beta-0.89.2
[luatex.git] / source / libs / mpfr / mpfr-3.1.3 / src / yn.c
blobc2c6bc97ea4566868758f0076c494edaf5390650
1 /* mpfr_y0, mpfr_y1, mpfr_yn -- Bessel functions of 2nd kind, integer order.
2 http://www.opengroup.org/onlinepubs/009695399/functions/y0.html
4 Copyright 2007-2015 Free Software Foundation, Inc.
5 Contributed by the AriC and Caramel projects, INRIA.
7 This file is part of the GNU MPFR Library.
9 The GNU MPFR Library is free software; you can redistribute it and/or modify
10 it under the terms of the GNU Lesser General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or (at your
12 option) any later version.
14 The GNU MPFR Library is distributed in the hope that it will be useful, but
15 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
17 License for more details.
19 You should have received a copy of the GNU Lesser General Public License
20 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
21 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
22 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
24 #define MPFR_NEED_LONGLONG_H
25 #include "mpfr-impl.h"
27 static int mpfr_yn_asympt (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t);
29 int
30 mpfr_y0 (mpfr_ptr res, mpfr_srcptr z, mpfr_rnd_t r)
32 return mpfr_yn (res, 0, z, r);
35 int
36 mpfr_y1 (mpfr_ptr res, mpfr_srcptr z, mpfr_rnd_t r)
38 return mpfr_yn (res, 1, z, r);
41 /* compute in s an approximation of S1 = sum((n-k)!/k!*y^k,k=0..n)
42 return e >= 0 the exponent difference between the maximal value of |s|
43 during the for loop and the final value of |s|.
45 static mpfr_exp_t
46 mpfr_yn_s1 (mpfr_ptr s, mpfr_srcptr y, unsigned long n)
48 unsigned long k;
49 mpz_t f;
50 mpfr_exp_t e, emax;
52 mpz_init_set_ui (f, 1);
53 /* we compute n!*S1 = sum(a[k]*y^k,k=0..n) where a[k] = n!*(n-k)!/k!,
54 a[0] = (n!)^2, a[1] = n!*(n-1)!, ..., a[n-1] = n, a[n] = 1 */
55 mpfr_set_ui (s, 1, MPFR_RNDN); /* a[n] */
56 emax = MPFR_EXP(s);
57 for (k = n; k-- > 0;)
59 /* a[k]/a[k+1] = (n-k)!/k!/(n-(k+1))!*(k+1)! = (k+1)*(n-k) */
60 mpfr_mul (s, s, y, MPFR_RNDN);
61 mpz_mul_ui (f, f, n - k);
62 mpz_mul_ui (f, f, k + 1);
63 /* invariant: f = a[k] */
64 mpfr_add_z (s, s, f, MPFR_RNDN);
65 e = MPFR_EXP(s);
66 if (e > emax)
67 emax = e;
69 /* now we have f = (n!)^2 */
70 mpz_sqrt (f, f);
71 mpfr_div_z (s, s, f, MPFR_RNDN);
72 mpz_clear (f);
73 return emax - MPFR_EXP(s);
76 /* compute in s an approximation of
77 S3 = c*sum((h(k)+h(n+k))*y^k/k!/(n+k)!,k=0..infinity)
78 where h(k) = 1 + 1/2 + ... + 1/k
79 k=0: h(n)
80 k=1: 1+h(n+1)
81 k=2: 3/2+h(n+2)
82 Returns e such that the error is bounded by 2^e ulp(s).
84 static mpfr_exp_t
85 mpfr_yn_s3 (mpfr_ptr s, mpfr_srcptr y, mpfr_srcptr c, unsigned long n)
87 unsigned long k, zz;
88 mpfr_t t, u;
89 mpz_t p, q; /* p/q will store h(k)+h(n+k) */
90 mpfr_exp_t exps, expU;
92 zz = mpfr_get_ui (y, MPFR_RNDU); /* y = z^2/4 */
93 MPFR_ASSERTN (zz < ULONG_MAX - 2);
94 zz += 2; /* z^2 <= 2^zz */
95 mpz_init_set_ui (p, 0);
96 mpz_init_set_ui (q, 1);
97 /* initialize p/q to h(n) */
98 for (k = 1; k <= n; k++)
100 /* p/q + 1/k = (k*p+q)/(q*k) */
101 mpz_mul_ui (p, p, k);
102 mpz_add (p, p, q);
103 mpz_mul_ui (q, q, k);
105 mpfr_init2 (t, MPFR_PREC(s));
106 mpfr_init2 (u, MPFR_PREC(s));
107 mpfr_fac_ui (t, n, MPFR_RNDN);
108 mpfr_div (t, c, t, MPFR_RNDN); /* c/n! */
109 mpfr_mul_z (u, t, p, MPFR_RNDN);
110 mpfr_div_z (s, u, q, MPFR_RNDN);
111 exps = MPFR_EXP (s);
112 expU = exps;
113 for (k = 1; ;k ++)
115 /* update t */
116 mpfr_mul (t, t, y, MPFR_RNDN);
117 mpfr_div_ui (t, t, k, MPFR_RNDN);
118 mpfr_div_ui (t, t, n + k, MPFR_RNDN);
119 /* update p/q:
120 p/q + 1/k + 1/(n+k) = [p*k*(n+k) + q*(n+k) + q*k]/(q*k*(n+k)) */
121 mpz_mul_ui (p, p, k);
122 mpz_mul_ui (p, p, n + k);
123 mpz_addmul_ui (p, q, n + 2 * k);
124 mpz_mul_ui (q, q, k);
125 mpz_mul_ui (q, q, n + k);
126 mpfr_mul_z (u, t, p, MPFR_RNDN);
127 mpfr_div_z (u, u, q, MPFR_RNDN);
128 exps = MPFR_EXP (u);
129 if (exps > expU)
130 expU = exps;
131 mpfr_add (s, s, u, MPFR_RNDN);
132 exps = MPFR_EXP (s);
133 if (exps > expU)
134 expU = exps;
135 if (MPFR_EXP (u) + (mpfr_exp_t) MPFR_PREC (u) < MPFR_EXP (s) &&
136 zz / (2 * k) < k + n)
137 break;
139 mpfr_clear (t);
140 mpfr_clear (u);
141 mpz_clear (p);
142 mpz_clear (q);
143 exps = expU - MPFR_EXP (s);
144 /* the error is bounded by (6k^2+33/2k+11) 2^exps ulps
145 <= 8*(k+2)^2 2^exps ulps */
146 return 3 + 2 * MPFR_INT_CEIL_LOG2(k + 2) + exps;
150 mpfr_yn (mpfr_ptr res, long n, mpfr_srcptr z, mpfr_rnd_t r)
152 int inex;
153 unsigned long absn;
154 MPFR_SAVE_EXPO_DECL (expo);
156 MPFR_LOG_FUNC
157 (("n=%ld x[%Pu]=%.*Rg rnd=%d", n, mpfr_get_prec (z), mpfr_log_prec, z, r),
158 ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (res), mpfr_log_prec, res, inex));
160 absn = SAFE_ABS (unsigned long, n);
162 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (z)))
164 if (MPFR_IS_NAN (z))
166 MPFR_SET_NAN (res); /* y(n,NaN) = NaN */
167 MPFR_RET_NAN;
169 /* y(n,z) tends to zero when z goes to +Inf, oscillating around
170 0. We choose to return +0 in that case. */
171 else if (MPFR_IS_INF (z))
173 if (MPFR_SIGN(z) > 0)
174 return mpfr_set_ui (res, 0, r);
175 else /* y(n,-Inf) = NaN */
177 MPFR_SET_NAN (res);
178 MPFR_RET_NAN;
181 else /* y(n,z) tends to -Inf for n >= 0 or n even, to +Inf otherwise,
182 when z goes to zero */
184 MPFR_SET_INF(res);
185 if (n >= 0 || ((unsigned long) n & 1) == 0)
186 MPFR_SET_NEG(res);
187 else
188 MPFR_SET_POS(res);
189 mpfr_set_divby0 ();
190 MPFR_RET(0);
194 /* for z < 0, y(n,z) is imaginary except when j(n,|z|) = 0, which we
195 assume does not happen for a rational z. */
196 if (MPFR_SIGN(z) < 0)
198 MPFR_SET_NAN (res);
199 MPFR_RET_NAN;
202 /* now z is not singular, and z > 0 */
204 MPFR_SAVE_EXPO_MARK (expo);
206 /* Deal with tiny arguments. We have:
207 y0(z) = 2 log(z)/Pi + 2 (euler - log(2))/Pi + O(log(z)*z^2), more
208 precisely for 0 <= z <= 1/2, with g(z) = 2/Pi + 2(euler-log(2))/Pi/log(z),
209 g(z) - 0.41*z^2 < y0(z)/log(z) < g(z)
210 thus since log(z) is negative:
211 g(z)*log(z) < y0(z) < (g(z) - z^2/2)*log(z)
212 and since |g(z)| >= 0.63 for 0 <= z <= 1/2, the relative error on
213 y0(z)/log(z) is bounded by 0.41*z^2/0.63 <= 0.66*z^2.
214 Note: we use both the main term in log(z) and the constant term, because
215 otherwise the relative error would be only in 1/log(|log(z)|).
217 if (n == 0 && MPFR_EXP(z) < - (mpfr_exp_t) (MPFR_PREC(res) / 2))
219 mpfr_t l, h, t, logz;
220 mpfr_prec_t prec;
221 int ok, inex2;
223 prec = MPFR_PREC(res) + 10;
224 mpfr_init2 (l, prec);
225 mpfr_init2 (h, prec);
226 mpfr_init2 (t, prec);
227 mpfr_init2 (logz, prec);
228 /* first enclose log(z) + euler - log(2) = log(z/2) + euler */
229 mpfr_log (logz, z, MPFR_RNDD); /* lower bound of log(z) */
230 mpfr_set (h, logz, MPFR_RNDU); /* exact */
231 mpfr_nextabove (h); /* upper bound of log(z) */
232 mpfr_const_euler (t, MPFR_RNDD); /* lower bound of euler */
233 mpfr_add (l, logz, t, MPFR_RNDD); /* lower bound of log(z) + euler */
234 mpfr_nextabove (t); /* upper bound of euler */
235 mpfr_add (h, h, t, MPFR_RNDU); /* upper bound of log(z) + euler */
236 mpfr_const_log2 (t, MPFR_RNDU); /* upper bound of log(2) */
237 mpfr_sub (l, l, t, MPFR_RNDD); /* lower bound of log(z/2) + euler */
238 mpfr_nextbelow (t); /* lower bound of log(2) */
239 mpfr_sub (h, h, t, MPFR_RNDU); /* upper bound of log(z/2) + euler */
240 mpfr_const_pi (t, MPFR_RNDU); /* upper bound of Pi */
241 mpfr_div (l, l, t, MPFR_RNDD); /* lower bound of (log(z/2)+euler)/Pi */
242 mpfr_nextbelow (t); /* lower bound of Pi */
243 mpfr_div (h, h, t, MPFR_RNDD); /* upper bound of (log(z/2)+euler)/Pi */
244 mpfr_mul_2ui (l, l, 1, MPFR_RNDD); /* lower bound on g(z)*log(z) */
245 mpfr_mul_2ui (h, h, 1, MPFR_RNDU); /* upper bound on g(z)*log(z) */
246 /* we now have l <= g(z)*log(z) <= h, and we need to add -z^2/2*log(z)
247 to h */
248 mpfr_mul (t, z, z, MPFR_RNDU); /* upper bound on z^2 */
249 /* since logz is negative, a lower bound corresponds to an upper bound
250 for its absolute value */
251 mpfr_neg (t, t, MPFR_RNDD);
252 mpfr_div_2ui (t, t, 1, MPFR_RNDD);
253 mpfr_mul (t, t, logz, MPFR_RNDU); /* upper bound on z^2/2*log(z) */
254 mpfr_add (h, h, t, MPFR_RNDU);
255 inex = mpfr_prec_round (l, MPFR_PREC(res), r);
256 inex2 = mpfr_prec_round (h, MPFR_PREC(res), r);
257 /* we need h=l and inex=inex2 */
258 ok = (inex == inex2) && mpfr_equal_p (l, h);
259 if (ok)
260 mpfr_set (res, h, r); /* exact */
261 mpfr_clear (l);
262 mpfr_clear (h);
263 mpfr_clear (t);
264 mpfr_clear (logz);
265 if (ok)
266 goto end;
269 /* small argument check for y1(z) = -2/Pi/z + O(log(z)):
270 for 0 <= z <= 1, |y1(z) + 2/Pi/z| <= 0.25 */
271 if (n == 1 && MPFR_EXP(z) + 1 < - (mpfr_exp_t) MPFR_PREC(res))
273 mpfr_t y;
274 mpfr_prec_t prec;
275 mpfr_exp_t err1;
276 int ok;
277 MPFR_BLOCK_DECL (flags);
279 /* since 2/Pi > 0.5, and |y1(z)| >= |2/Pi/z|, if z <= 2^(-emax-1),
280 then |y1(z)| > 2^emax */
281 prec = MPFR_PREC(res) + 10;
282 mpfr_init2 (y, prec);
283 mpfr_const_pi (y, MPFR_RNDU); /* Pi*(1+u)^2, where here and below u
284 represents a quantity <= 1/2^prec */
285 mpfr_mul (y, y, z, MPFR_RNDU); /* Pi*z * (1+u)^4, upper bound */
286 MPFR_BLOCK (flags, mpfr_ui_div (y, 2, y, MPFR_RNDZ));
287 /* 2/Pi/z * (1+u)^6, lower bound, with possible overflow */
288 if (MPFR_OVERFLOW (flags))
290 mpfr_clear (y);
291 MPFR_SAVE_EXPO_FREE (expo);
292 return mpfr_overflow (res, r, -1);
294 mpfr_neg (y, y, MPFR_RNDN);
295 /* (1+u)^6 can be written 1+7u [for another value of u], thus the
296 error on 2/Pi/z is less than 7ulp(y). The truncation error is less
297 than 1/4, thus if ulp(y)>=1/4, the total error is less than 8ulp(y),
298 otherwise it is less than 1/4+7/8 <= 2. */
299 if (MPFR_EXP(y) + 2 >= MPFR_PREC(y)) /* ulp(y) >= 1/4 */
300 err1 = 3;
301 else /* ulp(y) <= 1/8 */
302 err1 = (mpfr_exp_t) MPFR_PREC(y) - MPFR_EXP(y) + 1;
303 ok = MPFR_CAN_ROUND (y, prec - err1, MPFR_PREC(res), r);
304 if (ok)
305 inex = mpfr_set (res, y, r);
306 mpfr_clear (y);
307 if (ok)
308 goto end;
311 /* we can use the asymptotic expansion as soon as z > p log(2)/2,
312 but to get some margin we use it for z > p/2 */
313 if (mpfr_cmp_ui (z, MPFR_PREC(res) / 2 + 3) > 0)
315 inex = mpfr_yn_asympt (res, n, z, r);
316 if (inex != 0)
317 goto end;
320 /* General case */
322 mpfr_prec_t prec;
323 mpfr_exp_t err1, err2, err3;
324 mpfr_t y, s1, s2, s3;
325 MPFR_ZIV_DECL (loop);
327 mpfr_init (y);
328 mpfr_init (s1);
329 mpfr_init (s2);
330 mpfr_init (s3);
332 prec = MPFR_PREC(res) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (res)) + 13;
333 MPFR_ZIV_INIT (loop, prec);
334 for (;;)
336 mpfr_set_prec (y, prec);
337 mpfr_set_prec (s1, prec);
338 mpfr_set_prec (s2, prec);
339 mpfr_set_prec (s3, prec);
341 mpfr_mul (y, z, z, MPFR_RNDN);
342 mpfr_div_2ui (y, y, 2, MPFR_RNDN); /* z^2/4 */
344 /* store (z/2)^n temporarily in s2 */
345 mpfr_pow_ui (s2, z, absn, MPFR_RNDN);
346 mpfr_div_2si (s2, s2, absn, MPFR_RNDN);
348 /* compute S1 * (z/2)^(-n) */
349 if (n == 0)
351 mpfr_set_ui (s1, 0, MPFR_RNDN);
352 err1 = 0;
354 else
355 err1 = mpfr_yn_s1 (s1, y, absn - 1);
356 mpfr_div (s1, s1, s2, MPFR_RNDN); /* (z/2)^(-n) * S1 */
357 /* See algorithms.tex: the relative error on s1 is bounded by
358 (3n+3)*2^(e+1-prec). */
359 err1 = MPFR_INT_CEIL_LOG2 (3 * absn + 3) + err1 + 1;
360 /* rel_err(s1) <= 2^(err1-prec), thus err(s1) <= 2^err1 ulps */
362 /* compute (z/2)^n * S3 */
363 mpfr_neg (y, y, MPFR_RNDN); /* -z^2/4 */
364 err3 = mpfr_yn_s3 (s3, y, s2, absn); /* (z/2)^n * S3 */
365 /* the error on s3 is bounded by 2^err3 ulps */
367 /* add s1+s3 */
368 err1 += MPFR_EXP(s1);
369 mpfr_add (s1, s1, s3, MPFR_RNDN);
370 /* the error is bounded by 1/2 + 2^err1*2^(- EXP(s1))
371 + 2^err3*2^(EXP(s3) - EXP(s1)) */
372 err3 += MPFR_EXP(s3);
373 err1 = (err3 > err1) ? err3 + 1 : err1 + 1;
374 err1 -= MPFR_EXP(s1);
375 err1 = (err1 >= 0) ? err1 + 1 : 1;
376 /* now the error on s1 is bounded by 2^err1*ulp(s1) */
378 /* compute S2 */
379 mpfr_div_2ui (s2, z, 1, MPFR_RNDN); /* z/2 */
380 mpfr_log (s2, s2, MPFR_RNDN); /* log(z/2) */
381 mpfr_const_euler (s3, MPFR_RNDN);
382 err2 = MPFR_EXP(s2) > MPFR_EXP(s3) ? MPFR_EXP(s2) : MPFR_EXP(s3);
383 mpfr_add (s2, s2, s3, MPFR_RNDN); /* log(z/2) + gamma */
384 err2 -= MPFR_EXP(s2);
385 mpfr_mul_2ui (s2, s2, 1, MPFR_RNDN); /* 2*(log(z/2) + gamma) */
386 mpfr_jn (s3, absn, z, MPFR_RNDN); /* Jn(z) */
387 mpfr_mul (s2, s2, s3, MPFR_RNDN); /* 2*(log(z/2) + gamma)*Jn(z) */
388 err2 += 4; /* the error on s2 is bounded by 2^err2 ulps, see
389 algorithms.tex */
391 /* add all three sums */
392 err1 += MPFR_EXP(s1); /* the error on s1 is bounded by 2^err1 */
393 err2 += MPFR_EXP(s2); /* the error on s2 is bounded by 2^err2 */
394 mpfr_sub (s2, s2, s1, MPFR_RNDN); /* s2 - (s1+s3) */
395 err2 = (err1 > err2) ? err1 + 1 : err2 + 1;
396 err2 -= MPFR_EXP(s2);
397 err2 = (err2 >= 0) ? err2 + 1 : 1;
398 /* now the error on s2 is bounded by 2^err2*ulp(s2) */
399 mpfr_const_pi (y, MPFR_RNDN); /* error bounded by 1 ulp */
400 mpfr_div (s2, s2, y, MPFR_RNDN); /* error bounded by
401 2^(err2+1)*ulp(s2) */
402 err2 ++;
404 if (MPFR_LIKELY (MPFR_CAN_ROUND (s2, prec - err2, MPFR_PREC(res), r)))
405 break;
406 MPFR_ZIV_NEXT (loop, prec);
408 MPFR_ZIV_FREE (loop);
410 /* Assume two's complement for the test n & 1 */
411 inex = mpfr_set4 (res, s2, r, n >= 0 || (n & 1) == 0 ?
412 MPFR_SIGN (s2) : - MPFR_SIGN (s2));
414 mpfr_clear (y);
415 mpfr_clear (s1);
416 mpfr_clear (s2);
417 mpfr_clear (s3);
420 end:
421 MPFR_SAVE_EXPO_FREE (expo);
422 return mpfr_check_range (res, inex, r);
425 #define MPFR_YN
426 #include "jyn_asympt.c"