beta-0.89.2
[luatex.git] / source / texk / web2c / mplibdir / decNumberLocal.h
blob5c88a5eaaffd0a25deb29bc0764d5f23b945ff56
1 /* ------------------------------------------------------------------ */
2 /* decNumber package local type, tuning, and macro definitions */
3 /* ------------------------------------------------------------------ */
4 /* Copyright (c) IBM Corporation, 2000, 2010. All rights reserved. */
5 /* */
6 /* This software is made available under the terms of the */
7 /* ICU License -- ICU 1.8.1 and later. */
8 /* */
9 /* The description and User's Guide ("The decNumber C Library") for */
10 /* this software is called decNumber.pdf. This document is */
11 /* available, together with arithmetic and format specifications, */
12 /* testcases, and Web links, on the General Decimal Arithmetic page. */
13 /* */
14 /* Please send comments, suggestions, and corrections to the author: */
15 /* mfc@uk.ibm.com */
16 /* Mike Cowlishaw, IBM Fellow */
17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
18 /* ------------------------------------------------------------------ */
19 /* This header file is included by all modules in the decNumber */
20 /* library, and contains local type definitions, tuning parameters, */
21 /* etc. It should not need to be used by application programs. */
22 /* decNumber.h or one of decDouble (etc.) must be included first. */
23 /* ------------------------------------------------------------------ */
25 #if !defined(DECNUMBERLOC)
26 #define DECNUMBERLOC
27 #define DECVERSION "decNumber 3.68" /* Package Version [16 max.] */
28 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
30 #include <stdlib.h> /* for abs */
31 #include <string.h> /* for memset, strcpy */
33 /* Conditional code flag -- set this to match hardware platform */
34 #if !defined(DECLITEND)
35 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
36 #endif
38 /* Conditional code flag -- set this to 1 for best performance */
39 #if !defined(DECUSE64)
40 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
41 #endif
43 /* Conditional code flag -- set this to 0 to exclude printf calls */
44 #if !defined(DECPRINT)
45 #define DECPRINT 1 /* 1=allow printf calls; 0=no printf */
46 #endif
48 /* Conditional check flags -- set these to 0 for best performance */
49 #if !defined(DECCHECK)
50 #define DECCHECK 0 /* 1 to enable robust checking */
51 #endif
52 #if !defined(DECALLOC)
53 #define DECALLOC 0 /* 1 to enable memory accounting */
54 #endif
55 #if !defined(DECTRACE)
56 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
57 #endif
59 /* Tuning parameter for decNumber (arbitrary precision) module */
60 #if !defined(DECBUFFER)
61 #define DECBUFFER 36 /* Size basis for local buffers. This */
62 /* should be a common maximum precision */
63 /* rounded up to a multiple of 4; must */
64 /* be zero or positive. */
65 #endif
68 /* ---------------------------------------------------------------- */
69 /* Check parameter dependencies */
70 /* ---------------------------------------------------------------- */
71 #if DECCHECK & !DECPRINT
72 #error DECCHECK needs DECPRINT to be useful
73 #endif
74 #if DECALLOC & !DECPRINT
75 #error DECALLOC needs DECPRINT to be useful
76 #endif
77 #if DECTRACE & !DECPRINT
78 #error DECTRACE needs DECPRINT to be useful
79 #endif
81 /* ---------------------------------------------------------------- */
82 /* Definitions for all modules (general-purpose) */
83 /* ---------------------------------------------------------------- */
85 /* Local names for common types -- for safety, decNumber modules do */
86 /* not use int or long directly. */
87 #define Flag uint8_t
88 #define Byte int8_t
89 #define uByte uint8_t
90 #define Short int16_t
91 #define uShort uint16_t
92 #define Int int32_t
93 #define uInt uint32_t
94 #define Unit decNumberUnit
95 #if DECUSE64
96 #define Long int64_t
97 #define uLong uint64_t
98 #endif
100 /* Development-use definitions */
101 typedef long int LI; /* for printf arguments only */
102 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
103 /* or stdint types */
104 #if DECNOINT
105 /* if these interfere with your C includes, do not set DECNOINT */
106 #define int ? /* enable to ensure that plain C 'int' */
107 #define long ?? /* .. or 'long' types are not used */
108 #endif
110 /* Shared lookup tables */
111 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
112 extern const uInt DECPOWERS[10]; /* powers of ten table */
113 /* The following are included from decDPD.h */
114 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
115 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
116 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
117 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
118 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
119 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
120 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
122 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
123 /* (that is, sets w to be the high-order word of the 64-bit result; */
124 /* the low-order word is simply u*v.) */
125 /* This version is derived from Knuth via Hacker's Delight; */
126 /* it seems to optimize better than some others tried */
127 #define LONGMUL32HI(w, u, v) { \
128 uInt u0, u1, v0, v1, w0, w1, w2, t; \
129 u0=u & 0xffff; u1=u>>16; \
130 v0=v & 0xffff; v1=v>>16; \
131 w0=u0*v0; \
132 t=u1*v0 + (w0>>16); \
133 w1=t & 0xffff; w2=t>>16; \
134 w1=u0*v1 + w1; \
135 (w)=u1*v1 + w2 + (w1>>16);}
137 /* ROUNDUP -- round an integer up to a multiple of n */
138 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
139 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
141 /* ROUNDDOWN -- round an integer down to a multiple of n */
142 #define ROUNDDOWN(i, n) (((i)/n)*n)
143 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
145 /* References to multi-byte sequences under different sizes; these */
146 /* require locally declared variables, but do not violate strict */
147 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
148 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
149 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
151 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
152 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
153 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
155 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
156 /* Returns i, evaluated, for convenience; has to use uiwork because */
157 /* i may be an expression. */
158 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
159 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
161 /* X10 and X100 -- multiply integer i by 10 or 100 */
162 /* [shifts are usually faster than multiply; could be conditional] */
163 #define X10(i) (((i)<<1)+((i)<<3))
164 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
166 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
167 #define MAXI(x,y) ((x)<(y)?(y):(x))
168 #define MINI(x,y) ((x)>(y)?(y):(x))
170 /* Useful constants */
171 #define BILLION 1000000000 /* 10**9 */
172 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
173 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
176 /* ---------------------------------------------------------------- */
177 /* Definitions for arbitary-precision modules (only valid after */
178 /* decNumber.h has been included) */
179 /* ---------------------------------------------------------------- */
181 /* Limits and constants */
182 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
183 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
184 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
185 #if (DECNUMMAXP != DEC_MAX_DIGITS)
186 #error Maximum digits mismatch
187 #endif
188 #if (DECNUMMAXE != DEC_MAX_EMAX)
189 #error Maximum exponent mismatch
190 #endif
191 #if (DECNUMMINE != DEC_MIN_EMIN)
192 #error Minimum exponent mismatch
193 #endif
195 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
196 /* digits, and D2UTABLE -- the initializer for the D2U table */
197 #if DECDPUN==1
198 #define DECDPUNMAX 9
199 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
200 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
201 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
202 48,49}
203 #elif DECDPUN==2
204 #define DECDPUNMAX 99
205 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
206 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
207 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
208 #elif DECDPUN==3
209 #define DECDPUNMAX 999
210 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
211 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
212 13,14,14,14,15,15,15,16,16,16,17}
213 #elif DECDPUN==4
214 #define DECDPUNMAX 9999
215 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
216 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
217 11,11,11,12,12,12,12,13}
218 #elif DECDPUN==5
219 #define DECDPUNMAX 99999
220 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
221 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
222 9,9,10,10,10,10}
223 #elif DECDPUN==6
224 #define DECDPUNMAX 999999
225 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
226 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
227 8,8,8,8,8,9}
228 #elif DECDPUN==7
229 #define DECDPUNMAX 9999999
230 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
231 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
232 7,7,7,7,7,7}
233 #elif DECDPUN==8
234 #define DECDPUNMAX 99999999
235 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
236 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
237 6,6,6,6,6,7}
238 #elif DECDPUN==9
239 #define DECDPUNMAX 999999999
240 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
241 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
242 5,5,6,6,6,6}
243 #elif defined(DECDPUN)
244 #error DECDPUN must be in the range 1-9
245 #endif
247 /* ----- Shared data (in decNumber.c) ----- */
248 /* Public lookup table used by the D2U macro (see below) */
249 #define DECMAXD2U 49
250 extern const uByte d2utable[DECMAXD2U+1];
252 /* ----- Macros ----- */
253 /* ISZERO -- return true if decNumber dn is a zero */
254 /* [performance-critical in some situations] */
255 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
257 /* D2U -- return the number of Units needed to hold d digits */
258 /* (runtime version, with table lookaside for small d) */
259 #if DECDPUN==8
260 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
261 #elif DECDPUN==4
262 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
263 #else
264 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
265 #endif
266 /* SD2U -- static D2U macro (for compile-time calculation) */
267 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
269 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
270 /* using D2U */
271 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
273 /* D2N -- return the number of decNumber structs that would be */
274 /* needed to contain that number of digits (and the initial */
275 /* decNumber struct) safely. Note that one Unit is included in the */
276 /* initial structure. Used for allocating space that is aligned on */
277 /* a decNumber struct boundary. */
278 #define D2N(d) \
279 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
281 /* TODIGIT -- macro to remove the leading digit from the unsigned */
282 /* integer u at column cut (counting from the right, LSD=0) and */
283 /* place it as an ASCII character into the character pointed to by */
284 /* c. Note that cut must be <= 9, and the maximum value for u is */
285 /* 2,000,000,000 (as is needed for negative exponents of */
286 /* subnormals). The unsigned integer pow is used as a temporary */
287 /* variable. */
288 #define TODIGIT(u, cut, c, pow) { \
289 *(c)='0'; \
290 pow=DECPOWERS[cut]*2; \
291 if ((u)>pow) { \
292 pow*=4; \
293 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
294 pow/=2; \
295 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
296 pow/=2; \
298 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
299 pow/=2; \
300 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
303 /* ---------------------------------------------------------------- */
304 /* Definitions for fixed-precision modules (only valid after */
305 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
306 /* ---------------------------------------------------------------- */
308 /* bcdnum -- a structure describing a format-independent finite */
309 /* number, whose coefficient is a string of bcd8 uBytes */
310 typedef struct {
311 uByte *msd; /* -> most significant digit */
312 uByte *lsd; /* -> least ditto */
313 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
314 Int exponent; /* Unadjusted signed exponent (q), or */
315 /* DECFLOAT_NaN etc. for a special */
316 } bcdnum;
318 /* Test if exponent or bcdnum exponent must be a special, etc. */
319 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
320 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
321 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
322 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
324 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
325 /* (array) notation (the 0 word or byte contains the sign bit), */
326 /* automatically adjusting for endianness; similarly address a word */
327 /* in the next-wider format (decFloatWider, or dfw) */
328 #define DECWORDS (DECBYTES/4)
329 #define DECWWORDS (DECWBYTES/4)
330 #if DECLITEND
331 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
332 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
333 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
334 #else
335 #define DFBYTE(df, off) ((df)->bytes[off])
336 #define DFWORD(df, off) ((df)->words[off])
337 #define DFWWORD(dfw, off) ((dfw)->words[off])
338 #endif
340 /* Tests for sign or specials, directly on DECFLOATs */
341 #define DFISSIGNED(df) ((DFWORD(df, 0)&0x80000000)!=0)
342 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
343 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
344 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
345 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
346 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
348 /* Shared lookup tables */
349 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
350 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
352 /* Private generic (utility) routine */
353 #if DECCHECK || DECTRACE
354 extern void decShowNum(const bcdnum *, const char *);
355 #endif
357 /* Format-dependent macros and constants */
358 #if defined(DECPMAX)
360 /* Useful constants */
361 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
362 /* Top words for a zero */
363 #define SINGLEZERO 0x22500000
364 #define DOUBLEZERO 0x22380000
365 #define QUADZERO 0x22080000
366 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
368 /* Format-dependent common tests: */
369 /* DFISZERO -- test for (any) zero */
370 /* DFISCCZERO -- test for coefficient continuation being zero */
371 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
372 /* DFISINT -- test for finite and exponent q=0 */
373 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
374 /* MSD=0 or 1 */
375 /* ZEROWORD is also defined here. */
376 /* */
377 /* In DFISZERO the first test checks the least-significant word */
378 /* (most likely to be non-zero); the penultimate tests MSD and */
379 /* DPDs in the signword, and the final test excludes specials and */
380 /* MSD>7. DFISINT similarly has to allow for the two forms of */
381 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
382 /* code. */
383 #if DECPMAX==7
384 #define ZEROWORD SINGLEZERO
385 /* [test macros not needed except for Zero] */
386 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
387 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
388 #elif DECPMAX==16
389 #define ZEROWORD DOUBLEZERO
390 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
391 && (DFWORD(df, 0)&0x1c03ffff)==0 \
392 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
393 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
394 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
395 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
396 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
397 && (DFWORD(df, 0)&0x0003ffff)==0)
398 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
399 && (DFWORD(df, 1)&~0x49124491)==0)
400 #elif DECPMAX==34
401 #define ZEROWORD QUADZERO
402 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
403 && DFWORD(df, 2)==0 \
404 && DFWORD(df, 1)==0 \
405 && (DFWORD(df, 0)&0x1c003fff)==0 \
406 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
407 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
408 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
409 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
410 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
411 && DFWORD(df, 2)==0 \
412 && DFWORD(df, 1)==0 \
413 && (DFWORD(df, 0)&0x00003fff)==0)
415 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
416 && (DFWORD(df, 1)&~0x44912449)==0 \
417 && (DFWORD(df, 2)&~0x12449124)==0 \
418 && (DFWORD(df, 3)&~0x49124491)==0)
419 #endif
421 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
422 /* are a canonical declet [higher or lower bits are ignored]. */
423 /* declet is at offset 0 (from the right) in a uInt: */
424 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
425 /* declet is at offset k (a multiple of 2) in a uInt: */
426 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
427 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
428 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
429 /* [the top 2 bits will always be in the more-significant uInt] */
430 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
431 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
432 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
434 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
435 /* coefficient, starting at uByte u, is all zeros */
436 /* Test just the LSWord first, then the remainder as a sequence */
437 /* of tests in order to avoid same-level use of UBTOUI */
438 #if DECPMAX==7
439 #define ISCOEFFZERO(u) ( \
440 UBTOUI((u)+DECPMAX-4)==0 \
441 && UBTOUS((u)+DECPMAX-6)==0 \
442 && *(u)==0)
443 #elif DECPMAX==16
444 #define ISCOEFFZERO(u) ( \
445 UBTOUI((u)+DECPMAX-4)==0 \
446 && UBTOUI((u)+DECPMAX-8)==0 \
447 && UBTOUI((u)+DECPMAX-12)==0 \
448 && UBTOUI(u)==0)
449 #elif DECPMAX==34
450 #define ISCOEFFZERO(u) ( \
451 UBTOUI((u)+DECPMAX-4)==0 \
452 && UBTOUI((u)+DECPMAX-8)==0 \
453 && UBTOUI((u)+DECPMAX-12)==0 \
454 && UBTOUI((u)+DECPMAX-16)==0 \
455 && UBTOUI((u)+DECPMAX-20)==0 \
456 && UBTOUI((u)+DECPMAX-24)==0 \
457 && UBTOUI((u)+DECPMAX-28)==0 \
458 && UBTOUI((u)+DECPMAX-32)==0 \
459 && UBTOUS(u)==0)
460 #endif
462 /* Macros and masks for the sign, exponent continuation, and MSD */
463 /* Get the sign as DECFLOAT_Sign or 0 */
464 #define GETSIGN(df) (DFWORD(df, 0)&0x80000000)
465 /* Get the exponent continuation from a decFloat *df as an Int */
466 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
467 /* Ditto, from the next-wider format */
468 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
469 /* Get the biased exponent similarly */
470 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
471 /* Get the unbiased exponent similarly */
472 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
473 /* Get the MSD similarly (as uInt) */
474 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
476 /* Compile-time computes of the exponent continuation field masks */
477 /* full exponent continuation field: */
478 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
479 /* same, not including its first digit (the qNaN/sNaN selector): */
480 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
482 /* Macros to decode the coefficient in a finite decFloat *df into */
483 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
485 /* In-line sequence to convert least significant 10 bits of uInt */
486 /* dpd to three BCD8 digits starting at uByte u. Note that an */
487 /* extra byte is written to the right of the three digits because */
488 /* four bytes are moved at a time for speed; the alternative */
489 /* macro moves exactly three bytes (usually slower). */
490 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
491 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
493 /* Decode the declets. After extracting each one, it is decoded */
494 /* to BCD8 using a table lookup (also used for variable-length */
495 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
496 /* length which is not used, here). Fixed-length 4-byte moves */
497 /* are fast, however, almost everywhere, and so are used except */
498 /* for the final three bytes (to avoid overrun). The code below */
499 /* is 36 instructions for Doubles and about 70 for Quads, even */
500 /* on IA32. */
502 /* Two macros are defined for each format: */
503 /* GETCOEFF extracts the coefficient of the current format */
504 /* GETWCOEFF extracts the coefficient of the next-wider format. */
505 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
507 #if DECPMAX==7
508 #define GETCOEFF(df, bcd) { \
509 uInt sourhi=DFWORD(df, 0); \
510 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
511 dpd2bcd8(bcd+1, sourhi>>10); \
512 dpd2bcd83(bcd+4, sourhi);}
513 #define GETWCOEFF(df, bcd) { \
514 uInt sourhi=DFWWORD(df, 0); \
515 uInt sourlo=DFWWORD(df, 1); \
516 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
517 dpd2bcd8(bcd+1, sourhi>>8); \
518 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
519 dpd2bcd8(bcd+7, sourlo>>20); \
520 dpd2bcd8(bcd+10, sourlo>>10); \
521 dpd2bcd83(bcd+13, sourlo);}
523 #elif DECPMAX==16
524 #define GETCOEFF(df, bcd) { \
525 uInt sourhi=DFWORD(df, 0); \
526 uInt sourlo=DFWORD(df, 1); \
527 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
528 dpd2bcd8(bcd+1, sourhi>>8); \
529 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
530 dpd2bcd8(bcd+7, sourlo>>20); \
531 dpd2bcd8(bcd+10, sourlo>>10); \
532 dpd2bcd83(bcd+13, sourlo);}
533 #define GETWCOEFF(df, bcd) { \
534 uInt sourhi=DFWWORD(df, 0); \
535 uInt sourmh=DFWWORD(df, 1); \
536 uInt sourml=DFWWORD(df, 2); \
537 uInt sourlo=DFWWORD(df, 3); \
538 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
539 dpd2bcd8(bcd+1, sourhi>>4); \
540 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
541 dpd2bcd8(bcd+7, sourmh>>16); \
542 dpd2bcd8(bcd+10, sourmh>>6); \
543 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
544 dpd2bcd8(bcd+16, sourml>>18); \
545 dpd2bcd8(bcd+19, sourml>>8); \
546 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
547 dpd2bcd8(bcd+25, sourlo>>20); \
548 dpd2bcd8(bcd+28, sourlo>>10); \
549 dpd2bcd83(bcd+31, sourlo);}
551 #elif DECPMAX==34
552 #define GETCOEFF(df, bcd) { \
553 uInt sourhi=DFWORD(df, 0); \
554 uInt sourmh=DFWORD(df, 1); \
555 uInt sourml=DFWORD(df, 2); \
556 uInt sourlo=DFWORD(df, 3); \
557 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
558 dpd2bcd8(bcd+1, sourhi>>4); \
559 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
560 dpd2bcd8(bcd+7, sourmh>>16); \
561 dpd2bcd8(bcd+10, sourmh>>6); \
562 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
563 dpd2bcd8(bcd+16, sourml>>18); \
564 dpd2bcd8(bcd+19, sourml>>8); \
565 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
566 dpd2bcd8(bcd+25, sourlo>>20); \
567 dpd2bcd8(bcd+28, sourlo>>10); \
568 dpd2bcd83(bcd+31, sourlo);}
570 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
571 #endif
573 /* Macros to decode the coefficient in a finite decFloat *df into */
574 /* a base-billion uInt array, with the least-significant */
575 /* 0-999999999 'digit' at offset 0. */
577 /* Decode the declets. After extracting each one, it is decoded */
578 /* to binary using a table lookup. Three tables are used; one */
579 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
580 /* and 1000000 to avoid multiplication during decode. These */
581 /* tables can also be used for multiplying up the MSD as the DPD */
582 /* code for 0 through 9 is the identity. */
583 #define DPD2BIN0 DPD2BIN /* for prettier code */
585 #if DECPMAX==7
586 #define GETCOEFFBILL(df, buf) { \
587 uInt sourhi=DFWORD(df, 0); \
588 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
589 +DPD2BINK[(sourhi>>10)&0x3ff] \
590 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
592 #elif DECPMAX==16
593 #define GETCOEFFBILL(df, buf) { \
594 uInt sourhi, sourlo; \
595 sourlo=DFWORD(df, 1); \
596 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
597 +DPD2BINK[(sourlo>>10)&0x3ff] \
598 +DPD2BINM[(sourlo>>20)&0x3ff]; \
599 sourhi=DFWORD(df, 0); \
600 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
601 +DPD2BINK[(sourhi>>8)&0x3ff] \
602 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
604 #elif DECPMAX==34
605 #define GETCOEFFBILL(df, buf) { \
606 uInt sourhi, sourmh, sourml, sourlo; \
607 sourlo=DFWORD(df, 3); \
608 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
609 +DPD2BINK[(sourlo>>10)&0x3ff] \
610 +DPD2BINM[(sourlo>>20)&0x3ff]; \
611 sourml=DFWORD(df, 2); \
612 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
613 +DPD2BINK[(sourml>>8)&0x3ff] \
614 +DPD2BINM[(sourml>>18)&0x3ff]; \
615 sourmh=DFWORD(df, 1); \
616 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
617 +DPD2BINK[(sourmh>>6)&0x3ff] \
618 +DPD2BINM[(sourmh>>16)&0x3ff]; \
619 sourhi=DFWORD(df, 0); \
620 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
621 +DPD2BINK[(sourhi>>4)&0x3ff] \
622 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
624 #endif
626 /* Macros to decode the coefficient in a finite decFloat *df into */
627 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
628 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
630 /* Decode the declets. After extracting each one, it is decoded */
631 /* to binary using a table lookup. */
632 #if DECPMAX==7
633 #define GETCOEFFTHOU(df, buf) { \
634 uInt sourhi=DFWORD(df, 0); \
635 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
636 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
637 (buf)[2]=DECCOMBMSD[sourhi>>26];}
639 #elif DECPMAX==16
640 #define GETCOEFFTHOU(df, buf) { \
641 uInt sourhi, sourlo; \
642 sourlo=DFWORD(df, 1); \
643 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
644 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
645 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
646 sourhi=DFWORD(df, 0); \
647 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
648 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
649 (buf)[5]=DECCOMBMSD[sourhi>>26];}
651 #elif DECPMAX==34
652 #define GETCOEFFTHOU(df, buf) { \
653 uInt sourhi, sourmh, sourml, sourlo; \
654 sourlo=DFWORD(df, 3); \
655 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
656 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
657 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
658 sourml=DFWORD(df, 2); \
659 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
660 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
661 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
662 sourmh=DFWORD(df, 1); \
663 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
664 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
665 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
666 sourhi=DFWORD(df, 0); \
667 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
668 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
669 (buf)[11]=DECCOMBMSD[sourhi>>26];}
670 #endif
673 /* Macros to decode the coefficient in a finite decFloat *df and */
674 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
675 /* After the addition then most significant 'digit' in the array */
676 /* might have a value larger then 10 (with a maximum of 19). */
677 #if DECPMAX==7
678 #define ADDCOEFFTHOU(df, buf) { \
679 uInt sourhi=DFWORD(df, 0); \
680 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
681 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
682 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
683 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
684 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
686 #elif DECPMAX==16
687 #define ADDCOEFFTHOU(df, buf) { \
688 uInt sourhi, sourlo; \
689 sourlo=DFWORD(df, 1); \
690 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
691 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
692 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
693 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
694 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
695 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
696 sourhi=DFWORD(df, 0); \
697 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
698 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
699 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
700 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
701 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
703 #elif DECPMAX==34
704 #define ADDCOEFFTHOU(df, buf) { \
705 uInt sourhi, sourmh, sourml, sourlo; \
706 sourlo=DFWORD(df, 3); \
707 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
708 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
709 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
710 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
711 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
712 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
713 sourml=DFWORD(df, 2); \
714 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
715 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
716 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
717 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
718 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
719 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
720 sourmh=DFWORD(df, 1); \
721 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
722 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
723 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
724 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
725 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
726 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
727 sourhi=DFWORD(df, 0); \
728 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
729 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
730 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
731 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
732 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
733 #endif
736 /* Set a decFloat to the maximum positive finite number (Nmax) */
737 #if DECPMAX==7
738 #define DFSETNMAX(df) \
739 {DFWORD(df, 0)=0x77f3fcff;}
740 #elif DECPMAX==16
741 #define DFSETNMAX(df) \
742 {DFWORD(df, 0)=0x77fcff3f; \
743 DFWORD(df, 1)=0xcff3fcff;}
744 #elif DECPMAX==34
745 #define DFSETNMAX(df) \
746 {DFWORD(df, 0)=0x77ffcff3; \
747 DFWORD(df, 1)=0xfcff3fcf; \
748 DFWORD(df, 2)=0xf3fcff3f; \
749 DFWORD(df, 3)=0xcff3fcff;}
750 #endif
752 /* [end of format-dependent macros and constants] */
753 #endif
755 #else
756 #error decNumberLocal included more than once
757 #endif