Sansa AMS: fix usb in bootloader
[maemo-rb.git] / tools / hmac-sha1.c
blobadb5f7e11908e9749fce40046bb94653c200a5d1
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
4 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006 Free Software
5 Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software Foundation,
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
21 /* Written by Scott G. Miller
22 Credits:
23 Robert Klep <robert@ilse.nl> -- Expansion function fix
26 #include "hmac-sha1.h"
28 #include <stddef.h>
29 #include <string.h>
32 #ifdef WORDS_BIGENDIAN
33 # define SWAP(n) (n)
34 #else
35 # define SWAP(n) \
36 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
37 #endif
39 #define BLOCKSIZE 4096
40 #if BLOCKSIZE % 64 != 0
41 # error "invalid BLOCKSIZE"
42 #endif
44 /* This array contains the bytes used to pad the buffer to the next
45 64-byte boundary. (RFC 1321, 3.1: Step 1) */
46 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
49 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
50 initialize it to the start constants of the SHA1 algorithm. This
51 must be called before using hash in the call to sha1_hash. */
52 void
53 sha1_init_ctx (struct sha1_ctx *ctx)
55 ctx->A = 0x67452301;
56 ctx->B = 0xefcdab89;
57 ctx->C = 0x98badcfe;
58 ctx->D = 0x10325476;
59 ctx->E = 0xc3d2e1f0;
61 ctx->total[0] = ctx->total[1] = 0;
62 ctx->buflen = 0;
65 /* Put result from CTX in first 20 bytes following RESBUF. The result
66 must be in little endian byte order.
68 IMPORTANT: On some systems it is required that RESBUF is correctly
69 aligned for a 32-bit value. */
70 void *
71 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
73 ((uint32_t *) resbuf)[0] = SWAP (ctx->A);
74 ((uint32_t *) resbuf)[1] = SWAP (ctx->B);
75 ((uint32_t *) resbuf)[2] = SWAP (ctx->C);
76 ((uint32_t *) resbuf)[3] = SWAP (ctx->D);
77 ((uint32_t *) resbuf)[4] = SWAP (ctx->E);
79 return resbuf;
82 /* Process the remaining bytes in the internal buffer and the usual
83 prolog according to the standard and write the result to RESBUF.
85 IMPORTANT: On some systems it is required that RESBUF is correctly
86 aligned for a 32-bit value. */
87 void *
88 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
90 /* Take yet unprocessed bytes into account. */
91 uint32_t bytes = ctx->buflen;
92 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
94 /* Now count remaining bytes. */
95 ctx->total[0] += bytes;
96 if (ctx->total[0] < bytes)
97 ++ctx->total[1];
99 /* Put the 64-bit file length in *bits* at the end of the buffer. */
100 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
101 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
103 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
105 /* Process last bytes. */
106 sha1_process_block (ctx->buffer, size * 4, ctx);
108 return sha1_read_ctx (ctx, resbuf);
111 /* Compute SHA1 message digest for bytes read from STREAM. The
112 resulting message digest number will be written into the 16 bytes
113 beginning at RESBLOCK. */
115 sha1_stream (FILE *stream, void *resblock)
117 struct sha1_ctx ctx;
118 char buffer[BLOCKSIZE + 72];
119 size_t sum;
121 /* Initialize the computation context. */
122 sha1_init_ctx (&ctx);
124 /* Iterate over full file contents. */
125 while (1)
127 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
128 computation function processes the whole buffer so that with the
129 next round of the loop another block can be read. */
130 size_t n;
131 sum = 0;
133 /* Read block. Take care for partial reads. */
134 while (1)
136 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
138 sum += n;
140 if (sum == BLOCKSIZE)
141 break;
143 if (n == 0)
145 /* Check for the error flag IFF N == 0, so that we don't
146 exit the loop after a partial read due to e.g., EAGAIN
147 or EWOULDBLOCK. */
148 if (ferror (stream))
149 return 1;
150 goto process_partial_block;
153 /* We've read at least one byte, so ignore errors. But always
154 check for EOF, since feof may be true even though N > 0.
155 Otherwise, we could end up calling fread after EOF. */
156 if (feof (stream))
157 goto process_partial_block;
160 /* Process buffer with BLOCKSIZE bytes. Note that
161 BLOCKSIZE % 64 == 0
163 sha1_process_block (buffer, BLOCKSIZE, &ctx);
166 process_partial_block:;
168 /* Process any remaining bytes. */
169 if (sum > 0)
170 sha1_process_bytes (buffer, sum, &ctx);
172 /* Construct result in desired memory. */
173 sha1_finish_ctx (&ctx, resblock);
174 return 0;
177 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
178 result is always in little endian byte order, so that a byte-wise
179 output yields to the wanted ASCII representation of the message
180 digest. */
181 void *
182 sha1_buffer (const char *buffer, size_t len, void *resblock)
184 struct sha1_ctx ctx;
186 /* Initialize the computation context. */
187 sha1_init_ctx (&ctx);
189 /* Process whole buffer but last len % 64 bytes. */
190 sha1_process_bytes (buffer, len, &ctx);
192 /* Put result in desired memory area. */
193 return sha1_finish_ctx (&ctx, resblock);
196 void
197 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
199 /* When we already have some bits in our internal buffer concatenate
200 both inputs first. */
201 if (ctx->buflen != 0)
203 size_t left_over = ctx->buflen;
204 size_t add = 128 - left_over > len ? len : 128 - left_over;
206 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
207 ctx->buflen += add;
209 if (ctx->buflen > 64)
211 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
213 ctx->buflen &= 63;
214 /* The regions in the following copy operation cannot overlap. */
215 memcpy (ctx->buffer,
216 &((char *) ctx->buffer)[(left_over + add) & ~63],
217 ctx->buflen);
220 buffer = (const char *) buffer + add;
221 len -= add;
224 /* Process available complete blocks. */
225 if (len >= 64)
227 #if !_STRING_ARCH_unaligned
228 # define alignof(type) offsetof (struct { char c; type x; }, x)
229 # define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
230 if (UNALIGNED_P (buffer))
231 while (len > 64)
233 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
234 buffer = (const char *) buffer + 64;
235 len -= 64;
237 else
238 #endif
240 sha1_process_block (buffer, len & ~63, ctx);
241 buffer = (const char *) buffer + (len & ~63);
242 len &= 63;
246 /* Move remaining bytes in internal buffer. */
247 if (len > 0)
249 size_t left_over = ctx->buflen;
251 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
252 left_over += len;
253 if (left_over >= 64)
255 sha1_process_block (ctx->buffer, 64, ctx);
256 left_over -= 64;
257 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
259 ctx->buflen = left_over;
263 /* --- Code below is the primary difference between md5.c and sha1.c --- */
265 /* SHA1 round constants */
266 #define K1 0x5a827999
267 #define K2 0x6ed9eba1
268 #define K3 0x8f1bbcdc
269 #define K4 0xca62c1d6
271 /* Round functions. Note that F2 is the same as F4. */
272 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
273 #define F2(B,C,D) (B ^ C ^ D)
274 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
275 #define F4(B,C,D) (B ^ C ^ D)
277 /* Process LEN bytes of BUFFER, accumulating context into CTX.
278 It is assumed that LEN % 64 == 0.
279 Most of this code comes from GnuPG's cipher/sha1.c. */
281 void
282 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
284 const uint32_t *words = buffer;
285 size_t nwords = len / sizeof (uint32_t);
286 const uint32_t *endp = words + nwords;
287 uint32_t x[16];
288 uint32_t a = ctx->A;
289 uint32_t b = ctx->B;
290 uint32_t c = ctx->C;
291 uint32_t d = ctx->D;
292 uint32_t e = ctx->E;
294 /* First increment the byte count. RFC 1321 specifies the possible
295 length of the file up to 2^64 bits. Here we only compute the
296 number of bytes. Do a double word increment. */
297 ctx->total[0] += len;
298 if (ctx->total[0] < len)
299 ++ctx->total[1];
301 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
303 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
304 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
305 , (x[I&0x0f] = rol(tm, 1)) )
307 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
308 + F( B, C, D ) \
309 + K \
310 + M; \
311 B = rol( B, 30 ); \
312 } while(0)
314 while (words < endp)
316 uint32_t tm;
317 int t;
318 for (t = 0; t < 16; t++)
320 x[t] = SWAP (*words);
321 words++;
324 R( a, b, c, d, e, F1, K1, x[ 0] );
325 R( e, a, b, c, d, F1, K1, x[ 1] );
326 R( d, e, a, b, c, F1, K1, x[ 2] );
327 R( c, d, e, a, b, F1, K1, x[ 3] );
328 R( b, c, d, e, a, F1, K1, x[ 4] );
329 R( a, b, c, d, e, F1, K1, x[ 5] );
330 R( e, a, b, c, d, F1, K1, x[ 6] );
331 R( d, e, a, b, c, F1, K1, x[ 7] );
332 R( c, d, e, a, b, F1, K1, x[ 8] );
333 R( b, c, d, e, a, F1, K1, x[ 9] );
334 R( a, b, c, d, e, F1, K1, x[10] );
335 R( e, a, b, c, d, F1, K1, x[11] );
336 R( d, e, a, b, c, F1, K1, x[12] );
337 R( c, d, e, a, b, F1, K1, x[13] );
338 R( b, c, d, e, a, F1, K1, x[14] );
339 R( a, b, c, d, e, F1, K1, x[15] );
340 R( e, a, b, c, d, F1, K1, M(16) );
341 R( d, e, a, b, c, F1, K1, M(17) );
342 R( c, d, e, a, b, F1, K1, M(18) );
343 R( b, c, d, e, a, F1, K1, M(19) );
344 R( a, b, c, d, e, F2, K2, M(20) );
345 R( e, a, b, c, d, F2, K2, M(21) );
346 R( d, e, a, b, c, F2, K2, M(22) );
347 R( c, d, e, a, b, F2, K2, M(23) );
348 R( b, c, d, e, a, F2, K2, M(24) );
349 R( a, b, c, d, e, F2, K2, M(25) );
350 R( e, a, b, c, d, F2, K2, M(26) );
351 R( d, e, a, b, c, F2, K2, M(27) );
352 R( c, d, e, a, b, F2, K2, M(28) );
353 R( b, c, d, e, a, F2, K2, M(29) );
354 R( a, b, c, d, e, F2, K2, M(30) );
355 R( e, a, b, c, d, F2, K2, M(31) );
356 R( d, e, a, b, c, F2, K2, M(32) );
357 R( c, d, e, a, b, F2, K2, M(33) );
358 R( b, c, d, e, a, F2, K2, M(34) );
359 R( a, b, c, d, e, F2, K2, M(35) );
360 R( e, a, b, c, d, F2, K2, M(36) );
361 R( d, e, a, b, c, F2, K2, M(37) );
362 R( c, d, e, a, b, F2, K2, M(38) );
363 R( b, c, d, e, a, F2, K2, M(39) );
364 R( a, b, c, d, e, F3, K3, M(40) );
365 R( e, a, b, c, d, F3, K3, M(41) );
366 R( d, e, a, b, c, F3, K3, M(42) );
367 R( c, d, e, a, b, F3, K3, M(43) );
368 R( b, c, d, e, a, F3, K3, M(44) );
369 R( a, b, c, d, e, F3, K3, M(45) );
370 R( e, a, b, c, d, F3, K3, M(46) );
371 R( d, e, a, b, c, F3, K3, M(47) );
372 R( c, d, e, a, b, F3, K3, M(48) );
373 R( b, c, d, e, a, F3, K3, M(49) );
374 R( a, b, c, d, e, F3, K3, M(50) );
375 R( e, a, b, c, d, F3, K3, M(51) );
376 R( d, e, a, b, c, F3, K3, M(52) );
377 R( c, d, e, a, b, F3, K3, M(53) );
378 R( b, c, d, e, a, F3, K3, M(54) );
379 R( a, b, c, d, e, F3, K3, M(55) );
380 R( e, a, b, c, d, F3, K3, M(56) );
381 R( d, e, a, b, c, F3, K3, M(57) );
382 R( c, d, e, a, b, F3, K3, M(58) );
383 R( b, c, d, e, a, F3, K3, M(59) );
384 R( a, b, c, d, e, F4, K4, M(60) );
385 R( e, a, b, c, d, F4, K4, M(61) );
386 R( d, e, a, b, c, F4, K4, M(62) );
387 R( c, d, e, a, b, F4, K4, M(63) );
388 R( b, c, d, e, a, F4, K4, M(64) );
389 R( a, b, c, d, e, F4, K4, M(65) );
390 R( e, a, b, c, d, F4, K4, M(66) );
391 R( d, e, a, b, c, F4, K4, M(67) );
392 R( c, d, e, a, b, F4, K4, M(68) );
393 R( b, c, d, e, a, F4, K4, M(69) );
394 R( a, b, c, d, e, F4, K4, M(70) );
395 R( e, a, b, c, d, F4, K4, M(71) );
396 R( d, e, a, b, c, F4, K4, M(72) );
397 R( c, d, e, a, b, F4, K4, M(73) );
398 R( b, c, d, e, a, F4, K4, M(74) );
399 R( a, b, c, d, e, F4, K4, M(75) );
400 R( e, a, b, c, d, F4, K4, M(76) );
401 R( d, e, a, b, c, F4, K4, M(77) );
402 R( c, d, e, a, b, F4, K4, M(78) );
403 R( b, c, d, e, a, F4, K4, M(79) );
405 a = ctx->A += a;
406 b = ctx->B += b;
407 c = ctx->C += c;
408 d = ctx->D += d;
409 e = ctx->E += e;
413 /* memxor.c -- perform binary exclusive OR operation of two memory blocks.
414 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
416 This program is free software; you can redistribute it and/or modify
417 it under the terms of the GNU General Public License as published by
418 the Free Software Foundation; either version 2, or (at your option)
419 any later version.
421 This program is distributed in the hope that it will be useful,
422 but WITHOUT ANY WARRANTY; without even the implied warranty of
423 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
424 GNU General Public License for more details.
426 You should have received a copy of the GNU General Public License
427 along with this program; if not, write to the Free Software Foundation,
428 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
430 /* Written by Simon Josefsson. The interface was inspired by memxor
431 in Niels Möller's Nettle. */
433 void *
434 memxor (void * dest, const void * src, size_t n)
436 char const *s = src;
437 char *d = dest;
439 for (; n > 0; n--)
440 *d++ ^= *s++;
442 return dest;
445 /* hmac-sha1.c -- hashed message authentication codes
446 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
448 This program is free software; you can redistribute it and/or modify
449 it under the terms of the GNU General Public License as published by
450 the Free Software Foundation; either version 2, or (at your option)
451 any later version.
453 This program is distributed in the hope that it will be useful,
454 but WITHOUT ANY WARRANTY; without even the implied warranty of
455 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
456 GNU General Public License for more details.
458 You should have received a copy of the GNU General Public License
459 along with this program; if not, write to the Free Software Foundation,
460 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
462 /* Written by Simon Josefsson. */
464 #define IPAD 0x36
465 #define OPAD 0x5c
468 hmac_sha1 (const void *key, size_t keylen,
469 const void *in, size_t inlen, void *resbuf)
471 struct sha1_ctx inner;
472 struct sha1_ctx outer;
473 char optkeybuf[20];
474 char block[64];
475 char innerhash[20];
477 /* Reduce the key's size, so that it becomes <= 64 bytes large. */
479 if (keylen > 64)
481 struct sha1_ctx keyhash;
483 sha1_init_ctx (&keyhash);
484 sha1_process_bytes (key, keylen, &keyhash);
485 sha1_finish_ctx (&keyhash, optkeybuf);
487 key = optkeybuf;
488 keylen = 20;
491 /* Compute INNERHASH from KEY and IN. */
493 sha1_init_ctx (&inner);
495 memset (block, IPAD, sizeof (block));
496 memxor (block, key, keylen);
498 sha1_process_block (block, 64, &inner);
499 sha1_process_bytes (in, inlen, &inner);
501 sha1_finish_ctx (&inner, innerhash);
503 /* Compute result from KEY and INNERHASH. */
505 sha1_init_ctx (&outer);
507 memset (block, OPAD, sizeof (block));
508 memxor (block, key, keylen);
510 sha1_process_block (block, 64, &outer);
511 sha1_process_bytes (innerhash, 20, &outer);
513 sha1_finish_ctx (&outer, resbuf);
515 return 0;