namespaces.7: When a PID namespace terminates, the other processes get SIGKILL
[man-pages.git] / man7 / credentials.7
blob284a7ff2cd1ab5f7b59ff78b12293f4eab5caf50
1 .\" Copyright (c) 2007 by Michael Kerrisk <mtk.manpages@gmail.com>
2 .\"
3 .\" %%%LICENSE_START(VERBATIM)
4 .\" Permission is granted to make and distribute verbatim copies of this
5 .\" manual provided the copyright notice and this permission notice are
6 .\" preserved on all copies.
7 .\"
8 .\" Permission is granted to copy and distribute modified versions of this
9 .\" manual under the conditions for verbatim copying, provided that the
10 .\" entire resulting derived work is distributed under the terms of a
11 .\" permission notice identical to this one.
12 .\"
13 .\" Since the Linux kernel and libraries are constantly changing, this
14 .\" manual page may be incorrect or out-of-date.  The author(s) assume no
15 .\" responsibility for errors or omissions, or for damages resulting from
16 .\" the use of the information contained herein.  The author(s) may not
17 .\" have taken the same level of care in the production of this manual,
18 .\" which is licensed free of charge, as they might when working
19 .\" professionally.
20 .\"
21 .\" Formatted or processed versions of this manual, if unaccompanied by
22 .\" the source, must acknowledge the copyright and authors of this work.
23 .\" %%%LICENSE_END
24 .\"
25 .\" 2007-06-13 Creation
26 .\"
27 .TH CREDENTIALS 7 2014-05-21 "Linux" "Linux Programmer's Manual"
28 .SH NAME
29 credentials \- process identifiers
30 .SH DESCRIPTION
31 .SS Process ID (PID)
32 Each process has a unique nonnegative integer identifier
33 that is assigned when the process is created using
34 .BR fork (2).
35 A process can obtain its PID using
36 .BR getpid (2).
37 A PID is represented using the type
38 .I pid_t
39 (defined in
40 .IR <sys/types.h> ).
42 PIDs are used in a range of system calls to identify the process
43 affected by the call, for example:
44 .BR kill (2),
45 .BR ptrace (2),
46 .BR setpriority (2)
47 .\" .BR sched_rr_get_interval (2),
48 .\" .BR sched_getaffinity (2),
49 .\" .BR sched_setaffinity (2),
50 .\" .BR sched_getparam (2),
51 .\" .BR sched_setparam (2),
52 .\" .BR sched_setscheduler (2),
53 .\" .BR sched_getscheduler (2),
54 .BR setpgid (2),
55 .\" .BR getsid (2),
56 .BR setsid (2),
57 .BR sigqueue (3),
58 and
59 .BR waitpid (2).
60 .\" .BR waitid (2),
61 .\" .BR wait4 (2),
63 A process's PID is preserved across an
64 .BR execve (2).
65 .SS Parent process ID (PPID)
66 A process's parent process ID identifies the process that created
67 this process using
68 .BR fork (2).
69 A process can obtain its PPID using
70 .BR getppid (2).
71 A PPID is represented using the type
72 .IR pid_t .
74 A process's PPID is preserved across an
75 .BR execve (2).
76 .SS Process group ID and session ID
77 Each process has a session ID and a process group ID,
78 both represented using the type
79 .IR pid_t .
80 A process can obtain its session ID using
81 .BR getsid (2),
82 and its process group ID using
83 .BR getpgrp (2).
85 A child created by
86 .BR fork (2)
87 inherits its parent's session ID and process group ID.
88 A process's session ID and process group ID are preserved across an
89 .BR execve (2).
91 Sessions and process groups are abstractions devised to support shell
92 job control.
93 A process group (sometimes called a "job") is a collection of
94 processes that share the same process group ID;
95 the shell creates a new process group for the process(es) used
96 to execute single command or pipeline (e.g., the two processes
97 created to execute the command "ls\ |\ wc" are placed in the
98 same process group).
99 A process's group membership can be set using
100 .BR setpgid (2).
101 The process whose process ID is the same as its process group ID is the
102 \fIprocess group leader\fP for that group.
104 A session is a collection of processes that share the same session ID.
105 All of the members of a process group also have the same session ID
106 (i.e., all of the members of a process group always belong to the
107 same session, so that sessions and process groups form a strict
108 two-level hierarchy of processes.)
109 A new session is created when a process calls
110 .BR setsid (2),
111 which creates a new session whose session ID is the same
112 as the PID of the process that called
113 .BR setsid (2).
114 The creator of the session is called the \fIsession leader\fP.
116 All of the processes in a session share a
117 .IR "controlling terminal" .
118 The controlling terminal is established when the session leader
119 first opens a terminal (unless the
120 .BR O_NOCTTY
121 flag is specified when calling
122 .BR open (2)).
123 A terminal may be the controlling terminal of at most one session.
125 At most one of the jobs in a session may be the
126 .IR "foreground job" ;
127 other jobs in the session are
128 .IR "background jobs" .
129 Only the foreground job may read from the terminal;
130 when a process in the background attempts to read from the terminal,
131 its process group is sent a
132 .BR SIGTTIN
133 signal, which suspends the job.
134 If the
135 .BR TOSTOP
136 flag has been set for the terminal (see
137 .BR termios (3)),
138 then only the foreground job may write to the terminal;
139 writes from background job cause a
140 .BR SIGTTOU
141 signal to be generated, which suspends the job.
142 When terminal keys that generate a signal (such as the
143 .I interrupt
144 key, normally control-C)
145 are pressed, the signal is sent to the processes in the foreground job.
147 Various system calls and library functions
148 may operate on all members of a process group,
149 including
150 .BR kill (2),
151 .BR killpg (2),
152 .BR getpriority (2),
153 .BR setpriority (2),
154 .BR ioprio_get (2),
155 .BR ioprio_set (2),
156 .BR waitid (2),
158 .BR waitpid (2).
159 See also the discussion of the
160 .BR F_GETOWN ,
161 .BR F_GETOWN_EX ,
162 .BR F_SETOWN ,
164 .BR F_SETOWN_EX
165 operations in
166 .BR fcntl (2).
167 .SS User and group identifiers
168 Each process has various associated user and groups IDs.
169 These IDs are integers, respectively represented using the types
170 .I uid_t
172 .I gid_t
173 (defined in
174 .IR <sys/types.h> ).
176 On Linux, each process has the following user and group identifiers:
177 .IP * 3
178 Real user ID and real group ID.
179 These IDs determine who owns the process.
180 A process can obtain its real user (group) ID using
181 .BR getuid (2)
182 .RB ( getgid (2)).
183 .IP *
184 Effective user ID and effective group ID.
185 These IDs are used by the kernel to determine the permissions
186 that the process will have when accessing shared resources such
187 as message queues, shared memory, and semaphores.
188 On most UNIX systems, these IDs also determine the
189 permissions when accessing files.
190 However, Linux uses the filesystem IDs described below
191 for this task.
192 A process can obtain its effective user (group) ID using
193 .BR geteuid (2)
194 .RB ( getegid (2)).
195 .IP *
196 Saved set-user-ID and saved set-group-ID.
197 These IDs are used in set-user-ID and set-group-ID programs to save
198 a copy of the corresponding effective IDs that were set when
199 the program was executed (see
200 .BR execve (2)).
201 A set-user-ID program can assume and drop privileges by
202 switching its effective user ID back and forth between the values
203 in its real user ID and saved set-user-ID.
204 This switching is done via calls to
205 .BR seteuid (2),
206 .BR setreuid (2),
208 .BR setresuid (2).
209 A set-group-ID program performs the analogous tasks using
210 .BR setegid (2),
211 .BR setregid (2),
213 .BR setresgid (2).
214 A process can obtain its saved set-user-ID (set-group-ID) using
215 .BR getresuid (2)
216 .RB ( getresgid (2)).
217 .IP *
218 Filesystem user ID and filesystem group ID (Linux-specific).
219 These IDs, in conjunction with the supplementary group IDs described
220 below, are used to determine permissions for accessing files; see
221 .BR path_resolution (7)
222 for details.
223 Whenever a process's effective user (group) ID is changed,
224 the kernel also automatically changes the filesystem user (group) ID
225 to the same value.
226 Consequently, the filesystem IDs normally have the same values
227 as the corresponding effective ID, and the semantics for file-permission
228 checks are thus the same on Linux as on other UNIX systems.
229 The filesystem IDs can be made to differ from the effective IDs
230 by calling
231 .BR setfsuid (2)
233 .BR setfsgid (2).
234 .IP *
235 Supplementary group IDs.
236 This is a set of additional group IDs that are used for permission
237 checks when accessing files and other shared resources.
238 On Linux kernels before 2.6.4,
239 a process can be a member of up to 32 supplementary groups;
240 since kernel 2.6.4,
241 a process can be a member of up to 65536 supplementary groups.
242 The call
243 .I sysconf(_SC_NGROUPS_MAX)
244 can be used to determine the number of supplementary groups
245 of which a process may be a member.
246 .\" Since kernel 2.6.4, the limit is visible via the read-only file
247 .\" /proc/sys/kernel/ngroups_max.
248 .\" As at 2.6.22-rc2, this file is still read-only.
249 A process can obtain its set of supplementary group IDs using
250 .BR getgroups (2),
251 and can modify the set using
252 .BR setgroups (2).
254 A child process created by
255 .BR fork (2)
256 inherits copies of its parent's user and groups IDs.
257 During an
258 .BR execve (2),
259 a process's real user and group ID and supplementary
260 group IDs are preserved;
261 the effective and saved set IDs may be changed, as described in
262 .BR execve (2).
264 Aside from the purposes noted above,
265 a process's user IDs are also employed in a number of other contexts:
266 .IP * 3
267 when determining the permissions for sending signals (see
268 .BR kill (2));
269 .IP *
270 when determining the permissions for setting
271 process-scheduling parameters (nice value, real time
272 scheduling policy and priority, CPU affinity, I/O priority) using
273 .BR setpriority (2),
274 .BR sched_setaffinity (2),
275 .BR sched_setscheduler (2),
276 .BR sched_setparam (2),
277 .BR sched_setattr (2),
279 .BR ioprio_set (2);
280 .IP *
281 when checking resource limits (see
282 .BR getrlimit (2));
283 .IP *
284 when checking the limit on the number of inotify instances
285 that the process may create (see
286 .BR inotify (7)).
287 .SH CONFORMING TO
288 Process IDs, parent process IDs, process group IDs, and session IDs
289 are specified in POSIX.1-2001.
290 The real, effective, and saved set user and groups IDs,
291 and the supplementary group IDs, are specified in POSIX.1-2001.
292 The filesystem user and group IDs are a Linux extension.
293 .SH NOTES
294 The POSIX threads specification requires that
295 credentials are shared by all of the threads in a process.
296 However, at the kernel level, Linux maintains separate user and group
297 credentials for each thread.
298 The NPTL threading implementation does some work to ensure
299 that any change to user or group credentials
300 (e.g., calls to
301 .BR setuid (2),
302 .BR setresuid (2))
303 is carried through to all of the POSIX threads in a process.
304 .SH SEE ALSO
305 .BR bash (1),
306 .BR csh (1),
307 .BR ps (1),
308 .BR access (2),
309 .BR execve (2),
310 .BR faccessat (2),
311 .BR fork (2),
312 .BR getpgrp (2),
313 .BR getpid (2),
314 .BR getppid (2),
315 .BR getsid (2),
316 .BR kill (2),
317 .BR killpg (2),
318 .BR setegid (2),
319 .BR seteuid (2),
320 .BR setfsgid (2),
321 .BR setfsuid (2),
322 .BR setgid (2),
323 .BR setgroups (2),
324 .BR setresgid (2),
325 .BR setresuid (2),
326 .BR setuid (2),
327 .BR waitpid (2),
328 .BR euidaccess (3),
329 .BR initgroups (3),
330 .BR tcgetpgrp (3),
331 .BR tcsetpgrp (3),
332 .BR capabilities (7),
333 .BR namespaces (7),
334 .BR path_resolution (7),
335 .BR signal (7),
336 .BR unix (7)