1 /***************************************************************************
3 * Open \______ \ ____ ____ | | _\_ |__ _______ ___
4 * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
5 * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
6 * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
10 * Copyright (C) 2005 Miika Pekkarinen
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
17 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
18 * KIND, either express or implied.
20 ****************************************************************************/
32 #include "replaygain.h"
36 /* 16-bit samples are scaled based on these constants. The shift should be
40 #define WORD_FRACBITS 27
42 #define NATIVE_DEPTH 16
43 /* If the buffer sizes change, check the assembly code! */
44 #define SAMPLE_BUF_COUNT 256
45 #define RESAMPLE_BUF_COUNT (256 * 4) /* Enough for 11,025 Hz -> 44,100 Hz*/
46 #define DEFAULT_GAIN 0x01000000
47 #define SAMPLE_BUF_LEFT_CHANNEL 0
48 #define SAMPLE_BUF_RIGHT_CHANNEL (SAMPLE_BUF_COUNT/2)
49 #define RESAMPLE_BUF_LEFT_CHANNEL 0
50 #define RESAMPLE_BUF_RIGHT_CHANNEL (RESAMPLE_BUF_COUNT/2)
52 /* enums to index conversion properly with stereo mode and other settings */
55 SAMPLE_INPUT_LE_NATIVE_I_STEREO
= STEREO_INTERLEAVED
,
56 SAMPLE_INPUT_LE_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
,
57 SAMPLE_INPUT_LE_NATIVE_MONO
= STEREO_MONO
,
58 SAMPLE_INPUT_GT_NATIVE_I_STEREO
= STEREO_INTERLEAVED
+ STEREO_NUM_MODES
,
59 SAMPLE_INPUT_GT_NATIVE_NI_STEREO
= STEREO_NONINTERLEAVED
+ STEREO_NUM_MODES
,
60 SAMPLE_INPUT_GT_NATIVE_MONO
= STEREO_MONO
+ STEREO_NUM_MODES
,
61 SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
= STEREO_NUM_MODES
66 SAMPLE_OUTPUT_MONO
= 0,
68 SAMPLE_OUTPUT_DITHERED_MONO
,
69 SAMPLE_OUTPUT_DITHERED_STEREO
72 /****************************************************************************
73 * NOTE: Any assembly routines that use these structures must be updated
74 * if current data members are moved or changed.
78 uint32_t delta
; /* 00h */
79 uint32_t phase
; /* 04h */
80 int32_t last_sample
[2]; /* 08h */
84 /* This is for passing needed data to assembly dsp routines. If another
85 * dsp parameter needs to be passed, add to the end of the structure
86 * and remove from dsp_config.
87 * If another function type becomes assembly optimized and requires dsp
88 * config info, add a pointer paramter of type "struct dsp_data *".
89 * If removing something from other than the end, reserve the spot or
90 * else update every implementation for every target.
91 * Be sure to add the offset of the new member for easy viewing as well. :)
92 * It is the first member of dsp_config and all members can be accessesed
93 * through the main aggregate but this is intended to make a safe haven
94 * for these items whereas the c part can be rearranged at will. dsp_data
95 * could even moved within dsp_config without disurbing the order.
99 int output_scale
; /* 00h */
100 int num_channels
; /* 04h */
101 struct resample_data resample_data
; /* 08h */
102 int32_t clip_min
; /* 18h */
103 int32_t clip_max
; /* 1ch */
104 int32_t gain
; /* 20h - Note that this is in S8.23 format. */
111 long error
[3]; /* 00h */
112 long random
; /* 0ch */
116 struct crossfeed_data
118 int32_t gain
; /* 00h - Direct path gain */
119 int32_t coefs
[3]; /* 04h - Coefficients for the shelving filter */
120 int32_t history
[4]; /* 10h - Format is x[n - 1], y[n - 1] for both channels */
121 int32_t delay
[13][2]; /* 20h */
122 int32_t *index
; /* 88h - Current pointer into the delay line */
126 /* Current setup is one lowshelf filters three peaking filters and one
127 * highshelf filter. Varying the number of shelving filters make no sense,
128 * but adding peaking filters is possible.
132 char enabled
[5]; /* 00h - Flags for active filters */
133 struct eqfilter filters
[5]; /* 08h - packing is 4? */
137 /* Include header with defines which functions are implemented in assembly
138 code for the target */
141 /* Typedefs keep things much neater in this case */
142 typedef void (*sample_input_fn_type
)(int count
, const char *src
[],
144 typedef int (*resample_fn_type
)(int count
, struct dsp_data
*data
,
145 int32_t *src
[], int32_t *dst
[]);
146 typedef void (*sample_output_fn_type
)(int count
, struct dsp_data
*data
,
147 int32_t *src
[], int16_t *dst
);
148 /* Single-DSP channel processing in place */
149 typedef void (*channels_process_fn_type
)(int count
, int32_t *buf
[]);
150 /* DSP local channel processing in place */
151 typedef void (*channels_process_dsp_fn_type
)(int count
, struct dsp_data
*data
,
156 ***************************************************************************/
160 struct dsp_data data
; /* Config members for use in asm routines */
161 long codec_frequency
; /* Sample rate of data coming from the codec */
162 long frequency
; /* Effective sample rate after pitch shift (if any) */
167 #ifdef HAVE_SW_TONE_CONTROLS
168 /* Filter struct for software bass/treble controls */
169 struct eqfilter tone_filter
;
171 /* Functions that change depending upon settings - NULL if stage is
173 sample_input_fn_type input_samples
;
174 resample_fn_type resample
;
175 sample_output_fn_type output_samples
;
176 /* These will be NULL for the voice codec and is more economical that
178 channels_process_dsp_fn_type apply_gain
;
179 channels_process_fn_type apply_crossfeed
;
180 channels_process_fn_type eq_process
;
181 channels_process_fn_type channels_process
;
184 /* General DSP config */
185 static struct dsp_config dsp_conf
[2] IBSS_ATTR
; /* 0=A, 1=V */
187 static struct dither_data dither_data
[2] IBSS_ATTR
; /* 0=left, 1=right */
188 static long dither_mask IBSS_ATTR
;
189 static long dither_bias IBSS_ATTR
;
191 struct crossfeed_data crossfeed_data IDATA_ATTR
= /* A */
193 .index
= (int32_t *)crossfeed_data
.delay
197 static struct eq_state eq_data
; /* A */
199 /* Software tone controls */
200 #ifdef HAVE_SW_TONE_CONTROLS
201 static int prescale
; /* A/V */
202 static int bass
; /* A/V */
203 static int treble
; /* A/V */
206 /* Settings applicable to audio codec only */
207 static int pitch_ratio
= 1000;
208 static int channels_mode
;
211 static bool dither_enabled
;
212 static long eq_precut
;
213 static long track_gain
;
214 static bool new_gain
;
215 static long album_gain
;
216 static long track_peak
;
217 static long album_peak
;
218 static long replaygain
;
219 static bool crossfeed_enabled
;
221 #define audio_dsp (dsp_conf[CODEC_IDX_AUDIO])
222 #define voice_dsp (dsp_conf[CODEC_IDX_VOICE])
224 /* The internal format is 32-bit samples, non-interleaved, stereo. This
225 * format is similar to the raw output from several codecs, so the amount
226 * of copying needed is minimized for that case.
229 int32_t sample_buf
[SAMPLE_BUF_COUNT
] IBSS_ATTR
;
230 static int32_t resample_buf
[RESAMPLE_BUF_COUNT
] IBSS_ATTR
;
233 /* Clip sample to arbitrary limits where range > 0 and min + range = max */
234 static inline long clip_sample(int32_t sample
, int32_t min
, int32_t range
)
236 if ((uint32_t)(sample
- min
) > (uint32_t)range
)
247 /* Clip sample to signed 16 bit range */
248 static inline int32_t clip_sample_16(int32_t sample
)
250 if ((int16_t)sample
!= sample
)
251 sample
= 0x7fff ^ (sample
>> 31);
255 int sound_get_pitch(void)
260 void sound_set_pitch(int permille
)
262 pitch_ratio
= permille
;
263 dsp_configure(&audio_dsp
, DSP_SWITCH_FREQUENCY
,
264 audio_dsp
.codec_frequency
);
267 /* Convert count samples to the internal format, if needed. Updates src
268 * to point past the samples "consumed" and dst is set to point to the
269 * samples to consume. Note that for mono, dst[0] equals dst[1], as there
270 * is no point in processing the same data twice.
273 /* convert count 16-bit mono to 32-bit mono */
274 static void sample_input_lte_native_mono(
275 int count
, const char *src
[], int32_t *dst
[])
277 const int16_t *s
= (int16_t *) src
[0];
278 const int16_t * const send
= s
+ count
;
279 int32_t *d
= dst
[0] = dst
[1] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
280 int scale
= WORD_SHIFT
;
284 *d
++ = *s
++ << scale
;
291 /* convert count 16-bit interleaved stereo to 32-bit noninterleaved */
292 static void sample_input_lte_native_i_stereo(
293 int count
, const char *src
[], int32_t *dst
[])
295 const int32_t *s
= (int32_t *) src
[0];
296 const int32_t * const send
= s
+ count
;
297 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
298 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
299 int scale
= WORD_SHIFT
;
304 #ifdef ROCKBOX_LITTLE_ENDIAN
305 *dl
++ = (slr
>> 16) << scale
;
306 *dr
++ = (int32_t)(int16_t)slr
<< scale
;
307 #else /* ROCKBOX_BIG_ENDIAN */
308 *dl
++ = (int32_t)(int16_t)slr
<< scale
;
309 *dr
++ = (slr
>> 16) << scale
;
317 /* convert count 16-bit noninterleaved stereo to 32-bit noninterleaved */
318 static void sample_input_lte_native_ni_stereo(
319 int count
, const char *src
[], int32_t *dst
[])
321 const int16_t *sl
= (int16_t *) src
[0];
322 const int16_t *sr
= (int16_t *) src
[1];
323 const int16_t * const slend
= sl
+ count
;
324 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
325 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
326 int scale
= WORD_SHIFT
;
330 *dl
++ = *sl
++ << scale
;
331 *dr
++ = *sr
++ << scale
;
339 /* convert count 32-bit mono to 32-bit mono */
340 static void sample_input_gt_native_mono(
341 int count
, const char *src
[], int32_t *dst
[])
343 dst
[0] = dst
[1] = (int32_t *)src
[0];
344 src
[0] = (char *)(dst
[0] + count
);
347 /* convert count 32-bit interleaved stereo to 32-bit noninterleaved stereo */
348 static void sample_input_gt_native_i_stereo(
349 int count
, const char *src
[], int32_t *dst
[])
351 const int32_t *s
= (int32_t *)src
[0];
352 const int32_t * const send
= s
+ 2*count
;
353 int32_t *dl
= dst
[0] = &sample_buf
[SAMPLE_BUF_LEFT_CHANNEL
];
354 int32_t *dr
= dst
[1] = &sample_buf
[SAMPLE_BUF_RIGHT_CHANNEL
];
363 src
[0] = (char *)send
;
366 /* convert 32 bit-noninterleaved stereo to 32-bit noninterleaved stereo */
367 static void sample_input_gt_native_ni_stereo(
368 int count
, const char *src
[], int32_t *dst
[])
370 dst
[0] = (int32_t *)src
[0];
371 dst
[1] = (int32_t *)src
[1];
372 src
[0] = (char *)(dst
[0] + count
);
373 src
[1] = (char *)(dst
[1] + count
);
377 * sample_input_new_format()
379 * set the to-native sample conversion function based on dsp sample parameters
382 * needs syncing with changes to the following dsp parameters:
383 * * dsp->stereo_mode (A/V)
384 * * dsp->sample_depth (A/V)
386 static void sample_input_new_format(struct dsp_config
*dsp
)
388 static const sample_input_fn_type sample_input_functions
[] =
390 [SAMPLE_INPUT_LE_NATIVE_MONO
] = sample_input_lte_native_mono
,
391 [SAMPLE_INPUT_LE_NATIVE_I_STEREO
] = sample_input_lte_native_i_stereo
,
392 [SAMPLE_INPUT_LE_NATIVE_NI_STEREO
] = sample_input_lte_native_ni_stereo
,
393 [SAMPLE_INPUT_GT_NATIVE_MONO
] = sample_input_gt_native_mono
,
394 [SAMPLE_INPUT_GT_NATIVE_I_STEREO
] = sample_input_gt_native_i_stereo
,
395 [SAMPLE_INPUT_GT_NATIVE_NI_STEREO
] = sample_input_gt_native_ni_stereo
,
398 int convert
= dsp
->stereo_mode
;
400 if (dsp
->sample_depth
> NATIVE_DEPTH
)
401 convert
+= SAMPLE_INPUT_GT_NATIVE_1ST_INDEX
;
403 dsp
->input_samples
= sample_input_functions
[convert
];
406 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO
407 /* write mono internal format to output format */
408 static void sample_output_mono(int count
, struct dsp_data
*data
,
409 int32_t *src
[], int16_t *dst
)
411 const int32_t *s0
= src
[0];
412 const int scale
= data
->output_scale
;
413 const int dc_bias
= 1 << (scale
- 1);
417 int32_t lr
= clip_sample_16((*s0
++ + dc_bias
) >> scale
);
423 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_MONO */
425 /* write stereo internal format to output format */
426 #ifndef DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO
427 static void sample_output_stereo(int count
, struct dsp_data
*data
,
428 int32_t *src
[], int16_t *dst
)
430 const int32_t *s0
= src
[0];
431 const int32_t *s1
= src
[1];
432 const int scale
= data
->output_scale
;
433 const int dc_bias
= 1 << (scale
- 1);
437 *dst
++ = clip_sample_16((*s0
++ + dc_bias
) >> scale
);
438 *dst
++ = clip_sample_16((*s1
++ + dc_bias
) >> scale
);
442 #endif /* DSP_HAVE_ASM_SAMPLE_OUTPUT_STEREO */
445 * The "dither" code to convert the 24-bit samples produced by libmad was
446 * taken from the coolplayer project - coolplayer.sourceforge.net
448 * This function handles mono and stereo outputs.
450 static void sample_output_dithered(int count
, struct dsp_data
*data
,
451 int32_t *src
[], int16_t *dst
)
453 const int32_t mask
= dither_mask
;
454 const int32_t bias
= dither_bias
;
455 const int scale
= data
->output_scale
;
456 const int32_t min
= data
->clip_min
;
457 const int32_t max
= data
->clip_max
;
458 const int32_t range
= max
- min
;
462 for (ch
= 0; ch
< data
->num_channels
; ch
++)
464 struct dither_data
* const dither
= &dither_data
[ch
];
465 int32_t *s
= src
[ch
];
468 for (i
= 0, d
= &dst
[ch
]; i
< count
; i
++, s
++, d
+= 2)
470 int32_t output
, sample
;
473 /* Noise shape and bias (for correct rounding later) */
475 sample
+= dither
->error
[0] - dither
->error
[1] + dither
->error
[2];
476 dither
->error
[2] = dither
->error
[1];
477 dither
->error
[1] = dither
->error
[0]/2;
479 output
= sample
+ bias
;
481 /* Dither, highpass triangle PDF */
482 random
= dither
->random
*0x0019660dL
+ 0x3c6ef35fL
;
483 output
+= (random
& mask
) - (dither
->random
& mask
);
484 dither
->random
= random
;
486 /* Round sample to output range */
490 dither
->error
[0] = sample
- output
;
493 if ((uint32_t)(output
- min
) > (uint32_t)range
)
501 /* Quantize and store */
502 *d
= output
>> scale
;
506 if (data
->num_channels
== 2)
509 /* Have to duplicate left samples into the right channel since
510 pcm buffer and hardware is interleaved stereo */
522 * sample_output_new_format()
524 * set the from-native to ouput sample conversion routine
527 * needs syncing with changes to the following dsp parameters:
528 * * dsp->stereo_mode (A/V)
529 * * dither_enabled (A)
531 static void sample_output_new_format(struct dsp_config
*dsp
)
533 static const sample_output_fn_type sample_output_functions
[] =
536 sample_output_stereo
,
537 sample_output_dithered
,
538 sample_output_dithered
541 int out
= dsp
->data
.num_channels
- 1;
543 if (dsp
== &audio_dsp
&& dither_enabled
)
546 dsp
->output_samples
= sample_output_functions
[out
];
550 * Linear interpolation resampling that introduces a one sample delay because
551 * of our inability to look into the future at the end of a frame.
553 #ifndef DSP_HAVE_ASM_RESAMPLING
554 static int dsp_downsample(int count
, struct dsp_data
*data
,
555 int32_t *src
[], int32_t *dst
[])
557 int ch
= data
->num_channels
- 1;
558 uint32_t delta
= data
->resample_data
.delta
;
562 /* Rolled channel loop actually showed slightly faster. */
565 /* Just initialize things and not worry too much about the relatively
566 * uncommon case of not being able to spit out a sample for the frame.
568 int32_t *s
= src
[ch
];
569 int32_t last
= data
->resample_data
.last_sample
[ch
];
571 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
573 phase
= data
->resample_data
.phase
;
576 /* Do we need last sample of previous frame for interpolation? */
580 while (pos
< (uint32_t)count
)
582 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
590 /* Wrap phase accumulator back to start of next frame. */
591 data
->resample_data
.phase
= phase
- (count
<< 16);
595 static int dsp_upsample(int count
, struct dsp_data
*data
,
596 int32_t *src
[], int32_t *dst
[])
598 int ch
= data
->num_channels
- 1;
599 uint32_t delta
= data
->resample_data
.delta
;
603 /* Rolled channel loop actually showed slightly faster. */
606 /* Should always be able to output a sample for a ratio up to
607 RESAMPLE_BUF_COUNT / SAMPLE_BUF_COUNT. */
608 int32_t *s
= src
[ch
];
609 int32_t last
= data
->resample_data
.last_sample
[ch
];
611 data
->resample_data
.last_sample
[ch
] = s
[count
- 1];
613 phase
= data
->resample_data
.phase
;
618 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[0] - last
);
623 while (pos
< (uint32_t)count
)
626 *d
++ = last
+ FRACMUL((phase
& 0xffff) << 15, s
[pos
] - last
);
633 /* Wrap phase accumulator back to start of next frame. */
634 data
->resample_data
.phase
= phase
& 0xffff;
637 #endif /* DSP_HAVE_ASM_RESAMPLING */
639 static void resampler_new_delta(struct dsp_config
*dsp
)
641 dsp
->data
.resample_data
.delta
= (unsigned long)
642 dsp
->frequency
* 65536LL / NATIVE_FREQUENCY
;
644 if (dsp
->frequency
== NATIVE_FREQUENCY
)
646 /* NOTE: If fully glitch-free transistions from no resampling to
647 resampling are desired, last_sample history should be maintained
648 even when not resampling. */
649 dsp
->resample
= NULL
;
650 dsp
->data
.resample_data
.phase
= 0;
651 dsp
->data
.resample_data
.last_sample
[0] = 0;
652 dsp
->data
.resample_data
.last_sample
[1] = 0;
654 else if (dsp
->frequency
< NATIVE_FREQUENCY
)
655 dsp
->resample
= dsp_upsample
;
657 dsp
->resample
= dsp_downsample
;
660 /* Resample count stereo samples. Updates the src array, if resampling is
661 * done, to refer to the resampled data. Returns number of stereo samples
662 * for further processing.
664 static inline int resample(struct dsp_config
*dsp
, int count
, int32_t *src
[])
668 &resample_buf
[RESAMPLE_BUF_LEFT_CHANNEL
],
669 &resample_buf
[RESAMPLE_BUF_RIGHT_CHANNEL
],
672 count
= dsp
->resample(count
, &dsp
->data
, src
, dst
);
675 src
[1] = dst
[dsp
->data
.num_channels
- 1];
680 static void dither_init(struct dsp_config
*dsp
)
682 memset(dither_data
, 0, sizeof (dither_data
));
683 dither_bias
= (1L << (dsp
->frac_bits
- NATIVE_DEPTH
));
684 dither_mask
= (1L << (dsp
->frac_bits
+ 1 - NATIVE_DEPTH
)) - 1;
687 void dsp_dither_enable(bool enable
)
689 struct dsp_config
*dsp
= &audio_dsp
;
690 dither_enabled
= enable
;
691 sample_output_new_format(dsp
);
694 /* Applies crossfeed to the stereo signal in src.
695 * Crossfeed is a process where listening over speakers is simulated. This
696 * is good for old hard panned stereo records, which might be quite fatiguing
697 * to listen to on headphones with no crossfeed.
699 #ifndef DSP_HAVE_ASM_CROSSFEED
700 static void apply_crossfeed(int count
, int32_t *buf
[])
702 int32_t *hist_l
= &crossfeed_data
.history
[0];
703 int32_t *hist_r
= &crossfeed_data
.history
[2];
704 int32_t *delay
= &crossfeed_data
.delay
[0][0];
705 int32_t *coefs
= &crossfeed_data
.coefs
[0];
706 int32_t gain
= crossfeed_data
.gain
;
707 int32_t *di
= crossfeed_data
.index
;
713 for (i
= 0; i
< count
; i
++)
718 /* Filter delayed sample from left speaker */
719 acc
= FRACMUL(*di
, coefs
[0]);
720 acc
+= FRACMUL(hist_l
[0], coefs
[1]);
721 acc
+= FRACMUL(hist_l
[1], coefs
[2]);
722 /* Save filter history for left speaker */
726 /* Filter delayed sample from right speaker */
727 acc
= FRACMUL(*di
, coefs
[0]);
728 acc
+= FRACMUL(hist_r
[0], coefs
[1]);
729 acc
+= FRACMUL(hist_r
[1], coefs
[2]);
730 /* Save filter history for right speaker */
734 /* Now add the attenuated direct sound and write to outputs */
735 buf
[0][i
] = FRACMUL(left
, gain
) + hist_r
[1];
736 buf
[1][i
] = FRACMUL(right
, gain
) + hist_l
[1];
738 /* Wrap delay line index if bigger than delay line size */
739 if (di
>= delay
+ 13*2)
742 /* Write back local copies of data we've modified */
743 crossfeed_data
.index
= di
;
745 #endif /* DSP_HAVE_ASM_CROSSFEED */
748 * dsp_set_crossfeed(bool enable)
751 * needs syncing with changes to the following dsp parameters:
752 * * dsp->stereo_mode (A)
754 void dsp_set_crossfeed(bool enable
)
756 crossfeed_enabled
= enable
;
757 audio_dsp
.apply_crossfeed
= (enable
&& audio_dsp
.data
.num_channels
> 1)
758 ? apply_crossfeed
: NULL
;
761 void dsp_set_crossfeed_direct_gain(int gain
)
763 crossfeed_data
.gain
= get_replaygain_int(gain
* 10) << 7;
764 /* If gain is negative, the calculation overflowed and we need to clamp */
765 if (crossfeed_data
.gain
< 0)
766 crossfeed_data
.gain
= 0x7fffffff;
769 /* Both gains should be below 0 dB */
770 void dsp_set_crossfeed_cross_params(long lf_gain
, long hf_gain
, long cutoff
)
772 int32_t *c
= crossfeed_data
.coefs
;
773 long scaler
= get_replaygain_int(lf_gain
* 10) << 7;
775 cutoff
= 0xffffffff/NATIVE_FREQUENCY
*cutoff
;
777 /* Divide cutoff by sqrt(10^(hf_gain/20)) to place cutoff at the -3 dB
778 * point instead of shelf midpoint. This is for compatibility with the old
779 * crossfeed shelf filter and should be removed if crossfeed settings are
780 * ever made incompatible for any other good reason.
782 cutoff
= DIV64(cutoff
, get_replaygain_int(hf_gain
*5), 24);
783 filter_shelf_coefs(cutoff
, hf_gain
, false, c
);
784 /* Scale coefs by LF gain and shift them to s0.31 format. We have no gains
785 * over 1 and can do this safely
787 c
[0] = FRACMUL_SHL(c
[0], scaler
, 4);
788 c
[1] = FRACMUL_SHL(c
[1], scaler
, 4);
792 /* Apply a constant gain to the samples (e.g., for ReplayGain).
793 * Note that this must be called before the resampler.
795 #ifndef DSP_HAVE_ASM_APPLY_GAIN
796 static void dsp_apply_gain(int count
, struct dsp_data
*data
, int32_t *buf
[])
798 const int32_t gain
= data
->gain
;
801 for (ch
= 0; ch
< data
->num_channels
; ch
++)
803 int32_t *d
= buf
[ch
];
806 for (i
= 0; i
< count
; i
++)
807 d
[i
] = FRACMUL_SHL(d
[i
], gain
, 8);
810 #endif /* DSP_HAVE_ASM_APPLY_GAIN */
812 /* Combine all gains to a global gain. */
813 static void set_gain(struct dsp_config
*dsp
)
815 dsp
->data
.gain
= DEFAULT_GAIN
;
817 /* Replay gain not relevant to voice */
818 if (dsp
== &audio_dsp
&& replaygain
)
820 dsp
->data
.gain
= replaygain
;
823 if (dsp
->eq_process
&& eq_precut
)
826 (long) (((int64_t) dsp
->data
.gain
* eq_precut
) >> 24);
829 if (dsp
->data
.gain
== DEFAULT_GAIN
)
835 dsp
->data
.gain
>>= 1;
838 dsp
->apply_gain
= dsp
->data
.gain
!= 0 ? dsp_apply_gain
: NULL
;
842 * Update the amount to cut the audio before applying the equalizer.
844 * @param precut to apply in decibels (multiplied by 10)
846 void dsp_set_eq_precut(int precut
)
848 eq_precut
= get_replaygain_int(precut
* -10);
849 set_gain(&audio_dsp
);
853 * Synchronize the equalizer filter coefficients with the global settings.
855 * @param band the equalizer band to synchronize
857 void dsp_set_eq_coefs(int band
)
861 unsigned long cutoff
, q
;
863 /* Adjust setting pointer to the band we actually want to change */
864 setting
= &global_settings
.eq_band0_cutoff
+ (band
* 3);
866 /* Convert user settings to format required by coef generator functions */
867 cutoff
= 0xffffffff / NATIVE_FREQUENCY
* (*setting
++);
874 /* NOTE: The coef functions assume the EMAC unit is in fractional mode,
875 which it should be, since we're executed from the main thread. */
877 /* Assume a band is disabled if the gain is zero */
880 eq_data
.enabled
[band
] = 0;
885 eq_ls_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
887 eq_hs_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
889 eq_pk_coefs(cutoff
, q
, gain
, eq_data
.filters
[band
].coefs
);
891 eq_data
.enabled
[band
] = 1;
895 /* Apply EQ filters to those bands that have got it switched on. */
896 static void eq_process(int count
, int32_t *buf
[])
898 static const int shifts
[] =
900 EQ_SHELF_SHIFT
, /* low shelf */
901 EQ_PEAK_SHIFT
, /* peaking */
902 EQ_PEAK_SHIFT
, /* peaking */
903 EQ_PEAK_SHIFT
, /* peaking */
904 EQ_SHELF_SHIFT
, /* high shelf */
906 unsigned int channels
= audio_dsp
.data
.num_channels
;
909 /* filter configuration currently is 1 low shelf filter, 3 band peaking
910 filters and 1 high shelf filter, in that order. we need to know this
911 so we can choose the correct shift factor.
913 for (i
= 0; i
< 5; i
++)
915 if (!eq_data
.enabled
[i
])
917 eq_filter(buf
, &eq_data
.filters
[i
], count
, channels
, shifts
[i
]);
922 * Use to enable the equalizer.
924 * @param enable true to enable the equalizer
926 void dsp_set_eq(bool enable
)
928 audio_dsp
.eq_process
= enable
? eq_process
: NULL
;
929 set_gain(&audio_dsp
);
932 static void dsp_set_stereo_width(int value
)
934 long width
, straight
, cross
;
936 width
= value
* 0x7fffff / 100;
940 straight
= (0x7fffff + width
) / 2;
941 cross
= straight
- width
;
945 /* straight = (1 + width) / (2 * width) */
946 straight
= ((int64_t)(0x7fffff + width
) << 22) / width
;
947 cross
= straight
- 0x7fffff;
950 dsp_sw_gain
= straight
<< 8;
951 dsp_sw_cross
= cross
<< 8;
955 * Implements the different channel configurations and stereo width.
958 /* SOUND_CHAN_STEREO mode is a noop so has no function - just outline one for
961 static void channels_process_sound_chan_stereo(int count
, int32_t *buf
[])
963 /* The channels are each just themselves */
964 (void)count
; (void)buf
;
968 #ifndef DSP_HAVE_ASM_SOUND_CHAN_MONO
969 static void channels_process_sound_chan_mono(int count
, int32_t *buf
[])
971 int32_t *sl
= buf
[0], *sr
= buf
[1];
975 int32_t lr
= *sl
/2 + *sr
/2;
981 #endif /* DSP_HAVE_ASM_SOUND_CHAN_MONO */
983 #ifndef DSP_HAVE_ASM_SOUND_CHAN_CUSTOM
984 static void channels_process_sound_chan_custom(int count
, int32_t *buf
[])
986 const int32_t gain
= dsp_sw_gain
;
987 const int32_t cross
= dsp_sw_cross
;
988 int32_t *sl
= buf
[0], *sr
= buf
[1];
994 *sl
++ = FRACMUL(l
, gain
) + FRACMUL(r
, cross
);
995 *sr
++ = FRACMUL(r
, gain
) + FRACMUL(l
, cross
);
999 #endif /* DSP_HAVE_ASM_SOUND_CHAN_CUSTOM */
1001 static void channels_process_sound_chan_mono_left(int count
, int32_t *buf
[])
1003 /* Just copy over the other channel */
1004 memcpy(buf
[1], buf
[0], count
* sizeof (*buf
));
1007 static void channels_process_sound_chan_mono_right(int count
, int32_t *buf
[])
1009 /* Just copy over the other channel */
1010 memcpy(buf
[0], buf
[1], count
* sizeof (*buf
));
1013 #ifndef DSP_HAVE_ASM_SOUND_CHAN_KARAOKE
1014 static void channels_process_sound_chan_karaoke(int count
, int32_t *buf
[])
1016 int32_t *sl
= buf
[0], *sr
= buf
[1];
1020 int32_t ch
= *sl
/2 - *sr
/2;
1024 while (--count
> 0);
1026 #endif /* DSP_HAVE_ASM_SOUND_CHAN_KARAOKE */
1028 static void dsp_set_channel_config(int value
)
1030 static const channels_process_fn_type channels_process_functions
[] =
1032 /* SOUND_CHAN_STEREO = All-purpose index for no channel processing */
1033 [SOUND_CHAN_STEREO
] = NULL
,
1034 [SOUND_CHAN_MONO
] = channels_process_sound_chan_mono
,
1035 [SOUND_CHAN_CUSTOM
] = channels_process_sound_chan_custom
,
1036 [SOUND_CHAN_MONO_LEFT
] = channels_process_sound_chan_mono_left
,
1037 [SOUND_CHAN_MONO_RIGHT
] = channels_process_sound_chan_mono_right
,
1038 [SOUND_CHAN_KARAOKE
] = channels_process_sound_chan_karaoke
,
1041 if ((unsigned)value
>= ARRAYLEN(channels_process_functions
) ||
1042 audio_dsp
.stereo_mode
== STEREO_MONO
)
1044 value
= SOUND_CHAN_STEREO
;
1047 /* This doesn't apply to voice */
1048 channels_mode
= value
;
1049 audio_dsp
.channels_process
= channels_process_functions
[value
];
1052 #if CONFIG_CODEC == SWCODEC
1054 #ifdef HAVE_SW_TONE_CONTROLS
1055 static void set_tone_controls(void)
1057 filter_bishelf_coefs(0xffffffff/NATIVE_FREQUENCY
*200,
1058 0xffffffff/NATIVE_FREQUENCY
*3500,
1059 bass
, treble
, -prescale
,
1060 audio_dsp
.tone_filter
.coefs
);
1061 /* Sync the voice dsp coefficients */
1062 memcpy(&voice_dsp
.tone_filter
.coefs
, audio_dsp
.tone_filter
.coefs
,
1063 sizeof (voice_dsp
.tone_filter
.coefs
));
1067 /* Hook back from firmware/ part of audio, which can't/shouldn't call apps/
1070 int dsp_callback(int msg
, intptr_t param
)
1073 #ifdef HAVE_SW_TONE_CONTROLS
1074 case DSP_CALLBACK_SET_PRESCALE
:
1076 set_tone_controls();
1078 /* prescaler is always set after calling any of these, so we wait with
1079 * calculating coefs until the above case is hit.
1081 case DSP_CALLBACK_SET_BASS
:
1084 case DSP_CALLBACK_SET_TREBLE
:
1088 case DSP_CALLBACK_SET_CHANNEL_CONFIG
:
1089 dsp_set_channel_config(param
);
1091 case DSP_CALLBACK_SET_STEREO_WIDTH
:
1092 dsp_set_stereo_width(param
);
1101 /* Process and convert src audio to dst based on the DSP configuration,
1102 * reading count number of audio samples. dst is assumed to be large
1103 * enough; use dsp_output_count() to get the required number. src is an
1104 * array of pointers; for mono and interleaved stereo, it contains one
1105 * pointer to the start of the audio data and the other is ignored; for
1106 * non-interleaved stereo, it contains two pointers, one for each audio
1107 * channel. Returns number of bytes written to dst.
1109 int dsp_process(struct dsp_config
*dsp
, char *dst
, const char *src
[], int count
)
1112 static long last_yield
;
1117 #if defined(CPU_COLDFIRE)
1118 /* set emac unit for dsp processing, and save old macsr, we're running in
1119 codec thread context at this point, so can't clobber it */
1120 unsigned long old_macsr
= coldfire_get_macsr();
1121 coldfire_set_macsr(EMAC_FRACTIONAL
| EMAC_SATURATE
);
1125 dsp_set_replaygain(); /* Gain has changed */
1127 /* Perform at least one yield before starting */
1128 last_yield
= current_tick
;
1131 /* Testing function pointers for NULL is preferred since the pointer
1132 will be preloaded to be used for the call if not. */
1135 samples
= MIN(SAMPLE_BUF_COUNT
/2, count
);
1138 dsp
->input_samples(samples
, src
, tmp
);
1140 if (dsp
->apply_gain
)
1141 dsp
->apply_gain(samples
, &dsp
->data
, tmp
);
1143 if (dsp
->resample
&& (samples
= resample(dsp
, samples
, tmp
)) <= 0)
1144 break; /* I'm pretty sure we're downsampling here */
1146 if (dsp
->apply_crossfeed
)
1147 dsp
->apply_crossfeed(samples
, tmp
);
1149 if (dsp
->eq_process
)
1150 dsp
->eq_process(samples
, tmp
);
1152 #ifdef HAVE_SW_TONE_CONTROLS
1153 if ((bass
| treble
) != 0)
1154 eq_filter(tmp
, &dsp
->tone_filter
, samples
,
1155 dsp
->data
.num_channels
, FILTER_BISHELF_SHIFT
);
1158 if (dsp
->channels_process
)
1159 dsp
->channels_process(samples
, tmp
);
1161 dsp
->output_samples(samples
, &dsp
->data
, tmp
, (int16_t *)dst
);
1164 dst
+= samples
* sizeof (int16_t) * 2;
1166 /* yield at least once each tick */
1167 tick
= current_tick
;
1168 if (TIME_AFTER(tick
, last_yield
))
1175 #if defined(CPU_COLDFIRE)
1176 /* set old macsr again */
1177 coldfire_set_macsr(old_macsr
);
1182 /* Given count number of input samples, calculate the maximum number of
1183 * samples of output data that would be generated (the calculation is not
1184 * entirely exact and rounds upwards to be on the safe side; during
1185 * resampling, the number of samples generated depends on the current state
1186 * of the resampler).
1188 /* dsp_input_size MUST be called afterwards */
1189 int dsp_output_count(struct dsp_config
*dsp
, int count
)
1193 count
= (int)(((unsigned long)count
* NATIVE_FREQUENCY
1194 + (dsp
->frequency
- 1)) / dsp
->frequency
);
1197 /* Now we have the resampled sample count which must not exceed
1198 * RESAMPLE_BUF_COUNT/2 to avoid resample buffer overflow. One
1199 * must call dsp_input_count() to get the correct input sample
1202 if (count
> RESAMPLE_BUF_COUNT
/2)
1203 count
= RESAMPLE_BUF_COUNT
/2;
1208 /* Given count output samples, calculate number of input samples
1209 * that would be consumed in order to fill the output buffer.
1211 int dsp_input_count(struct dsp_config
*dsp
, int count
)
1213 /* count is now the number of resampled input samples. Convert to
1214 original input samples. */
1217 /* Use the real resampling delta =
1218 * dsp->frequency * 65536 / NATIVE_FREQUENCY, and
1219 * round towards zero to avoid buffer overflows. */
1220 count
= (int)(((unsigned long)count
*
1221 dsp
->data
.resample_data
.delta
) >> 16);
1227 static void dsp_set_gain_var(long *var
, long value
)
1233 static void dsp_update_functions(struct dsp_config
*dsp
)
1235 sample_input_new_format(dsp
);
1236 sample_output_new_format(dsp
);
1237 if (dsp
== &audio_dsp
)
1238 dsp_set_crossfeed(crossfeed_enabled
);
1241 intptr_t dsp_configure(struct dsp_config
*dsp
, int setting
, intptr_t value
)
1248 case CODEC_IDX_AUDIO
:
1249 return (intptr_t)&audio_dsp
;
1250 case CODEC_IDX_VOICE
:
1251 return (intptr_t)&voice_dsp
;
1253 return (intptr_t)NULL
;
1256 case DSP_SET_FREQUENCY
:
1257 memset(&dsp
->data
.resample_data
, 0, sizeof (dsp
->data
.resample_data
));
1258 /* Fall through!!! */
1259 case DSP_SWITCH_FREQUENCY
:
1260 dsp
->codec_frequency
= (value
== 0) ? NATIVE_FREQUENCY
: value
;
1261 /* Account for playback speed adjustment when setting dsp->frequency
1262 if we're called from the main audio thread. Voice UI thread should
1263 not need this feature.
1265 if (dsp
== &audio_dsp
)
1266 dsp
->frequency
= pitch_ratio
* dsp
->codec_frequency
/ 1000;
1268 dsp
->frequency
= dsp
->codec_frequency
;
1270 resampler_new_delta(dsp
);
1273 case DSP_SET_SAMPLE_DEPTH
:
1274 dsp
->sample_depth
= value
;
1276 if (dsp
->sample_depth
<= NATIVE_DEPTH
)
1278 dsp
->frac_bits
= WORD_FRACBITS
;
1279 dsp
->sample_bytes
= sizeof (int16_t); /* samples are 16 bits */
1280 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1281 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1285 dsp
->frac_bits
= value
;
1286 dsp
->sample_bytes
= sizeof (int32_t); /* samples are 32 bits */
1287 dsp
->data
.clip_max
= (1 << value
) - 1;
1288 dsp
->data
.clip_min
= -(1 << value
);
1291 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1292 sample_input_new_format(dsp
);
1296 case DSP_SET_STEREO_MODE
:
1297 dsp
->stereo_mode
= value
;
1298 dsp
->data
.num_channels
= value
== STEREO_MONO
? 1 : 2;
1299 dsp_update_functions(dsp
);
1303 dsp
->stereo_mode
= STEREO_NONINTERLEAVED
;
1304 dsp
->data
.num_channels
= 2;
1305 dsp
->sample_depth
= NATIVE_DEPTH
;
1306 dsp
->frac_bits
= WORD_FRACBITS
;
1307 dsp
->sample_bytes
= sizeof (int16_t);
1308 dsp
->data
.output_scale
= dsp
->frac_bits
+ 1 - NATIVE_DEPTH
;
1309 dsp
->data
.clip_max
= ((1 << WORD_FRACBITS
) - 1);
1310 dsp
->data
.clip_min
= -((1 << WORD_FRACBITS
));
1311 dsp
->codec_frequency
= dsp
->frequency
= NATIVE_FREQUENCY
;
1313 if (dsp
== &audio_dsp
)
1322 dsp_update_functions(dsp
);
1323 resampler_new_delta(dsp
);
1327 memset(&dsp
->data
.resample_data
, 0,
1328 sizeof (dsp
->data
.resample_data
));
1329 resampler_new_delta(dsp
);
1333 case DSP_SET_TRACK_GAIN
:
1334 if (dsp
== &audio_dsp
)
1335 dsp_set_gain_var(&track_gain
, value
);
1338 case DSP_SET_ALBUM_GAIN
:
1339 if (dsp
== &audio_dsp
)
1340 dsp_set_gain_var(&album_gain
, value
);
1343 case DSP_SET_TRACK_PEAK
:
1344 if (dsp
== &audio_dsp
)
1345 dsp_set_gain_var(&track_peak
, value
);
1348 case DSP_SET_ALBUM_PEAK
:
1349 if (dsp
== &audio_dsp
)
1350 dsp_set_gain_var(&album_peak
, value
);
1360 void dsp_set_replaygain(void)
1366 if (global_settings
.replaygain
|| global_settings
.replaygain_noclip
)
1368 bool track_mode
= get_replaygain_mode(track_gain
!= 0,
1369 album_gain
!= 0) == REPLAYGAIN_TRACK
;
1370 long peak
= (track_mode
|| !album_peak
) ? track_peak
: album_peak
;
1372 if (global_settings
.replaygain
)
1374 gain
= (track_mode
|| !album_gain
) ? track_gain
: album_gain
;
1376 if (global_settings
.replaygain_preamp
)
1378 long preamp
= get_replaygain_int(
1379 global_settings
.replaygain_preamp
* 10);
1381 gain
= (long) (((int64_t) gain
* preamp
) >> 24);
1387 /* So that noclip can work even with no gain information. */
1388 gain
= DEFAULT_GAIN
;
1391 if (global_settings
.replaygain_noclip
&& (peak
!= 0)
1392 && ((((int64_t) gain
* peak
) >> 24) >= DEFAULT_GAIN
))
1394 gain
= (((int64_t) DEFAULT_GAIN
<< 24) / peak
);
1397 if (gain
== DEFAULT_GAIN
)
1399 /* Nothing to do, disable processing. */
1404 /* Store in S8.23 format to simplify calculations. */
1406 set_gain(&audio_dsp
);