fix red
[maemo-rb.git] / apps / codecs / libatrac / atrac3.c
blobdd00224e481d321f9abb7d373160b03a5f52d071
1 /*
2 * Atrac 3 compatible decoder
3 * Copyright (c) 2006-2008 Maxim Poliakovski
4 * Copyright (c) 2006-2008 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/atrac3.c
25 * Atrac 3 compatible decoder.
26 * This decoder handles Sony's ATRAC3 data.
28 * Container formats used to store atrac 3 data:
29 * RealMedia (.rm), RIFF WAV (.wav, .at3), Sony OpenMG (.oma, .aa3).
31 * To use this decoder, a calling application must supply the extradata
32 * bytes provided in the containers above.
35 #include <math.h>
36 #include <stddef.h>
37 #include <stdio.h>
39 #include "atrac3.h"
40 #include "atrac3data.h"
41 #include "atrac3data_fixed.h"
42 #include "fixp_math.h"
43 #include "../lib/mdct2.h"
45 #define JOINT_STEREO 0x12
46 #define STEREO 0x2
48 #ifdef ROCKBOX
49 #undef DEBUGF
50 #define DEBUGF(...)
51 #endif /* ROCKBOX */
53 /* FFMAX/MIN/SWAP and av_clip were taken from libavutil/common.h */
54 #define FFMAX(a,b) ((a) > (b) ? (a) : (b))
55 #define FFMIN(a,b) ((a) > (b) ? (b) : (a))
56 #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
58 /**
59 * Clips a signed integer value into the -32768,32767 range.
61 static inline int16_t av_clip_int16(int a)
63 if ((a+32768) & ~65535) return (a>>31) ^ 32767;
64 else return a;
67 static int32_t qmf_window[48] IBSS_ATTR;
68 static VLC spectral_coeff_tab[7];
69 static channel_unit channel_units[2];
71 /**
72 * Matrixing within quadrature mirror synthesis filter.
74 * @param p3 output buffer
75 * @param inlo lower part of spectrum
76 * @param inhi higher part of spectrum
77 * @param nIn size of spectrum buffer
80 #if defined(CPU_ARM)
81 extern void
82 atrac3_iqmf_matrixing(int32_t *p3,
83 int32_t *inlo,
84 int32_t *inhi,
85 unsigned int nIn);
86 #else
87 static inline void
88 atrac3_iqmf_matrixing(int32_t *p3,
89 int32_t *inlo,
90 int32_t *inhi,
91 unsigned int nIn)
93 uint32_t i;
94 for(i=0; i<nIn; i+=2){
95 p3[2*i+0] = inlo[i ] + inhi[i ];
96 p3[2*i+1] = inlo[i ] - inhi[i ];
97 p3[2*i+2] = inlo[i+1] + inhi[i+1];
98 p3[2*i+3] = inlo[i+1] - inhi[i+1];
101 #endif
104 * Matrixing within quadrature mirror synthesis filter.
106 * @param out output buffer
107 * @param in input buffer
108 * @param win windowing coefficients
109 * @param nIn size of spectrum buffer
112 #if defined(CPU_ARM)
113 extern void
114 atrac3_iqmf_dewindowing(int32_t *out,
115 int32_t *in,
116 int32_t *win,
117 unsigned int nIn);
118 #else
119 static inline void
120 atrac3_iqmf_dewindowing(int32_t *out,
121 int32_t *in,
122 int32_t *win,
123 unsigned int nIn)
125 int32_t i, j, s1, s2;
127 for (j = nIn; j != 0; j--) {
128 /* i=0 */
129 s1 = fixmul31(win[0], in[0]);
130 s2 = fixmul31(win[1], in[1]);
132 /* i=2..46 */
133 for (i = 2; i < 48; i += 2) {
134 s1 += fixmul31(win[i ], in[i ]);
135 s2 += fixmul31(win[i+1], in[i+1]);
138 out[0] = s2;
139 out[1] = s1;
141 in += 2;
142 out += 2;
145 #endif
148 * IMDCT windowing.
150 * @param buffer sample buffer
151 * @param win window coefficients
154 static inline void
155 atrac3_imdct_windowing(int32_t *buffer,
156 const int32_t *win)
158 int32_t i;
159 /* win[0..127] = win[511..384], win[128..383] = 1 */
160 for(i = 0; i<128; i++) {
161 buffer[ i] = fixmul31(win[i], buffer[ i]);
162 buffer[511-i] = fixmul31(win[i], buffer[511-i]);
167 * Quadrature mirror synthesis filter.
169 * @param inlo lower part of spectrum
170 * @param inhi higher part of spectrum
171 * @param nIn size of spectrum buffer
172 * @param pOut out buffer
173 * @param delayBuf delayBuf buffer
174 * @param temp temp buffer
177 static void iqmf (int32_t *inlo, int32_t *inhi, unsigned int nIn, int32_t *pOut, int32_t *delayBuf, int32_t *temp)
179 /* Restore the delay buffer */
180 memcpy(temp, delayBuf, 46*sizeof(int32_t));
182 /* loop1: matrixing */
183 atrac3_iqmf_matrixing(temp + 46, inlo, inhi, nIn);
185 /* loop2: dewindowing */
186 atrac3_iqmf_dewindowing(pOut, temp, qmf_window, nIn);
188 /* Save the delay buffer */
189 memcpy(delayBuf, temp + (nIn << 1), 46*sizeof(int32_t));
193 * Regular 512 points IMDCT without overlapping, with the exception of the swapping of odd bands
194 * caused by the reverse spectra of the QMF.
196 * @param pInput float input
197 * @param pOutput float output
198 * @param odd_band 1 if the band is an odd band
201 static void IMLT(int32_t *pInput, int32_t *pOutput, int odd_band)
203 int i;
204 if (odd_band) {
206 * Reverse the odd bands before IMDCT, this is an effect of the QMF transform
207 * or it gives better compression to do it this way.
208 * FIXME: It should be possible to handle this in ff_imdct_calc
209 * for that to happen a modification of the prerotation step of
210 * all SIMD code and C code is needed.
211 * Or fix the functions before so they generate a pre reversed spectrum.
214 for (i=0; i<128; i++)
215 FFSWAP(int32_t, pInput[i], pInput[255-i]);
218 /* Apply the imdct. */
219 mdct_backward(512, pInput, pOutput);
221 /* Windowing. */
222 atrac3_imdct_windowing(pOutput, window_lookup);
227 * Atrac 3 indata descrambling, only used for data coming from the rm container
229 * @param in pointer to 8 bit array of indata
230 * @param bits amount of bits
231 * @param out pointer to 8 bit array of outdata
234 static int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
235 int i, off;
236 uint32_t c;
237 const uint32_t* buf;
238 uint32_t* obuf = (uint32_t*) out;
240 #if ((defined(TEST) || defined(SIMULATOR)) && !defined(CPU_ARM))
241 off = 0; //no check for memory alignment of inbuffer
242 #else
243 off = (intptr_t)inbuffer & 3;
244 #endif /* TEST */
245 buf = (const uint32_t*) (inbuffer - off);
247 c = be2me_32((0x537F6103 >> (off*8)) | (0x537F6103 << (32-(off*8))));
248 bytes += 3 + off;
249 for (i = 0; i < bytes/4; i++)
250 obuf[i] = c ^ buf[i];
252 return off;
256 static void init_atrac3_transforms(void) {
257 int32_t s;
258 int i;
260 /* Generate the mdct window, for details see
261 * http://wiki.multimedia.cx/index.php?title=RealAudio_atrc#Windows */
263 /* mdct window had been generated and saved as a lookup table in atrac3data_fixed.h */
265 /* Generate the QMF window. */
266 for (i=0 ; i<24; i++) {
267 s = qmf_48tap_half_fix[i] << 1;
268 qmf_window[i] = s;
269 qmf_window[47 - i] = s;
274 * Mantissa decoding
276 * @param gb the GetBit context
277 * @param selector what table is the output values coded with
278 * @param codingFlag constant length coding or variable length coding
279 * @param mantissas mantissa output table
280 * @param numCodes amount of values to get
283 static void readQuantSpectralCoeffs (GetBitContext *gb, int selector, int codingFlag, int* mantissas, int numCodes)
285 int numBits, cnt, code, huffSymb;
287 if (selector == 1)
288 numCodes /= 2;
290 if (codingFlag != 0) {
291 /* constant length coding (CLC) */
292 numBits = CLCLengthTab[selector];
294 if (selector > 1) {
295 for (cnt = 0; cnt < numCodes; cnt++) {
296 if (numBits)
297 code = get_sbits(gb, numBits);
298 else
299 code = 0;
300 mantissas[cnt] = code;
302 } else {
303 for (cnt = 0; cnt < numCodes; cnt++) {
304 if (numBits)
305 code = get_bits(gb, numBits); //numBits is always 4 in this case
306 else
307 code = 0;
308 mantissas[cnt*2] = seTab_0[code >> 2];
309 mantissas[cnt*2+1] = seTab_0[code & 3];
312 } else {
313 /* variable length coding (VLC) */
314 if (selector != 1) {
315 for (cnt = 0; cnt < numCodes; cnt++) {
316 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
317 huffSymb += 1;
318 code = huffSymb >> 1;
319 if (huffSymb & 1)
320 code = -code;
321 mantissas[cnt] = code;
323 } else {
324 for (cnt = 0; cnt < numCodes; cnt++) {
325 huffSymb = get_vlc2(gb, spectral_coeff_tab[selector-1].table, spectral_coeff_tab[selector-1].bits, 3);
326 mantissas[cnt*2] = decTable1[huffSymb*2];
327 mantissas[cnt*2+1] = decTable1[huffSymb*2+1];
334 * Restore the quantized band spectrum coefficients
336 * @param gb the GetBit context
337 * @param pOut decoded band spectrum
338 * @return outSubbands subband counter, fix for broken specification/files
341 static int decodeSpectrum (GetBitContext *gb, int32_t *pOut)
343 int numSubbands, codingMode, cnt, first, last, subbWidth, *pIn;
344 int subband_vlc_index[32], SF_idxs[32];
345 int mantissas[128];
346 int32_t SF;
348 numSubbands = get_bits(gb, 5); // number of coded subbands
349 codingMode = get_bits1(gb); // coding Mode: 0 - VLC/ 1-CLC
351 /* Get the VLC selector table for the subbands, 0 means not coded. */
352 for (cnt = 0; cnt <= numSubbands; cnt++)
353 subband_vlc_index[cnt] = get_bits(gb, 3);
355 /* Read the scale factor indexes from the stream. */
356 for (cnt = 0; cnt <= numSubbands; cnt++) {
357 if (subband_vlc_index[cnt] != 0)
358 SF_idxs[cnt] = get_bits(gb, 6);
361 for (cnt = 0; cnt <= numSubbands; cnt++) {
362 first = subbandTab[cnt];
363 last = subbandTab[cnt+1];
365 subbWidth = last - first;
367 if (subband_vlc_index[cnt] != 0) {
368 /* Decode spectral coefficients for this subband. */
369 /* TODO: This can be done faster is several blocks share the
370 * same VLC selector (subband_vlc_index) */
371 readQuantSpectralCoeffs (gb, subband_vlc_index[cnt], codingMode, mantissas, subbWidth);
373 /* Decode the scale factor for this subband. */
374 SF = fixmul31(SFTable_fixed[SF_idxs[cnt]], iMaxQuant_fix[subband_vlc_index[cnt]]);
376 /* Inverse quantize the coefficients. */
377 for (pIn=mantissas ; first<last; first++, pIn++)
378 pOut[first] = fixmul16(*pIn, SF);
379 } else {
380 /* This subband was not coded, so zero the entire subband. */
381 memset(pOut+first, 0, subbWidth*sizeof(int32_t));
385 /* Clear the subbands that were not coded. */
386 first = subbandTab[cnt];
387 memset(pOut+first, 0, (1024 - first) * sizeof(int32_t));
388 return numSubbands;
392 * Restore the quantized tonal components
394 * @param gb the GetBit context
395 * @param pComponent tone component
396 * @param numBands amount of coded bands
399 static int decodeTonalComponents (GetBitContext *gb, tonal_component *pComponent, int numBands)
401 int i,j,k,cnt;
402 int components, coding_mode_selector, coding_mode, coded_values_per_component;
403 int sfIndx, coded_values, max_coded_values, quant_step_index, coded_components;
404 int band_flags[4], mantissa[8];
405 int32_t *pCoef;
406 int32_t scalefactor;
407 int component_count = 0;
409 components = get_bits(gb,5);
411 /* no tonal components */
412 if (components == 0)
413 return 0;
415 coding_mode_selector = get_bits(gb,2);
416 if (coding_mode_selector == 2)
417 return -1;
419 coding_mode = coding_mode_selector & 1;
421 for (i = 0; i < components; i++) {
422 for (cnt = 0; cnt <= numBands; cnt++)
423 band_flags[cnt] = get_bits1(gb);
425 coded_values_per_component = get_bits(gb,3);
427 quant_step_index = get_bits(gb,3);
428 if (quant_step_index <= 1)
429 return -1;
431 if (coding_mode_selector == 3)
432 coding_mode = get_bits1(gb);
434 for (j = 0; j < (numBands + 1) * 4; j++) {
435 if (band_flags[j >> 2] == 0)
436 continue;
438 coded_components = get_bits(gb,3);
440 for (k=0; k<coded_components; k++) {
441 sfIndx = get_bits(gb,6);
442 pComponent[component_count].pos = j * 64 + (get_bits(gb,6));
443 max_coded_values = 1024 - pComponent[component_count].pos;
444 coded_values = coded_values_per_component + 1;
445 coded_values = FFMIN(max_coded_values,coded_values);
447 scalefactor = fixmul31(SFTable_fixed[sfIndx], iMaxQuant_fix[quant_step_index]);
449 readQuantSpectralCoeffs(gb, quant_step_index, coding_mode, mantissa, coded_values);
451 pComponent[component_count].numCoefs = coded_values;
453 /* inverse quant */
454 pCoef = pComponent[component_count].coef;
455 for (cnt = 0; cnt < coded_values; cnt++)
456 pCoef[cnt] = fixmul16(mantissa[cnt], scalefactor);
458 component_count++;
463 return component_count;
467 * Decode gain parameters for the coded bands
469 * @param gb the GetBit context
470 * @param pGb the gainblock for the current band
471 * @param numBands amount of coded bands
474 static int decodeGainControl (GetBitContext *gb, gain_block *pGb, int numBands)
476 int i, cf, numData;
477 int *pLevel, *pLoc;
479 gain_info *pGain = pGb->gBlock;
481 for (i=0 ; i<=numBands; i++)
483 numData = get_bits(gb,3);
484 pGain[i].num_gain_data = numData;
485 pLevel = pGain[i].levcode;
486 pLoc = pGain[i].loccode;
488 for (cf = 0; cf < numData; cf++){
489 pLevel[cf]= get_bits(gb,4);
490 pLoc [cf]= get_bits(gb,5);
491 if(cf && pLoc[cf] <= pLoc[cf-1])
492 return -1;
496 /* Clear the unused blocks. */
497 for (; i<4 ; i++)
498 pGain[i].num_gain_data = 0;
500 return 0;
504 * Apply gain parameters and perform the MDCT overlapping part
506 * @param pIn input float buffer
507 * @param pPrev previous float buffer to perform overlap against
508 * @param pOut output float buffer
509 * @param pGain1 current band gain info
510 * @param pGain2 next band gain info
513 static void gainCompensateAndOverlap (int32_t *pIn, int32_t *pPrev, int32_t *pOut, gain_info *pGain1, gain_info *pGain2)
515 /* gain compensation function */
516 int32_t gain1, gain2, gain_inc;
517 int cnt, numdata, nsample, startLoc, endLoc;
520 if (pGain2->num_gain_data == 0)
521 gain1 = ONE_16;
522 else
523 gain1 = gain_tab1[pGain2->levcode[0]];
525 if (pGain1->num_gain_data == 0) {
526 for (cnt = 0; cnt < 256; cnt++)
527 pOut[cnt] = fixmul16(pIn[cnt], gain1) + pPrev[cnt];
528 } else {
529 numdata = pGain1->num_gain_data;
530 pGain1->loccode[numdata] = 32;
531 pGain1->levcode[numdata] = 4;
533 nsample = 0; // current sample = 0
535 for (cnt = 0; cnt < numdata; cnt++) {
536 startLoc = pGain1->loccode[cnt] * 8;
537 endLoc = startLoc + 8;
539 gain2 = gain_tab1[pGain1->levcode[cnt]];
540 gain_inc = gain_tab2[(pGain1->levcode[cnt+1] - pGain1->levcode[cnt])+15];
542 /* interpolate */
543 for (; nsample < startLoc; nsample++)
544 pOut[nsample] = fixmul16((fixmul16(pIn[nsample], gain1) + pPrev[nsample]), gain2);
546 /* interpolation is done over eight samples */
547 for (; nsample < endLoc; nsample++) {
548 pOut[nsample] = fixmul16((fixmul16(pIn[nsample], gain1) + pPrev[nsample]),gain2);
549 gain2 = fixmul16(gain2, gain_inc);
553 for (; nsample < 256; nsample++)
554 pOut[nsample] = fixmul16(pIn[nsample], gain1) + pPrev[nsample];
557 /* Delay for the overlapping part. */
558 memcpy(pPrev, &pIn[256], 256*sizeof(int32_t));
562 * Combine the tonal band spectrum and regular band spectrum
563 * Return position of the last tonal coefficient
566 * @param pSpectrum output spectrum buffer
567 * @param numComponents amount of tonal components
568 * @param pComponent tonal components for this band
571 static int addTonalComponents (int32_t *pSpectrum, int numComponents, tonal_component *pComponent)
573 int cnt, i, lastPos = -1;
574 int32_t *pOut;
575 int32_t *pIn;
577 for (cnt = 0; cnt < numComponents; cnt++){
578 lastPos = FFMAX(pComponent[cnt].pos + pComponent[cnt].numCoefs, lastPos);
579 pIn = pComponent[cnt].coef;
580 pOut = &(pSpectrum[pComponent[cnt].pos]);
582 for (i=0 ; i<pComponent[cnt].numCoefs ; i++)
583 pOut[i] += pIn[i];
586 return lastPos;
590 #define INTERPOLATE(old,new,nsample) ((old*ONE_16) + fixmul16(((nsample*ONE_16)>>3), (((new) - (old))*ONE_16)))
592 static void reverseMatrixing(int32_t *su1, int32_t *su2, int *pPrevCode, int *pCurrCode)
594 int i, band, nsample, s1, s2;
595 int32_t c1, c2;
596 int32_t mc1_l, mc1_r, mc2_l, mc2_r;
598 for (i=0,band = 0; band < 4*256; band+=256,i++) {
599 s1 = pPrevCode[i];
600 s2 = pCurrCode[i];
601 nsample = 0;
603 if (s1 != s2) {
604 /* Selector value changed, interpolation needed. */
605 mc1_l = matrixCoeffs_fix[s1<<1];
606 mc1_r = matrixCoeffs_fix[(s1<<1)+1];
607 mc2_l = matrixCoeffs_fix[s2<<1];
608 mc2_r = matrixCoeffs_fix[(s2<<1)+1];
610 /* Interpolation is done over the first eight samples. */
611 for(; nsample < 8; nsample++) {
612 c1 = su1[band+nsample];
613 c2 = su2[band+nsample];
614 c2 = fixmul16(c1, INTERPOLATE(mc1_l, mc2_l, nsample)) + fixmul16(c2, INTERPOLATE(mc1_r, mc2_r, nsample));
615 su1[band+nsample] = c2;
616 su2[band+nsample] = (c1 << 1) - c2;
620 /* Apply the matrix without interpolation. */
621 switch (s2) {
622 case 0: /* M/S decoding */
623 for (; nsample < 256; nsample++) {
624 c1 = su1[band+nsample];
625 c2 = su2[band+nsample];
626 su1[band+nsample] = c2 << 1;
627 su2[band+nsample] = (c1 - c2) << 1;
629 break;
631 case 1:
632 for (; nsample < 256; nsample++) {
633 c1 = su1[band+nsample];
634 c2 = su2[band+nsample];
635 su1[band+nsample] = (c1 + c2) << 1;
636 su2[band+nsample] = -1*(c2 << 1);
638 break;
639 case 2:
640 case 3:
641 for (; nsample < 256; nsample++) {
642 c1 = su1[band+nsample];
643 c2 = su2[band+nsample];
644 su1[band+nsample] = c1 + c2;
645 su2[band+nsample] = c1 - c2;
647 break;
648 default:
649 //assert(0);
650 break;
655 static void getChannelWeights (int indx, int flag, int32_t ch[2]){
656 if (indx == 7) {
657 ch[0] = ONE_16;
658 ch[1] = ONE_16;
659 } else {
660 ch[0] = fixdiv16(((indx & 7)*ONE_16), 7*ONE_16);
661 ch[1] = fastSqrt((ONE_16 << 1) - fixmul16(ch[0], ch[0]));
662 if(flag)
663 FFSWAP(int32_t, ch[0], ch[1]);
667 static void channelWeighting (int32_t *su1, int32_t *su2, int *p3)
669 int band, nsample;
670 /* w[x][y] y=0 is left y=1 is right */
671 int32_t w[2][2];
673 if (p3[1] != 7 || p3[3] != 7){
674 getChannelWeights(p3[1], p3[0], w[0]);
675 getChannelWeights(p3[3], p3[2], w[1]);
677 for(band = 1; band < 4; band++) {
678 /* scale the channels by the weights */
679 for(nsample = 0; nsample < 8; nsample++) {
680 su1[band*256+nsample] = fixmul16(su1[band*256+nsample], INTERPOLATE(w[0][0], w[0][1], nsample));
681 su2[band*256+nsample] = fixmul16(su2[band*256+nsample], INTERPOLATE(w[1][0], w[1][1], nsample));
684 for(; nsample < 256; nsample++) {
685 su1[band*256+nsample] = fixmul16(su1[band*256+nsample], w[1][0]);
686 su2[band*256+nsample] = fixmul16(su2[band*256+nsample], w[1][1]);
694 * Decode a Sound Unit
696 * @param gb the GetBit context
697 * @param pSnd the channel unit to be used
698 * @param pOut the decoded samples before IQMF in float representation
699 * @param channelNum channel number
700 * @param codingMode the coding mode (JOINT_STEREO or regular stereo/mono)
704 static int decodeChannelSoundUnit (GetBitContext *gb, channel_unit *pSnd, int32_t *pOut, int channelNum, int codingMode)
706 int band, result=0, numSubbands, lastTonal, numBands;
707 if (codingMode == JOINT_STEREO && channelNum == 1) {
708 if (get_bits(gb,2) != 3) {
709 DEBUGF("JS mono Sound Unit id != 3.\n");
710 return -1;
712 } else {
713 if (get_bits(gb,6) != 0x28) {
714 DEBUGF("Sound Unit id != 0x28.\n");
715 return -1;
719 /* number of coded QMF bands */
720 pSnd->bandsCoded = get_bits(gb,2);
722 result = decodeGainControl (gb, &(pSnd->gainBlock[pSnd->gcBlkSwitch]), pSnd->bandsCoded);
723 if (result) return result;
725 pSnd->numComponents = decodeTonalComponents (gb, pSnd->components, pSnd->bandsCoded);
726 if (pSnd->numComponents == -1) return -1;
728 numSubbands = decodeSpectrum (gb, pSnd->spectrum);
730 /* Merge the decoded spectrum and tonal components. */
731 lastTonal = addTonalComponents (pSnd->spectrum, pSnd->numComponents, pSnd->components);
734 /* calculate number of used MLT/QMF bands according to the amount of coded spectral lines */
735 numBands = (subbandTab[numSubbands] - 1) >> 8;
736 if (lastTonal >= 0)
737 numBands = FFMAX((lastTonal + 256) >> 8, numBands);
740 /* Reconstruct time domain samples. */
741 for (band=0; band<4; band++) {
742 /* Perform the IMDCT step without overlapping. */
743 if (band <= numBands) {
744 IMLT(&(pSnd->spectrum[band*256]), pSnd->IMDCT_buf, band&1);
745 } else
746 memset(pSnd->IMDCT_buf, 0, 512 * sizeof(int32_t));
748 /* gain compensation and overlapping */
749 gainCompensateAndOverlap (pSnd->IMDCT_buf, &(pSnd->prevFrame[band*256]), &(pOut[band*256]),
750 &((pSnd->gainBlock[1 - (pSnd->gcBlkSwitch)]).gBlock[band]),
751 &((pSnd->gainBlock[pSnd->gcBlkSwitch]).gBlock[band]));
754 /* Swap the gain control buffers for the next frame. */
755 pSnd->gcBlkSwitch ^= 1;
757 return 0;
761 * Frame handling
763 * @param q Atrac3 private context
764 * @param databuf the input data
767 static int decodeFrame(ATRAC3Context *q, const uint8_t* databuf, int off)
769 int result, i;
770 int32_t *p1, *p2, *p3, *p4;
771 uint8_t *ptr1;
773 if (q->codingMode == JOINT_STEREO) {
775 /* channel coupling mode */
776 /* decode Sound Unit 1 */
777 init_get_bits(&q->gb,databuf,q->bits_per_frame);
779 result = decodeChannelSoundUnit(&q->gb, q->pUnits, q->outSamples, 0, JOINT_STEREO);
780 if (result != 0)
781 return (result);
783 /* Framedata of the su2 in the joint-stereo mode is encoded in
784 * reverse byte order so we need to swap it first. */
785 if (databuf == q->decoded_bytes_buffer) {
786 uint8_t *ptr2 = q->decoded_bytes_buffer+q->bytes_per_frame-1;
787 ptr1 = q->decoded_bytes_buffer;
788 for (i = 0; i < (q->bytes_per_frame/2); i++, ptr1++, ptr2--) {
789 FFSWAP(uint8_t,*ptr1,*ptr2);
791 } else {
792 const uint8_t *ptr2 = databuf+q->bytes_per_frame-1;
793 for (i = 0; i < q->bytes_per_frame; i++)
794 q->decoded_bytes_buffer[i] = *ptr2--;
797 /* Skip the sync codes (0xF8). */
798 ptr1 = q->decoded_bytes_buffer;
799 for (i = 4; *ptr1 == 0xF8; i++, ptr1++) {
800 if (i >= q->bytes_per_frame)
801 return -1;
805 /* set the bitstream reader at the start of the second Sound Unit*/
806 init_get_bits(&q->gb,ptr1,q->bits_per_frame);
808 /* Fill the Weighting coeffs delay buffer */
809 memmove(q->weighting_delay,&(q->weighting_delay[2]),4*sizeof(int));
810 q->weighting_delay[4] = get_bits1(&q->gb);
811 q->weighting_delay[5] = get_bits(&q->gb,3);
813 for (i = 0; i < 4; i++) {
814 q->matrix_coeff_index_prev[i] = q->matrix_coeff_index_now[i];
815 q->matrix_coeff_index_now[i] = q->matrix_coeff_index_next[i];
816 q->matrix_coeff_index_next[i] = get_bits(&q->gb,2);
819 /* Decode Sound Unit 2. */
820 result = decodeChannelSoundUnit(&q->gb, &q->pUnits[1], &q->outSamples[1024], 1, JOINT_STEREO);
821 if (result != 0)
822 return (result);
824 /* Reconstruct the channel coefficients. */
825 reverseMatrixing(q->outSamples, &q->outSamples[1024], q->matrix_coeff_index_prev, q->matrix_coeff_index_now);
827 channelWeighting(q->outSamples, &q->outSamples[1024], q->weighting_delay);
829 } else {
830 /* normal stereo mode or mono */
831 /* Decode the channel sound units. */
832 for (i=0 ; i<q->channels ; i++) {
834 /* Set the bitstream reader at the start of a channel sound unit. */
835 init_get_bits(&q->gb, databuf+((i*q->bytes_per_frame)/q->channels)+off, (q->bits_per_frame)/q->channels);
837 result = decodeChannelSoundUnit(&q->gb, &q->pUnits[i], &q->outSamples[i*1024], i, q->codingMode);
838 if (result != 0)
839 return (result);
843 /* Apply the iQMF synthesis filter. */
844 p1= q->outSamples;
845 for (i=0 ; i<q->channels ; i++) {
846 p2= p1+256;
847 p3= p2+256;
848 p4= p3+256;
849 iqmf (p1, p2, 256, p1, q->pUnits[i].delayBuf1, q->tempBuf);
850 iqmf (p4, p3, 256, p3, q->pUnits[i].delayBuf2, q->tempBuf);
851 iqmf (p1, p3, 512, p1, q->pUnits[i].delayBuf3, q->tempBuf);
852 p1 +=1024;
855 return 0;
860 * Atrac frame decoding
862 * @param rmctx pointer to the AVCodecContext
865 int atrac3_decode_frame(RMContext *rmctx, ATRAC3Context *q,
866 void *data, int *data_size,
867 const uint8_t *buf, int buf_size) {
868 int result = 0, off = 0, i;
869 const uint8_t* databuf;
870 int16_t* samples = data;
872 if (buf_size < rmctx->block_align)
873 return buf_size;
875 /* Check if we need to descramble and what buffer to pass on. */
876 if (q->scrambled_stream) {
877 off = decode_bytes(buf, q->decoded_bytes_buffer, rmctx->block_align);
878 databuf = q->decoded_bytes_buffer;
879 } else {
880 databuf = buf;
883 result = decodeFrame(q, databuf, off);
885 if (result != 0) {
886 DEBUGF("Frame decoding error!\n");
887 return -1;
890 if (q->channels == 1) {
891 /* mono */
892 for (i = 0; i<1024; i++)
893 samples[i] = av_clip_int16(q->outSamples[i]);
894 *data_size = 1024 * sizeof(int16_t);
895 } else {
896 /* stereo */
897 for (i = 0; i < 1024; i++) {
898 samples[i*2] = av_clip_int16(q->outSamples[i]);
899 samples[i*2+1] = av_clip_int16(q->outSamples[1024+i]);
901 *data_size = 2048 * sizeof(int16_t);
904 return rmctx->block_align;
909 * Atrac3 initialization
911 * @param rmctx pointer to the RMContext
914 int atrac3_decode_init(ATRAC3Context *q, RMContext *rmctx)
916 int i;
917 uint8_t *edata_ptr = rmctx->codec_extradata;
918 static VLC_TYPE atrac3_vlc_table[4096][2];
919 static int vlcs_initialized = 0;
921 /* Take data from the AVCodecContext (RM container). */
922 q->sample_rate = rmctx->sample_rate;
923 q->channels = rmctx->nb_channels;
924 q->bit_rate = rmctx->bit_rate;
925 q->bits_per_frame = rmctx->block_align * 8;
926 q->bytes_per_frame = rmctx->block_align;
928 /* Take care of the codec-specific extradata. */
929 if (rmctx->extradata_size == 14) {
930 /* Parse the extradata, WAV format */
931 DEBUGF("[0-1] %d\n",rm_get_uint16le(&edata_ptr[0])); //Unknown value always 1
932 q->samples_per_channel = rm_get_uint32le(&edata_ptr[2]);
933 q->codingMode = rm_get_uint16le(&edata_ptr[6]);
934 DEBUGF("[8-9] %d\n",rm_get_uint16le(&edata_ptr[8])); //Dupe of coding mode
935 q->frame_factor = rm_get_uint16le(&edata_ptr[10]); //Unknown always 1
936 DEBUGF("[12-13] %d\n",rm_get_uint16le(&edata_ptr[12])); //Unknown always 0
938 /* setup */
939 q->samples_per_frame = 1024 * q->channels;
940 q->atrac3version = 4;
941 q->delay = 0x88E;
942 if (q->codingMode)
943 q->codingMode = JOINT_STEREO;
944 else
945 q->codingMode = STEREO;
946 q->scrambled_stream = 0;
948 if ((q->bytes_per_frame == 96*q->channels*q->frame_factor) || (q->bytes_per_frame == 152*q->channels*q->frame_factor) || (q->bytes_per_frame == 192*q->channels*q->frame_factor)) {
949 } else {
950 DEBUGF("Unknown frame/channel/frame_factor configuration %d/%d/%d\n", q->bytes_per_frame, q->channels, q->frame_factor);
951 return -1;
954 } else if (rmctx->extradata_size == 10) {
955 /* Parse the extradata, RM format. */
956 q->atrac3version = rm_get_uint32be(&edata_ptr[0]);
957 q->samples_per_frame = rm_get_uint16be(&edata_ptr[4]);
958 q->delay = rm_get_uint16be(&edata_ptr[6]);
959 q->codingMode = rm_get_uint16be(&edata_ptr[8]);
961 q->samples_per_channel = q->samples_per_frame / q->channels;
962 q->scrambled_stream = 1;
964 } else {
965 DEBUGF("Unknown extradata size %d.\n",rmctx->extradata_size);
967 /* Check the extradata. */
969 if (q->atrac3version != 4) {
970 DEBUGF("Version %d != 4.\n",q->atrac3version);
971 return -1;
974 if (q->samples_per_frame != 1024 && q->samples_per_frame != 2048) {
975 DEBUGF("Unknown amount of samples per frame %d.\n",q->samples_per_frame);
976 return -1;
979 if (q->delay != 0x88E) {
980 DEBUGF("Unknown amount of delay %x != 0x88E.\n",q->delay);
981 return -1;
984 if (q->codingMode == STEREO) {
985 DEBUGF("Normal stereo detected.\n");
986 } else if (q->codingMode == JOINT_STEREO) {
987 DEBUGF("Joint stereo detected.\n");
988 } else {
989 DEBUGF("Unknown channel coding mode %x!\n",q->codingMode);
990 return -1;
993 if (rmctx->nb_channels <= 0 || rmctx->nb_channels > 2 /*|| ((rmctx->channels * 1024) != q->samples_per_frame)*/) {
994 DEBUGF("Channel configuration error!\n");
995 return -1;
999 if(rmctx->block_align >= UINT16_MAX/2)
1000 return -1;
1003 /* Initialize the VLC tables. */
1004 if (!vlcs_initialized) {
1005 for (i=0 ; i<7 ; i++) {
1006 spectral_coeff_tab[i].table = &atrac3_vlc_table[atrac3_vlc_offs[i]];
1007 spectral_coeff_tab[i].table_allocated = atrac3_vlc_offs[i + 1] - atrac3_vlc_offs[i];
1008 init_vlc (&spectral_coeff_tab[i], 9, huff_tab_sizes[i],
1009 huff_bits[i], 1, 1,
1010 huff_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
1013 vlcs_initialized = 1;
1017 init_atrac3_transforms();
1019 /* init the joint-stereo decoding data */
1020 q->weighting_delay[0] = 0;
1021 q->weighting_delay[1] = 7;
1022 q->weighting_delay[2] = 0;
1023 q->weighting_delay[3] = 7;
1024 q->weighting_delay[4] = 0;
1025 q->weighting_delay[5] = 7;
1027 for (i=0; i<4; i++) {
1028 q->matrix_coeff_index_prev[i] = 3;
1029 q->matrix_coeff_index_now[i] = 3;
1030 q->matrix_coeff_index_next[i] = 3;
1033 q->pUnits = channel_units;
1035 return 0;