1))))
409 ((and $triginverses (not (atom y))
410 (cond ((eq '%asin (setq z (caar y))) (cadr y))
411 ((eq '%acos z) (sqrt1-x^2 (cadr y)))
412 ((eq '%atan z) (div (cadr y) (sqrt1+x^2 (cadr y))))
413 ((eq '%acot z) (div 1 (sqrt1+x^2 (cadr y))))
414 ((eq '%asec z) (div (sqrtx^2-1 (cadr y)) (cadr y)))
415 ((eq '%acsc z) (div 1 (cadr y)))
416 ((eq '$atan2 z) (div (cadr y) (sq-sumsq (cadr y) (caddr y)))))))
417 ((and $trigexpand (trigexpand '%sin y)))
418 ($exponentialize (exponentialize '%sin y))
419 ((and $halfangles (halfangle '%sin y)))
420 ((apply-reflection-simp (mop form) y $trigsign))
421 ;((and $trigsign (mminusp* y)) (neg (ftake* '%sin (neg y))))
422 (t (give-up)))))
424 (def-simplifier cos (y)
425 (let (z)
426 (cond ((flonum-eval (mop form) y))
427 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
428 ((taylorize (mop form) (second form)))
429 ((and $%piargs (cond ((zerop1 y) 1)
430 ((has-const-or-int-term y '$%pi)
431 (%piargs-sin/cos (add %pi//2 y))))))
432 ((and $%iargs (multiplep y '$%i)) (ftake* '%cosh (coeff y '$%i 1)))
433 ((and $triginverses (not (atom y))
434 (cond ((eq '%acos (setq z (caar y))) (cadr y))
435 ((eq '%asin z) (sqrt1-x^2 (cadr y)))
436 ((eq '%atan z) (div 1 (sqrt1+x^2 (cadr y))))
437 ((eq '%acot z) (div (cadr y) (sqrt1+x^2 (cadr y))))
438 ((eq '%asec z) (div 1 (cadr y)))
439 ((eq '%acsc z) (div (sqrtx^2-1 (cadr y)) (cadr y)))
440 ((eq '$atan2 z) (div (caddr y) (sq-sumsq (cadr y) (caddr y)))))))
441 ((and $trigexpand (trigexpand '%cos y)))
442 ($exponentialize (exponentialize '%cos y))
443 ((and $halfangles (halfangle '%cos y)))
444 ((apply-reflection-simp (mop form) y $trigsign))
445 ;((and $trigsign (mminusp* y)) (ftake* '%cos (neg y)))
446 (t (give-up)))))
448 (defun %piargs-sin/cos (x)
449 (let ($float coeff ratcoeff zl-rem)
450 (setq ratcoeff (get-const-or-int-terms x '$%pi)
451 coeff (linearize ratcoeff)
452 zl-rem (get-not-const-or-int-terms x '$%pi))
453 (cond ((zerop1 zl-rem) (%piargs coeff ratcoeff))
454 ((not (mevenp (car coeff))) nil)
455 ((equal 0 (setq x (mmod (cdr coeff) 2))) (ftake* '%sin zl-rem))
456 ((equal 1 x) (neg (ftake* '%sin zl-rem)))
457 ((alike1 1//2 x) (ftake* '%cos zl-rem))
458 ((alike1 '((rat) 3 2) x) (neg (ftake* '%cos zl-rem))))))
461 (defun filter-sum (pred form simp-flag)
462 "Takes form to be a sum and a sum of the summands for which pred is
463 true. Passes simp-flag through to addn if there is more than one
464 term in the sum."
465 (if (mplusp form)
466 (addn (mapcan
467 #'(lambda (term)
468 (when (funcall pred term) (list term))) (cdr form))
469 simp-flag)
470 (if (funcall pred form) form 0)))
472 ;; collect terms of form A*var where A is a constant or integer.
473 ;; returns sum of all such A.
474 ;; does not expand form, so does not find constant term in (x+1)*var.
475 ;; thus we cannot simplify sin(2*%pi*(1+x)) => sin(2*%pi*x) unless
476 ;; the user calls expand. this could be extended to look a little
477 ;; more deeply into the expression, but we don't want to call expand
478 ;; in the core simplifier for reasons of speed and predictability.
479 (defun get-const-or-int-terms (form var)
480 (coeff
481 (filter-sum (lambda (term)
482 (let ((coeff (coeff term var 1)))
483 (and (not (zerop1 coeff))
484 (or ($constantp coeff)
485 (maxima-integerp coeff)))))
486 form
488 var 1))
490 ;; collect terms skipped by get-const-or-int-terms
491 (defun get-not-const-or-int-terms (form var)
492 (filter-sum (lambda (term)
493 (let ((coeff (coeff term var 1)))
494 (not (and (not (zerop1 coeff))
495 (or ($constantp coeff)
496 (maxima-integerp coeff))))))
497 form
500 (defun has-const-or-int-term (form var)
501 "Tests whether form has at least some term of the form a*var where a
502 is constant or integer"
503 (not (zerop1 (get-const-or-int-terms form var))))
505 (def-simplifier tan (y)
506 (let (z)
507 (cond ((flonum-eval (mop form) y))
508 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
509 ((taylorize (mop form) (second form)))
510 ((and $%piargs (cond ((zerop1 y) 0)
511 ((has-const-or-int-term y '$%pi) (%piargs-tan/cot y)))))
512 ((and $%iargs (multiplep y '$%i)) (mul '$%i (ftake* '%tanh (coeff y '$%i 1))))
513 ((and $triginverses (not (atom y))
514 (cond ((eq '%atan (setq z (caar y))) (cadr y))
515 ((eq '%asin z) (div (cadr y) (sqrt1-x^2 (cadr y))))
516 ((eq '%acos z) (div (sqrt1-x^2 (cadr y)) (cadr y)))
517 ((eq '%acot z) (div 1 (cadr y)))
518 ((eq '%asec z) (sqrtx^2-1 (cadr y)))
519 ((eq '%acsc z) (div 1 (sqrtx^2-1 (cadr y))))
520 ((eq '$atan2 z) (div (cadr y) (caddr y))))))
521 ((and $trigexpand (trigexpand '%tan y)))
522 ($exponentialize (exponentialize '%tan y))
523 ((and $halfangles (halfangle '%tan y)))
524 ((apply-reflection-simp (mop form) y $trigsign))
525 ;((and $trigsign (mminusp* y)) (neg (ftake* '%tan (neg y))))
526 (t (give-up)))))
528 (def-simplifier cot (y)
529 (let (z)
530 (cond ((flonum-eval (mop form) y))
531 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
532 ((taylorize (mop form) (second form)))
533 ((and $%piargs (cond ((zerop1 y) (domain-error y 'cot))
534 ((and (has-const-or-int-term y '$%pi)
535 (setq z (%piargs-tan/cot (add %pi//2 y))))
536 (neg z)))))
537 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%coth (coeff y '$%i 1))))
538 ((and $triginverses (not (atom y))
539 (cond ((eq '%acot (setq z (caar y))) (cadr y))
540 ((eq '%asin z) (div (sqrt1-x^2 (cadr y)) (cadr y)))
541 ((eq '%acos z) (div (cadr y) (sqrt1-x^2 (cadr y))))
542 ((eq '%atan z) (div 1 (cadr y)))
543 ((eq '%asec z) (div 1 (sqrtx^2-1 (cadr y))))
544 ((eq '%acsc z) (sqrtx^2-1 (cadr y)))
545 ((eq '$atan2 z) (div (caddr y) (cadr y))))))
546 ((and $trigexpand (trigexpand '%cot y)))
547 ($exponentialize (exponentialize '%cot y))
548 ((and $halfangles (halfangle '%cot y)))
549 ((apply-reflection-simp (mop form) y $trigsign))
550 ;((and $trigsign (mminusp* y)) (neg (ftake* '%cot (neg y))))
551 (t (give-up)))))
553 (defun %piargs-tan/cot (x)
554 "If x is of the form tan(u) where u has a nonzero constant linear
555 term in %pi, then %piargs-tan/cot returns a simplified version of x
556 without this constant term."
557 ;; Set coeff to be the coefficient of $%pi collecting terms with no
558 ;; other atoms, so given %pi(x+1/2), coeff = 1/2. Let zl-rem be the
559 ;; remainder (TODO: computing zl-rem could probably be prettier.)
560 (let* ((nice-terms (get-const-or-int-terms x '$%pi))
561 (coeff (linearize nice-terms))
562 (zl-rem (get-not-const-or-int-terms x '$%pi))
563 (sin-of-coeff-pi)
564 (cos-of-coeff-pi))
565 (cond
566 ;; sin-of-coeff-pi and cos-of-coeff-pi are only non-nil if they
567 ;; are constants that %piargs-offset could compute, and we just
568 ;; checked that cos-of-coeff-pi was nonzero. Thus we can just
569 ;; return their quotient.
570 ((and (zerop1 zl-rem)
571 (setq sin-of-coeff-pi
572 (%piargs coeff nil)))
573 (setq cos-of-coeff-pi
574 (%piargs (cons (car coeff)
575 (rplus 1//2 (cdr coeff))) nil))
576 (cond ((zerop1 sin-of-coeff-pi)
577 0) ;; tan(integer*%pi)
578 ((zerop1 cos-of-coeff-pi)
579 (merror (intl:gettext "tan: ~M isn't in the domain of tan.") x))
580 (cos-of-coeff-pi
581 (div sin-of-coeff-pi cos-of-coeff-pi))))
583 ;; This expression sets x to the coeff of %pi (mod 1) as a side
584 ;; effect and then, if this is zero, returns tan of the
585 ;; rest, because tan has periodicity %pi.
586 ((zerop1 (setq x (mmod (cdr coeff) 1)))
587 (ftake* '%tan zl-rem))
589 ;; Similarly, if x = 1/2 then return -cot(x).
590 ((alike1 1//2 x)
591 (neg (ftake* '%cot zl-rem))))))
593 (def-simplifier csc (y)
594 (let (z)
595 (cond ((flonum-eval (mop form) y))
596 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
597 ((taylorize (mop form) (second form)))
598 ((and $%piargs (cond ((zerop1 y) (domain-error y 'csc))
599 ((has-const-or-int-term y '$%pi) (%piargs-csc/sec y)))))
600 ((and $%iargs (multiplep y '$%i)) (mul -1 '$%i (ftake* '%csch (coeff y '$%i 1))))
601 ((and $triginverses (not (atom y))
602 (cond ((eq '%acsc (setq z (caar y))) (cadr y))
603 ((eq '%asin z) (div 1 (cadr y)))
604 ((eq '%acos z) (div 1 (sqrt1-x^2 (cadr y))))
605 ((eq '%atan z) (div (sqrt1+x^2 (cadr y)) (cadr y)))
606 ((eq '%acot z) (sqrt1+x^2 (cadr y)))
607 ((eq '%asec z) (div (cadr y) (sqrtx^2-1 (cadr y))))
608 ((eq '$atan2 z) (div (sq-sumsq (cadr y) (caddr y)) (cadr y))))))
609 ((and $trigexpand (trigexpand '%csc y)))
610 ($exponentialize (exponentialize '%csc y))
611 ((and $halfangles (halfangle '%csc y)))
612 ((apply-reflection-simp (mop form) y $trigsign))
613 ;((and $trigsign (mminusp* y)) (neg (ftake* '%csc (neg y))))
615 (t (give-up)))))
617 (def-simplifier sec (y)
618 (let (z)
619 (cond ((flonum-eval (mop form) y))
620 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
621 ((taylorize (mop form) (second form)))
622 ((and $%piargs (cond ((zerop1 y) 1)
623 ((has-const-or-int-term y '$%pi) (%piargs-csc/sec (add %pi//2 y))))))
624 ((and $%iargs (multiplep y '$%i)) (ftake* '%sech (coeff y '$%i 1)))
625 ((and $triginverses (not (atom y))
626 (cond ((eq '%asec (setq z (caar y))) (cadr y))
627 ((eq '%asin z) (div 1 (sqrt1-x^2 (cadr y))))
628 ((eq '%acos z) (div 1 (cadr y)))
629 ((eq '%atan z) (sqrt1+x^2 (cadr y)))
630 ((eq '%acot z) (div (sqrt1+x^2 (cadr y)) (cadr y)))
631 ((eq '%acsc z) (div (cadr y) (sqrtx^2-1 (cadr y))))
632 ((eq '$atan2 z) (div (sq-sumsq (cadr y) (caddr y)) (caddr y))))))
633 ((and $trigexpand (trigexpand '%sec y)))
634 ($exponentialize (exponentialize '%sec y))
635 ((and $halfangles (halfangle '%sec y)))
636 ((apply-reflection-simp (mop form) y $trigsign))
637 ;((and $trigsign (mminusp* y)) (ftake* '%sec (neg y)))
639 (t (give-up)))))
641 (defun %piargs-csc/sec (x)
642 (prog ($float coeff ratcoeff zl-rem)
643 (setq ratcoeff (get-const-or-int-terms x '$%pi)
644 coeff (linearize ratcoeff)
645 zl-rem (get-not-const-or-int-terms x '$%pi))
646 (return (cond ((and (zerop1 zl-rem) (setq zl-rem (%piargs coeff nil))) (div 1 zl-rem))
647 ((not (mevenp (car coeff))) nil)
648 ((equal 0 (setq x (mmod (cdr coeff) 2))) (ftake* '%csc zl-rem))
649 ((equal 1 x) (neg (ftake* '%csc zl-rem)))
650 ((alike1 1//2 x) (ftake* '%sec zl-rem))
651 ((alike1 '((rat) 3 2) x) (neg (ftake* '%sec zl-rem)))))))
653 (def-simplifier atan (y)
654 (cond ((flonum-eval (mop form) y))
655 ((and (not (member 'simp (car form))) (big-float-eval (mop form) y)))
656 ((taylorize (mop form) (second form)))
657 ;; Simplification for special values
658 ((zerop1 y) y)
659 ((or (eq y '$inf) (alike1 y '((mtimes) -1 $minf)))
660 (div '$%pi 2))
661 ((or (eq y '$minf) (alike1 y '((mtimes) -1 $inf)))
662 (div '$%pi -2))
663 ((and $%piargs
664 ;; Recognize more special values
665 (cond ((equal 1 y) (div '$%pi 4))
666 ((equal -1 y) (div '$%pi -4))
667 ;; sqrt(3)
668 ((alike1 y '((mexpt) 3 ((rat) 1 2)))
669 (div '$%pi 3))
670 ;; -sqrt(3)
671 ((alike1 y '((mtimes) -1 ((mexpt) 3 ((rat) 1 2))))
672 (div '$%pi -3))
673 ;; 1/sqrt(3)
674 ((alike1 y '((mexpt) 3 ((rat) -1 2)))
675 (div '$%pi 6))
676 ;; -1/sqrt(3)
677 ((alike1 y '((mtimes) -1 ((mexpt) 3 ((rat) -1 2))))
678 (div '$%pi -6))
679 ((alike1 y '((mplus) -1 ((mexpt) 2 ((rat) 1 2))))
680 (div '$%pi 8))
681 ((alike1 y '((mplus) 1 ((mexpt) 2 ((rat) 1 2))))
682 (mul 3 (div '$%pi 8))))))
683 ((and $%iargs (multiplep y '$%i))
684 ;; atan(%i*y) -> %i*atanh(y)
685 (mul '$%i (take '(%atanh) (coeff y '$%i 1))))
686 ((and (not (atom y)) (member (caar y) '(%cot %tan))
687 (if ($constantp (cadr y))
688 (let ((y-val (mfuncall '$mod
689 (if (eq (caar y) '%tan)
690 (cadr y)
691 (sub %pi//2 (cadr y)))
692 '$%pi)))
693 (cond ((eq (mlsp y-val %pi//2) t) y-val)
694 ((eq (mlsp y-val '$%pi) t) (sub y-val '$%pi)))))))
695 ((and (eq $triginverses '$all) (not (atom y))
696 (if (eq (caar y) '%tan) (cadr y))))
697 ((and (eq $triginverses t) (not (atom y)) (eq (caar y) '%tan)
698 ;; Check if y in [-%pi/2, %pi/2]
699 (if (and (member (csign (sub (cadr y) %pi//2)) '($nz $neg) :test #'eq)
700 (member (csign (add (cadr y) %pi//2)) '($pz $pos) :test #'eq))
701 (cadr y))))
702 ($logarc (logarc '%atan y))
703 ((apply-reflection-simp (mop form) y $trigsign))
704 (t (give-up))))
706 (defun %piargs (x ratcoeff)
707 (let (offset-result)
708 (cond ((and (integerp (car x)) (integerp (cdr x))) 0)
709 ((not (mevenp (car x)))
710 (cond ((null ratcoeff) nil)
711 ((and (integerp (car x))
712 (setq offset-result (%piargs-offset (cdr x))))
713 (mul (power -1 (sub ratcoeff (cdr x)))
714 offset-result))))
715 ((%piargs-offset (mmod (cdr x) 2))))))
717 ; simplifies sin(%pi * x) where x is between 0 and 1
718 ; returns nil if can't simplify
719 (defun %piargs-offset (x)
720 (cond ((or (alike1 '((rat) 1 6) x) (alike1 '((rat) 5 6) x)) 1//2)
721 ((or (alike1 '((rat) 1 4) x) (alike1 '((rat) 3 4) x)) (div (power 2 1//2) 2))
722 ((or (alike1 '((rat) 1 3) x) (alike1 '((rat) 2 3) x)) (div (power 3 1//2) 2))
723 ((alike1 1//2 x) 1)
724 ((or (alike1 '((rat) 7 6) x) (alike1 '((rat) 11 6) x)) -1//2)
725 ((or (alike1 '((rat) 4 3) x) (alike1 '((rat) 5 3) x)) (div (power 3 1//2) -2))
726 ((or (alike1 '((rat) 5 4) x) (alike1 '((rat) 7 4) x)) (mul -1//2 (power 2 1//2)))
727 ((alike1 '((rat) 3 2) x) -1)))
729 ;; identifies integer part of form
730 ;; returns (X . Y) if form can be written as X*some_integer + Y
731 ;; returns nil otherwise
732 (defun linearize (form)
733 (cond ((integerp form) (cons 0 form))
734 ((numberp form) nil)
735 ((atom form)
736 (let (dum)
737 (cond ((setq dum (evod form))
738 (if (eq '$even dum) '(2 . 0) '(2 . 1)))
739 ((maxima-integerp form) '(1 . 0)))))
740 ((eq 'rat (caar form)) (cons 0 form))
741 ((eq 'mplus (caar form)) (lin-mplus form))
742 ((eq 'mtimes (caar form)) (lin-mtimes form))
743 ((eq 'mexpt (caar form)) (lin-mexpt form))))
745 (defun lin-mplus (form)
746 (do ((tl (cdr form) (cdr tl)) (dummy) (coeff 0) (zl-rem 0))
747 ((null tl) (cons coeff (mmod zl-rem coeff)))
748 (setq dummy (linearize (car tl)))
749 (if (null dummy) (return nil)
750 (setq coeff (rgcd (car dummy) coeff) zl-rem (rplus (cdr dummy) zl-rem)))))
752 (defun lin-mtimes (form)
753 (do ((fl (cdr form) (cdr fl)) (dummy) (coeff 0) (zl-rem 1))
754 ((null fl) (cons coeff (mmod zl-rem coeff)))
755 (setq dummy (linearize (car fl)))
756 (cond ((null dummy) (return nil))
757 (t (setq coeff (rgcd (rtimes coeff (car dummy))
758 (rgcd (rtimes coeff (cdr dummy)) (rtimes zl-rem (car dummy))))
759 zl-rem (rtimes (cdr dummy) zl-rem))))))
761 (defun lin-mexpt (form)
762 (prog (dummy)
763 (cond ((and (integerp (caddr form)) (not (minusp (caddr form)))
764 (not (null (setq dummy (linearize (cadr form))))))
765 (return (cons (car dummy) (mmod (cdr dummy) (caddr form))))))))
767 (defun rgcd (x y)
768 (cond ((integerp x)
769 (cond ((integerp y) (gcd x y))
770 (t (list '(rat) (gcd x (cadr y)) (caddr y)))))
771 ((integerp y) (list '(rat) (gcd (cadr x) y) (caddr x)))
772 (t (list '(rat) (gcd (cadr x) (cadr y)) (lcm (caddr x) (caddr y))))))
774 (defun maxima-reduce (x y)
775 (prog (gcd)
776 (setq gcd (gcd x y) x (truncate x gcd) y (truncate y gcd))
777 (if (minusp y) (setq x (- x) y (- y)))
778 (return (if (eql y 1) x (list '(rat simp) x y)))))
780 ;; The following four functions are generated in code by TRANSL. - JPG 2/1/81
782 (defun rplus (x y) (addk x y))
784 (defun rdifference (x y) (addk x (timesk -1 y)))
786 (defun rtimes (x y) (timesk x y))
788 (defun rremainder (x y)
789 (cond ((equal 0 y) (dbz-err))
790 ((integerp x)
791 (cond ((integerp y) (maxima-reduce x y))
792 (t (maxima-reduce (* x (caddr y)) (cadr y)))))
793 ((integerp y) (maxima-reduce (cadr x) (* (caddr x) y)))
794 (t (maxima-reduce (* (cadr x) (caddr y)) (* (caddr x) (cadr y))))))
796 (defmfun $exponentialize (exp)
797 (let ($demoivre)
798 (cond ((atom exp) exp)
799 ((trigp (caar exp))
800 (exponentialize (caar exp) ($exponentialize (cadr exp))))
801 (t (recur-apply #'$exponentialize exp)))))
803 (defun exponentialize (op arg)
804 (cond ((eq '%sin op)
805 (div (sub (power '$%e (mul '$%i arg)) (power '$%e (mul -1 '$%i arg)))
806 (mul 2 '$%i)))
807 ((eq '%cos op)
808 (div (add (power '$%e (mul '$%i arg)) (power '$%e (mul -1 '$%i arg))) 2))
809 ((eq '%tan op)
810 (div (sub (power '$%e (mul '$%i arg)) (power '$%e (mul -1 '$%i arg)))
811 (mul '$%i (add (power '$%e (mul '$%i arg))
812 (power '$%e (mul -1 '$%i arg))))))
813 ((eq '%cot op)
814 (div (mul '$%i (add (power '$%e (mul '$%i arg))
815 (power '$%e (mul -1 '$%i arg))))
816 (sub (power '$%e (mul '$%i arg)) (power '$%e (mul -1 '$%i arg)))))
817 ((eq '%csc op)
818 (div (mul 2 '$%i)
819 (sub (power '$%e (mul '$%i arg)) (power '$%e (mul -1 '$%i arg)))))
820 ((eq '%sec op)
821 (div 2 (add (power '$%e (mul '$%i arg)) (power '$%e (mul -1 '$%i arg)))))
822 ((eq '%sinh op)
823 (div (sub (power '$%e arg) (power '$%e (neg arg))) 2))
824 ((eq '%cosh op)
825 (div (add (power '$%e arg) (power '$%e (mul -1 arg))) 2))
826 ((eq '%tanh op)
827 (div (sub (power '$%e arg) (power '$%e (neg arg)))
828 (add (power '$%e arg) (power '$%e (mul -1 arg)))))
829 ((eq '%coth op)
830 (div (add (power '$%e arg) (power '$%e (mul -1 arg)))
831 (sub (power '$%e arg) (power '$%e (neg arg)))))
832 ((eq '%csch op)
833 (div 2 (sub (power '$%e arg) (power '$%e (neg arg)))))
834 ((eq '%sech op)
835 (div 2 (add (power '$%e arg) (power '$%e (mul -1 arg)))))))
837 (defun coefficient (exp var pow)
838 (coeff exp var pow))
840 (defun mmod (x mod)
841 (cond ((and (integerp x) (integerp mod))
842 (if (minusp (if (zerop mod) x (setq x (- x (* mod (truncate x mod))))))
843 (+ x mod)
845 ((and ($ratnump x) ($ratnump mod))
846 (let
847 ((d (lcm ($denom x) ($denom mod))))
848 (setq x (mul* d x))
849 (setq mod (mul* d mod))
850 (div (mod x mod) d)))
851 (t nil)))
853 (defun multiplep (exp var)
854 (and (not (zerop1 exp)) (zerop1 (sub exp (mul var (coeff exp var 1))))))
856 (defun linearp (exp var)
857 (and (setq exp (islinear exp var)) (not (equal (car exp) 0))))
859 (defun mminusp (x)
860 (= -1 (signum1 x)))
862 (defun mminusp* (x)
863 (let (sign)
864 (setq sign (csign x))
865 (or (member sign '($neg $nz) :test #'eq)
866 (and (mminusp x) (not (member sign '($pos $pz) :test #'eq))))))
868 ;; This should give more information somehow.
870 (defun dbz-err ()
871 (cond ((not errorsw) (merror (intl:gettext "Division by zero attempted.")))
872 (t (throw 'errorsw t))))
874 (defun dbz-err1 (func)
875 (cond ((not errorsw) (merror (intl:gettext "~A: division by zero attempted.") func))
876 (t (throw 'errorsw t))))