beta-0.89.2
[luatex.git] / source / libs / mpfr / mpfr-3.1.3 / src / atan.c
blob5fb1c8a4673e06ecffe9cf6a4a14fdf953b4bb4a
1 /* mpfr_atan -- arc-tangent of a floating-point number
3 Copyright 2001-2015 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms
27 for the series expansion, with an error of at most 1 ulp.
28 Assumes |x| < 1.
30 If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ...
32 Assume p is non-zero.
34 When we sum terms up to x^k/(2k+1), the denominator Q[0] is
35 3*5*7*...*(2k+1) ~ (2k/e)^k.
37 static void
38 mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
40 mpz_t *S, *Q, *ptoj;
41 unsigned long n, i, k, j, l;
42 mpfr_exp_t diff, expo;
43 int im, done;
44 mpfr_prec_t mult, *accu, *log2_nb_terms;
45 mpfr_prec_t precy = MPFR_PREC(y);
47 MPFR_ASSERTD(mpz_cmp_ui (p, 0) != 0);
49 accu = (mpfr_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mpfr_prec_t));
50 log2_nb_terms = accu + m + 1;
52 /* Set Tables */
53 S = tab; /* S */
54 ptoj = S + 1*(m+1); /* p^2^j Precomputed table */
55 Q = S + 2*(m+1); /* Product of Odd integer table */
57 /* From p to p^2, and r to 2r */
58 mpz_mul (p, p, p);
59 MPFR_ASSERTD (2 * r > r);
60 r = 2 * r;
62 /* Normalize p */
63 n = mpz_scan1 (p, 0);
64 mpz_tdiv_q_2exp (p, p, n); /* exact */
65 MPFR_ASSERTD (r > n);
66 r -= n;
67 /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */
69 MPFR_ASSERTD (mpz_sgn (p) > 0);
70 MPFR_ASSERTD (m > 0);
72 /* check if p=1 (special case) */
73 l = 0;
75 We compute by binary splitting, with X = x^2 = p/2^r:
76 P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
77 Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
78 S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise
79 Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough.
80 The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it
81 into account when we compute with Q.
83 accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the
84 number of bits of the corresponding term S[j]/Q[j] */
85 if (mpz_cmp_ui (p, 1) != 0)
87 /* p <> 1: precompute ptoj table */
88 mpz_set (ptoj[0], p);
89 for (im = 1 ; im <= m ; im ++)
90 mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]);
91 /* main loop */
92 n = 1UL << m;
93 /* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when
94 p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */
95 for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++)
97 /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */
98 mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */
99 mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */
100 mpz_mul_2exp (S[k], Q[k+1], r);
101 mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */
102 mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */
103 log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
104 for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --)
106 /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond
107 to 2^l terms each. We combine them into S[k-1]/Q[k-1] */
108 MPFR_ASSERTD (k > 0);
109 mpz_mul (S[k], S[k], Q[k-1]);
110 mpz_mul (S[k], S[k], ptoj[l]);
111 mpz_mul (S[k-1], S[k-1], Q[k]);
112 mpz_mul_2exp (S[k-1], S[k-1], r << l);
113 mpz_add (S[k-1], S[k-1], S[k]);
114 mpz_mul (Q[k-1], Q[k-1], Q[k]);
115 log2_nb_terms[k-1] = l + 1;
116 /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */
117 MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]);
118 /* FIXME: precompute bits(ptoj[l+1]) outside the loop? */
119 mult = (r << (l + 1)) - mult - 1;
120 accu[k-1] = (k == 1) ? mult : accu[k-2] + mult;
121 if (accu[k-1] > precy)
122 done = 1;
126 else /* special case p=1: the ith term being X^i/(2i+1) with X=1/2^r,
127 we can stop when r*i > precy i.e. i > precy/r */
129 n = 1UL << m;
130 for (i = k = 0; (i < n) && (i <= precy / r); i += 2, k ++)
132 mpz_set_ui (Q[k + 1], 2 * i + 3);
133 mpz_mul_2exp (S[k], Q[k+1], r);
134 mpz_sub_ui (S[k], S[k], 1 + 2 * i);
135 mpz_mul_ui (Q[k], Q[k + 1], 1 + 2 * i);
136 log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
137 for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l++, j >>= 1, k --)
139 MPFR_ASSERTD (k > 0);
140 mpz_mul (S[k], S[k], Q[k-1]);
141 mpz_mul (S[k-1], S[k-1], Q[k]);
142 mpz_mul_2exp (S[k-1], S[k-1], r << l);
143 mpz_add (S[k-1], S[k-1], S[k]);
144 mpz_mul (Q[k-1], Q[k-1], Q[k]);
145 log2_nb_terms[k-1] = l + 1;
150 /* we need to combine S[0]/Q[0]...S[k-1]/Q[k-1] */
151 l = 0; /* number of terms accumulated in S[k]/Q[k] */
152 while (k > 1)
154 k --;
155 /* combine S[k-1]/Q[k-1] and S[k]/Q[k] */
156 j = log2_nb_terms[k-1];
157 mpz_mul (S[k], S[k], Q[k-1]);
158 if (mpz_cmp_ui (p, 1) != 0)
159 mpz_mul (S[k], S[k], ptoj[j]);
160 mpz_mul (S[k-1], S[k-1], Q[k]);
161 l += 1 << log2_nb_terms[k];
162 mpz_mul_2exp (S[k-1], S[k-1], r * l);
163 mpz_add (S[k-1], S[k-1], S[k]);
164 mpz_mul (Q[k-1], Q[k-1], Q[k]);
166 (*__gmp_free_func) (accu, (2 * m + 2) * sizeof (mpfr_prec_t));
168 MPFR_MPZ_SIZEINBASE2 (diff, S[0]);
169 diff -= 2 * precy;
170 expo = diff;
171 if (diff >= 0)
172 mpz_tdiv_q_2exp (S[0], S[0], diff);
173 else
174 mpz_mul_2exp (S[0], S[0], -diff);
176 MPFR_MPZ_SIZEINBASE2 (diff, Q[0]);
177 diff -= precy;
178 expo -= diff;
179 if (diff >= 0)
180 mpz_tdiv_q_2exp (Q[0], Q[0], diff);
181 else
182 mpz_mul_2exp (Q[0], Q[0], -diff);
184 mpz_tdiv_q (S[0], S[0], Q[0]);
185 mpfr_set_z (y, S[0], MPFR_RNDD);
186 MPFR_SET_EXP (y, MPFR_EXP(y) + expo - r * (i - 1));
190 mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
192 mpfr_t xp, arctgt, sk, tmp, tmp2;
193 mpz_t ukz;
194 mpz_t *tabz;
195 mpfr_exp_t exptol;
196 mpfr_prec_t prec, realprec, est_lost, lost;
197 unsigned long twopoweri, log2p, red;
198 int comparaison, inexact;
199 int i, n0, oldn0;
200 MPFR_GROUP_DECL (group);
201 MPFR_SAVE_EXPO_DECL (expo);
202 MPFR_ZIV_DECL (loop);
204 MPFR_LOG_FUNC
205 (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
206 ("atan[%Pu]=%.*Rg inexact=%d",
207 mpfr_get_prec (atan), mpfr_log_prec, atan, inexact));
209 /* Singular cases */
210 if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
212 if (MPFR_IS_NAN (x))
214 MPFR_SET_NAN (atan);
215 MPFR_RET_NAN;
217 else if (MPFR_IS_INF (x))
219 MPFR_SAVE_EXPO_MARK (expo);
220 if (MPFR_IS_POS (x)) /* arctan(+inf) = Pi/2 */
221 inexact = mpfr_const_pi (atan, rnd_mode);
222 else /* arctan(-inf) = -Pi/2 */
224 inexact = -mpfr_const_pi (atan,
225 MPFR_INVERT_RND (rnd_mode));
226 MPFR_CHANGE_SIGN (atan);
228 mpfr_div_2ui (atan, atan, 1, rnd_mode); /* exact (no exceptions) */
229 MPFR_SAVE_EXPO_FREE (expo);
230 return mpfr_check_range (atan, inexact, rnd_mode);
232 else /* x is necessarily 0 */
234 MPFR_ASSERTD (MPFR_IS_ZERO (x));
235 MPFR_SET_ZERO (atan);
236 MPFR_SET_SAME_SIGN (atan, x);
237 MPFR_RET (0);
241 /* atan(x) = x - x^3/3 + x^5/5...
242 so the error is < 2^(3*EXP(x)-1)
243 so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */
244 MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan, x, -2 * MPFR_GET_EXP (x), 1, 0,
245 rnd_mode, {});
247 /* Set x_p=|x| */
248 MPFR_TMP_INIT_ABS (xp, x);
250 MPFR_SAVE_EXPO_MARK (expo);
252 /* Other simple case arctan(-+1)=-+pi/4 */
253 comparaison = mpfr_cmp_ui (xp, 1);
254 if (MPFR_UNLIKELY (comparaison == 0))
256 int neg = MPFR_IS_NEG (x);
257 inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode
258 : MPFR_INVERT_RND (rnd_mode));
259 if (neg)
261 inexact = -inexact;
262 MPFR_CHANGE_SIGN (atan);
264 mpfr_div_2ui (atan, atan, 2, rnd_mode); /* exact (no exceptions) */
265 MPFR_SAVE_EXPO_FREE (expo);
266 return mpfr_check_range (atan, inexact, rnd_mode);
269 realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4;
270 prec = realprec + GMP_NUMB_BITS;
272 /* Initialisation */
273 mpz_init (ukz);
274 MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt);
275 oldn0 = 0;
276 tabz = (mpz_t *) 0;
278 MPFR_ZIV_INIT (loop, prec);
279 for (;;)
281 /* First, if |x| < 1, we need to have more prec to be able to round (sup)
282 n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */
283 mpfr_prec_t sup;
284 sup = MPFR_GET_EXP (xp) < 0 ? 2 - MPFR_GET_EXP (xp) : 1; /* sup >= 1 */
286 n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3);
287 /* since realprec >= 4, n0 >= ceil(log2(8)) >= 3, thus 3*n0 > 2 */
288 prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2);
290 /* the number of lost bits due to argument reduction is
291 9 - 2 * EXP(sk), which we estimate by 9 + 2*ceil(log2(p))
292 since we manage that sk < 1/p */
293 if (MPFR_PREC (atan) > 100)
295 log2p = MPFR_INT_CEIL_LOG2(prec) / 2 - 3;
296 est_lost = 9 + 2 * log2p;
297 prec += est_lost;
299 else
300 log2p = est_lost = 0; /* don't reduce the argument */
302 /* Initialisation */
303 MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt);
304 if (MPFR_LIKELY (oldn0 == 0))
306 oldn0 = 3 * (n0 + 1);
307 tabz = (mpz_t *) (*__gmp_allocate_func) (oldn0 * sizeof (mpz_t));
308 for (i = 0; i < oldn0; i++)
309 mpz_init (tabz[i]);
311 else if (MPFR_UNLIKELY (oldn0 < 3 * (n0 + 1)))
313 tabz = (mpz_t *) (*__gmp_reallocate_func)
314 (tabz, oldn0 * sizeof (mpz_t), 3 * (n0 + 1)*sizeof (mpz_t));
315 for (i = oldn0; i < 3 * (n0 + 1); i++)
316 mpz_init (tabz[i]);
317 oldn0 = 3 * (n0 + 1);
320 /* The mpfr_ui_div below mustn't underflow. This is guaranteed by
321 MPFR_SAVE_EXPO_MARK, but let's check that for maintainability. */
322 MPFR_ASSERTD (__gmpfr_emax <= 1 - __gmpfr_emin);
324 if (comparaison > 0) /* use atan(xp) = Pi/2 - atan(1/xp) */
325 mpfr_ui_div (sk, 1, xp, MPFR_RNDN);
326 else
327 mpfr_set (sk, xp, MPFR_RNDN);
329 /* now 0 < sk <= 1 */
331 /* Argument reduction: atan(x) = 2 atan((sqrt(1+x^2)-1)/x).
332 We want |sk| < k/sqrt(p) where p is the target precision. */
333 lost = 0;
334 for (red = 0; MPFR_GET_EXP(sk) > - (mpfr_exp_t) log2p; red ++)
336 lost = 9 - 2 * MPFR_EXP(sk);
337 mpfr_mul (tmp, sk, sk, MPFR_RNDN);
338 mpfr_add_ui (tmp, tmp, 1, MPFR_RNDN);
339 mpfr_sqrt (tmp, tmp, MPFR_RNDN);
340 mpfr_sub_ui (tmp, tmp, 1, MPFR_RNDN);
341 if (red == 0 && comparaison > 0)
342 /* use xp = 1/sk */
343 mpfr_mul (sk, tmp, xp, MPFR_RNDN);
344 else
345 mpfr_div (sk, tmp, sk, MPFR_RNDN);
348 /* we started from x0 = 1/|x| if |x| > 1, and |x| otherwise, thus
349 we had x0 = min(|x|, 1/|x|) <= 1, and applied 'red' times the
350 argument reduction x -> (sqrt(1+x^2)-1)/x, which keeps 0 < x < 1,
351 thus 0 < sk <= 1, and sk=1 can occur only if red=0 */
353 /* If sk=1, then if |x| < 1, we have 1 - 2^(-prec-1) <= |x| < 1,
354 or if |x| > 1, we have 1 - 2^(-prec-1) <= 1/|x| < 1, thus in all
355 cases ||x| - 1| <= 2^(-prec), from which it follows
356 |atan|x| - Pi/4| <= 2^(-prec), given the Taylor expansion
357 atan(1+x) = Pi/4 + x/2 - x^2/4 + ...
358 Since Pi/4 = 0.785..., the error is at most one ulp.
360 if (MPFR_UNLIKELY(mpfr_cmp_ui (sk, 1) == 0))
362 mpfr_const_pi (arctgt, MPFR_RNDN); /* 1/2 ulp extra error */
363 mpfr_div_2ui (arctgt, arctgt, 2, MPFR_RNDN); /* exact */
364 realprec = prec - 2;
365 goto can_round;
368 /* Assignation */
369 MPFR_SET_ZERO (arctgt);
370 twopoweri = 1 << 0;
371 MPFR_ASSERTD (n0 >= 4);
372 for (i = 0 ; i < n0; i++)
374 if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk)))
375 break;
376 /* Calculation of trunc(tmp) --> mpz */
377 mpfr_mul_2ui (tmp, sk, twopoweri, MPFR_RNDN);
378 mpfr_trunc (tmp, tmp);
379 if (!MPFR_IS_ZERO (tmp))
381 /* tmp = ukz*2^exptol */
382 exptol = mpfr_get_z_2exp (ukz, tmp);
383 /* since the s_k are decreasing (see algorithms.tex),
384 and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1,
385 thus exptol < 0 */
386 MPFR_ASSERTD (exptol < 0);
387 mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol));
388 /* since tmp is a non-zero integer, and tmp = ukzold*2^exptol,
389 we now have ukz = tmp, thus ukz is non-zero */
390 /* Calculation of arctan(Ak) */
391 mpfr_set_z (tmp, ukz, MPFR_RNDN);
392 mpfr_div_2ui (tmp, tmp, twopoweri, MPFR_RNDN);
393 mpfr_atan_aux (tmp2, ukz, twopoweri, n0 - i, tabz);
394 mpfr_mul (tmp2, tmp2, tmp, MPFR_RNDN);
395 /* Addition */
396 mpfr_add (arctgt, arctgt, tmp2, MPFR_RNDN);
397 /* Next iteration */
398 mpfr_sub (tmp2, sk, tmp, MPFR_RNDN);
399 mpfr_mul (sk, sk, tmp, MPFR_RNDN);
400 mpfr_add_ui (sk, sk, 1, MPFR_RNDN);
401 mpfr_div (sk, tmp2, sk, MPFR_RNDN);
403 twopoweri <<= 1;
405 /* Add last step (Arctan(sk) ~= sk */
406 mpfr_add (arctgt, arctgt, sk, MPFR_RNDN);
408 /* argument reduction */
409 mpfr_mul_2exp (arctgt, arctgt, red, MPFR_RNDN);
411 if (comparaison > 0)
412 { /* atan(x) = Pi/2-atan(1/x) for x > 0 */
413 mpfr_const_pi (tmp, MPFR_RNDN);
414 mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN);
415 mpfr_sub (arctgt, tmp, arctgt, MPFR_RNDN);
417 MPFR_SET_POS (arctgt);
419 can_round:
420 if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec + est_lost - lost,
421 MPFR_PREC (atan), rnd_mode)))
422 break;
423 MPFR_ZIV_NEXT (loop, realprec);
425 MPFR_ZIV_FREE (loop);
427 inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x));
429 for (i = 0 ; i < oldn0 ; i++)
430 mpz_clear (tabz[i]);
431 mpz_clear (ukz);
432 (*__gmp_free_func) (tabz, oldn0 * sizeof (mpz_t));
433 MPFR_GROUP_CLEAR (group);
435 MPFR_SAVE_EXPO_FREE (expo);
436 return mpfr_check_range (atan, inexact, rnd_mode);