beta-0.89.2
[luatex.git] / source / libs / mpfr / mpfr-3.1.3 / src / pow_si.c
blob9ab6f82f810ae45c7d336922bb4606166d22d37a
1 /* mpfr_pow_si -- power function x^y with y a signed int
3 Copyright 2001-2015 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* The computation of y = pow_si(x,n) is done by
27 * y = pow_ui(x,n) if n >= 0
28 * y = 1 / pow_ui(x,-n) if n < 0
31 int
32 mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
34 MPFR_LOG_FUNC
35 (("x[%Pu]=%.*Rg n=%ld rnd=%d",
36 mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
37 ("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
39 if (n >= 0)
40 return mpfr_pow_ui (y, x, n, rnd);
41 else
43 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
45 if (MPFR_IS_NAN (x))
47 MPFR_SET_NAN (y);
48 MPFR_RET_NAN;
50 else
52 int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
53 if (MPFR_IS_INF (x))
54 MPFR_SET_ZERO (y);
55 else /* x is zero */
57 MPFR_ASSERTD (MPFR_IS_ZERO (x));
58 MPFR_SET_INF (y);
59 mpfr_set_divby0 ();
61 if (positive)
62 MPFR_SET_POS (y);
63 else
64 MPFR_SET_NEG (y);
65 MPFR_RET (0);
69 /* detect exact powers: x^(-n) is exact iff x is a power of 2 */
70 if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
72 mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
73 MPFR_ASSERTD (n < 0);
74 /* Warning: n * expx may overflow!
76 * Some systems (apparently alpha-freebsd) abort with
77 * LONG_MIN / 1, and LONG_MIN / -1 is undefined.
78 * http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
80 * Proof of the overflow checking. The expressions below are
81 * assumed to be on the rational numbers, but the word "overflow"
82 * still has its own meaning in the C context. / still denotes
83 * the integer (truncated) division, and // denotes the exact
84 * division.
85 * - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
86 * cannot overflow due to the constraints on the exponents of
87 * MPFR numbers.
88 * - If n = -1, then n * expx = - expx, which is representable
89 * because of the constraints on the exponents of MPFR numbers.
90 * - If expx = 0, then n * expx = 0, which is representable.
91 * - If n < -1 and expx > 0:
92 * + If expx > (__gmpfr_emin - 1) / n, then
93 * expx >= (__gmpfr_emin - 1) / n + 1
94 * > (__gmpfr_emin - 1) // n,
95 * and
96 * n * expx < __gmpfr_emin - 1,
97 * i.e.
98 * n * expx <= __gmpfr_emin - 2.
99 * This corresponds to an underflow, with a null result in
100 * the rounding-to-nearest mode.
101 * + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
102 * overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
103 * 0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
104 * >= __gmpfr_emin - 1.
105 * - If n < -1 and expx < 0:
106 * + If expx < (__gmpfr_emax - 1) / n, then
107 * expx <= (__gmpfr_emax - 1) / n - 1
108 * < (__gmpfr_emax - 1) // n,
109 * and
110 * n * expx > __gmpfr_emax - 1,
111 * i.e.
112 * n * expx >= __gmpfr_emax.
113 * This corresponds to an overflow (2^(n * expx) has an
114 * exponent > __gmpfr_emax).
115 * + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
116 * overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
117 * 0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
118 * <= __gmpfr_emax - 1.
119 * Note: one could use expx bounds based on MPFR_EXP_MIN and
120 * MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
121 * current bounds do not lead to noticeably slower code and
122 * allow us to avoid a bug in Sun's compiler for Solaris/x86
123 * (when optimizations are enabled); known affected versions:
124 * cc: Sun C 5.8 2005/10/13
125 * cc: Sun C 5.8 Patch 121016-02 2006/03/31
126 * cc: Sun C 5.8 Patch 121016-04 2006/10/18
128 expy =
129 n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
130 MPFR_EMIN_MIN - 2 /* Underflow */ :
131 n != -1 && expx < 0 && expx < (__gmpfr_emax - 1) / n ?
132 MPFR_EMAX_MAX /* Overflow */ : n * expx;
133 return mpfr_set_si_2exp (y, n % 2 ? MPFR_INT_SIGN (x) : 1,
134 expy, rnd);
137 /* General case */
139 /* Declaration of the intermediary variable */
140 mpfr_t t;
141 /* Declaration of the size variable */
142 mpfr_prec_t Ny; /* target precision */
143 mpfr_prec_t Nt; /* working precision */
144 mpfr_rnd_t rnd1;
145 int size_n;
146 int inexact;
147 unsigned long abs_n;
148 MPFR_SAVE_EXPO_DECL (expo);
149 MPFR_ZIV_DECL (loop);
151 abs_n = - (unsigned long) n;
152 count_leading_zeros (size_n, (mp_limb_t) abs_n);
153 size_n = GMP_NUMB_BITS - size_n;
155 /* initial working precision */
156 Ny = MPFR_PREC (y);
157 Nt = Ny + size_n + 3 + MPFR_INT_CEIL_LOG2 (Ny);
159 MPFR_SAVE_EXPO_MARK (expo);
161 /* initialise of intermediary variable */
162 mpfr_init2 (t, Nt);
164 /* We will compute rnd(rnd1(1/x) ^ |n|), where rnd1 is the rounding
165 toward sign(x), to avoid spurious overflow or underflow, as in
166 mpfr_pow_z. */
167 rnd1 = MPFR_EXP (x) < 1 ? MPFR_RNDZ :
168 (MPFR_SIGN (x) > 0 ? MPFR_RNDU : MPFR_RNDD);
170 MPFR_ZIV_INIT (loop, Nt);
171 for (;;)
173 MPFR_BLOCK_DECL (flags);
175 /* compute (1/x)^|n| */
176 MPFR_BLOCK (flags, mpfr_ui_div (t, 1, x, rnd1));
177 MPFR_ASSERTD (! MPFR_UNDERFLOW (flags));
178 /* t = (1/x)*(1+theta) where |theta| <= 2^(-Nt) */
179 if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
180 goto overflow;
181 MPFR_BLOCK (flags, mpfr_pow_ui (t, t, abs_n, rnd));
182 /* t = (1/x)^|n|*(1+theta')^(|n|+1) where |theta'| <= 2^(-Nt).
183 If (|n|+1)*2^(-Nt) <= 1/2, which is satisfied as soon as
184 Nt >= bits(n)+2, then we can use Lemma \ref{lemma_graillat}
185 from algorithms.tex, which yields x^n*(1+theta) with
186 |theta| <= 2(|n|+1)*2^(-Nt), thus the error is bounded by
187 2(|n|+1) ulps <= 2^(bits(n)+2) ulps. */
188 if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
190 overflow:
191 MPFR_ZIV_FREE (loop);
192 mpfr_clear (t);
193 MPFR_SAVE_EXPO_FREE (expo);
194 MPFR_LOG_MSG (("overflow\n", 0));
195 return mpfr_overflow (y, rnd, abs_n & 1 ?
196 MPFR_SIGN (x) : MPFR_SIGN_POS);
198 if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
200 MPFR_ZIV_FREE (loop);
201 mpfr_clear (t);
202 MPFR_LOG_MSG (("underflow\n", 0));
203 if (rnd == MPFR_RNDN)
205 mpfr_t y2, nn;
207 /* We cannot decide now whether the result should be
208 rounded toward zero or away from zero. So, like
209 in mpfr_pow_pos_z, let's use the general case of
210 mpfr_pow in precision 2. */
211 MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_SIGN (x),
212 MPFR_EXP (x) - 1) != 0);
213 mpfr_init2 (y2, 2);
214 mpfr_init2 (nn, sizeof (long) * CHAR_BIT);
215 inexact = mpfr_set_si (nn, n, MPFR_RNDN);
216 MPFR_ASSERTN (inexact == 0);
217 inexact = mpfr_pow_general (y2, x, nn, rnd, 1,
218 (mpfr_save_expo_t *) NULL);
219 mpfr_clear (nn);
220 mpfr_set (y, y2, MPFR_RNDN);
221 mpfr_clear (y2);
222 MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
223 goto end;
225 else
227 MPFR_SAVE_EXPO_FREE (expo);
228 return mpfr_underflow (y, rnd, abs_n & 1 ?
229 MPFR_SIGN (x) : MPFR_SIGN_POS);
232 /* error estimate -- see pow function in algorithms.ps */
233 if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - size_n - 2, Ny, rnd)))
234 break;
236 /* actualisation of the precision */
237 MPFR_ZIV_NEXT (loop, Nt);
238 mpfr_set_prec (t, Nt);
240 MPFR_ZIV_FREE (loop);
242 inexact = mpfr_set (y, t, rnd);
243 mpfr_clear (t);
245 end:
246 MPFR_SAVE_EXPO_FREE (expo);
247 return mpfr_check_range (y, inexact, rnd);