Add proper svn:mime-type
[maemo-rb.git] / apps / plugins / rocklife.c
blob4b00d7e18ac0ac72b5a2b51d6a324a72573325ec
1 /***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2007 Matthias Wientapper
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
23 * This is an implementatino of Conway's Game of Life
25 * from http://en.wikipedia.org/wiki/Conway's_Game_of_Life:
27 * Rules
29 * The universe of the Game of Life is an infinite two-dimensional
30 * orthogonal grid of square cells, each of which is in one of two
31 * possible states, live or dead. Every cell interacts with its eight
32 * neighbours, which are the cells that are directly horizontally,
33 * vertically, or diagonally adjacent. At each step in time, the
34 * following transitions occur:
36 * 1. Any live cell with fewer than two live neighbours dies, as if by
37 * loneliness.
39 * 2. Any live cell with more than three live neighbours dies, as if
40 * by overcrowding.
42 * 3. Any live cell with two or three live neighbours lives,
43 * unchanged, to the next generation.
45 * 4. Any dead cell with exactly three live neighbours comes to life.
47 * The initial pattern constitutes the first generation of the
48 * system. The second generation is created by applying the above
49 * rules simultaneously to every cell in the first generation --
50 * births and deaths happen simultaneously, and the discrete moment at
51 * which this happens is sometimes called a tick. (In other words,
52 * each generation is based entirely on the one before.) The rules
53 * continue to be applied repeatedly to create further generations.
57 * TODO:
58 * - nicer colours for pixels with respect to age
59 * - editor for start patterns
60 * - probably tons of speed-up opportunities
63 #include "plugin.h"
64 #include "lib/pluginlib_actions.h"
65 #include "lib/helper.h"
69 #define ROCKLIFE_PLAY_PAUSE PLA_SELECT
70 #define ROCKLIFE_INIT PLA_DOWN
71 #define ROCKLIFE_NEXT PLA_RIGHT
72 #define ROCKLIFE_NEXT_REP PLA_RIGHT_REPEAT
73 #define ROCKLIFE_QUIT PLA_CANCEL
74 #define ROCKLIFE_STATUS PLA_LEFT
76 #define PATTERN_RANDOM 0
77 #define PATTERN_GROWTH_1 1
78 #define PATTERN_GROWTH_2 2
79 #define PATTERN_ACORN 3
80 #define PATTERN_GLIDER_GUN 4
82 const struct button_mapping *plugin_contexts[]
83 = {pla_main_ctx};
85 #define GRID_W LCD_WIDTH
86 #define GRID_H LCD_HEIGHT
88 unsigned char grid_a[GRID_W][GRID_H];
89 unsigned char grid_b[GRID_W][GRID_H];
90 int generation = 0;
91 int population = 0;
92 int status_line = 0;
95 static inline bool is_valid_cell(int x, int y) {
96 return (x >= 0 && x < GRID_W
97 && y >= 0 && y < GRID_H);
100 static inline void set_cell_age(int x, int y, unsigned char age, char *pgrid) {
101 pgrid[x+y*GRID_W] = age;
104 static inline void set_cell(int x, int y, char *pgrid) {
105 set_cell_age(x, y, 1, pgrid);
108 static inline unsigned char get_cell(int x, int y, char *pgrid) {
109 if (x < 0)
110 x += GRID_W;
111 else if (x >= GRID_W)
112 x -= GRID_W;
114 if (y < 0)
115 y += GRID_H;
116 else if (y >= GRID_H)
117 y -= GRID_H;
119 return pgrid[x+y*GRID_W];
122 /* clear grid */
123 void init_grid(char *pgrid){
124 memset(pgrid, 0, GRID_W * GRID_H);
127 /*fill grid with pattern from file (viewer mode)*/
128 static bool load_cellfile(const char *file, char *pgrid){
129 int fd;
130 fd = rb->open(file, O_RDONLY);
131 if (fd<0)
132 return false;
134 init_grid(pgrid);
136 char c;
137 int nc, x, y, xmid, ymid;
138 bool comment;
139 x=0;
140 y=0;
141 xmid = (GRID_W>>1) - 2;
142 ymid = (GRID_H>>1) - 2;
143 comment = false;
145 while (true) {
146 nc = rb->read(fd, &c, 1);
147 if (nc <= 0)
148 break;
150 switch(c) {
151 case '!':
152 comment = true;
153 case '.':
154 if (!comment)
155 x++;
156 break;
157 case 'O':
158 if (!comment) {
159 if (is_valid_cell(xmid + x, ymid + y))
160 set_cell(xmid + x, ymid + y, pgrid);
161 x++;
163 break;
164 case '\n':
165 y++;
166 x=0;
167 comment = false;
168 break;
169 default:
170 break;
173 rb->close(fd);
174 return true;
177 /* fill grid with initial pattern */
178 static void setup_grid(char *pgrid, int pattern){
179 int n, max;
180 int xmid, ymid;
182 max = GRID_W * GRID_H;
184 switch(pattern){
185 case PATTERN_RANDOM:
186 rb->splash(HZ, "Random");
187 #if 0 /* two oscilators, debug pattern */
188 set_cell( 0, 1 , pgrid);
189 set_cell( 1, 1 , pgrid);
190 set_cell( 2, 1 , pgrid);
192 set_cell( 6, 7 , pgrid);
193 set_cell( 7, 7 , pgrid);
194 set_cell( 8, 7 , pgrid);
195 #endif
197 /* fill screen randomly */
198 for(n=0; n<(max>>2); n++)
199 pgrid[rb->rand()%max] = 1;
201 break;
203 case PATTERN_GROWTH_1:
204 rb->splash(HZ, "Growth");
205 xmid = (GRID_W>>1) - 2;
206 ymid = (GRID_H>>1) - 2;
207 set_cell(xmid + 6, ymid + 0 , pgrid);
208 set_cell(xmid + 4, ymid + 1 , pgrid);
209 set_cell(xmid + 6, ymid + 1 , pgrid);
210 set_cell(xmid + 7, ymid + 1 , pgrid);
211 set_cell(xmid + 4, ymid + 2 , pgrid);
212 set_cell(xmid + 6, ymid + 2 , pgrid);
213 set_cell(xmid + 4, ymid + 3 , pgrid);
214 set_cell(xmid + 2, ymid + 4 , pgrid);
215 set_cell(xmid + 0, ymid + 5 , pgrid);
216 set_cell(xmid + 2, ymid + 5 , pgrid);
217 break;
218 case PATTERN_ACORN:
219 rb->splash(HZ, "Acorn");
220 xmid = (GRID_W>>1) - 3;
221 ymid = (GRID_H>>1) - 1;
222 set_cell(xmid + 1, ymid + 0 , pgrid);
223 set_cell(xmid + 3, ymid + 1 , pgrid);
224 set_cell(xmid + 0, ymid + 2 , pgrid);
225 set_cell(xmid + 1, ymid + 2 , pgrid);
226 set_cell(xmid + 4, ymid + 2 , pgrid);
227 set_cell(xmid + 5, ymid + 2 , pgrid);
228 set_cell(xmid + 6, ymid + 2 , pgrid);
229 break;
230 case PATTERN_GROWTH_2:
231 rb->splash(HZ, "Growth 2");
232 xmid = (GRID_W>>1) - 4;
233 ymid = (GRID_H>>1) - 1;
234 set_cell(xmid + 0, ymid + 0 , pgrid);
235 set_cell(xmid + 1, ymid + 0 , pgrid);
236 set_cell(xmid + 2, ymid + 0 , pgrid);
237 set_cell(xmid + 4, ymid + 0 , pgrid);
238 set_cell(xmid + 0, ymid + 1 , pgrid);
239 set_cell(xmid + 3, ymid + 2 , pgrid);
240 set_cell(xmid + 4, ymid + 2 , pgrid);
241 set_cell(xmid + 1, ymid + 3 , pgrid);
242 set_cell(xmid + 2, ymid + 3 , pgrid);
243 set_cell(xmid + 4, ymid + 3 , pgrid);
244 set_cell(xmid + 0, ymid + 4 , pgrid);
245 set_cell(xmid + 2, ymid + 4 , pgrid);
246 set_cell(xmid + 4, ymid + 4 , pgrid);
247 break;
248 case PATTERN_GLIDER_GUN:
249 rb->splash(HZ, "Glider Gun");
250 set_cell( 24, 0, pgrid);
251 set_cell( 22, 1, pgrid);
252 set_cell( 24, 1, pgrid);
253 set_cell( 12, 2, pgrid);
254 set_cell( 13, 2, pgrid);
255 set_cell( 20, 2, pgrid);
256 set_cell( 21, 2, pgrid);
257 set_cell( 34, 2, pgrid);
258 set_cell( 35, 2, pgrid);
259 set_cell( 11, 3, pgrid);
260 set_cell( 15, 3, pgrid);
261 set_cell( 20, 3, pgrid);
262 set_cell( 21, 3, pgrid);
263 set_cell( 34, 3, pgrid);
264 set_cell( 35, 3, pgrid);
265 set_cell( 0, 4, pgrid);
266 set_cell( 1, 4, pgrid);
267 set_cell( 10, 4, pgrid);
268 set_cell( 16, 4, pgrid);
269 set_cell( 20, 4, pgrid);
270 set_cell( 21, 4, pgrid);
271 set_cell( 0, 5, pgrid);
272 set_cell( 1, 5, pgrid);
273 set_cell( 10, 5, pgrid);
274 set_cell( 14, 5, pgrid);
275 set_cell( 16, 5, pgrid);
276 set_cell( 17, 5, pgrid);
277 set_cell( 22, 5, pgrid);
278 set_cell( 24, 5, pgrid);
279 set_cell( 10, 6, pgrid);
280 set_cell( 16, 6, pgrid);
281 set_cell( 24, 6, pgrid);
282 set_cell( 11, 7, pgrid);
283 set_cell( 15, 7, pgrid);
284 set_cell( 12, 8, pgrid);
285 set_cell( 13, 8, pgrid);
286 break;
290 /* display grid */
291 static void show_grid(char *pgrid){
292 int x, y;
293 unsigned char age;
295 rb->lcd_clear_display();
296 for(y=0; y<GRID_H; y++){
297 for(x=0; x<GRID_W; x++){
298 age = get_cell(x, y, pgrid);
299 if(age){
300 #if LCD_DEPTH >= 16
301 rb->lcd_set_foreground( LCD_RGBPACK( age, age, age ));
302 #elif LCD_DEPTH == 2
303 rb->lcd_set_foreground(age>>7);
304 #endif
305 rb->lcd_drawpixel(x, y);
309 if(status_line){
310 #if LCD_DEPTH > 1
311 rb->lcd_set_foreground( LCD_BLACK );
312 #endif
313 rb->lcd_putsf(0, 0, "g:%d p:%d", generation, population);
315 rb->lcd_update();
319 /* Calculates whether the cell will be alive in the next generation.
320 n is the array with 9 elements that represent the cell itself and its
321 neighborhood like this (the cell itself is n[4]):
322 0 1 2
323 3 4 5
324 6 7 8
326 static inline bool check_cell(unsigned char *n)
328 int empty_cells = 0;
329 int alive_cells;
330 bool result;
332 /* count empty neighbour cells */
333 if(n[0]==0) empty_cells++;
334 if(n[1]==0) empty_cells++;
335 if(n[2]==0) empty_cells++;
336 if(n[3]==0) empty_cells++;
337 if(n[5]==0) empty_cells++;
338 if(n[6]==0) empty_cells++;
339 if(n[7]==0) empty_cells++;
340 if(n[8]==0) empty_cells++;
342 /* now we build the number of non-zero neighbours :-P */
343 alive_cells = 8 - empty_cells;
345 if (n[4]) {
346 /* If the cell is alive, it stays alive iff it has 2 or 3 alive neighbours */
347 result = (alive_cells==2 || alive_cells==3);
349 else {
350 /* If the cell is dead, it gets alive iff it has 3 alive neighbours */
351 result = (alive_cells==3);
354 return result;
357 /* Calculate the next generation of cells
359 * The borders of the grid are connected to their opposite sides.
361 * To avoid multiplications while accessing data in the 2-d grid
362 * (pgrid) we try to re-use previously accessed neighbourhood
363 * information which is stored in an 3x3 array.
365 static void next_generation(char *pgrid, char *pnext_grid){
366 int x, y;
367 bool cell;
368 unsigned char age;
369 unsigned char n[9];
371 rb->memset(n, 0, sizeof(n));
374 * cell is (4) with 8 neighbours
376 * 0|1|2
377 * -----
378 * 3|4|5
379 * -----
380 * 6|7|8
383 population = 0;
385 /* go through the grid */
386 for(y=0; y<GRID_H; y++){
387 for(x=0; x<GRID_W; x++){
388 if(y==0 && x==0){
389 /* first cell in first row, we have to load all neighbours */
390 n[0] = get_cell(x-1, y-1, pgrid);
391 n[1] = get_cell(x, y-1, pgrid);
392 n[2] = get_cell(x+1, y-1, pgrid);
393 n[3] = get_cell(x-1, y, pgrid);
394 n[4] = get_cell(x, y, pgrid);
395 n[5] = get_cell(x+1, y, pgrid);
396 n[6] = get_cell(x-1, y+1, pgrid);
397 n[7] = get_cell(x, y+1, pgrid);
398 n[8] = get_cell(x+1, y+1, pgrid);
399 } else {
400 if(x==0){
401 /* beginning of a row, copy what we know about our predecessor,
402 0, 1, 3, 4 are known, 2, 5, 6, 7, 8 have to be loaded
404 n[0] = n[4];
405 n[1] = n[5];
406 n[2] = get_cell(x+1, y-1, pgrid);
407 n[3] = n[7];
408 n[4] = n[8];
409 n[5] = get_cell(x+1, y, pgrid);
410 n[6] = get_cell(x-1, y+1, pgrid);
411 n[7] = get_cell(x, y+1, pgrid);
412 n[8] = get_cell(x+1, y+1, pgrid);
413 } else {
414 /* we are moving right in a row,
415 * copy what we know about the neighbours on our left side,
416 * 2, 5, 8 have to be loaded
418 n[0] = n[1];
419 n[1] = n[2];
420 n[2] = get_cell(x+1, y-1, pgrid);
421 n[3] = n[4];
422 n[4] = n[5];
423 n[5] = get_cell(x+1, y, pgrid);
424 n[6] = n[7];
425 n[7] = n[8];
426 n[8] = get_cell(x+1, y+1, pgrid);
430 /* how old is our cell? */
431 age = n[4];
433 /* calculate the cell based on given neighbour information */
434 cell = check_cell(n);
436 /* is the actual cell alive? */
437 if(cell){
438 population++;
439 /* prevent overflow */
440 if(age<252)
441 age++;
442 set_cell_age(x, y, age, pnext_grid);
444 else
445 set_cell_age(x, y, 0, pnext_grid);
446 #if 0
447 DEBUGF("x=%d,y=%d\n", x, y);
448 DEBUGF("cell: %d\n", cell);
449 DEBUGF("%d %d %d\n", n[0],n[1],n[2]);
450 DEBUGF("%d %d %d\n", n[3],n[4],n[5]);
451 DEBUGF("%d %d %d\n", n[6],n[7],n[8]);
452 DEBUGF("----------------\n");
453 #endif
456 generation++;
461 /**********************************/
462 /* this is the plugin entry point */
463 /**********************************/
464 enum plugin_status plugin_start(const void* parameter)
466 int button = 0;
467 int quit = 0;
468 int stop = 0;
469 int usb = 0;
470 int pattern = 0;
471 char *pgrid;
472 char *pnext_grid;
473 char *ptemp;
474 (void)(parameter);
476 backlight_ignore_timeout();
477 #if LCD_DEPTH > 1
478 rb->lcd_set_backdrop(NULL);
479 #ifdef HAVE_LCD_COLOR
480 rb->lcd_set_background(LCD_RGBPACK(182, 198, 229)); /* rockbox blue */
481 #else
482 rb->lcd_set_background(LCD_DEFAULT_BG);
483 #endif /* HAVE_LCD_COLOR */
484 #endif /* LCD_DEPTH > 1 */
486 /* link pointers to grids */
487 pgrid = (char *)grid_a;
488 pnext_grid = (char *)grid_b;
490 init_grid(pgrid);
492 if( parameter == NULL )
494 setup_grid(pgrid, pattern++);
496 else
498 if( load_cellfile(parameter, pgrid) )
500 rb->splashf( 1*HZ, "Cells loaded (%s)", (char *)parameter );
502 else
504 rb->splash( 1*HZ, "File Open Error");
505 setup_grid(pgrid, pattern++); /* fall back to stored patterns */
510 show_grid(pgrid);
512 while(!quit) {
513 button = pluginlib_getaction(TIMEOUT_BLOCK, plugin_contexts, ARRAYLEN(plugin_contexts));
514 switch(button) {
515 case ROCKLIFE_NEXT:
516 case ROCKLIFE_NEXT_REP:
517 /* calculate next generation */
518 next_generation(pgrid, pnext_grid);
519 /* swap buffers, grid is the new generation */
520 ptemp = pgrid;
521 pgrid = pnext_grid;
522 pnext_grid = ptemp;
523 /* show new generation */
524 show_grid(pgrid);
525 break;
526 case ROCKLIFE_PLAY_PAUSE:
527 stop = 0;
528 while(!stop){
529 /* calculate next generation */
530 next_generation(pgrid, pnext_grid);
531 /* swap buffers, grid is the new generation */
532 ptemp = pgrid;
533 pgrid = pnext_grid;
534 pnext_grid = ptemp;
535 /* show new generation */
536 rb->yield();
537 show_grid(pgrid);
538 button = pluginlib_getaction(0, plugin_contexts, ARRAYLEN(plugin_contexts));
539 switch(button) {
540 case ROCKLIFE_PLAY_PAUSE:
541 case ROCKLIFE_QUIT:
542 stop = 1;
543 break;
544 default:
545 if (rb->default_event_handler(button) == SYS_USB_CONNECTED) {
546 stop = 1;
547 quit = 1;
548 usb = 1;
550 break;
552 rb->yield();
554 break;
555 case ROCKLIFE_INIT:
556 init_grid(pgrid);
557 setup_grid(pgrid, pattern);
558 show_grid(pgrid);
559 pattern++;
560 pattern%=5;
561 break;
562 case ROCKLIFE_STATUS:
563 status_line = !status_line;
564 show_grid(pgrid);
565 break;
566 case ROCKLIFE_QUIT:
567 /* quit plugin */
568 quit = 1;
569 break;
570 default:
571 if (rb->default_event_handler(button) == SYS_USB_CONNECTED) {
572 quit = 1;
573 usb = 1;
575 break;
577 rb->yield();
580 backlight_use_settings();
581 return usb? PLUGIN_USB_CONNECTED: PLUGIN_OK;