Eliminate spurious redefinition of derivabbrev in Ctensor, fix documentation of diagm...
[maxima/cygwin.git] / src / rat3c.lisp
blob541974cabc4ee81b1a3627e1834be47f5e39619d
1 ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
2 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
3 ;;; The data in this file contains enhancments. ;;;;;
4 ;;; ;;;;;
5 ;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
6 ;;; All rights reserved ;;;;;
7 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
8 ;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
9 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
11 (in-package :maxima)
13 (macsyma-module rat3c)
15 ;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 3.
16 ;; IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS
18 (declare-top (special $keepfloat $algebraic $ratfac genvar))
20 ;; List of GCD algorithms. Default one is first.
21 (defmvar *gcdl* '($spmod $subres $ez $red $mod $algebraic))
23 (defmvar $gcd (car *gcdl*)) ;Sparse Modular
25 (defun cgcd (a b)
26 (cond (modulus 1)
27 ((and $keepfloat (or (floatp a) (floatp b))) 1)
28 (t (gcd a b))))
30 (defmfun pquotientchk (a b)
31 (if (equal b 1) a (pquotient a b)))
33 ;; divides polynomial x by polynomial y
34 ;; avoids error "quotient by polynomial of higher degree"
35 ;; (returns nil in this case)
36 (defun pquotientchk-safe (x y)
37 (ignore-rat-err (pquotientchk x y)))
39 (defun ptimeschk (a b)
40 (cond ((equal a 1) b)
41 ((equal b 1) a)
42 (t (ptimes a b))))
44 (defun pfloatp (x)
45 (catch 'float (if (pcoefp x) (floatp x) (pfloatp1 x))))
47 (defun pfloatp1 (x)
48 (mapc #'(lambda (q) (cond ((pcoefp q) (when (floatp q) (throw 'float t)))
49 ((pfloatp1 q))))
50 (cdr x))
51 nil)
53 (defmfun pgcd (x y)
54 (setq x (car (pgcda x y nil)))
55 (cond ((pminusp x) (pminus x))
56 (modulus (monize x))
57 (t x)))
59 (defmfun plcm (x y)
60 (setq x (pgcdcofacts x y))
61 (ptimes (car x) (ptimes (cadr x) (caddr x))))
63 (defun plcmcofacts (x y)
64 (setq x (pgcdcofacts x y))
65 (list (ptimes (car x) (ptimes (cadr x) (caddr x)))
66 (caddr x) (cadr x)))
68 ; returns list (gcd xx yy alg)
69 ; where x * y = gcd^2 * xx * yy / alg^2
70 ; and alg is non-nil only when $algebraic is true
71 (defun pgcdcofacts (x y)
72 (let ((a (pgcda x y t)))
73 (cond ((cdr a) a)
74 ((equal (setq a (car a)) 1) (list 1 x y))
75 ((and $algebraic (not (pcoefp a)))
76 (cons a (prog2 (setq x (rquotient x a)
77 y (rquotient y a)
78 a (pgcdcofacts (cdr x) (cdr y)))
79 (list (ptimes (car x) (caddr a))
80 (ptimes (car y) (cadr a))
81 (ptimes (cadr a) (cdr y))))))
82 ((eq a x) (list x 1 (pquotient y x)))
83 ((eq a y) (list a (pquotient x y) 1))
84 (t (list a (pquotient x a) (pquotient y a))))))
86 (defun pgcda (x y cofac? &aux a c)
87 (cond ((not $gcd) (list 1 x y))
88 ((and $keepfloat (or (pfloatp x) (pfloatp y)))
89 (cond ((or (pcoefp x) (pcoefp y)
90 (pcoefp (setq a (car (ptermcont x))))
91 (pcoefp (setq a (pgcd a (car (ptermcont y))))))
92 (list 1 x y))
93 (t (list a))))
94 ((pcoefp x)
95 (cond ((pcoefp y)
96 (cons (setq a (cgcd x y))
97 (and cofac?
98 (list (cquotient x a) ;(CQUOTIENT 0 0) = 0
99 (cquotient y a)))))
100 ((zerop x) (list y x 1))
101 (t (list (pcontent1 (cdr y) x)))))
102 ((pcoefp y) (cond ((zerop y) (list x 1 y))
103 (t (list (pcontent1 (cdr x) y)))))
104 ((equal x y) (list x 1 1))
105 ($ratfac (fpgcdco x y))
106 ((not (eq (p-var x) (p-var y)))
107 (list (if (pointergp (p-var x) (p-var y))
108 (oldcontent1 (p-terms x) y)
109 (oldcontent1 (p-terms y) x))))
110 ((progn (desetq (a x) (ptermcont x))
111 (desetq (c y) (ptermcont y))
112 (not (and (equal a 1) (equal c 1))))
113 (mapcar #'ptimes (monomgcdco a c cofac?) (pgcda x y cofac?)))
114 ((and (not $algebraic) (not modulus)
115 (desetq (a . c) (lin-var-find (nreverse (pdegreevector x))
116 (nreverse (pdegreevector y))
117 (reverse genvar))))
118 (cond ((= a 1) (linhack x y (car c) (cadr c) cofac?))
119 (t (setq a (linhack y x a (cadr c) cofac?))
120 (if (cdr a) (rplacd a (nreverse (cdr a))))
121 a)))
122 ((eq $gcd '$spmod) (list (zgcd x y)))
123 ((eq $gcd '$subres) (list (oldgcd x y)))
124 ((eq $gcd '$algebraic)
125 (if (or (palgp x) (palgp y))
126 (let (($gcd '$subres)) (list (oldgcd x y)))
127 (let (($gcd '$spmod)) (list (zgcd x y)))))
128 ((eq $gcd '$ez) (ezgcd2 x y))
129 ((eq $gcd '$red) (list (oldgcd x y)))
130 ((eq $gcd '$mod) (newgcd x y modulus))
131 ((not (member $gcd *gcdl* :test #'eq))
132 (merror (intl:gettext "gcd: 'gcd' variable must be one of ~M; found: ~M") *gcdl* $gcd))
133 (t (list 1 x y))))
135 (defun monomgcdco (p q cofac?)
136 (let ((gcd (monomgcd p q)))
137 (cons gcd (if cofac? (list (pquotient p gcd) (pquotient q gcd)) ()))))
139 (defun monomgcd (p q)
140 (cond ((or (pcoefp p) (pcoefp q)) 1)
141 ((eq (p-var p) (p-var q))
142 (make-poly (p-var p) (min (p-le p) (p-le q))
143 (monomgcd (p-lc p) (p-lc q))))
144 ((pointergp (car p) (car q)) (monomgcd (p-lc p) q))
145 (t (monomgcd p (p-lc q)))))
147 (defun linhack (pol1 pol2 nonlindeg var cofac?)
148 (prog (coeff11 coeff12 gcdab rpol1 rpol2 gcdcd gcdcoef)
149 (desetq (coeff11 . coeff12) (bothprodcoef (make-poly var) pol1))
150 (setq gcdab (if (pzerop coeff12) coeff11
151 (pgcd coeff11 coeff12)))
152 (cond ((equal gcdab 1)
153 (cond ((setq coeff11 (testdivide pol2 pol1))
154 (return (list pol1 1 coeff11)))
155 (t (return (list 1 pol1 pol2))))))
156 (setq rpol1 (pquotient pol1 gcdab))
157 (desetq (gcdcd rpol2) (linhackcontent var pol2 nonlindeg))
158 (cond ((equal gcdcd 1)
159 (cond ((setq coeff12 (testdivide rpol2 rpol1))
160 (return (list rpol1 gcdab coeff12)))
161 (t (return (list 1 pol1 pol2))))))
162 (cond (cofac? (desetq (gcdcoef coeff11 coeff12)
163 (pgcdcofacts gcdab gcdcd))
164 (cond ((setq gcdcd (testdivide rpol2 rpol1))
165 (return (list (ptimes gcdcoef rpol1)
166 coeff11
167 (ptimes coeff12 gcdcd))))
168 (t (return (list gcdcoef
169 (ptimes coeff11 rpol1)
170 (ptimes coeff12 rpol2))))))
171 (t (setq gcdcoef (pgcd gcdcd gcdab))
172 (cond ((testdivide rpol2 rpol1)
173 (return (list (ptimes gcdcoef rpol1))))
174 (t (return (list gcdcoef))))))))
176 (defun lin-var-find (a b c)
177 (do ((varl c (cdr varl))
178 (degl1 a (cdr degl1))
179 (degl2 b (cdr degl2)))
180 ((or (null degl1) (null degl2)) nil)
181 (if (equal (min (car degl1) (car degl2)) 1)
182 (return (list (car degl1) (car degl2) (car varl))))))
184 (defun linhackcontent (var pol nonlindeg &aux (npol pol) coef gcd)
185 (do ((i nonlindeg (1- i)))
186 ((= i 0) (list (setq gcd (pgcd gcd npol)) (pquotient pol gcd)))
187 (desetq (coef . npol) (bothprodcoef (make-poly var i 1) npol))
188 (unless (pzerop coef)
189 (setq gcd (if (null gcd) coef (pgcd coef gcd)))
190 (if (equal gcd 1) (return (list 1 pol))))))
192 ;;*** THIS IS THE REDUCED POLYNOMIAL REMAINDER SEQUENCE GCD (COLLINS')
194 (defun oldgcd (x y &aux u v s egcd) ;only called from pgcda
195 (desetq (x u) (oldcontent x))
196 (desetq (y v) (oldcontent y))
197 (setq egcd (gcd (pgcdexpon u) (pgcdexpon v)))
198 (if (> egcd 1)
199 (setq u (pexpon*// u egcd nil)
200 v (pexpon*// v egcd nil)))
201 (if (> (p-le v) (p-le u)) (exch u v))
202 (setq s (case $gcd
203 ($red (redgcd u v))
204 ($subres (subresgcd u v))
205 (t (merror "OLDGCD: found gcd = ~M; how did that happen?" $gcd))))
206 ;; Check for gcd that simplifies to 0. SourceForge bugs 831445 and 1313987
207 (unless (ignore-rat-err (rainv s))
208 (setq s 1))
209 (unless (equal s 1)
210 (setq s (pexpon*// (primpart
211 (if $algebraic s
212 (pquotient s (pquotient (p-lc s)
213 (pgcd (p-lc u) (p-lc v))))))
214 egcd t)))
215 (setq s (ptimeschk s (pgcd x y)))
216 (and $algebraic (not (pcoefp (setq u (leadalgcoef s))))
217 (not (equal u s)) (setq s (algnormal s)))
218 (cond (modulus (monize s))
219 ((pminusp s) (pminus s))
220 (t s)))
222 (defun pgcdexpon (p)
223 (if (pcoefp p) 0
224 (do ((d (cadr p) (gcd d (car l)))
225 (l (cdddr p) (cddr l)))
226 ((or (null l) (= d 1)) d))))
228 (defun pexpon*// (p n *?)
229 (if (or (pcoefp p) (= n 1)) p
230 (do ((ans (list (car p))
231 (cons (cadr l)
232 (cons (if *? (* (car l) n)
233 (truncate (car l) n))
234 ans)))
235 (l (cdr p) (cddr l)))
236 ((null l) (nreverse ans)))))
238 ;;polynomial gcd using reduced prs
240 (defun redgcd (p q &aux (d 0))
241 (loop until (zerop (pdegree q (p-var p)))
242 do (psetq p q
243 q (pquotientchk-safe (prem p q) (pexpt (p-lc p) d))
244 d (+ (p-le p) 1 (- (p-le q))))
245 (if (< d 1) (return 1))
246 finally (return (if (pzerop q) p 1))))
248 ;;computes gcd's using subresultant prs
249 ;;ACM Transactions On Mathematical Software Sept. 1978
251 (defun subresgcd (p q)
252 (loop for g = 1 then (p-lc p)
253 for h = 1 then (pquotientchk-safe (pexpt g d) h^1-d)
254 for d = (- (p-le p) (p-le q))
255 for h^1-d = 1 then (if (< d 1)
256 (return 1)
257 (pexpt h (1- d)))
258 do (psetq p q
259 q (pquotientchk-safe (prem p q) (ptimes g (ptimes h h^1-d))))
260 if (zerop (pdegree q (p-var p))) return (if (pzerop q) p 1)))
262 ;;*** THIS COMPUTES PSEUDO REMAINDERS
264 (defun psquorem1 (u v quop)
265 (prog (k (m 0) lcu lcv quo lc)
266 (declare (special lcu lcv))
267 (setq lcv (pt-lc v))
268 (setq k (- (pt-le u) (pt-le v)))
269 (cond ((minusp k) (return (list 1 '(0 0) u))))
270 (if quop (setq lc (pexpt (pt-lc v) (1+ k))))
271 a (setq lcu (pminus (pt-lc u)))
272 (if quop (setq quo (cons (ptimes (pt-lc u) (pexpt (pt-lc v) k))
273 (cons k quo))))
274 (cond ((null (setq u (pgcd2 (pt-red u) (pt-red v) k)))
275 (return (list lc (nreverse quo) '(0 0))))
276 ((minusp (setq m (- (pt-le u) (pt-le v))))
277 (setq u (cond ((zerop k) u)
278 (t (pctimes1 (pexpt lcv k) u))))
279 (return (list lc (nreverse quo) u)))
280 ((> (1- k) m)
281 (setq u (pctimes1 (pexpt lcv (- (1- k) m)) u))))
282 (setq k m)
283 (go a)))
285 (defun prem (p q)
286 (cond ((pcoefp p)
287 (if (pcoefp q)
288 (if (or modulus (floatp p) (floatp q))
290 (rem p q))
292 ((pcoefp q) (pzero))
293 (t (psimp (p-var p) (pgcd1 (p-terms p) (p-terms q))))))
295 (defmfun pgcd1 (u v) (caddr (psquorem1 u v nil)))
297 (defun pgcd2 (u v k &aux (i 0))
298 (declare (special lcu lcv) (fixnum k i))
299 (cond ((null u) (pcetimes1 v k lcu))
300 ((null v) (pctimes1 lcv u))
301 ((zerop (setq i (+ (pt-le u) (- k) (- (car v)))))
302 (pcoefadd (pt-le u) (pplus (ptimes lcv (pt-lc u))
303 (ptimes lcu (pt-lc v)))
304 (pgcd2 (pt-red u) (pt-red v) k)))
305 ((minusp i)
306 (list* (+ (pt-le v) k) (ptimes lcu (pt-lc v)) (pgcd2 u (pt-red v) k)))
307 (t (list* (pt-le u) (ptimes lcv (pt-lc u)) (pgcd2 (pt-red u) v k)))))
309 ;;;*** OLDCONTENT REMOVES ALL BUT MAIN VARIABLE AND PUTS THAT IN CONTENT
310 ;;;*** OLDCONTENT OF 3*A*X IS 3*A (WITH MAINVAR=X)
312 (defun rcontent (p) ;RETURNS RAT-FORMS
313 (let ((q (oldcontenta p)))
314 (list (cons q 1) (cond ($algebraic (rquotient p q))
315 (t (cons (pquotient p q) 1))))))
317 (defun oldcontenta (x)
318 (cond ((pcoefp x) x)
319 (t (setq x (contsort (cdr x)))
320 (oldcontent2 (cdr x) (car x)))))
322 (defmfun oldcontent (x)
323 (cond ((pcoefp x) (list x 1))
324 ((null (p-red x))
325 (list (p-lc x) (make-poly (p-var x) (p-le x) 1)))
326 (t (let ((u (contsort (cdr x))) v)
327 (setq u (oldcontent2 (cdr u) (car u))
328 v (cond ($algebraic (car (rquotient x u)))
329 (t (pcquotient x u))))
330 (cond ((pminusp v) (list (pminus u) (pminus v)))
331 (t (list u v)))))))
333 (defun oldcontent1 (x gcd)
334 (cond ((equal gcd 1) 1)
335 ((null x) gcd)
336 (t (oldcontent2 (contsort x) gcd))))
338 (defun oldcontent2 (x gcd)
339 (do ((x x (cdr x))
340 (gcd gcd (pgcd (car x) gcd)))
341 ((or (null x) (equal gcd 1)) gcd)))
343 (defun contsort (x)
344 (setq x (coefl x))
345 (cond ((member 1 x) '(1))
346 ((null (cdr x)) x)
347 (t (sort x #'contodr))))
349 (defun coefl (x)
350 (do ((x x (cddr x))
351 (ans nil (cons (cadr x) ans)))
352 ((null x) ans)))
354 (defun contodr (a b)
355 (cond ((pcoefp a) t)
356 ((pcoefp b) nil)
357 ((eq (car a) (car b)) (not (> (cadr a) (cadr b))))
358 (t (pointergp (car b)(car a)))))
360 ;;;*** PCONTENT COMPUTES INTEGER CONTENT
361 ;;;*** PCONTENT OF 3*A*X IS 3 IF MODULUS = NIL 1 OTHERWISE
363 (defun pcontent (x)
364 (cond ((pcoefp x) (list x 1))
365 (t (let ((u (pcontentz x)))
366 (if (equal u 1) (list 1 x)
367 (list u (pcquotient x u)))))))
369 (defun pcontent1 (x gcd)
370 (do ((x x (cddr x))
371 (gcd gcd (cgcd gcd (pcontentz (cadr x)))))
372 ((or (null x) (equal gcd 1)) gcd)))
374 (defun pcontentz (p)
375 (cond ((pcoefp p) p)
376 (t (pcontent1 (p-red p) (pcontentz (p-lc p))))))
378 (defun ucontent (p) ;CONTENT OF UNIV. POLY
379 (cond ((pcoefp p) (abs p))
380 (t (setq p (mapcar #'abs (coefl (cdr p))))
381 (let ((m (apply #'min p)))
382 (oldcontent2 (delete m p :test #'equal) m)))))
384 ;;*** PGCDU CORRESPONDS TO BROWN'S ALGORITHM U
386 ;;;PGCDU IS NOT NOW IN RAT;UFACT >
388 (defmfun pgcdu (p q)
389 (do () ((pzerop q) (monize p))
390 (psetq p q q (pmodrem p q))))
392 (defun pmodrem (x y)
393 (cond ((null modulus)
394 (merror "PMODREM: null modulus; how did that happen?"))
395 ((pacoefp y) (if (pzerop y) x 0))
396 ((pacoefp x) x)
397 ((eq (p-var x) (p-var y))
398 (psimp (car x) (pgcdu1 (p-terms x) (p-terms y) nil)))
399 (t (merror "PMODREM: I can't handle this; x = ~M, y = ~M" x y))))
401 (defun pmodquo (u v &aux quo)
402 (declare (special quo))
403 (cond ((null modulus)
404 (merror "PMODQUO: null modulus; how did that happen?"))
405 ((pcoefp v) (cons (ptimes (crecip v) u) 0))
406 ((alg v) (cons (ptimes (painvmod v) u) 0))
407 ((pacoefp u) (cons 0 u))
408 ((not (eq (p-var u) (p-var v)))
409 (merror "PMODQUO: arguments have different variables; how did that happen?"))
410 (t (xcons (psimp (car u) (pgcdu1 (cdr u) (cdr v) t))
411 (psimp (car u) quo)))))
414 (defun pgcdu1 (u v pquo*)
415 (let ((invv (painvmod (pt-lc v))) (k 0) q*)
416 (declare (special k quo q*) (fixnum k))
417 (loop until (minusp (setq k (- (pt-le u) (pt-le v))))
418 do (setq q* (ptimes invv (pt-lc u)))
419 if pquo* do (setq quo (nconc quo (list k q*)))
420 when (ptzerop (setq u (ptpt-subtract-powered-product
421 (pt-red u) (pt-red v) q* k)))
422 return (ptzero)
423 finally (return u))))
425 (defun rtzerl2 (n)
426 (cond ((zerop n) 0)
427 (t (do ((n n (ash n -2)))
428 ((not (zerop (haipart n -2))) n)))))
430 (defmfun $jacobi (p q)
431 (cond ((null (and (integerp p) (integerp q)))
432 (list '($jacobi) p q))
433 ((zerop q) (merror (intl:gettext "jacobi: zero denominator.")))
434 ((minusp q) ($jacobi p (- q)))
435 ((and (evenp (setq q (rtzerl2 q)))
436 (setq q (ash q -1))
437 (evenp p)) 0)
438 ((equal q 1) 1)
439 ((minusp (setq p (rem p q)))
440 (jacobi (rtzerl2 (+ p q)) q))
441 (t (jacobi (rtzerl2 p) q))))
443 (defun jacobi (p q)
444 (do ((r1 p (rtzerl2 (rem r2 r1)))
445 (r2 q r1)
446 (bit2 (haipart q -2))
447 (odd 0 (boole boole-xor odd (boole boole-and bit2 (setq bit2 (haipart r1 -2))))))
448 ((zerop r1) 0)
449 (cond ((evenp r1)
450 (setq r1 (ash r1 -1))
451 (setq odd (boole boole-xor odd (ash (expt (haipart r2 -4) 2) -2)))))
452 (and (equal r1 1) (return (expt -1 (boole boole-and 1 (ash odd -1)))))))
454 ;; it is convenient to have the *bigprimes* be actually less than
455 ;; half the size of the most positive fixnum, so that arithmetic is easier
457 (defvar *bigprimes* (loop with p = (ash most-positive-fixnum -1) repeat 20 do
458 (setq p (next-prime (1- p) -1))
459 collect p))
461 (defmvar *alpha (car *bigprimes*))
463 (defun newprime (p)
464 (do ((pl *bigprimes* (cdr pl)))
465 ((null pl)
466 (setq p (next-prime (1- p) -1))
467 (setq *bigprimes* (nconc *bigprimes* (list p)))
469 (when (< (car pl) p)
470 (return (car pl)))))
472 (defun leadcoefficient (p)
473 (if (pcoefp p) p (leadcoefficient (caddr p))))
475 (defun maxcoefficient (p)
476 (if (pcoefp p) (abs p) (maxcoef1 (cdr p))))
478 (defun maxcoef1 (p)
479 (if (null p) 0 (max (maxcoefficient (cadr p)) (maxcoef1 (cddr p)))))
481 (defun maxnorm (poly)
482 (if (null poly) 0 (max (norm (cadr poly)) (maxnorm (cddr poly)))))
484 (defun norm (poly)
485 (cond ((null poly) 0)
486 ((pcoefp poly) (abs poly))
487 (t (+ (norm (caddr poly)) (norm1 (cdddr poly)) )) ))
489 (defun norm1 (poly)
490 (if (null poly) 0 (+ (norm (cadr poly)) (norm1 (cddr poly)) )) )
492 (defmfun pdegree (p var)
493 (cond ((pcoefp p) 0)
494 ((eq var (p-var p)) (p-le p))
495 ((pointergp var (p-var p)) 0)
496 (t (do ((l (p-red p) (pt-red l))
497 (e (pdegree (p-lc p) var) (max e (pdegree (pt-lc l) var))))
498 ((null l) e)))))
500 (defun poly-in-var (p v)
501 (cond ((or (pcoefp p) (pointergp v (p-var p))) (list 0 p))
502 ((eq (p-var p) v) (p-terms p))
503 ((loop with ans
504 for (exp coef) on (p-terms p) by #'cddr
505 do (setq ans (ptptplus ans
506 (everysubst2 (poly-in-var coef v)
507 (list (p-var p) exp 1))))
508 finally (return ans)))))
510 (defun univar (x)
511 (or (null x) (and (pcoefp (pt-lc x)) (univar (pt-red x)))))
513 ;;**THE CHINESE REMAINDER ALGORITHM IS A SPECIAL CASE OF LAGRANGE INTERPOLATION
515 (defun lagrange3 (u uk p qk)
516 (set-modulus p)
517 (setq uk (pdifference uk (pmod u)))
518 (cond ((pzerop uk) (setq modulus nil) u)
519 (t (setq uk (pctimes (crecip (cmod qk)) uk))
520 (setq modulus nil)
521 (pplus u (pctimes qk uk)))))
524 (defun lagrange33 (u uk qk xk)
525 (declare (special xv))
526 (setq uk (pdifference uk (pcsubst u xk xv)))
527 (cond ((pzerop uk) u)
528 (t (pplus u (ptimes
529 (pctimes (crecip (pcsubst qk xk xv)) uk)
530 qk)))))
533 ;;;*************************************************************
535 ;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 3.
536 ;; IT INCLUDES THE GCD ROUTINES AND THEIR SUPPORTING FUNCTIONS