beta-0.89.2
[luatex.git] / source / libs / mpfr / mpfr-3.1.3 / src / agm.c
blob0177e32d5e183d838685469c672841d15fb94673
1 /* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers
3 Copyright 1999-2015 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramel projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* agm(x,y) is between x and y, so we don't need to save exponent range */
27 int
28 mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mpfr_rnd_t rnd_mode)
30 int compare, inexact;
31 mp_size_t s;
32 mpfr_prec_t p, q;
33 mp_limb_t *up, *vp, *ufp, *vfp;
34 mpfr_t u, v, uf, vf, sc1, sc2;
35 mpfr_exp_t scaleop = 0, scaleit;
36 unsigned long n; /* number of iterations */
37 MPFR_ZIV_DECL (loop);
38 MPFR_TMP_DECL(marker);
39 MPFR_SAVE_EXPO_DECL (expo);
41 MPFR_LOG_FUNC
42 (("op2[%Pu]=%.*Rg op1[%Pu]=%.*Rg rnd=%d",
43 mpfr_get_prec (op2), mpfr_log_prec, op2,
44 mpfr_get_prec (op1), mpfr_log_prec, op1, rnd_mode),
45 ("r[%Pu]=%.*Rg inexact=%d",
46 mpfr_get_prec (r), mpfr_log_prec, r, inexact));
48 /* Deal with special values */
49 if (MPFR_ARE_SINGULAR (op1, op2))
51 /* If a or b is NaN, the result is NaN */
52 if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
54 MPFR_SET_NAN(r);
55 MPFR_RET_NAN;
57 /* now one of a or b is Inf or 0 */
58 /* If a and b is +Inf, the result is +Inf.
59 Otherwise if a or b is -Inf or 0, the result is NaN */
60 else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
62 if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
64 MPFR_SET_INF(r);
65 MPFR_SET_SAME_SIGN(r, op1);
66 MPFR_RET(0); /* exact */
68 else
70 MPFR_SET_NAN(r);
71 MPFR_RET_NAN;
74 else /* a and b are neither NaN nor Inf, and one is zero */
75 { /* If a or b is 0, the result is +0 since a sqrt is positive */
76 MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
77 MPFR_SET_POS (r);
78 MPFR_SET_ZERO (r);
79 MPFR_RET (0); /* exact */
83 /* If a or b is negative (excluding -Infinity), the result is NaN */
84 if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
86 MPFR_SET_NAN(r);
87 MPFR_RET_NAN;
90 /* Precision of the following calculus */
91 q = MPFR_PREC(r);
92 p = q + MPFR_INT_CEIL_LOG2(q) + 15;
93 MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
94 s = MPFR_PREC2LIMBS (p);
96 /* b (op2) and a (op1) are the 2 operands but we want b >= a */
97 compare = mpfr_cmp (op1, op2);
98 if (MPFR_UNLIKELY( compare == 0 ))
100 mpfr_set (r, op1, rnd_mode);
101 MPFR_RET (0); /* exact */
103 else if (compare > 0)
105 mpfr_srcptr t = op1;
106 op1 = op2;
107 op2 = t;
110 /* Now b (=op2) > a (=op1) */
112 MPFR_SAVE_EXPO_MARK (expo);
114 MPFR_TMP_MARK(marker);
116 /* Main loop */
117 MPFR_ZIV_INIT (loop, p);
118 for (;;)
120 mpfr_prec_t eq;
121 unsigned long err = 0; /* must be set to 0 at each Ziv iteration */
122 MPFR_BLOCK_DECL (flags);
124 /* Init temporary vars */
125 MPFR_TMP_INIT (up, u, p, s);
126 MPFR_TMP_INIT (vp, v, p, s);
127 MPFR_TMP_INIT (ufp, uf, p, s);
128 MPFR_TMP_INIT (vfp, vf, p, s);
130 /* Calculus of un and vn */
131 retry:
132 MPFR_BLOCK (flags,
133 mpfr_mul (u, op1, op2, MPFR_RNDN);
134 /* mpfr_mul(...): faster since PREC(op) < PREC(u) */
135 mpfr_add (v, op1, op2, MPFR_RNDN);
136 /* mpfr_add with !=prec is still good */);
137 if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags)))
139 mpfr_exp_t e1 , e2;
141 MPFR_ASSERTN (scaleop == 0);
142 e1 = MPFR_GET_EXP (op1);
143 e2 = MPFR_GET_EXP (op2);
145 /* Let's determine scaleop to avoid an overflow/underflow. */
146 if (MPFR_OVERFLOW (flags))
148 /* Let's recall that emin <= e1 <= e2 <= emax.
149 There has been an overflow. Thus e2 >= emax/2.
150 If the mpfr_mul overflowed, then e1 + e2 > emax.
151 If the mpfr_add overflowed, then e2 = emax.
152 We want: (e1 + scale) + (e2 + scale) <= emax,
153 i.e. scale <= (emax - e1 - e2) / 2. Let's take
154 scale = min(floor((emax - e1 - e2) / 2), -1).
155 This is OK, as:
156 1. emin <= scale <= -1.
157 2. e1 + scale >= emin. Indeed:
158 * If e1 + e2 > emax, then
159 e1 + scale >= e1 + (emax - e1 - e2) / 2 - 1
160 >= (emax + e1 - emax) / 2 - 1
161 >= e1 / 2 - 1 >= emin.
162 * Otherwise, mpfr_mul didn't overflow, therefore
163 mpfr_add overflowed and e2 = emax, so that
164 e1 > emin (see restriction below).
165 e1 + scale > emin - 1, thus e1 + scale >= emin.
166 3. e2 + scale <= emax, since scale < 0. */
167 if (e1 + e2 > MPFR_EXT_EMAX)
169 scaleop = - (((e1 + e2) - MPFR_EXT_EMAX + 1) / 2);
170 MPFR_ASSERTN (scaleop < 0);
172 else
174 /* The addition necessarily overflowed. */
175 MPFR_ASSERTN (e2 == MPFR_EXT_EMAX);
176 /* The case where e1 = emin and e2 = emax is not supported
177 here. This would mean that the precision of e2 would be
178 huge (and possibly not supported in practice anyway). */
179 MPFR_ASSERTN (e1 > MPFR_EXT_EMIN);
180 scaleop = -1;
184 else /* underflow only (in the multiplication) */
186 /* We have e1 + e2 <= emin (so, e1 <= e2 <= 0).
187 We want: (e1 + scale) + (e2 + scale) >= emin + 1,
188 i.e. scale >= (emin + 1 - e1 - e2) / 2. let's take
189 scale = ceil((emin + 1 - e1 - e2) / 2). This is OK, as:
190 1. 1 <= scale <= emax.
191 2. e1 + scale >= emin + 1 >= emin.
192 3. e2 + scale <= scale <= emax. */
193 MPFR_ASSERTN (e1 <= e2 && e2 <= 0);
194 scaleop = (MPFR_EXT_EMIN + 2 - e1 - e2) / 2;
195 MPFR_ASSERTN (scaleop > 0);
198 MPFR_ALIAS (sc1, op1, MPFR_SIGN (op1), e1 + scaleop);
199 MPFR_ALIAS (sc2, op2, MPFR_SIGN (op2), e2 + scaleop);
200 op1 = sc1;
201 op2 = sc2;
202 MPFR_LOG_MSG (("Exception in pre-iteration, scale = %"
203 MPFR_EXP_FSPEC "d\n", scaleop));
204 goto retry;
207 mpfr_clear_flags ();
208 mpfr_sqrt (u, u, MPFR_RNDN);
209 mpfr_div_2ui (v, v, 1, MPFR_RNDN);
211 scaleit = 0;
212 n = 1;
213 while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
215 MPFR_BLOCK_DECL (flags2);
217 MPFR_LOG_MSG (("Iteration n = %lu\n", n));
219 retry2:
220 mpfr_add (vf, u, v, MPFR_RNDN); /* No overflow? */
221 mpfr_div_2ui (vf, vf, 1, MPFR_RNDN);
222 /* See proof in algorithms.tex */
223 if (4*eq > p)
225 mpfr_t w;
226 MPFR_BLOCK_DECL (flags3);
228 MPFR_LOG_MSG (("4*eq > p\n", 0));
230 /* vf = V(k) */
231 mpfr_init2 (w, (p + 1) / 2);
232 MPFR_BLOCK
233 (flags3,
234 mpfr_sub (w, v, u, MPFR_RNDN); /* e = V(k-1)-U(k-1) */
235 mpfr_sqr (w, w, MPFR_RNDN); /* e = e^2 */
236 mpfr_div_2ui (w, w, 4, MPFR_RNDN); /* e*= (1/2)^2*1/4 */
237 mpfr_div (w, w, vf, MPFR_RNDN); /* 1/4*e^2/V(k) */
239 if (MPFR_LIKELY (! MPFR_UNDERFLOW (flags3)))
241 mpfr_sub (v, vf, w, MPFR_RNDN);
242 err = MPFR_GET_EXP (vf) - MPFR_GET_EXP (v); /* 0 or 1 */
243 mpfr_clear (w);
244 break;
246 /* There has been an underflow because of the cancellation
247 between V(k-1) and U(k-1). Let's use the conventional
248 method. */
249 MPFR_LOG_MSG (("4*eq > p -> underflow\n", 0));
250 mpfr_clear (w);
251 mpfr_clear_underflow ();
253 /* U(k) increases, so that U.V can overflow (but not underflow). */
254 MPFR_BLOCK (flags2, mpfr_mul (uf, u, v, MPFR_RNDN););
255 if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags2)))
257 mpfr_exp_t scale2;
259 scale2 = - (((MPFR_GET_EXP (u) + MPFR_GET_EXP (v))
260 - MPFR_EXT_EMAX + 1) / 2);
261 MPFR_EXP (u) += scale2;
262 MPFR_EXP (v) += scale2;
263 scaleit += scale2;
264 MPFR_LOG_MSG (("Overflow in iteration n = %lu, scaleit = %"
265 MPFR_EXP_FSPEC "d (%" MPFR_EXP_FSPEC "d)\n",
266 n, scaleit, scale2));
267 mpfr_clear_overflow ();
268 goto retry2;
270 mpfr_sqrt (u, uf, MPFR_RNDN);
271 mpfr_swap (v, vf);
272 n ++;
275 MPFR_LOG_MSG (("End of iterations (n = %lu)\n", n));
277 /* the error on v is bounded by (18n+51) ulps, or twice if there
278 was an exponent loss in the final subtraction */
279 err += MPFR_INT_CEIL_LOG2(18 * n + 51); /* 18n+51 should not overflow
280 since n is about log(p) */
281 /* we should have n+2 <= 2^(p/4) [see algorithms.tex] */
282 if (MPFR_LIKELY (MPFR_INT_CEIL_LOG2(n + 2) <= p / 4 &&
283 MPFR_CAN_ROUND (v, p - err, q, rnd_mode)))
284 break; /* Stop the loop */
286 /* Next iteration */
287 MPFR_ZIV_NEXT (loop, p);
288 s = MPFR_PREC2LIMBS (p);
290 MPFR_ZIV_FREE (loop);
292 if (MPFR_UNLIKELY ((__gmpfr_flags & (MPFR_FLAGS_ALL ^ MPFR_FLAGS_INEXACT))
293 != 0))
295 MPFR_ASSERTN (! mpfr_overflow_p ()); /* since mpfr_clear_flags */
296 MPFR_ASSERTN (! mpfr_underflow_p ()); /* since mpfr_clear_flags */
297 MPFR_ASSERTN (! mpfr_divby0_p ()); /* since mpfr_clear_flags */
298 MPFR_ASSERTN (! mpfr_nanflag_p ()); /* since mpfr_clear_flags */
301 /* Setting of the result */
302 inexact = mpfr_set (r, v, rnd_mode);
303 MPFR_EXP (r) -= scaleop + scaleit;
305 /* Let's clean */
306 MPFR_TMP_FREE(marker);
308 MPFR_SAVE_EXPO_FREE (expo);
309 /* From the definition of the AGM, underflow and overflow
310 are not possible. */
311 return mpfr_check_range (r, inexact, rnd_mode);
312 /* agm(u,v) can be exact for u, v rational only for u=v.
313 Proof (due to Nicolas Brisebarre): it suffices to consider
314 u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
315 and a theorem due to G.V. Chudnovsky states that for x a
316 non-zero algebraic number with |x|<1, then
317 2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
318 independent over Q. */