beta-0.89.2
[luatex.git] / source / libs / mpfr / mpfr-3.1.3 / src / eint.c
blobaaff14a83c06531127398f9d5f1c839c9abf5fcf
1 /* mpfr_eint, mpfr_eint1 -- the exponential integral
3 Copyright 2005-2015 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* eint1(x) = -gamma - log(x) - sum((-1)^k*z^k/k/k!, k=1..infinity) for x > 0
27 = - eint(-x) for x < 0
28 where
29 eint (x) = gamma + log(x) + sum(z^k/k/k!, k=1..infinity) for x > 0
30 eint (x) is undefined for x < 0.
33 /* compute in y an approximation of sum(x^k/k/k!, k=1..infinity),
34 and return e such that the absolute error is bound by 2^e ulp(y) */
35 static mpfr_exp_t
36 mpfr_eint_aux (mpfr_t y, mpfr_srcptr x)
38 mpfr_t eps; /* dynamic (absolute) error bound on t */
39 mpfr_t erru, errs;
40 mpz_t m, s, t, u;
41 mpfr_exp_t e, sizeinbase;
42 mpfr_prec_t w = MPFR_PREC(y);
43 unsigned long k;
44 MPFR_GROUP_DECL (group);
46 /* for |x| <= 1, we have S := sum(x^k/k/k!, k=1..infinity) = x + R(x)
47 where |R(x)| <= (x/2)^2/(1-x/2) <= 2*(x/2)^2
48 thus |R(x)/x| <= |x|/2
49 thus if |x| <= 2^(-PREC(y)) we have |S - o(x)| <= ulp(y) */
51 if (MPFR_GET_EXP(x) <= - (mpfr_exp_t) w)
53 mpfr_set (y, x, MPFR_RNDN);
54 return 0;
57 mpz_init (s); /* initializes to 0 */
58 mpz_init (t);
59 mpz_init (u);
60 mpz_init (m);
61 MPFR_GROUP_INIT_3 (group, 31, eps, erru, errs);
62 e = mpfr_get_z_2exp (m, x); /* x = m * 2^e */
63 MPFR_ASSERTD (mpz_sizeinbase (m, 2) == MPFR_PREC (x));
64 if (MPFR_PREC (x) > w)
66 e += MPFR_PREC (x) - w;
67 mpz_tdiv_q_2exp (m, m, MPFR_PREC (x) - w);
69 /* remove trailing zeroes from m: this will speed up much cases where
70 x is a small integer divided by a power of 2 */
71 k = mpz_scan1 (m, 0);
72 mpz_tdiv_q_2exp (m, m, k);
73 e += k;
74 /* initialize t to 2^w */
75 mpz_set_ui (t, 1);
76 mpz_mul_2exp (t, t, w);
77 mpfr_set_ui (eps, 0, MPFR_RNDN); /* eps[0] = 0 */
78 mpfr_set_ui (errs, 0, MPFR_RNDN);
79 for (k = 1;; k++)
81 /* let eps[k] be the absolute error on t[k]:
82 since t[k] = trunc(t[k-1]*m*2^e/k), we have
83 eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k
84 = 1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k
85 = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */
86 mpfr_mul_2ui (eps, eps, w - 1, MPFR_RNDU);
87 mpfr_add_z (eps, eps, t, MPFR_RNDU);
88 MPFR_MPZ_SIZEINBASE2 (sizeinbase, m);
89 mpfr_mul_2si (eps, eps, sizeinbase - (w - 1) + e, MPFR_RNDU);
90 mpfr_div_ui (eps, eps, k, MPFR_RNDU);
91 mpfr_add_ui (eps, eps, 1, MPFR_RNDU);
92 mpz_mul (t, t, m);
93 if (e < 0)
94 mpz_tdiv_q_2exp (t, t, -e);
95 else
96 mpz_mul_2exp (t, t, e);
97 mpz_tdiv_q_ui (t, t, k);
98 mpz_tdiv_q_ui (u, t, k);
99 mpz_add (s, s, u);
100 /* the absolute error on u is <= 1 + eps[k]/k */
101 mpfr_div_ui (erru, eps, k, MPFR_RNDU);
102 mpfr_add_ui (erru, erru, 1, MPFR_RNDU);
103 /* and that on s is the sum of all errors on u */
104 mpfr_add (errs, errs, erru, MPFR_RNDU);
105 /* we are done when t is smaller than errs */
106 if (mpz_sgn (t) == 0)
107 sizeinbase = 0;
108 else
109 MPFR_MPZ_SIZEINBASE2 (sizeinbase, t);
110 if (sizeinbase < MPFR_GET_EXP (errs))
111 break;
113 /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...)
114 <= (|t|+eps)/k*|x|/(k-|x|) */
115 mpz_abs (t, t);
116 mpfr_add_z (eps, eps, t, MPFR_RNDU);
117 mpfr_div_ui (eps, eps, k, MPFR_RNDU);
118 mpfr_abs (erru, x, MPFR_RNDU); /* |x| */
119 mpfr_mul (eps, eps, erru, MPFR_RNDU);
120 mpfr_ui_sub (erru, k, erru, MPFR_RNDD);
121 if (MPFR_IS_NEG (erru))
123 /* the truncated series does not converge, return fail */
124 e = w;
126 else
128 mpfr_div (eps, eps, erru, MPFR_RNDU);
129 mpfr_add (errs, errs, eps, MPFR_RNDU);
130 mpfr_set_z (y, s, MPFR_RNDN);
131 mpfr_div_2ui (y, y, w, MPFR_RNDN);
132 /* errs was an absolute error bound on s. We must convert it to an error
133 in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must
134 divide the error by 2^(EXP(y)-PREC(y)), but since we divided also
135 y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */
136 e = MPFR_GET_EXP (errs) - MPFR_GET_EXP (y);
138 MPFR_GROUP_CLEAR (group);
139 mpz_clear (s);
140 mpz_clear (t);
141 mpz_clear (u);
142 mpz_clear (m);
143 return e;
146 /* Return in y an approximation of Ei(x) using the asymptotic expansion:
147 Ei(x) = exp(x)/x * (1 + 1/x + 2/x^2 + ... + k!/x^k + ...)
148 Assumes x >= PREC(y) * log(2).
149 Returns the error bound in terms of ulp(y).
151 static mpfr_exp_t
152 mpfr_eint_asympt (mpfr_ptr y, mpfr_srcptr x)
154 mpfr_prec_t p = MPFR_PREC(y);
155 mpfr_t invx, t, err;
156 unsigned long k;
157 mpfr_exp_t err_exp;
159 mpfr_init2 (t, p);
160 mpfr_init2 (invx, p);
161 mpfr_init2 (err, 31); /* error in ulps on y */
162 mpfr_ui_div (invx, 1, x, MPFR_RNDN); /* invx = 1/x*(1+u) with |u|<=2^(1-p) */
163 mpfr_set_ui (t, 1, MPFR_RNDN); /* exact */
164 mpfr_set (y, t, MPFR_RNDN);
165 mpfr_set_ui (err, 0, MPFR_RNDN);
166 for (k = 1; MPFR_GET_EXP(t) + (mpfr_exp_t) p > MPFR_GET_EXP(y); k++)
168 mpfr_mul (t, t, invx, MPFR_RNDN); /* 2 more roundings */
169 mpfr_mul_ui (t, t, k, MPFR_RNDN); /* 1 more rounding: t = k!/x^k*(1+u)^e
170 with u=2^{-p} and |e| <= 3*k */
171 /* we use the fact that |(1+u)^n-1| <= 2*|n*u| for |n*u| <= 1, thus
172 the error on t is less than 6*k*2^{-p}*t <= 6*k*ulp(t) */
173 /* err is in terms of ulp(y): transform it in terms of ulp(t) */
174 mpfr_mul_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU);
175 mpfr_add_ui (err, err, 6 * k, MPFR_RNDU);
176 /* transform back in terms of ulp(y) */
177 mpfr_div_2si (err, err, MPFR_GET_EXP(y) - MPFR_GET_EXP(t), MPFR_RNDU);
178 mpfr_add (y, y, t, MPFR_RNDN);
180 /* add the truncation error bounded by ulp(y): 1 ulp */
181 mpfr_mul (y, y, invx, MPFR_RNDN); /* err <= 2*err + 3/2 */
182 mpfr_exp (t, x, MPFR_RNDN); /* err(t) <= 1/2*ulp(t) */
183 mpfr_mul (y, y, t, MPFR_RNDN); /* again: err <= 2*err + 3/2 */
184 mpfr_mul_2ui (err, err, 2, MPFR_RNDU);
185 mpfr_add_ui (err, err, 8, MPFR_RNDU);
186 err_exp = MPFR_GET_EXP(err);
187 mpfr_clear (t);
188 mpfr_clear (invx);
189 mpfr_clear (err);
190 return err_exp;
194 mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
196 int inex;
197 mpfr_t tmp, ump;
198 mpfr_exp_t err, te;
199 mpfr_prec_t prec;
200 MPFR_SAVE_EXPO_DECL (expo);
201 MPFR_ZIV_DECL (loop);
203 MPFR_LOG_FUNC (
204 ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
205 ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inex));
207 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
209 /* exp(NaN) = exp(-Inf) = NaN */
210 if (MPFR_IS_NAN (x) || (MPFR_IS_INF (x) && MPFR_IS_NEG(x)))
212 MPFR_SET_NAN (y);
213 MPFR_RET_NAN;
215 /* eint(+inf) = +inf */
216 else if (MPFR_IS_INF (x))
218 MPFR_SET_INF(y);
219 MPFR_SET_POS(y);
220 MPFR_RET(0);
222 else /* eint(+/-0) = -Inf */
224 MPFR_SET_INF(y);
225 MPFR_SET_NEG(y);
226 mpfr_set_divby0 ();
227 MPFR_RET(0);
231 /* eint(x) = NaN for x < 0 */
232 if (MPFR_IS_NEG(x))
234 MPFR_SET_NAN (y);
235 MPFR_RET_NAN;
238 MPFR_SAVE_EXPO_MARK (expo);
240 /* Since eint(x) >= exp(x)/x, we have log2(eint(x)) >= (x-log(x))/log(2).
241 Let's compute k <= (x-log(x))/log(2) in a low precision. If k >= emax,
242 then log2(eint(x)) >= emax, and eint(x) >= 2^emax, i.e. it overflows. */
243 mpfr_init2 (tmp, 64);
244 mpfr_init2 (ump, 64);
245 mpfr_log (tmp, x, MPFR_RNDU);
246 mpfr_sub (ump, x, tmp, MPFR_RNDD);
247 mpfr_const_log2 (tmp, MPFR_RNDU);
248 mpfr_div (ump, ump, tmp, MPFR_RNDD);
249 /* FIXME: We really need mpfr_set_exp_t and mpfr_cmpfr_exp_t functions. */
250 MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
251 if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0)
253 mpfr_clear (tmp);
254 mpfr_clear (ump);
255 MPFR_SAVE_EXPO_FREE (expo);
256 return mpfr_overflow (y, rnd, 1);
259 /* Init stuff */
260 prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6;
262 /* eint() has a root 0.37250741078136663446..., so if x is near,
263 already take more bits */
264 /* FIXME: do not use native floating-point here. */
265 if (MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */
267 double d;
268 d = mpfr_get_d (x, MPFR_RNDN) - 0.37250741078136663;
269 d = (d == 0.0) ? -53 : __gmpfr_ceil_log2 (d);
270 prec += -d;
273 mpfr_set_prec (tmp, prec);
274 mpfr_set_prec (ump, prec);
276 MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */
277 for (;;) /* Infinite loop */
279 /* We need that the smallest value of k!/x^k is smaller than 2^(-p).
280 The minimum is obtained for x=k, and it is smaller than e*sqrt(x)/e^x
281 for x>=1. */
282 if (MPFR_GET_EXP (x) > 0 && mpfr_cmp_d (x, ((double) prec +
283 0.5 * (double) MPFR_GET_EXP (x)) * LOG2 + 1.0) > 0)
284 err = mpfr_eint_asympt (tmp, x);
285 else
287 err = mpfr_eint_aux (tmp, x); /* error <= 2^err ulp(tmp) */
288 te = MPFR_GET_EXP(tmp);
289 mpfr_const_euler (ump, MPFR_RNDN); /* 0.577 -> EXP(ump)=0 */
290 mpfr_add (tmp, tmp, ump, MPFR_RNDN);
291 /* error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err)
292 <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp))
293 <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))) */
294 err = MAX(1, te + err + 2) - MPFR_GET_EXP(tmp);
295 err = MAX(0, err);
296 te = MPFR_GET_EXP(tmp);
297 mpfr_log (ump, x, MPFR_RNDN);
298 mpfr_add (tmp, tmp, ump, MPFR_RNDN);
299 /* same formula as above, except now EXP(ump) is not 0 */
300 err += te + 1;
301 if (MPFR_LIKELY (!MPFR_IS_ZERO (ump)))
302 err = MAX (MPFR_GET_EXP (ump), err);
303 err = MAX(0, err - MPFR_GET_EXP (tmp));
305 if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
306 break;
307 MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */
308 mpfr_set_prec (tmp, prec);
309 mpfr_set_prec (ump, prec);
311 MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controller */
313 inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */
314 mpfr_clear (tmp);
315 mpfr_clear (ump);
317 MPFR_SAVE_EXPO_FREE (expo);
318 return mpfr_check_range (y, inex, rnd);