Some improvements to rocklife (FS#10087, but slightly less paranoid). Main improvemen...
[maemo-rb.git] / apps / plugins / rocklife.c
blob2905ab53e2b3311f6a0396d3fce8112a4e90d569
1 /***************************************************************************
2 * __________ __ ___.
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
7 * \/ \/ \/ \/ \/
8 * $Id$
10 * Copyright (C) 2007 Matthias Wientapper
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
23 * This is an implementatino of Conway's Game of Life
25 * from http://en.wikipedia.org/wiki/Conway's_Game_of_Life:
27 * Rules
29 * The universe of the Game of Life is an infinite two-dimensional
30 * orthogonal grid of square cells, each of which is in one of two
31 * possible states, live or dead. Every cell interacts with its eight
32 * neighbours, which are the cells that are directly horizontally,
33 * vertically, or diagonally adjacent. At each step in time, the
34 * following transitions occur:
36 * 1. Any live cell with fewer than two live neighbours dies, as if by
37 * loneliness.
39 * 2. Any live cell with more than three live neighbours dies, as if
40 * by overcrowding.
42 * 3. Any live cell with two or three live neighbours lives,
43 * unchanged, to the next generation.
45 * 4. Any dead cell with exactly three live neighbours comes to life.
47 * The initial pattern constitutes the first generation of the
48 * system. The second generation is created by applying the above
49 * rules simultaneously to every cell in the first generation --
50 * births and deaths happen simultaneously, and the discrete moment at
51 * which this happens is sometimes called a tick. (In other words,
52 * each generation is based entirely on the one before.) The rules
53 * continue to be applied repeatedly to create further generations.
57 * TODO:
58 * - nicer colours for pixels with respect to age
59 * - editor for start patterns
60 * - probably tons of speed-up opportunities
63 #include "plugin.h"
64 #include "lib/pluginlib_actions.h"
65 #include "lib/helper.h"
67 PLUGIN_HEADER
69 #define ROCKLIFE_PLAY_PAUSE PLA_FIRE
70 #define ROCKLIFE_INIT PLA_DOWN
71 #define ROCKLIFE_NEXT PLA_RIGHT
72 #define ROCKLIFE_NEXT_REP PLA_RIGHT_REPEAT
73 #define ROCKLIFE_QUIT PLA_QUIT
74 #define ROCKLIFE_STATUS PLA_LEFT
76 #define PATTERN_RANDOM 0
77 #define PATTERN_GROWTH_1 1
78 #define PATTERN_GROWTH_2 2
79 #define PATTERN_ACORN 3
80 #define PATTERN_GLIDER_GUN 4 /* not yet implemented */
82 const struct button_mapping *plugin_contexts[]
83 = {generic_directions, generic_actions};
85 #define GRID_W LCD_WIDTH
86 #define GRID_H LCD_HEIGHT
88 unsigned char grid_a[GRID_W][GRID_H];
89 unsigned char grid_b[GRID_W][GRID_H];
90 int generation = 0;
91 int population = 0;
92 int status_line = 0;
93 char buf[30];
96 static inline bool is_valid_cell(int x, int y) {
97 return (x >= 0 && x < GRID_W
98 && y >= 0 && y < GRID_H);
101 static inline void set_cell_age(int x, int y, unsigned char age, char *pgrid) {
102 pgrid[x+y*GRID_W] = age;
105 static inline void set_cell(int x, int y, char *pgrid) {
106 set_cell_age(x, y, 1, pgrid);
109 static inline unsigned char get_cell(int x, int y, char *pgrid) {
110 if (x < 0)
111 x += GRID_W;
112 else if (x >= GRID_W)
113 x -= GRID_W;
115 if (y < 0)
116 y += GRID_H;
117 else if (y >= GRID_H)
118 y -= GRID_H;
120 return pgrid[x+y*GRID_W];
123 /* clear grid */
124 void init_grid(char *pgrid){
125 memset(pgrid, 0, GRID_W * GRID_H);
128 /*fill grid with pattern from file (viewer mode)*/
129 static bool load_cellfile(const char *file, char *pgrid){
130 int fd;
131 fd = rb->open(file, O_RDONLY);
132 if (fd==-1)
133 return false;
135 init_grid(pgrid);
137 char c;
138 int nc, x, y, xmid, ymid;
139 x=0;
140 y=0;
141 xmid = (GRID_W>>1) - 2;
142 ymid = (GRID_H>>1) - 2;
144 while (true) {
145 nc = read(fd, &c, 1);
146 if (nc <= 0)
147 break;
149 switch(c) {
150 case '.':
151 x++;
152 break;
153 case 'O':
154 if (is_valid_cell(xmid + x, ymid + y))
155 set_cell(xmid + x, ymid + y, pgrid);
156 x++;
157 break;
158 case '\n':
159 y++;
160 x=0;
161 break;
162 default:
163 break;
166 rb->close(fd);
167 return true;
170 /* fill grid with initial pattern */
171 static void setup_grid(char *pgrid, int pattern){
172 int n, max;
173 int xmid, ymid;
175 max = GRID_W * GRID_H;
177 switch(pattern){
178 case PATTERN_RANDOM:
179 rb->splash(HZ, "Random");
180 #if 0 /* two oscilators, debug pattern */
181 set_cell( 0, 1 , pgrid);
182 set_cell( 1, 1 , pgrid);
183 set_cell( 2, 1 , pgrid);
185 set_cell( 6, 7 , pgrid);
186 set_cell( 7, 7 , pgrid);
187 set_cell( 8, 7 , pgrid);
188 #endif
190 /* fill screen randomly */
191 for(n=0; n<(max>>2); n++)
192 pgrid[rb->rand()%max] = 1;
194 break;
196 case PATTERN_GROWTH_1:
197 rb->splash(HZ, "Growth");
198 xmid = (GRID_W>>1) - 2;
199 ymid = (GRID_H>>1) - 2;
200 set_cell(xmid + 6, ymid + 0 , pgrid);
201 set_cell(xmid + 4, ymid + 1 , pgrid);
202 set_cell(xmid + 6, ymid + 1 , pgrid);
203 set_cell(xmid + 7, ymid + 1 , pgrid);
204 set_cell(xmid + 4, ymid + 2 , pgrid);
205 set_cell(xmid + 6, ymid + 2 , pgrid);
206 set_cell(xmid + 4, ymid + 3 , pgrid);
207 set_cell(xmid + 2, ymid + 4 , pgrid);
208 set_cell(xmid + 0, ymid + 5 , pgrid);
209 set_cell(xmid + 2, ymid + 5 , pgrid);
210 break;
211 case PATTERN_ACORN:
212 rb->splash(HZ, "Acorn");
213 xmid = (GRID_W>>1) - 3;
214 ymid = (GRID_H>>1) - 1;
215 set_cell(xmid + 1, ymid + 0 , pgrid);
216 set_cell(xmid + 3, ymid + 1 , pgrid);
217 set_cell(xmid + 0, ymid + 2 , pgrid);
218 set_cell(xmid + 1, ymid + 2 , pgrid);
219 set_cell(xmid + 4, ymid + 2 , pgrid);
220 set_cell(xmid + 5, ymid + 2 , pgrid);
221 set_cell(xmid + 6, ymid + 2 , pgrid);
222 break;
223 case PATTERN_GROWTH_2:
224 rb->splash(HZ, "Growth 2");
225 xmid = (GRID_W>>1) - 4;
226 ymid = (GRID_H>>1) - 1;
227 set_cell(xmid + 0, ymid + 0 , pgrid);
228 set_cell(xmid + 1, ymid + 0 , pgrid);
229 set_cell(xmid + 2, ymid + 0 , pgrid);
230 set_cell(xmid + 4, ymid + 0 , pgrid);
231 set_cell(xmid + 0, ymid + 1 , pgrid);
232 set_cell(xmid + 3, ymid + 2 , pgrid);
233 set_cell(xmid + 4, ymid + 2 , pgrid);
234 set_cell(xmid + 1, ymid + 3 , pgrid);
235 set_cell(xmid + 2, ymid + 3 , pgrid);
236 set_cell(xmid + 4, ymid + 3 , pgrid);
237 set_cell(xmid + 0, ymid + 4 , pgrid);
238 set_cell(xmid + 2, ymid + 4 , pgrid);
239 set_cell(xmid + 4, ymid + 4 , pgrid);
240 break;
241 case PATTERN_GLIDER_GUN:
242 rb->splash(HZ, "Glider Gun");
243 set_cell( 24, 0, pgrid);
244 set_cell( 22, 1, pgrid);
245 set_cell( 24, 1, pgrid);
246 set_cell( 12, 2, pgrid);
247 set_cell( 13, 2, pgrid);
248 set_cell( 20, 2, pgrid);
249 set_cell( 21, 2, pgrid);
250 set_cell( 34, 2, pgrid);
251 set_cell( 35, 2, pgrid);
252 set_cell( 11, 3, pgrid);
253 set_cell( 15, 3, pgrid);
254 set_cell( 20, 3, pgrid);
255 set_cell( 21, 3, pgrid);
256 set_cell( 34, 3, pgrid);
257 set_cell( 35, 3, pgrid);
258 set_cell( 0, 4, pgrid);
259 set_cell( 1, 4, pgrid);
260 set_cell( 10, 4, pgrid);
261 set_cell( 16, 4, pgrid);
262 set_cell( 20, 4, pgrid);
263 set_cell( 21, 4, pgrid);
264 set_cell( 0, 5, pgrid);
265 set_cell( 1, 5, pgrid);
266 set_cell( 10, 5, pgrid);
267 set_cell( 14, 5, pgrid);
268 set_cell( 16, 5, pgrid);
269 set_cell( 17, 5, pgrid);
270 set_cell( 22, 5, pgrid);
271 set_cell( 24, 5, pgrid);
272 set_cell( 10, 6, pgrid);
273 set_cell( 16, 6, pgrid);
274 set_cell( 24, 6, pgrid);
275 set_cell( 11, 7, pgrid);
276 set_cell( 15, 7, pgrid);
277 set_cell( 12, 8, pgrid);
278 set_cell( 13, 8, pgrid);
279 break;
283 /* display grid */
284 static void show_grid(char *pgrid){
285 int x, y;
286 unsigned char age;
288 rb->lcd_clear_display();
289 for(y=0; y<GRID_H; y++){
290 for(x=0; x<GRID_W; x++){
291 age = get_cell(x, y, pgrid);
292 if(age){
293 #if LCD_DEPTH >= 16
294 rb->lcd_set_foreground( LCD_RGBPACK( age, age, age ));
295 #elif LCD_DEPTH == 2
296 rb->lcd_set_foreground(age>>7);
297 #endif
298 rb->lcd_drawpixel(x, y);
302 if(status_line){
303 rb->snprintf(buf, sizeof(buf), "g:%d p:%d", generation, population);
304 #if LCD_DEPTH > 1
305 rb->lcd_set_foreground( LCD_BLACK );
306 #endif
307 rb->lcd_puts(0, 0, buf);
309 rb->lcd_update();
313 /* Calculates whether the cell will be alive in the next generation.
314 n is the array with 9 elements that represent the cell itself and its
315 neighborhood like this (the cell itself is n[4]):
316 0 1 2
317 3 4 5
318 6 7 8
320 static inline bool check_cell(unsigned char *n)
322 int empty_cells = 0;
323 int alive_cells;
324 bool result;
326 /* count empty neighbour cells */
327 if(n[0]==0) empty_cells++;
328 if(n[1]==0) empty_cells++;
329 if(n[2]==0) empty_cells++;
330 if(n[3]==0) empty_cells++;
331 if(n[5]==0) empty_cells++;
332 if(n[6]==0) empty_cells++;
333 if(n[7]==0) empty_cells++;
334 if(n[8]==0) empty_cells++;
336 /* now we build the number of non-zero neighbours :-P */
337 alive_cells = 8 - empty_cells;
339 if (n[4]) {
340 /* If the cell is alive, it stays alive iff it has 2 or 3 alive neighbours */
341 result = (alive_cells==2 || alive_cells==3);
343 else {
344 /* If the cell is dead, it gets alive iff it has 3 alive neighbours */
345 result = (alive_cells==3);
348 return result;
351 /* Calculate the next generation of cells
353 * The borders of the grid are connected to their opposite sides.
355 * To avoid multiplications while accessing data in the 2-d grid
356 * (pgrid) we try to re-use previously accessed neighbourhood
357 * information which is stored in an 3x3 array.
359 static void next_generation(char *pgrid, char *pnext_grid){
360 int x, y;
361 bool cell;
362 unsigned char age;
363 unsigned char n[9];
365 rb->memset(n, 0, sizeof(n));
368 * cell is (4) with 8 neighbours
370 * 0|1|2
371 * -----
372 * 3|4|5
373 * -----
374 * 6|7|8
377 population = 0;
379 /* go through the grid */
380 for(y=0; y<GRID_H; y++){
381 for(x=0; x<GRID_W; x++){
382 if(y==0 && x==0){
383 /* first cell in first row, we have to load all neighbours */
384 n[0] = get_cell(x-1, y-1, pgrid);
385 n[1] = get_cell(x, y-1, pgrid);
386 n[2] = get_cell(x+1, y-1, pgrid);
387 n[3] = get_cell(x-1, y, pgrid);
388 n[4] = get_cell(x, y, pgrid);
389 n[5] = get_cell(x+1, y, pgrid);
390 n[6] = get_cell(x-1, y+1, pgrid);
391 n[7] = get_cell(x, y+1, pgrid);
392 n[8] = get_cell(x+1, y+1, pgrid);
393 } else {
394 if(x==0){
395 /* beginning of a row, copy what we know about our predecessor,
396 0, 1, 3, 4 are known, 2, 5, 6, 7, 8 have to be loaded
398 n[0] = n[4];
399 n[1] = n[5];
400 n[2] = get_cell(x+1, y-1, pgrid);
401 n[3] = n[7];
402 n[4] = n[8];
403 n[5] = get_cell(x+1, y, pgrid);
404 n[6] = get_cell(x-1, y+1, pgrid);
405 n[7] = get_cell(x, y+1, pgrid);
406 n[8] = get_cell(x+1, y+1, pgrid);
407 } else {
408 /* we are moving right in a row,
409 * copy what we know about the neighbours on our left side,
410 * 2, 5, 8 have to be loaded
412 n[0] = n[1];
413 n[1] = n[2];
414 n[2] = get_cell(x+1, y-1, pgrid);
415 n[3] = n[4];
416 n[4] = n[5];
417 n[5] = get_cell(x+1, y, pgrid);
418 n[6] = n[7];
419 n[7] = n[8];
420 n[8] = get_cell(x+1, y+1, pgrid);
424 /* how old is our cell? */
425 age = n[4];
427 /* calculate the cell based on given neighbour information */
428 cell = check_cell(n);
430 /* is the actual cell alive? */
431 if(cell){
432 population++;
433 /* prevent overflow */
434 if(age<252)
435 age++;
436 set_cell_age(x, y, age, pnext_grid);
438 else
439 set_cell_age(x, y, 0, pnext_grid);
440 #if 0
441 DEBUGF("x=%d,y=%d\n", x, y);
442 DEBUGF("cell: %d\n", cell);
443 DEBUGF("%d %d %d\n", n[0],n[1],n[2]);
444 DEBUGF("%d %d %d\n", n[3],n[4],n[5]);
445 DEBUGF("%d %d %d\n", n[6],n[7],n[8]);
446 DEBUGF("----------------\n");
447 #endif
450 generation++;
455 /**********************************/
456 /* this is the plugin entry point */
457 /**********************************/
458 enum plugin_status plugin_start(const void* parameter)
460 int button = 0;
461 int quit = 0;
462 int stop = 0;
463 int pattern = 0;
464 char *pgrid;
465 char *pnext_grid;
466 char *ptemp;
467 (void)(parameter);
469 backlight_force_on(); /* backlight control in lib/helper.c */
470 #if LCD_DEPTH > 1
471 rb->lcd_set_backdrop(NULL);
472 #ifdef HAVE_LCD_COLOR
473 rb->lcd_set_background(LCD_RGBPACK(182, 198, 229)); /* rockbox blue */
474 #else
475 rb->lcd_set_background(LCD_DEFAULT_BG);
476 #endif /* HAVE_LCD_COLOR */
477 #endif /* LCD_DEPTH > 1 */
479 /* link pointers to grids */
480 pgrid = (char *)grid_a;
481 pnext_grid = (char *)grid_b;
483 init_grid(pgrid);
486 if( parameter == NULL )
488 setup_grid(pgrid, pattern++);
490 else
492 if( load_cellfile(parameter, pgrid) )
494 rb->splashf( 1*HZ, "Cells loaded (%s)", (char *)parameter );
496 else
498 rb->splash( 1*HZ, "File Open Error");
499 setup_grid(pgrid, pattern++); /* fall back to stored patterns */
504 show_grid(pgrid);
506 while(!quit) {
507 button = pluginlib_getaction(TIMEOUT_BLOCK, plugin_contexts, 2);
508 switch(button) {
509 case ROCKLIFE_NEXT:
510 case ROCKLIFE_NEXT_REP:
511 /* calculate next generation */
512 next_generation(pgrid, pnext_grid);
513 /* swap buffers, grid is the new generation */
514 ptemp = pgrid;
515 pgrid = pnext_grid;
516 pnext_grid = ptemp;
517 /* show new generation */
518 show_grid(pgrid);
519 break;
520 case ROCKLIFE_PLAY_PAUSE:
521 stop = 0;
522 while(!stop){
523 /* calculate next generation */
524 next_generation(pgrid, pnext_grid);
525 /* swap buffers, grid is the new generation */
526 ptemp = pgrid;
527 pgrid = pnext_grid;
528 pnext_grid = ptemp;
529 /* show new generation */
530 rb->yield();
531 show_grid(pgrid);
532 button = pluginlib_getaction(0, plugin_contexts, 2);
533 switch(button) {
534 case ROCKLIFE_PLAY_PAUSE:
535 case ROCKLIFE_QUIT:
536 stop = 1;
537 break;
538 default:
539 break;
541 rb->yield();
543 break;
544 case ROCKLIFE_INIT:
545 init_grid(pgrid);
546 setup_grid(pgrid, pattern);
547 show_grid(pgrid);
548 pattern++;
549 pattern%=5;
550 break;
551 case ROCKLIFE_STATUS:
552 status_line = !status_line;
553 show_grid(pgrid);
554 break;
555 case ROCKLIFE_QUIT:
556 /* quit plugin */
557 quit=true;
558 return PLUGIN_OK;
559 break;
560 default:
561 if (rb->default_event_handler(button) == SYS_USB_CONNECTED) {
562 return PLUGIN_USB_CONNECTED;
564 break;
566 rb->yield();
569 backlight_use_settings(); /* backlight control in lib/helper.c */
570 return PLUGIN_OK;