1 /* Job execution and handling for GNU Make.
2 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free
4 Software Foundation, Inc.
5 This file is part of GNU Make.
7 GNU Make is free software; you can redistribute it and/or modify it under the
8 terms of the GNU General Public License as published by the Free Software
9 Foundation; either version 3 of the License, or (at your option) any later
12 GNU Make is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
14 A PARTICULAR PURPOSE. See the GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License along with
17 this program. If not, see <http://www.gnu.org/licenses/>. */
32 /* Default shell to use. */
36 char *default_shell
= "sh.exe";
37 int no_default_sh_exe
= 1;
38 int batch_mode_shell
= 1;
41 #elif defined (_AMIGA)
43 char default_shell
[] = "";
44 extern int MyExecute (char **);
45 int batch_mode_shell
= 0;
47 #elif defined (__MSDOS__)
49 /* The default shell is a pointer so we can change it if Makefile
50 says so. It is without an explicit path so we get a chance
51 to search the $PATH for it (since MSDOS doesn't have standard
52 directories we could trust). */
53 char *default_shell
= "command.com";
54 int batch_mode_shell
= 0;
56 #elif defined (__EMX__)
58 char *default_shell
= "/bin/sh";
59 int batch_mode_shell
= 0;
64 char default_shell
[] = "";
65 int batch_mode_shell
= 0;
67 #elif defined (__riscos__)
69 char default_shell
[] = "";
70 int batch_mode_shell
= 0;
74 char default_shell
[] = "/bin/sh";
75 int batch_mode_shell
= 0;
81 static int execute_by_shell
;
82 static int dos_pid
= 123;
84 int dos_command_running
;
85 #endif /* __MSDOS__ */
88 # include <proto/dos.h>
89 static int amiga_pid
= 123;
90 static int amiga_status
;
91 static char amiga_bname
[32];
92 static int amiga_batch_file
;
97 # include <processes.h>
100 # include <lib$routines.h>
101 static void vmsWaitForChildren (int *);
105 # include <windows.h>
107 # include <process.h>
108 # include "sub_proc.h"
110 # include "pathstuff.h"
111 #endif /* WINDOWS32 */
114 # include <process.h>
117 #if defined (HAVE_SYS_WAIT_H) || defined (HAVE_UNION_WAIT)
118 # include <sys/wait.h>
122 # define WAIT_NOHANG(status) waitpid (-1, (status), WNOHANG)
123 #else /* Don't have waitpid. */
128 # define WAIT_NOHANG(status) wait3 ((status), WNOHANG, (struct rusage *) 0)
129 # endif /* Have wait3. */
130 #endif /* Have waitpid. */
132 #if !defined (wait) && !defined (POSIX)
136 #ifndef HAVE_UNION_WAIT
141 # define WTERMSIG(x) ((x) & 0x7f)
144 # define WCOREDUMP(x) ((x) & 0x80)
147 # define WEXITSTATUS(x) (((x) >> 8) & 0xff)
150 # define WIFSIGNALED(x) (WTERMSIG (x) != 0)
153 # define WIFEXITED(x) (WTERMSIG (x) == 0)
156 #else /* Have `union wait'. */
158 # define WAIT_T union wait
160 # define WTERMSIG(x) ((x).w_termsig)
163 # define WCOREDUMP(x) ((x).w_coredump)
166 # define WEXITSTATUS(x) ((x).w_retcode)
169 # define WIFSIGNALED(x) (WTERMSIG(x) != 0)
172 # define WIFEXITED(x) (WTERMSIG(x) == 0)
175 #endif /* Don't have `union wait'. */
177 #ifndef HAVE_UNISTD_H
189 int getloadavg (double loadavg
[], int nelem
);
190 int start_remote_job (char **argv
, char **envp
, int stdin_fd
, int *is_remote
,
191 int *id_ptr
, int *used_stdin
);
192 int start_remote_job_p (int);
193 int remote_status (int *exit_code_ptr
, int *signal_ptr
, int *coredump_ptr
,
196 RETSIGTYPE
child_handler (int);
197 static void free_child (struct child
*);
198 static void start_job_command (struct child
*child
);
199 static int load_too_high (void);
200 static int job_next_command (struct child
*);
201 static int start_waiting_job (struct child
*);
203 /* Chain of all live (or recently deceased) children. */
205 struct child
*children
= 0;
207 /* Number of children currently running. */
209 unsigned int job_slots_used
= 0;
211 /* Nonzero if the `good' standard input is in use. */
213 static int good_stdin_used
= 0;
215 /* Chain of children waiting to run until the load average goes down. */
217 static struct child
*waiting_jobs
= 0;
219 /* Non-zero if we use a *real* shell (always so on Unix). */
223 /* Number of jobs started in the current second. */
225 unsigned long job_counter
= 0;
227 /* Number of jobserver tokens this instance is currently using. */
229 unsigned int jobserver_tokens
= 0;
233 * The macro which references this function is defined in make.h.
236 w32_kill(int pid
, int sig
)
238 return ((process_kill((HANDLE
)pid
, sig
) == TRUE
) ? 0 : -1);
241 /* This function creates a temporary file name with an extension specified
243 * Return an xmalloc'ed string of a newly created temp file and its
244 * file descriptor, or die. */
246 create_batch_file (char const *base
, int unixy
, int *fd
)
248 const char *const ext
= unixy
? "sh" : "bat";
249 const char *error
= NULL
;
250 char temp_path
[MAXPATHLEN
]; /* need to know its length */
251 unsigned path_size
= GetTempPath(sizeof temp_path
, temp_path
);
254 const unsigned sizemax
= strlen (base
) + strlen (ext
) + 10;
258 path_size
= GetCurrentDirectory (sizeof temp_path
, temp_path
);
262 while (path_size
> 0 &&
263 path_size
+ sizemax
< sizeof temp_path
&&
266 unsigned size
= sprintf (temp_path
+ path_size
,
268 temp_path
[path_size
- 1] == '\\' ? "" : "\\",
270 HANDLE h
= CreateFile (temp_path
, /* file name */
271 GENERIC_READ
| GENERIC_WRITE
, /* desired access */
272 0, /* no share mode */
273 NULL
, /* default security attributes */
274 CREATE_NEW
, /* creation disposition */
275 FILE_ATTRIBUTE_NORMAL
| /* flags and attributes */
276 FILE_ATTRIBUTE_TEMPORARY
, /* we'll delete it */
277 NULL
); /* no template file */
279 if (h
== INVALID_HANDLE_VALUE
)
281 const DWORD er
= GetLastError();
283 if (er
== ERROR_FILE_EXISTS
|| er
== ERROR_ALREADY_EXISTS
)
286 /* the temporary path is not guaranteed to exist */
287 else if (path_is_dot
== 0)
289 path_size
= GetCurrentDirectory (sizeof temp_path
, temp_path
);
295 error
= map_windows32_error_to_string (er
);
301 const unsigned final_size
= path_size
+ size
+ 1;
302 char *const path
= xmalloc (final_size
);
303 memcpy (path
, temp_path
, final_size
);
304 *fd
= _open_osfhandle ((long)h
, 0);
309 for (p
= path
; (ch
= *p
) != 0; ++p
)
313 return path
; /* good return */
319 error
= _("Cannot create a temporary file\n");
325 #endif /* WINDOWS32 */
328 /* returns whether path is assumed to be a unix like shell. */
330 _is_unixy_shell (const char *path
)
332 /* list of non unix shells */
333 const char *known_os2shells
[] = {
345 /* find the rightmost '/' or '\\' */
346 const char *name
= strrchr (path
, '/');
347 const char *p
= strrchr (path
, '\\');
350 if (name
&& p
) /* take the max */
351 name
= (name
> p
) ? name
: p
;
352 else if (p
) /* name must be 0 */
354 else if (!name
) /* name and p must be 0 */
357 if (*name
== '/' || *name
== '\\') name
++;
360 while (known_os2shells
[i
] != NULL
) {
361 if (strcasecmp (name
, known_os2shells
[i
]) == 0)
362 return 0; /* not a unix shell */
366 /* in doubt assume a unix like shell */
372 /* Write an error message describing the exit status given in
373 EXIT_CODE, EXIT_SIG, and COREDUMP, for the target TARGET_NAME.
374 Append "(ignored)" if IGNORED is nonzero. */
377 child_error (const char *target_name
,
378 int exit_code
, int exit_sig
, int coredump
, int ignored
)
380 if (ignored
&& silent_flag
)
384 if (!(exit_code
& 1))
386 (ignored
? _("*** [%s] Error 0x%x (ignored)")
387 : _("*** [%s] Error 0x%x")),
388 target_name
, exit_code
);
391 error (NILF
, ignored
? _("[%s] Error %d (ignored)") :
392 _("*** [%s] Error %d"),
393 target_name
, exit_code
);
395 error (NILF
, "*** [%s] %s%s",
396 target_name
, strsignal (exit_sig
),
397 coredump
? _(" (core dumped)") : "");
402 /* Handle a dead child. This handler may or may not ever be installed.
404 If we're using the jobserver feature, we need it. First, installing it
405 ensures the read will interrupt on SIGCHLD. Second, we close the dup'd
406 read FD to ensure we don't enter another blocking read without reaping all
407 the dead children. In this case we don't need the dead_children count.
409 If we don't have either waitpid or wait3, then make is unreliable, but we
410 use the dead_children count to reap children as best we can. */
412 static unsigned int dead_children
= 0;
415 child_handler (int sig UNUSED
)
426 /* The signal handler must called only once! */
427 signal (SIGCHLD
, SIG_DFL
);
430 /* This causes problems if the SIGCHLD interrupts a printf().
431 DB (DB_JOBS, (_("Got a SIGCHLD; %u unreaped children.\n"), dead_children));
435 extern int shell_function_pid
, shell_function_completed
;
437 /* Reap all dead children, storing the returned status and the new command
438 state (`cs_finished') in the `file' member of the `struct child' for the
439 dead child, and removing the child from the chain. In addition, if BLOCK
440 nonzero, we block in this function until we've reaped at least one
441 complete child, waiting for it to die if necessary. If ERR is nonzero,
442 print an error message first. */
445 reap_children (int block
, int err
)
449 /* Initially, assume we have some. */
454 # define REAP_MORE reap_more
456 # define REAP_MORE dead_children
461 We have at least one child outstanding OR a shell function in progress,
463 We're blocking for a complete child OR there are more children to reap
465 we'll keep reaping children. */
467 while ((children
!= 0 || shell_function_pid
!= 0)
468 && (block
|| REAP_MORE
))
472 int exit_code
, exit_sig
, coredump
;
473 register struct child
*lastc
, *c
;
475 int any_remote
, any_local
;
480 static int printed
= 0;
482 /* We might block for a while, so let the user know why.
483 Only print this message once no matter how many jobs are left. */
486 error (NILF
, _("*** Waiting for unfinished jobs...."));
490 /* We have one less dead child to reap. As noted in
491 child_handler() above, this count is completely unimportant for
492 all modern, POSIX-y systems that support wait3() or waitpid().
493 The rest of this comment below applies only to early, broken
494 pre-POSIX systems. We keep the count only because... it's there...
496 The test and decrement are not atomic; if it is compiled into:
497 register = dead_children - 1;
498 dead_children = register;
499 a SIGCHLD could come between the two instructions.
500 child_handler increments dead_children.
501 The second instruction here would lose that increment. But the
502 only effect of dead_children being wrong is that we might wait
503 longer than necessary to reap a child, and lose some parallelism;
504 and we might print the "Waiting for unfinished jobs" message above
505 when not necessary. */
507 if (dead_children
> 0)
511 any_local
= shell_function_pid
!= 0;
512 for (c
= children
; c
!= 0; c
= c
->next
)
514 any_remote
|= c
->remote
;
515 any_local
|= ! c
->remote
;
516 DB (DB_JOBS
, (_("Live child 0x%08lx (%s) PID %ld %s\n"),
517 (unsigned long int) c
, c
->file
->name
,
518 (long) c
->pid
, c
->remote
? _(" (remote)") : ""));
524 /* First, check for remote children. */
526 pid
= remote_status (&exit_code
, &exit_sig
, &coredump
, 0);
531 /* We got a remote child. */
535 /* A remote status command failed miserably. Punt. */
537 pfatal_with_name ("remote_status");
541 /* No remote children. Check for local children. */
542 #if !defined(__MSDOS__) && !defined(_AMIGA) && !defined(WINDOWS32)
546 vmsWaitForChildren (&status
);
551 pid
= WAIT_NOHANG (&status
);
554 EINTRLOOP(pid
, wait (&status
));
562 /* The wait*() failed miserably. Punt. */
563 pfatal_with_name ("wait");
567 /* We got a child exit; chop the status word up. */
568 exit_code
= WEXITSTATUS (status
);
569 exit_sig
= WIFSIGNALED (status
) ? WTERMSIG (status
) : 0;
570 coredump
= WCOREDUMP (status
);
572 /* If we have started jobs in this second, remove one. */
578 /* No local children are dead. */
581 if (!block
|| !any_remote
)
584 /* Now try a blocking wait for a remote child. */
585 pid
= remote_status (&exit_code
, &exit_sig
, &coredump
, 1);
587 goto remote_status_lose
;
589 /* No remote children either. Finally give up. */
592 /* We got a remote child. */
595 #endif /* !__MSDOS__, !Amiga, !WINDOWS32. */
598 /* Life is very different on MSDOS. */
601 exit_code
= WEXITSTATUS (status
);
602 if (exit_code
== 0xff)
604 exit_sig
= WIFSIGNALED (status
) ? WTERMSIG (status
) : 0;
606 #endif /* __MSDOS__ */
610 status
= amiga_status
;
611 exit_code
= amiga_status
;
624 /* Record the thread ID of the main process, so that we
625 could suspend it in the signal handler. */
628 hcTID
= GetCurrentThread ();
629 hcPID
= GetCurrentProcess ();
630 if (!DuplicateHandle (hcPID
, hcTID
, hcPID
, &main_thread
, 0,
631 FALSE
, DUPLICATE_SAME_ACCESS
))
633 DWORD e
= GetLastError ();
635 "Determine main thread ID (Error %ld: %s)\n",
636 e
, map_windows32_error_to_string(e
));
639 DB (DB_VERBOSE
, ("Main thread handle = 0x%08lx\n",
640 (unsigned long)main_thread
));
643 /* wait for anything to finish */
644 hPID
= process_wait_for_any();
648 /* was an error found on this process? */
649 werr
= process_last_err(hPID
);
652 exit_code
= process_exit_code(hPID
);
655 fprintf(stderr
, "make (e=%d): %s",
656 exit_code
, map_windows32_error_to_string(exit_code
));
659 exit_sig
= process_signal(hPID
);
661 /* cleanup process */
662 process_cleanup(hPID
);
668 #endif /* WINDOWS32 */
671 /* Check if this is the child of the `shell' function. */
672 if (!remote
&& pid
== shell_function_pid
)
674 /* It is. Leave an indicator for the `shell' function. */
675 if (exit_sig
== 0 && exit_code
== 127)
676 shell_function_completed
= -1;
678 shell_function_completed
= 1;
682 child_failed
= exit_sig
!= 0 || exit_code
!= 0;
684 /* Search for a child matching the deceased one. */
686 for (c
= children
; c
!= 0; lastc
= c
, c
= c
->next
)
687 if (c
->remote
== remote
&& c
->pid
== pid
)
691 /* An unknown child died.
692 Ignore it; it was inherited from our invoker. */
695 DB (DB_JOBS
, (child_failed
696 ? _("Reaping losing child 0x%08lx PID %ld %s\n")
697 : _("Reaping winning child 0x%08lx PID %ld %s\n"),
698 (unsigned long int) c
, (long) c
->pid
,
699 c
->remote
? _(" (remote)") : ""));
701 if (c
->sh_batch_file
) {
702 DB (DB_JOBS
, (_("Cleaning up temp batch file %s\n"),
705 /* just try and remove, don't care if this fails */
706 remove (c
->sh_batch_file
);
708 /* all done with memory */
709 free (c
->sh_batch_file
);
710 c
->sh_batch_file
= NULL
;
713 /* If this child had the good stdin, say it is now free. */
717 dontcare
= c
->dontcare
;
719 if (child_failed
&& !c
->noerror
&& !ignore_errors_flag
)
721 /* The commands failed. Write an error message,
722 delete non-precious targets, and abort. */
723 static int delete_on_error
= -1;
726 child_error (c
->file
->name
, exit_code
, exit_sig
, coredump
, 0);
728 c
->file
->update_status
= 2;
729 if (delete_on_error
== -1)
731 struct file
*f
= lookup_file (".DELETE_ON_ERROR");
732 delete_on_error
= f
!= 0 && f
->is_target
;
734 if (exit_sig
!= 0 || delete_on_error
)
735 delete_child_targets (c
);
741 /* The commands failed, but we don't care. */
742 child_error (c
->file
->name
,
743 exit_code
, exit_sig
, coredump
, 1);
747 /* If there are more commands to run, try to start them. */
748 if (job_next_command (c
))
750 if (handling_fatal_signal
)
752 /* Never start new commands while we are dying.
753 Since there are more commands that wanted to be run,
754 the target was not completely remade. So we treat
755 this as if a command had failed. */
756 c
->file
->update_status
= 2;
760 /* Check again whether to start remotely.
761 Whether or not we want to changes over time.
762 Also, start_remote_job may need state set up
763 by start_remote_job_p. */
764 c
->remote
= start_remote_job_p (0);
765 start_job_command (c
);
766 /* Fatal signals are left blocked in case we were
767 about to put that child on the chain. But it is
768 already there, so it is safe for a fatal signal to
769 arrive now; it will clean up this child's targets. */
771 if (c
->file
->command_state
== cs_running
)
772 /* We successfully started the new command.
773 Loop to reap more children. */
777 if (c
->file
->update_status
!= 0)
778 /* We failed to start the commands. */
779 delete_child_targets (c
);
782 /* There are no more commands. We got through them all
783 without an unignored error. Now the target has been
784 successfully updated. */
785 c
->file
->update_status
= 0;
788 /* When we get here, all the commands for C->file are finished
789 (or aborted) and C->file->update_status contains 0 or 2. But
790 C->file->command_state is still cs_running if all the commands
791 ran; notice_finish_file looks for cs_running to tell it that
792 it's interesting to check the file's modtime again now. */
794 if (! handling_fatal_signal
)
795 /* Notice if the target of the commands has been changed.
796 This also propagates its values for command_state and
797 update_status to its also_make files. */
798 notice_finished_file (c
->file
);
800 DB (DB_JOBS
, (_("Removing child 0x%08lx PID %ld%s from chain.\n"),
801 (unsigned long int) c
, (long) c
->pid
,
802 c
->remote
? _(" (remote)") : ""));
804 /* Block fatal signals while frobnicating the list, so that
805 children and job_slots_used are always consistent. Otherwise
806 a fatal signal arriving after the child is off the chain and
807 before job_slots_used is decremented would believe a child was
808 live and call reap_children again. */
811 /* There is now another slot open. */
812 if (job_slots_used
> 0)
815 /* Remove the child from the chain and free it. */
819 lastc
->next
= c
->next
;
825 /* If the job failed, and the -k flag was not given, die,
826 unless we are already in the process of dying. */
827 if (!err
&& child_failed
&& !dontcare
&& !keep_going_flag
&&
828 /* fatal_error_signal will die with the right signal. */
829 !handling_fatal_signal
)
832 /* Only block for one child. */
839 /* Free the storage allocated for CHILD. */
842 free_child (struct child
*child
)
844 if (!jobserver_tokens
)
845 fatal (NILF
, "INTERNAL: Freeing child 0x%08lx (%s) but no tokens left!\n",
846 (unsigned long int) child
, child
->file
->name
);
848 /* If we're using the jobserver and this child is not the only outstanding
849 job, put a token back into the pipe for it. */
851 if (job_fds
[1] >= 0 && jobserver_tokens
> 1)
856 /* Write a job token back to the pipe. */
858 EINTRLOOP (r
, write (job_fds
[1], &token
, 1));
860 pfatal_with_name (_("write jobserver"));
862 DB (DB_JOBS
, (_("Released token for child 0x%08lx (%s).\n"),
863 (unsigned long int) child
, child
->file
->name
));
868 if (handling_fatal_signal
) /* Don't bother free'ing if about to die. */
871 if (child
->command_lines
!= 0)
873 register unsigned int i
;
874 for (i
= 0; i
< child
->file
->cmds
->ncommand_lines
; ++i
)
875 free (child
->command_lines
[i
]);
876 free (child
->command_lines
);
879 if (child
->environment
!= 0)
881 register char **ep
= child
->environment
;
884 free (child
->environment
);
891 extern sigset_t fatal_signal_set
;
898 (void) sigprocmask (SIG_BLOCK
, &fatal_signal_set
, (sigset_t
*) 0);
900 # ifdef HAVE_SIGSETMASK
901 (void) sigblock (fatal_signal_mask
);
911 sigemptyset (&empty
);
912 sigprocmask (SIG_SETMASK
, &empty
, (sigset_t
*) 0);
916 #ifdef MAKE_JOBSERVER
918 job_noop (int sig UNUSED
)
921 /* Set the child handler action flags to FLAGS. */
923 set_child_handler_action_flags (int set_handler
, int set_alarm
)
928 /* The child handler must be turned off here. */
929 signal (SIGCHLD
, SIG_DFL
);
932 memset (&sa
, '\0', sizeof sa
);
933 sa
.sa_handler
= child_handler
;
934 sa
.sa_flags
= set_handler
? 0 : SA_RESTART
;
936 sigaction (SIGCHLD
, &sa
, NULL
);
938 #if defined SIGCLD && SIGCLD != SIGCHLD
939 sigaction (SIGCLD
, &sa
, NULL
);
944 /* If we're about to enter the read(), set an alarm to wake up in a
945 second so we can check if the load has dropped and we can start more
946 work. On the way out, turn off the alarm and set SIG_DFL. */
947 alarm (set_handler
? 1 : 0);
948 sa
.sa_handler
= set_handler
? job_noop
: SIG_DFL
;
950 sigaction (SIGALRM
, &sa
, NULL
);
957 /* Start a job to run the commands specified in CHILD.
958 CHILD is updated to reflect the commands and ID of the child process.
960 NOTE: On return fatal signals are blocked! The caller is responsible
961 for calling `unblock_sigs', once the new child is safely on the chain so
962 it can be cleaned up in the event of a fatal signal. */
965 start_job_command (struct child
*child
)
967 #if !defined(_AMIGA) && !defined(WINDOWS32)
968 static int bad_stdin
= -1;
971 /* Must be volatile to silence bogus GCC warning about longjmp/vfork. */
979 /* If we have a completely empty commandset, stop now. */
980 if (!child
->command_ptr
)
983 /* Combine the flags parsed for the line itself with
984 the flags specified globally for this target. */
985 flags
= (child
->file
->command_flags
986 | child
->file
->cmds
->lines_flags
[child
->command_line
- 1]);
988 p
= child
->command_ptr
;
989 child
->noerror
= ((flags
& COMMANDS_NOERROR
) != 0);
994 flags
|= COMMANDS_SILENT
;
996 flags
|= COMMANDS_RECURSE
;
999 else if (!isblank ((unsigned char)*p
))
1004 /* Update the file's command flags with any new ones we found. We only
1005 keep the COMMANDS_RECURSE setting. Even this isn't 100% correct; we are
1006 now marking more commands recursive than should be in the case of
1007 multiline define/endef scripts where only one line is marked "+". In
1008 order to really fix this, we'll have to keep a lines_flags for every
1009 actual line, after expansion. */
1010 child
->file
->cmds
->lines_flags
[child
->command_line
- 1]
1011 |= flags
& COMMANDS_RECURSE
;
1013 /* Figure out an argument list from this command line. */
1020 argv
= construct_command_argv (p
, &end
, child
->file
,
1021 child
->file
->cmds
->lines_flags
[child
->command_line
- 1],
1022 &child
->sh_batch_file
);
1025 child
->command_ptr
= NULL
;
1029 child
->command_ptr
= end
;
1033 /* If -q was given, say that updating `failed' if there was any text on the
1034 command line, or `succeeded' otherwise. The exit status of 1 tells the
1035 user that -q is saying `something to do'; the exit status for a random
1037 if (argv
!= 0 && question_flag
&& !(flags
& COMMANDS_RECURSE
))
1043 child
->file
->update_status
= 1;
1044 notice_finished_file (child
->file
);
1048 if (touch_flag
&& !(flags
& COMMANDS_RECURSE
))
1050 /* Go on to the next command. It might be the recursive one.
1051 We construct ARGV only to find the end of the command line. */
1066 execute_by_shell
= 0; /* in case construct_command_argv sets it */
1068 /* This line has no commands. Go to the next. */
1069 if (job_next_command (child
))
1070 start_job_command (child
);
1073 /* No more commands. Make sure we're "running"; we might not be if
1074 (e.g.) all commands were skipped due to -n. */
1075 set_command_state (child
->file
, cs_running
);
1076 child
->file
->update_status
= 0;
1077 notice_finished_file (child
->file
);
1082 /* Print out the command. If silent, we call `message' with null so it
1083 can log the working directory before the command's own error messages
1086 message (0, (just_print_flag
|| (!(flags
& COMMANDS_SILENT
) && !silent_flag
))
1087 ? "%s" : (char *) 0, p
);
1089 /* Tell update_goal_chain that a command has been started on behalf of
1090 this target. It is important that this happens here and not in
1091 reap_children (where we used to do it), because reap_children might be
1092 reaping children from a different target. We want this increment to
1093 guaranteedly indicate that a command was started for the dependency
1094 chain (i.e., update_file recursion chain) we are processing. */
1098 /* Optimize an empty command. People use this for timestamp rules,
1099 so avoid forking a useless shell. Do this after we increment
1100 commands_started so make still treats this special case as if it
1101 performed some action (makes a difference as to what messages are
1104 #if !defined(VMS) && !defined(_AMIGA)
1106 #if defined __MSDOS__ || defined (__EMX__)
1107 unixy_shell
/* the test is complicated and we already did it */
1109 (argv
[0] && !strcmp (argv
[0], "/bin/sh"))
1112 && argv
[1][0] == '-' && argv
[1][1] == 'c' && argv
[1][2] == '\0')
1113 && (argv
[2] && argv
[2][0] == ':' && argv
[2][1] == '\0')
1120 #endif /* !VMS && !_AMIGA */
1122 /* If -n was given, recurse to get the next line in the sequence. */
1124 if (just_print_flag
&& !(flags
& COMMANDS_RECURSE
))
1133 /* Flush the output streams so they won't have things written twice. */
1139 #if !defined(WINDOWS32) && !defined(_AMIGA) && !defined(__MSDOS__)
1141 /* Set up a bad standard input that reads from a broken pipe. */
1143 if (bad_stdin
== -1)
1145 /* Make a file descriptor that is the read end of a broken pipe.
1146 This will be used for some children's standard inputs. */
1150 /* Close the write side. */
1151 (void) close (pd
[1]);
1152 /* Save the read side. */
1155 /* Set the descriptor to close on exec, so it does not litter any
1156 child's descriptor table. When it is dup2'd onto descriptor 0,
1157 that descriptor will not close on exec. */
1158 CLOSE_ON_EXEC (bad_stdin
);
1162 #endif /* !WINDOWS32 && !_AMIGA && !__MSDOS__ */
1164 /* Decide whether to give this child the `good' standard input
1165 (one that points to the terminal or whatever), or the `bad' one
1166 that points to the read side of a broken pipe. */
1168 child
->good_stdin
= !good_stdin_used
;
1169 if (child
->good_stdin
)
1170 good_stdin_used
= 1;
1177 /* Set up the environment for the child. */
1178 if (child
->environment
== 0)
1179 child
->environment
= target_environment (child
->file
);
1182 #if !defined(__MSDOS__) && !defined(_AMIGA) && !defined(WINDOWS32)
1185 /* start_waiting_job has set CHILD->remote if we can start a remote job. */
1188 int is_remote
, id
, used_stdin
;
1189 if (start_remote_job (argv
, child
->environment
,
1190 child
->good_stdin
? 0 : bad_stdin
,
1191 &is_remote
, &id
, &used_stdin
))
1192 /* Don't give up; remote execution may fail for various reasons. If
1193 so, simply run the job locally. */
1197 if (child
->good_stdin
&& !used_stdin
)
1199 child
->good_stdin
= 0;
1200 good_stdin_used
= 0;
1202 child
->remote
= is_remote
;
1209 /* Fork the child process. */
1211 char **parent_environ
;
1219 if (!child_execute_job (argv
, child
)) {
1221 perror_with_name ("vfork", "");
1227 parent_environ
= environ
;
1230 /* If we aren't running a recursive command and we have a jobserver
1231 pipe, close it before exec'ing. */
1232 if (!(flags
& COMMANDS_RECURSE
) && job_fds
[0] >= 0)
1234 CLOSE_ON_EXEC (job_fds
[0]);
1235 CLOSE_ON_EXEC (job_fds
[1]);
1238 CLOSE_ON_EXEC (job_rfd
);
1240 /* Never use fork()/exec() here! Use spawn() instead in exec_command() */
1241 child
->pid
= child_execute_job (child
->good_stdin
? 0 : bad_stdin
, 1,
1242 argv
, child
->environment
);
1247 perror_with_name ("spawn", "");
1251 /* undo CLOSE_ON_EXEC() after the child process has been started */
1252 if (!(flags
& COMMANDS_RECURSE
) && job_fds
[0] >= 0)
1254 fcntl (job_fds
[0], F_SETFD
, 0);
1255 fcntl (job_fds
[1], F_SETFD
, 0);
1258 fcntl (job_rfd
, F_SETFD
, 0);
1260 #else /* !__EMX__ */
1262 child
->pid
= vfork ();
1263 environ
= parent_environ
; /* Restore value child may have clobbered. */
1264 if (child
->pid
== 0)
1266 /* We are the child side. */
1269 /* If we aren't running a recursive command and we have a jobserver
1270 pipe, close it before exec'ing. */
1271 if (!(flags
& COMMANDS_RECURSE
) && job_fds
[0] >= 0)
1279 #ifdef SET_STACK_SIZE
1280 /* Reset limits, if necessary. */
1281 if (stack_limit
.rlim_cur
)
1282 setrlimit (RLIMIT_STACK
, &stack_limit
);
1285 child_execute_job (child
->good_stdin
? 0 : bad_stdin
, 1,
1286 argv
, child
->environment
);
1288 else if (child
->pid
< 0)
1292 perror_with_name ("vfork", "");
1295 # endif /* !__EMX__ */
1299 #else /* __MSDOS__ or Amiga or WINDOWS32 */
1307 /* We call `system' to do the job of the SHELL, since stock DOS
1308 shell is too dumb. Our `system' knows how to handle long
1309 command lines even if pipes/redirection is needed; it will only
1310 call COMMAND.COM when its internal commands are used. */
1311 if (execute_by_shell
)
1313 char *cmdline
= argv
[0];
1314 /* We don't have a way to pass environment to `system',
1315 so we need to save and restore ours, sigh... */
1316 char **parent_environ
= environ
;
1318 environ
= child
->environment
;
1320 /* If we have a *real* shell, tell `system' to call
1321 it to do everything for us. */
1324 /* A *real* shell on MSDOS may not support long
1325 command lines the DJGPP way, so we must use `system'. */
1326 cmdline
= argv
[2]; /* get past "shell -c" */
1329 dos_command_running
= 1;
1330 proc_return
= system (cmdline
);
1331 environ
= parent_environ
;
1332 execute_by_shell
= 0; /* for the next time */
1336 dos_command_running
= 1;
1337 proc_return
= spawnvpe (P_WAIT
, argv
[0], argv
, child
->environment
);
1340 /* Need to unblock signals before turning off
1341 dos_command_running, so that child's signals
1342 will be treated as such (see fatal_error_signal). */
1344 dos_command_running
= 0;
1346 /* If the child got a signal, dos_status has its
1347 high 8 bits set, so be careful not to alter them. */
1348 if (proc_return
== -1)
1351 dos_status
|= (proc_return
& 0xff);
1353 child
->pid
= dos_pid
++;
1355 #endif /* __MSDOS__ */
1357 amiga_status
= MyExecute (argv
);
1360 child
->pid
= amiga_pid
++;
1361 if (amiga_batch_file
)
1363 amiga_batch_file
= 0;
1364 DeleteFile (amiga_bname
); /* Ignore errors. */
1372 /* make UNC paths safe for CreateProcess -- backslash format */
1374 if (arg0
&& arg0
[0] == '/' && arg0
[1] == '/')
1375 for ( ; arg0
&& *arg0
; arg0
++)
1379 /* make sure CreateProcess() has Path it needs */
1380 sync_Path_environment();
1382 hPID
= process_easy(argv
, child
->environment
);
1384 if (hPID
!= INVALID_HANDLE_VALUE
)
1385 child
->pid
= (int) hPID
;
1390 _("process_easy() failed to launch process (e=%ld)\n"),
1391 process_last_err(hPID
));
1392 for (i
= 0; argv
[i
]; i
++)
1393 fprintf(stderr
, "%s ", argv
[i
]);
1394 fprintf(stderr
, _("\nCounted %d args in failed launch\n"), i
);
1398 #endif /* WINDOWS32 */
1399 #endif /* __MSDOS__ or Amiga or WINDOWS32 */
1401 /* Bump the number of jobs started in this second. */
1404 /* We are the parent side. Set the state to
1405 say the commands are running and return. */
1407 set_command_state (child
->file
, cs_running
);
1409 /* Free the storage used by the child's argument list. */
1418 child
->file
->update_status
= 2;
1419 notice_finished_file (child
->file
);
1423 /* Try to start a child running.
1424 Returns nonzero if the child was started (and maybe finished), or zero if
1425 the load was too high and the child was put on the `waiting_jobs' chain. */
1428 start_waiting_job (struct child
*c
)
1430 struct file
*f
= c
->file
;
1432 /* If we can start a job remotely, we always want to, and don't care about
1433 the local load average. We record that the job should be started
1434 remotely in C->remote for start_job_command to test. */
1436 c
->remote
= start_remote_job_p (1);
1438 /* If we are running at least one job already and the load average
1439 is too high, make this one wait. */
1441 && ((job_slots_used
> 0 && load_too_high ())
1443 || (process_used_slots () >= MAXIMUM_WAIT_OBJECTS
)
1447 /* Put this child on the chain of children waiting for the load average
1449 set_command_state (f
, cs_running
);
1450 c
->next
= waiting_jobs
;
1455 /* Start the first command; reap_children will run later command lines. */
1456 start_job_command (c
);
1458 switch (f
->command_state
)
1462 DB (DB_JOBS
, (_("Putting child 0x%08lx (%s) PID %ld%s on the chain.\n"),
1463 (unsigned long int) c
, c
->file
->name
,
1464 (long) c
->pid
, c
->remote
? _(" (remote)") : ""));
1466 /* One more job slot is in use. */
1471 case cs_not_started
:
1472 /* All the command lines turned out to be empty. */
1473 f
->update_status
= 0;
1477 notice_finished_file (f
);
1482 assert (f
->command_state
== cs_finished
);
1489 /* Create a `struct child' for FILE and start its commands running. */
1492 new_job (struct file
*file
)
1494 struct commands
*cmds
= file
->cmds
;
1499 /* Let any previously decided-upon jobs that are waiting
1500 for the load to go down start before this new one. */
1501 start_waiting_jobs ();
1503 /* Reap any children that might have finished recently. */
1504 reap_children (0, 0);
1506 /* Chop the commands up into lines if they aren't already. */
1507 chop_commands (cmds
);
1509 /* Expand the command lines and store the results in LINES. */
1510 lines
= xmalloc (cmds
->ncommand_lines
* sizeof (char *));
1511 for (i
= 0; i
< cmds
->ncommand_lines
; ++i
)
1513 /* Collapse backslash-newline combinations that are inside variable
1514 or function references. These are left alone by the parser so
1515 that they will appear in the echoing of commands (where they look
1516 nice); and collapsed by construct_command_argv when it tokenizes.
1517 But letting them survive inside function invocations loses because
1518 we don't want the functions to see them as part of the text. */
1520 char *in
, *out
, *ref
;
1522 /* IN points to where in the line we are scanning.
1523 OUT points to where in the line we are writing.
1524 When we collapse a backslash-newline combination,
1525 IN gets ahead of OUT. */
1527 in
= out
= cmds
->command_lines
[i
];
1528 while ((ref
= strchr (in
, '$')) != 0)
1530 ++ref
; /* Move past the $. */
1533 /* Copy the text between the end of the last chunk
1534 we processed (where IN points) and the new chunk
1535 we are about to process (where REF points). */
1536 memmove (out
, in
, ref
- in
);
1538 /* Move both pointers past the boring stuff. */
1542 if (*ref
== '(' || *ref
== '{')
1544 char openparen
= *ref
;
1545 char closeparen
= openparen
== '(' ? ')' : '}';
1549 *out
++ = *in
++; /* Copy OPENPAREN. */
1550 /* IN now points past the opening paren or brace.
1551 Count parens or braces until it is matched. */
1555 if (*in
== closeparen
&& --count
< 0)
1557 else if (*in
== '\\' && in
[1] == '\n')
1559 /* We have found a backslash-newline inside a
1560 variable or function reference. Eat it and
1561 any following whitespace. */
1564 for (p
= in
- 1; p
> ref
&& *p
== '\\'; --p
)
1568 /* There were two or more backslashes, so this is
1569 not really a continuation line. We don't collapse
1570 the quoting backslashes here as is done in
1571 collapse_continuations, because the line will
1572 be collapsed again after expansion. */
1576 /* Skip the backslash, newline and
1577 any following whitespace. */
1578 in
= next_token (in
+ 2);
1580 /* Discard any preceding whitespace that has
1581 already been written to the output. */
1583 && isblank ((unsigned char)out
[-1]))
1586 /* Replace it all with a single space. */
1592 if (*in
== openparen
)
1601 /* There are no more references in this line to worry about.
1602 Copy the remaining uninteresting text to the output. */
1604 memmove (out
, in
, strlen (in
) + 1);
1606 /* Finally, expand the line. */
1607 lines
[i
] = allocated_variable_expand_for_file (cmds
->command_lines
[i
],
1611 /* Start the command sequence, record it in a new
1612 `struct child', and add that to the chain. */
1614 c
= xmalloc (sizeof (struct child
));
1615 memset (c
, '\0', sizeof (struct child
));
1617 c
->command_lines
= lines
;
1618 c
->sh_batch_file
= NULL
;
1620 /* Cache dontcare flag because file->dontcare can be changed once we
1621 return. Check dontcare inheritance mechanism for details. */
1622 c
->dontcare
= file
->dontcare
;
1624 /* Fetch the first command line to be run. */
1625 job_next_command (c
);
1627 /* Wait for a job slot to be freed up. If we allow an infinite number
1628 don't bother; also job_slots will == 0 if we're using the jobserver. */
1631 while (job_slots_used
== job_slots
)
1632 reap_children (1, 0);
1634 #ifdef MAKE_JOBSERVER
1635 /* If we are controlling multiple jobs make sure we have a token before
1636 starting the child. */
1638 /* This can be inefficient. There's a decent chance that this job won't
1639 actually have to run any subprocesses: the command script may be empty
1640 or otherwise optimized away. It would be nice if we could defer
1641 obtaining a token until just before we need it, in start_job_command.
1642 To do that we'd need to keep track of whether we'd already obtained a
1643 token (since start_job_command is called for each line of the job, not
1644 just once). Also more thought needs to go into the entire algorithm;
1645 this is where the old parallel job code waits, so... */
1647 else if (job_fds
[0] >= 0)
1654 DB (DB_JOBS
, ("Need a job token; we %shave children\n",
1655 children
? "" : "don't "));
1657 /* If we don't already have a job started, use our "free" token. */
1658 if (!jobserver_tokens
)
1661 /* Read a token. As long as there's no token available we'll block.
1662 We enable interruptible system calls before the read(2) so that if
1663 we get a SIGCHLD while we're waiting, we'll return with EINTR and
1664 we can process the death(s) and return tokens to the free pool.
1666 Once we return from the read, we immediately reinstate restartable
1667 system calls. This allows us to not worry about checking for
1668 EINTR on all the other system calls in the program.
1670 There is one other twist: there is a span between the time
1671 reap_children() does its last check for dead children and the time
1672 the read(2) call is entered, below, where if a child dies we won't
1673 notice. This is extremely serious as it could cause us to
1674 deadlock, given the right set of events.
1676 To avoid this, we do the following: before we reap_children(), we
1677 dup(2) the read FD on the jobserver pipe. The read(2) call below
1678 uses that new FD. In the signal handler, we close that FD. That
1679 way, if a child dies during the section mentioned above, the
1680 read(2) will be invoked with an invalid FD and will return
1681 immediately with EBADF. */
1683 /* Make sure we have a dup'd FD. */
1686 DB (DB_JOBS
, ("Duplicate the job FD\n"));
1687 job_rfd
= dup (job_fds
[0]);
1690 /* Reap anything that's currently waiting. */
1691 reap_children (0, 0);
1693 /* Kick off any jobs we have waiting for an opportunity that
1694 can run now (ie waiting for load). */
1695 start_waiting_jobs ();
1697 /* If our "free" slot has become available, use it; we don't need an
1699 if (!jobserver_tokens
)
1702 /* There must be at least one child already, or we have no business
1703 waiting for a token. */
1705 fatal (NILF
, "INTERNAL: no children as we go to sleep on read\n");
1707 /* Set interruptible system calls, and read() for a job token. */
1708 set_child_handler_action_flags (1, waiting_jobs
!= NULL
);
1709 got_token
= read (job_rfd
, &token
, 1);
1710 saved_errno
= errno
;
1711 set_child_handler_action_flags (0, waiting_jobs
!= NULL
);
1713 /* If we got one, we're done here. */
1716 DB (DB_JOBS
, (_("Obtained token for child 0x%08lx (%s).\n"),
1717 (unsigned long int) c
, c
->file
->name
));
1721 /* If the error _wasn't_ expected (EINTR or EBADF), punt. Otherwise,
1722 go back and reap_children(), and try again. */
1723 errno
= saved_errno
;
1724 if (errno
!= EINTR
&& errno
!= EBADF
)
1725 pfatal_with_name (_("read jobs pipe"));
1727 DB (DB_JOBS
, ("Read returned EBADF.\n"));
1733 /* The job is now primed. Start it running.
1734 (This will notice if there is in fact no recipe.) */
1735 if (cmds
->fileinfo
.filenm
)
1736 DB (DB_BASIC
, (_("Invoking recipe from %s:%lu to update target `%s'.\n"),
1737 cmds
->fileinfo
.filenm
, cmds
->fileinfo
.lineno
,
1740 DB (DB_BASIC
, (_("Invoking builtin recipe to update target `%s'.\n"),
1744 start_waiting_job (c
);
1746 if (job_slots
== 1 || not_parallel
)
1747 /* Since there is only one job slot, make things run linearly.
1748 Wait for the child to die, setting the state to `cs_finished'. */
1749 while (file
->command_state
== cs_running
)
1750 reap_children (1, 0);
1755 /* Move CHILD's pointers to the next command for it to execute.
1756 Returns nonzero if there is another command. */
1759 job_next_command (struct child
*child
)
1761 while (child
->command_ptr
== 0 || *child
->command_ptr
== '\0')
1763 /* There are no more lines in the expansion of this line. */
1764 if (child
->command_line
== child
->file
->cmds
->ncommand_lines
)
1766 /* There are no more lines to be expanded. */
1767 child
->command_ptr
= 0;
1771 /* Get the next line to run. */
1772 child
->command_ptr
= child
->command_lines
[child
->command_line
++];
1777 /* Determine if the load average on the system is too high to start a new job.
1778 The real system load average is only recomputed once a second. However, a
1779 very parallel make can easily start tens or even hundreds of jobs in a
1780 second, which brings the system to its knees for a while until that first
1781 batch of jobs clears out.
1783 To avoid this we use a weighted algorithm to try to account for jobs which
1784 have been started since the last second, and guess what the load average
1785 would be now if it were computed.
1787 This algorithm was provided by Thomas Riedl <thomas.riedl@siemens.com>,
1790 ! calculate something load-oid and add to the observed sys.load,
1791 ! so that latter can catch up:
1792 ! - every job started increases jobctr;
1793 ! - every dying job decreases a positive jobctr;
1794 ! - the jobctr value gets zeroed every change of seconds,
1795 ! after its value*weight_b is stored into the 'backlog' value last_sec
1796 ! - weight_a times the sum of jobctr and last_sec gets
1797 ! added to the observed sys.load.
1799 ! The two weights have been tried out on 24 and 48 proc. Sun Solaris-9
1800 ! machines, using a several-thousand-jobs-mix of cpp, cc, cxx and smallish
1801 ! sub-shelled commands (rm, echo, sed...) for tests.
1802 ! lowering the 'direct influence' factor weight_a (e.g. to 0.1)
1803 ! resulted in significant excession of the load limit, raising it
1804 ! (e.g. to 0.5) took bad to small, fast-executing jobs and didn't
1805 ! reach the limit in most test cases.
1807 ! lowering the 'history influence' weight_b (e.g. to 0.1) resulted in
1808 ! exceeding the limit for longer-running stuff (compile jobs in
1809 ! the .5 to 1.5 sec. range),raising it (e.g. to 0.5) overrepresented
1810 ! small jobs' effects.
1814 #define LOAD_WEIGHT_A 0.25
1815 #define LOAD_WEIGHT_B 0.25
1818 load_too_high (void)
1820 #if defined(__MSDOS__) || defined(VMS) || defined(_AMIGA) || defined(__riscos__)
1823 static double last_sec
;
1824 static time_t last_now
;
1829 /* sub_proc.c cannot wait for more than MAXIMUM_WAIT_OBJECTS children */
1830 if (process_used_slots () >= MAXIMUM_WAIT_OBJECTS
)
1834 if (max_load_average
< 0)
1837 /* Find the real system load average. */
1839 if (getloadavg (&load
, 1) != 1)
1841 static int lossage
= -1;
1842 /* Complain only once for the same error. */
1843 if (lossage
== -1 || errno
!= lossage
)
1846 /* An errno value of zero means getloadavg is just unsupported. */
1848 _("cannot enforce load limits on this operating system"));
1850 perror_with_name (_("cannot enforce load limit: "), "getloadavg");
1857 /* If we're in a new second zero the counter and correct the backlog
1858 value. Only keep the backlog for one extra second; after that it's 0. */
1862 if (last_now
== now
- 1)
1863 last_sec
= LOAD_WEIGHT_B
* job_counter
;
1871 /* Try to guess what the load would be right now. */
1872 guess
= load
+ (LOAD_WEIGHT_A
* (job_counter
+ last_sec
));
1874 DB (DB_JOBS
, ("Estimated system load = %f (actual = %f) (max requested = %f)\n",
1875 guess
, load
, max_load_average
));
1877 return guess
>= max_load_average
;
1881 /* Start jobs that are waiting for the load to be lower. */
1884 start_waiting_jobs (void)
1888 if (waiting_jobs
== 0)
1893 /* Check for recently deceased descendants. */
1894 reap_children (0, 0);
1896 /* Take a job off the waiting list. */
1898 waiting_jobs
= job
->next
;
1900 /* Try to start that job. We break out of the loop as soon
1901 as start_waiting_job puts one back on the waiting list. */
1903 while (start_waiting_job (job
) && waiting_jobs
!= 0);
1910 /* EMX: Start a child process. This function returns the new pid. */
1911 # if defined __EMX__
1913 child_execute_job (int stdin_fd
, int stdout_fd
, char **argv
, char **envp
)
1916 /* stdin_fd == 0 means: nothing to do for stdin;
1917 stdout_fd == 1 means: nothing to do for stdout */
1918 int save_stdin
= (stdin_fd
!= 0) ? dup (0) : 0;
1919 int save_stdout
= (stdout_fd
!= 1) ? dup (1): 1;
1921 /* < 0 only if dup() failed */
1923 fatal (NILF
, _("no more file handles: could not duplicate stdin\n"));
1924 if (save_stdout
< 0)
1925 fatal (NILF
, _("no more file handles: could not duplicate stdout\n"));
1927 /* Close unnecessary file handles for the child. */
1928 if (save_stdin
!= 0)
1929 CLOSE_ON_EXEC (save_stdin
);
1930 if (save_stdout
!= 1)
1931 CLOSE_ON_EXEC (save_stdout
);
1933 /* Connect the pipes to the child process. */
1935 (void) dup2 (stdin_fd
, 0);
1937 (void) dup2 (stdout_fd
, 1);
1939 /* stdin_fd and stdout_fd must be closed on exit because we are
1940 still in the parent process */
1942 CLOSE_ON_EXEC (stdin_fd
);
1944 CLOSE_ON_EXEC (stdout_fd
);
1946 /* Run the command. */
1947 pid
= exec_command (argv
, envp
);
1949 /* Restore stdout/stdin of the parent and close temporary FDs. */
1952 if (dup2 (save_stdin
, 0) != 0)
1953 fatal (NILF
, _("Could not restore stdin\n"));
1960 if (dup2 (save_stdout
, 1) != 1)
1961 fatal (NILF
, _("Could not restore stdout\n"));
1963 close (save_stdout
);
1969 #elif !defined (_AMIGA) && !defined (__MSDOS__) && !defined (VMS)
1972 Replace the current process with one executing the command in ARGV.
1973 STDIN_FD and STDOUT_FD are used as the process's stdin and stdout; ENVP is
1974 the environment of the new program. This function does not return. */
1976 child_execute_job (int stdin_fd
, int stdout_fd
, char **argv
, char **envp
)
1979 (void) dup2 (stdin_fd
, 0);
1981 (void) dup2 (stdout_fd
, 1);
1983 (void) close (stdin_fd
);
1985 (void) close (stdout_fd
);
1987 /* Run the command. */
1988 exec_command (argv
, envp
);
1990 #endif /* !AMIGA && !__MSDOS__ && !VMS */
1991 #endif /* !WINDOWS32 */
1994 /* Replace the current process with one running the command in ARGV,
1995 with environment ENVP. This function does not return. */
1997 /* EMX: This function returns the pid of the child process. */
2003 exec_command (char **argv
, char **envp
)
2006 /* to work around a problem with signals and execve: ignore them */
2008 signal (SIGCHLD
,SIG_IGN
);
2010 /* Run the program. */
2011 execve (argv
[0], argv
, envp
);
2012 perror_with_name ("execve: ", argv
[0]);
2013 _exit (EXIT_FAILURE
);
2019 int exit_code
= EXIT_FAILURE
;
2021 /* make sure CreateProcess() has Path it needs */
2022 sync_Path_environment();
2024 /* launch command */
2025 hPID
= process_easy(argv
, envp
);
2027 /* make sure launch ok */
2028 if (hPID
== INVALID_HANDLE_VALUE
)
2032 _("process_easy() failed to launch process (e=%ld)\n"),
2033 process_last_err(hPID
));
2034 for (i
= 0; argv
[i
]; i
++)
2035 fprintf(stderr
, "%s ", argv
[i
]);
2036 fprintf(stderr
, _("\nCounted %d args in failed launch\n"), i
);
2040 /* wait and reap last child */
2041 hWaitPID
= process_wait_for_any();
2044 /* was an error found on this process? */
2045 err
= process_last_err(hWaitPID
);
2048 exit_code
= process_exit_code(hWaitPID
);
2051 fprintf(stderr
, "make (e=%d, rc=%d): %s",
2052 err
, exit_code
, map_windows32_error_to_string(err
));
2054 /* cleanup process */
2055 process_cleanup(hWaitPID
);
2057 /* expect to find only last pid, warn about other pids reaped */
2058 if (hWaitPID
== hPID
)
2062 _("make reaped child pid %ld, still waiting for pid %ld\n"),
2063 (DWORD
)hWaitPID
, (DWORD
)hPID
);
2066 /* return child's exit code as our exit code */
2069 #else /* !WINDOWS32 */
2075 /* Be the user, permanently. */
2080 /* Run the program. */
2081 pid
= spawnvpe (P_NOWAIT
, argv
[0], argv
, envp
);
2086 /* the file might have a strange shell extension */
2087 if (errno
== ENOENT
)
2092 /* Run the program. */
2094 execvp (argv
[0], argv
);
2096 # endif /* !__EMX__ */
2101 error (NILF
, _("%s: Command not found"), argv
[0]);
2105 /* The file is not executable. Try it as a shell script. */
2106 extern char *getenv ();
2113 /* Do not use $SHELL from the environment */
2114 struct variable
*p
= lookup_variable ("SHELL", 5);
2120 shell
= getenv ("SHELL");
2123 shell
= default_shell
;
2126 while (argv
[argc
] != 0)
2134 new_argv
= alloca ((1 + argc
+ 1) * sizeof (char *));
2135 new_argv
[0] = shell
;
2146 new_argv
[i
] = argv
[0];
2149 new_argv
[i
+ argc
] = argv
[argc
];
2154 pid
= spawnvpe (P_NOWAIT
, shell
, new_argv
, envp
);
2158 execvp (shell
, new_argv
);
2160 if (errno
== ENOENT
)
2161 error (NILF
, _("%s: Shell program not found"), shell
);
2163 perror_with_name ("execvp: ", shell
);
2169 /* this nasty error was driving me nuts :-( */
2170 error (NILF
, _("spawnvpe: environment space might be exhausted"));
2175 perror_with_name ("execvp: ", argv
[0]);
2184 #endif /* !WINDOWS32 */
2187 #else /* On Amiga */
2188 void exec_command (char **argv
)
2193 void clean_tmp (void)
2195 DeleteFile (amiga_bname
);
2198 #endif /* On Amiga */
2201 /* Figure out the argument list necessary to run LINE as a command. Try to
2202 avoid using a shell. This routine handles only ' quoting, and " quoting
2203 when no backslash, $ or ` characters are seen in the quotes. Starting
2204 quotes may be escaped with a backslash. If any of the characters in
2205 sh_chars[] is seen, or any of the builtin commands listed in sh_cmds[]
2206 is the first word of a line, the shell is used.
2208 If RESTP is not NULL, *RESTP is set to point to the first newline in LINE.
2209 If *RESTP is NULL, newlines will be ignored.
2211 SHELL is the shell to use, or nil to use the default shell.
2212 IFS is the value of $IFS, or nil (meaning the default).
2214 FLAGS is the value of lines_flags for this command line. It is
2215 used in the WINDOWS32 port to check whether + or $(MAKE) were found
2216 in this command line, in which case the effect of just_print_flag
2220 construct_command_argv_internal (char *line
, char **restp
, char *shell
,
2221 char *ifs
, int flags
,
2222 char **batch_filename_ptr
)
2225 /* MSDOS supports both the stock DOS shell and ports of Unixy shells.
2226 We call `system' for anything that requires ``slow'' processing,
2227 because DOS shells are too dumb. When $SHELL points to a real
2228 (unix-style) shell, `system' just calls it to do everything. When
2229 $SHELL points to a DOS shell, `system' does most of the work
2230 internally, calling the shell only for its internal commands.
2231 However, it looks on the $PATH first, so you can e.g. have an
2232 external command named `mkdir'.
2234 Since we call `system', certain characters and commands below are
2235 actually not specific to COMMAND.COM, but to the DJGPP implementation
2236 of `system'. In particular:
2238 The shell wildcard characters are in DOS_CHARS because they will
2239 not be expanded if we call the child via `spawnXX'.
2241 The `;' is in DOS_CHARS, because our `system' knows how to run
2242 multiple commands on a single line.
2244 DOS_CHARS also include characters special to 4DOS/NDOS, so we
2245 won't have to tell one from another and have one more set of
2246 commands and special characters. */
2247 static char sh_chars_dos
[] = "*?[];|<>%^&()";
2248 static char *sh_cmds_dos
[] = { "break", "call", "cd", "chcp", "chdir", "cls",
2249 "copy", "ctty", "date", "del", "dir", "echo",
2250 "erase", "exit", "for", "goto", "if", "md",
2251 "mkdir", "path", "pause", "prompt", "rd",
2252 "rmdir", "rem", "ren", "rename", "set",
2253 "shift", "time", "type", "ver", "verify",
2256 static char sh_chars_sh
[] = "#;\"*?[]&|<>(){}$`^";
2257 static char *sh_cmds_sh
[] = { "cd", "echo", "eval", "exec", "exit", "login",
2258 "logout", "set", "umask", "wait", "while",
2259 "for", "case", "if", ":", ".", "break",
2260 "continue", "export", "read", "readonly",
2261 "shift", "times", "trap", "switch", "unset",
2266 #elif defined (__EMX__)
2267 static char sh_chars_dos
[] = "*?[];|<>%^&()";
2268 static char *sh_cmds_dos
[] = { "break", "call", "cd", "chcp", "chdir", "cls",
2269 "copy", "ctty", "date", "del", "dir", "echo",
2270 "erase", "exit", "for", "goto", "if", "md",
2271 "mkdir", "path", "pause", "prompt", "rd",
2272 "rmdir", "rem", "ren", "rename", "set",
2273 "shift", "time", "type", "ver", "verify",
2276 static char sh_chars_os2
[] = "*?[];|<>%^()\"'&";
2277 static char *sh_cmds_os2
[] = { "call", "cd", "chcp", "chdir", "cls", "copy",
2278 "date", "del", "detach", "dir", "echo",
2279 "endlocal", "erase", "exit", "for", "goto", "if",
2280 "keys", "md", "mkdir", "move", "path", "pause",
2281 "prompt", "rd", "rem", "ren", "rename", "rmdir",
2282 "set", "setlocal", "shift", "start", "time",
2283 "type", "ver", "verify", "vol", ":", 0 };
2285 static char sh_chars_sh
[] = "#;\"*?[]&|<>(){}$`^~'";
2286 static char *sh_cmds_sh
[] = { "echo", "cd", "eval", "exec", "exit", "login",
2287 "logout", "set", "umask", "wait", "while",
2288 "for", "case", "if", ":", ".", "break",
2289 "continue", "export", "read", "readonly",
2290 "shift", "times", "trap", "switch", "unset",
2295 #elif defined (_AMIGA)
2296 static char sh_chars
[] = "#;\"|<>()?*$`";
2297 static char *sh_cmds
[] = { "cd", "eval", "if", "delete", "echo", "copy",
2298 "rename", "set", "setenv", "date", "makedir",
2299 "skip", "else", "endif", "path", "prompt",
2300 "unset", "unsetenv", "version",
2302 #elif defined (WINDOWS32)
2303 static char sh_chars_dos
[] = "\"|&<>";
2304 static char *sh_cmds_dos
[] = { "assoc", "break", "call", "cd", "chcp",
2305 "chdir", "cls", "color", "copy", "ctty",
2306 "date", "del", "dir", "echo", "echo.",
2307 "endlocal", "erase", "exit", "for", "ftype",
2308 "goto", "if", "if", "md", "mkdir", "path",
2309 "pause", "prompt", "rd", "rem", "ren",
2310 "rename", "rmdir", "set", "setlocal",
2311 "shift", "time", "title", "type", "ver",
2312 "verify", "vol", ":", 0 };
2313 static char sh_chars_sh
[] = "#;\"*?[]&|<>(){}$`^";
2314 static char *sh_cmds_sh
[] = { "cd", "eval", "exec", "exit", "login",
2315 "logout", "set", "umask", "wait", "while", "for",
2316 "case", "if", ":", ".", "break", "continue",
2317 "export", "read", "readonly", "shift", "times",
2318 "trap", "switch", "test",
2319 #ifdef BATCH_MODE_ONLY_SHELL
2325 #elif defined(__riscos__)
2326 static char sh_chars
[] = "";
2327 static char *sh_cmds
[] = { 0 };
2328 #else /* must be UNIX-ish */
2329 static char sh_chars
[] = "#;\"*?[]&|<>(){}$`^~!";
2330 static char *sh_cmds
[] = { ".", ":", "break", "case", "cd", "continue",
2331 "eval", "exec", "exit", "export", "for", "if",
2332 "login", "logout", "read", "readonly", "set",
2333 "shift", "switch", "test", "times", "trap",
2334 "ulimit", "umask", "unset", "wait", "while", 0 };
2335 # ifdef HAVE_DOS_PATHS
2336 /* This is required if the MSYS/Cygwin ports (which do not define
2337 WINDOWS32) are compiled with HAVE_DOS_PATHS defined, which uses
2338 sh_chars_sh[] directly (see below). */
2339 static char *sh_chars_sh
= sh_chars
;
2340 # endif /* HAVE_DOS_PATHS */
2346 int instring
, word_has_equals
, seen_nonequals
, last_argument_was_empty
;
2347 char **new_argv
= 0;
2353 sh_cmds
= sh_cmds_dos
;
2354 sh_chars
= sh_chars_dos
;
2356 sh_cmds
= sh_cmds_sh
;
2357 sh_chars
= sh_chars_sh
;
2359 #endif /* WINDOWS32 */
2364 /* Make sure not to bother processing an empty line. */
2365 while (isblank ((unsigned char)*line
))
2370 /* See if it is safe to parse commands internally. */
2372 shell
= default_shell
;
2374 else if (strcmp (shell
, default_shell
))
2376 char *s1
= _fullpath (NULL
, shell
, 0);
2377 char *s2
= _fullpath (NULL
, default_shell
, 0);
2379 slow_flag
= strcmp ((s1
? s1
: ""), (s2
? s2
: ""));
2388 #else /* not WINDOWS32 */
2389 #if defined (__MSDOS__) || defined (__EMX__)
2390 else if (strcasecmp (shell
, default_shell
))
2392 extern int _is_unixy_shell (const char *_path
);
2394 DB (DB_BASIC
, (_("$SHELL changed (was `%s', now `%s')\n"),
2395 default_shell
, shell
));
2396 unixy_shell
= _is_unixy_shell (shell
);
2397 /* we must allocate a copy of shell: construct_command_argv() will free
2398 * shell after this function returns. */
2399 default_shell
= xstrdup (shell
);
2403 sh_chars
= sh_chars_sh
;
2404 sh_cmds
= sh_cmds_sh
;
2408 sh_chars
= sh_chars_dos
;
2409 sh_cmds
= sh_cmds_dos
;
2411 if (_osmode
== OS2_MODE
)
2413 sh_chars
= sh_chars_os2
;
2414 sh_cmds
= sh_cmds_os2
;
2418 #else /* !__MSDOS__ */
2419 else if (strcmp (shell
, default_shell
))
2421 #endif /* !__MSDOS__ && !__EMX__ */
2422 #endif /* not WINDOWS32 */
2425 for (ap
= ifs
; *ap
!= '\0'; ++ap
)
2426 if (*ap
!= ' ' && *ap
!= '\t' && *ap
!= '\n')
2429 i
= strlen (line
) + 1;
2431 /* More than 1 arg per character is impossible. */
2432 new_argv
= xmalloc (i
* sizeof (char *));
2434 /* All the args can fit in a buffer as big as LINE is. */
2435 ap
= new_argv
[0] = argstr
= xmalloc (i
);
2438 /* I is how many complete arguments have been found. */
2440 instring
= word_has_equals
= seen_nonequals
= last_argument_was_empty
= 0;
2441 for (p
= line
; *p
!= '\0'; ++p
)
2447 /* Inside a string, just copy any char except a closing quote
2448 or a backslash-newline combination. */
2452 if (ap
== new_argv
[0] || *(ap
-1) == '\0')
2453 last_argument_was_empty
= 1;
2455 else if (*p
== '\\' && p
[1] == '\n')
2457 /* Backslash-newline is handled differently depending on what
2458 kind of string we're in: inside single-quoted strings you
2459 keep them; in double-quoted strings they disappear.
2460 For DOS/Windows/OS2, if we don't have a POSIX shell,
2461 we keep the pre-POSIX behavior of removing the
2462 backslash-newline. */
2464 #if defined (__MSDOS__) || defined (__EMX__) || defined (WINDOWS32)
2475 else if (*p
== '\n' && restp
!= NULL
)
2477 /* End of the command line. */
2481 /* Backslash, $, and ` are special inside double quotes.
2482 If we see any of those, punt.
2483 But on MSDOS, if we use COMMAND.COM, double and single
2484 quotes have the same effect. */
2485 else if (instring
== '"' && strchr ("\\$`", *p
) != 0 && unixy_shell
)
2490 else if (strchr (sh_chars
, *p
) != 0)
2491 /* Not inside a string, but it's a special char. */
2494 else if (*p
== '.' && p
[1] == '.' && p
[2] == '.' && p
[3] != '.')
2495 /* `...' is a wildcard in DJGPP. */
2499 /* Not a special char. */
2503 /* Equals is a special character in leading words before the
2504 first word with no equals sign in it. This is not the case
2505 with sh -k, but we never get here when using nonstandard
2507 if (! seen_nonequals
&& unixy_shell
)
2509 word_has_equals
= 1;
2514 /* Backslash-newline has special case handling, ref POSIX.
2515 We're in the fastpath, so emulate what the shell would do. */
2518 /* Throw out the backslash and newline. */
2521 /* If there's nothing in this argument yet, skip any
2522 whitespace before the start of the next word. */
2523 if (ap
== new_argv
[i
])
2524 p
= next_token (p
+ 1) - 1;
2526 else if (p
[1] != '\0')
2528 #ifdef HAVE_DOS_PATHS
2529 /* Only remove backslashes before characters special to Unixy
2530 shells. All other backslashes are copied verbatim, since
2531 they are probably DOS-style directory separators. This
2532 still leaves a small window for problems, but at least it
2533 should work for the vast majority of naive users. */
2536 /* A dot is only special as part of the "..."
2538 if (strneq (p
+ 1, ".\\.\\.", 5))
2546 if (p
[1] != '\\' && p
[1] != '\''
2547 && !isspace ((unsigned char)p
[1])
2548 && strchr (sh_chars_sh
, p
[1]) == 0)
2549 /* back up one notch, to copy the backslash */
2551 #endif /* HAVE_DOS_PATHS */
2553 /* Copy and skip the following char. */
2566 /* End of the command line. */
2571 /* Newlines are not special. */
2577 /* We have the end of an argument.
2578 Terminate the text of the argument. */
2581 last_argument_was_empty
= 0;
2583 /* Update SEEN_NONEQUALS, which tells us if every word
2584 heretofore has contained an `='. */
2585 seen_nonequals
|= ! word_has_equals
;
2586 if (word_has_equals
&& ! seen_nonequals
)
2587 /* An `=' in a word before the first
2588 word without one is magical. */
2590 word_has_equals
= 0; /* Prepare for the next word. */
2592 /* If this argument is the command name,
2593 see if it is a built-in shell command.
2594 If so, have the shell handle it. */
2598 for (j
= 0; sh_cmds
[j
] != 0; ++j
)
2600 if (streq (sh_cmds
[j
], new_argv
[0]))
2603 /* Non-Unix shells are case insensitive. */
2605 && strcasecmp (sh_cmds
[j
], new_argv
[0]) == 0)
2611 /* Ignore multiple whitespace chars. */
2612 p
= next_token (p
) - 1;
2623 /* Let the shell deal with an unterminated quote. */
2626 /* Terminate the last argument and the argument list. */
2629 if (new_argv
[i
][0] != '\0' || last_argument_was_empty
)
2636 for (j
= 0; sh_cmds
[j
] != 0; ++j
)
2637 if (streq (sh_cmds
[j
], new_argv
[0]))
2641 if (new_argv
[0] == 0)
2643 /* Line was empty. */
2652 /* We must use the shell. */
2656 /* Free the old argument list we were working on. */
2662 execute_by_shell
= 1; /* actually, call `system' if shell isn't unixy */
2671 buffer
= xmalloc (strlen (line
)+1);
2674 for (dptr
=buffer
; *ptr
; )
2676 if (*ptr
== '\\' && ptr
[1] == '\n')
2678 else if (*ptr
== '@') /* Kludge: multiline commands */
2688 new_argv
= xmalloc (2 * sizeof (char *));
2689 new_argv
[0] = buffer
;
2692 #else /* Not Amiga */
2695 * Not eating this whitespace caused things like
2699 * which gave the shell fits. I think we have to eat
2700 * whitespace here, but this code should be considered
2701 * suspicious if things start failing....
2704 /* Make sure not to bother processing an empty line. */
2705 while (isspace ((unsigned char)*line
))
2709 #endif /* WINDOWS32 */
2711 /* SHELL may be a multi-word command. Construct a command line
2712 "SHELL -c LINE", with all special chars in LINE escaped.
2713 Then recurse, expanding this command line to get the final
2716 unsigned int shell_len
= strlen (shell
);
2718 static char minus_c
[] = " -c ";
2720 static char minus_c
[] = "";
2722 unsigned int line_len
= strlen (line
);
2724 char *new_line
= alloca (shell_len
+ (sizeof (minus_c
)-1)
2725 + (line_len
*2) + 1);
2726 char *command_ptr
= NULL
; /* used for batch_mode_shell mode */
2728 # ifdef __EMX__ /* is this necessary? */
2730 minus_c
[1] = '/'; /* " /c " */
2734 memcpy (ap
, shell
, shell_len
);
2736 memcpy (ap
, minus_c
, sizeof (minus_c
) - 1);
2737 ap
+= sizeof (minus_c
) - 1;
2739 for (p
= line
; *p
!= '\0'; ++p
)
2741 if (restp
!= NULL
&& *p
== '\n')
2746 else if (*p
== '\\' && p
[1] == '\n')
2748 /* POSIX says we keep the backslash-newline. If we don't have a
2749 POSIX shell on DOS/Windows/OS2, mimic the pre-POSIX behavior
2750 and remove the backslash/newline. */
2751 #if defined (__MSDOS__) || defined (__EMX__) || defined (WINDOWS32)
2752 # define PRESERVE_BSNL unixy_shell
2754 # define PRESERVE_BSNL 1
2759 /* Only non-batch execution needs another backslash,
2760 because it will be passed through a recursive
2761 invocation of this function. */
2762 if (!batch_mode_shell
)
2770 /* DOS shells don't know about backslash-escaping. */
2771 if (unixy_shell
&& !batch_mode_shell
&&
2772 (*p
== '\\' || *p
== '\'' || *p
== '"'
2773 || isspace ((unsigned char)*p
)
2774 || strchr (sh_chars
, *p
) != 0))
2777 else if (unixy_shell
&& strneq (p
, "...", 3))
2779 /* The case of `...' wildcard again. */
2780 strcpy (ap
, "\\.\\.\\");
2787 if (ap
== new_line
+ shell_len
+ sizeof (minus_c
) - 1)
2788 /* Line was empty. */
2793 /* Some shells do not work well when invoked as 'sh -c xxx' to run a
2794 command line (e.g. Cygnus GNUWIN32 sh.exe on WIN32 systems). In these
2795 cases, run commands via a script file. */
2796 if (just_print_flag
&& !(flags
& COMMANDS_RECURSE
)) {
2797 /* Need to allocate new_argv, although it's unused, because
2798 start_job_command will want to free it and its 0'th element. */
2799 new_argv
= xmalloc(2 * sizeof (char *));
2800 new_argv
[0] = xstrdup ("");
2802 } else if ((no_default_sh_exe
|| batch_mode_shell
) && batch_filename_ptr
) {
2805 int id
= GetCurrentProcessId();
2808 /* create a file name */
2809 sprintf(fbuf
, "make%d", id
);
2810 *batch_filename_ptr
= create_batch_file (fbuf
, unixy_shell
, &temp_fd
);
2812 DB (DB_JOBS
, (_("Creating temporary batch file %s\n"),
2813 *batch_filename_ptr
));
2815 /* Create a FILE object for the batch file, and write to it the
2816 commands to be executed. Put the batch file in TEXT mode. */
2817 _setmode (temp_fd
, _O_TEXT
);
2818 batch
= _fdopen (temp_fd
, "wt");
2820 fputs ("@echo off\n", batch
);
2821 fputs (command_ptr
, batch
);
2822 fputc ('\n', batch
);
2824 DB (DB_JOBS
, (_("Batch file contents:%s\n\t%s\n"),
2825 !unixy_shell
? "\n\t@echo off" : "", command_ptr
));
2828 new_argv
= xmalloc(3 * sizeof (char *));
2830 new_argv
[0] = xstrdup (shell
);
2831 new_argv
[1] = *batch_filename_ptr
; /* only argv[0] gets freed later */
2833 new_argv
[0] = xstrdup (*batch_filename_ptr
);
2838 #endif /* WINDOWS32 */
2840 new_argv
= construct_command_argv_internal (new_line
, 0, 0, 0, flags
, 0);
2842 else if (!unixy_shell
)
2844 /* new_line is local, must not be freed therefore
2845 We use line here instead of new_line because we run the shell
2847 size_t line_len
= strlen (line
);
2850 memcpy (new_line
, line
, line_len
+ 1);
2851 /* Replace all backslash-newline combination and also following tabs.
2852 Important: stop at the first '\n' because that's what the loop above
2853 did. The next line starting at restp[0] will be executed during the
2854 next call of this function. */
2855 while (*q
!= '\0' && *q
!= '\n')
2857 if (q
[0] == '\\' && q
[1] == '\n')
2858 q
+= 2; /* remove '\\' and '\n' */
2864 # ifndef NO_CMD_DEFAULT
2865 if (strnicmp (new_line
, "echo", 4) == 0
2866 && (new_line
[4] == ' ' || new_line
[4] == '\t'))
2868 /* the builtin echo command: handle it separately */
2869 size_t echo_len
= line_len
- 5;
2870 char *echo_line
= new_line
+ 5;
2872 /* special case: echo 'x="y"'
2873 cmd works this way: a string is printed as is, i.e., no quotes
2874 are removed. But autoconf uses a command like echo 'x="y"' to
2875 determine whether make works. autoconf expects the output x="y"
2876 so we will do exactly that.
2877 Note: if we do not allow cmd to be the default shell
2878 we do not need this kind of voodoo */
2879 if (echo_line
[0] == '\''
2880 && echo_line
[echo_len
- 1] == '\''
2881 && strncmp (echo_line
+ 1, "ac_maketemp=",
2882 strlen ("ac_maketemp=")) == 0)
2884 /* remove the enclosing quotes */
2885 memmove (echo_line
, echo_line
+ 1, echo_len
- 2);
2886 echo_line
[echo_len
- 2] = '\0';
2892 /* Let the shell decide what to do. Put the command line into the
2893 2nd command line argument and hope for the best ;-) */
2894 size_t sh_len
= strlen (shell
);
2896 /* exactly 3 arguments + NULL */
2897 new_argv
= xmalloc (4 * sizeof (char *));
2898 /* Exactly strlen(shell) + strlen("/c") + strlen(line) + 3 times
2899 the trailing '\0' */
2900 new_argv
[0] = xmalloc (sh_len
+ line_len
+ 5);
2901 memcpy (new_argv
[0], shell
, sh_len
+ 1);
2902 new_argv
[1] = new_argv
[0] + sh_len
+ 1;
2903 memcpy (new_argv
[1], "/c", 3);
2904 new_argv
[2] = new_argv
[1] + 3;
2905 memcpy (new_argv
[2], new_line
, line_len
+ 1);
2909 #elif defined(__MSDOS__)
2912 /* With MSDOS shells, we must construct the command line here
2913 instead of recursively calling ourselves, because we
2914 cannot backslash-escape the special characters (see above). */
2915 new_argv
= xmalloc (sizeof (char *));
2916 line_len
= strlen (new_line
) - shell_len
- sizeof (minus_c
) + 1;
2917 new_argv
[0] = xmalloc (line_len
+ 1);
2918 strncpy (new_argv
[0],
2919 new_line
+ shell_len
+ sizeof (minus_c
) - 1, line_len
);
2920 new_argv
[0][line_len
] = '\0';
2924 fatal (NILF
, _("%s (line %d) Bad shell context (!unixy && !batch_mode_shell)\n"),
2925 __FILE__
, __LINE__
);
2928 #endif /* ! AMIGA */
2934 /* Figure out the argument list necessary to run LINE as a command. Try to
2935 avoid using a shell. This routine handles only ' quoting, and " quoting
2936 when no backslash, $ or ` characters are seen in the quotes. Starting
2937 quotes may be escaped with a backslash. If any of the characters in
2938 sh_chars[] is seen, or any of the builtin commands listed in sh_cmds[]
2939 is the first word of a line, the shell is used.
2941 If RESTP is not NULL, *RESTP is set to point to the first newline in LINE.
2942 If *RESTP is NULL, newlines will be ignored.
2944 FILE is the target whose commands these are. It is used for
2945 variable expansion for $(SHELL) and $(IFS). */
2948 construct_command_argv (char *line
, char **restp
, struct file
*file
,
2949 int cmd_flags
, char **batch_filename_ptr
)
2963 && (isspace ((unsigned char)*cptr
)))
2968 && (!isspace((unsigned char)*cptr
)))
2973 argv
= xmalloc (argc
* sizeof (char *));
2982 && (isspace ((unsigned char)*cptr
)))
2986 DB (DB_JOBS
, ("argv[%d] = [%s]\n", argc
, cptr
));
2987 argv
[argc
++] = cptr
;
2989 && (!isspace((unsigned char)*cptr
)))
2996 /* Turn off --warn-undefined-variables while we expand SHELL and IFS. */
2997 int save
= warn_undefined_variables_flag
;
2998 warn_undefined_variables_flag
= 0;
3000 shell
= allocated_variable_expand_for_file ("$(SHELL)", file
);
3003 * Convert to forward slashes so that construct_command_argv_internal()
3007 char *p
= w32ify (shell
, 0);
3013 static const char *unixroot
= NULL
;
3014 static const char *last_shell
= "";
3015 static int init
= 0;
3018 unixroot
= getenv ("UNIXROOT");
3019 /* unixroot must be NULL or not empty */
3020 if (unixroot
&& unixroot
[0] == '\0') unixroot
= NULL
;
3024 /* if we have an unixroot drive and if shell is not default_shell
3025 (which means it's either cmd.exe or the test has already been
3026 performed) and if shell is an absolute path without drive letter,
3027 try whether it exists e.g.: if "/bin/sh" does not exist use
3028 "$UNIXROOT/bin/sh" instead. */
3029 if (unixroot
&& shell
&& strcmp (shell
, last_shell
) != 0
3030 && (shell
[0] == '/' || shell
[0] == '\\'))
3032 /* trying a new shell, check whether it exists */
3033 size_t size
= strlen (shell
);
3034 char *buf
= xmalloc (size
+ 7);
3035 memcpy (buf
, shell
, size
);
3036 memcpy (buf
+ size
, ".exe", 5); /* including the trailing '\0' */
3037 if (access (shell
, F_OK
) != 0 && access (buf
, F_OK
) != 0)
3039 /* try the same for the unixroot drive */
3040 memmove (buf
+ 2, buf
, size
+ 5);
3041 buf
[0] = unixroot
[0];
3042 buf
[1] = unixroot
[1];
3043 if (access (buf
, F_OK
) == 0)
3044 /* we have found a shell! */
3054 #endif /* __EMX__ */
3056 ifs
= allocated_variable_expand_for_file ("$(IFS)", file
);
3058 warn_undefined_variables_flag
= save
;
3061 argv
= construct_command_argv_internal (line
, restp
, shell
, ifs
,
3062 cmd_flags
, batch_filename_ptr
);
3070 #if !defined(HAVE_DUP2) && !defined(_AMIGA)
3072 dup2 (int old
, int new)
3087 #endif /* !HAPE_DUP2 && !_AMIGA */
3089 /* On VMS systems, include special VMS functions. */
3092 #include "vmsjobs.c"