beta-0.89.2
[luatex.git] / source / libs / luajit / LuaJIT-src / src / lj_strscan.c
blobd3c5ba9124fa1457f3688665317ed6df88bb167c
1 /*
2 ** String scanning.
3 ** Copyright (C) 2005-2015 Mike Pall. See Copyright Notice in luajit.h
4 */
6 #include <math.h>
8 #define lj_strscan_c
9 #define LUA_CORE
11 #include "lj_obj.h"
12 #include "lj_char.h"
13 #include "lj_strscan.h"
15 /* -- Scanning numbers ---------------------------------------------------- */
18 ** Rationale for the builtin string to number conversion library:
20 ** It removes a dependency on libc's strtod(), which is a true portability
21 ** nightmare. Mainly due to the plethora of supported OS and toolchain
22 ** combinations. Sadly, the various implementations
23 ** a) are often buggy, incomplete (no hex floats) and/or imprecise,
24 ** b) sometimes crash or hang on certain inputs,
25 ** c) return non-standard NaNs that need to be filtered out, and
26 ** d) fail if the locale-specific decimal separator is not a dot,
27 ** which can only be fixed with atrocious workarounds.
29 ** Also, most of the strtod() implementations are hopelessly bloated,
30 ** which is not just an I-cache hog, but a problem for static linkage
31 ** on embedded systems, too.
33 ** OTOH the builtin conversion function is very compact. Even though it
34 ** does a lot more, like parsing long longs, octal or imaginary numbers
35 ** and returning the result in different formats:
36 ** a) It needs less than 3 KB (!) of machine code (on x64 with -Os),
37 ** b) it doesn't perform any dynamic allocation and,
38 ** c) it needs only around 600 bytes of stack space.
40 ** The builtin function is faster than strtod() for typical inputs, e.g.
41 ** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents,
42 ** which are not very common (this could be fixed, if needed).
44 ** And most importantly, the builtin function is equally precise on all
45 ** platforms. It correctly converts and rounds any input to a double.
46 ** If this is not the case, please send a bug report -- but PLEASE verify
47 ** that the implementation you're comparing to is not the culprit!
49 ** The implementation quickly pre-scans the entire string first and
50 ** handles simple integers on-the-fly. Otherwise, it dispatches to the
51 ** base-specific parser. Hex and octal is straightforward.
53 ** Decimal to binary conversion uses a fixed-length circular buffer in
54 ** base 100. Some simple cases are handled directly. For other cases, the
55 ** number in the buffer is up-scaled or down-scaled until the integer part
56 ** is in the proper range. Then the integer part is rounded and converted
57 ** to a double which is finally rescaled to the result. Denormals need
58 ** special treatment to prevent incorrect 'double rounding'.
61 /* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */
62 #define STRSCAN_DIG 1024
63 #define STRSCAN_MAXDIG 800 /* 772 + extra are sufficient. */
64 #define STRSCAN_DDIG (STRSCAN_DIG/2)
65 #define STRSCAN_DMASK (STRSCAN_DDIG-1)
67 /* Helpers for circular buffer. */
68 #define DNEXT(a) (((a)+1) & STRSCAN_DMASK)
69 #define DPREV(a) (((a)-1) & STRSCAN_DMASK)
70 #define DLEN(lo, hi) ((int32_t)(((lo)-(hi)) & STRSCAN_DMASK))
72 #define casecmp(c, k) (((c) | 0x20) == k)
74 /* Final conversion to double. */
75 static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg)
77 double n;
79 /* Avoid double rounding for denormals. */
80 if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) {
81 /* NYI: all of this generates way too much code on 32 bit CPUs. */
82 #if defined(__GNUC__) && LJ_64
83 int32_t b = (int32_t)(__builtin_clzll(x)^63);
84 #else
85 int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) :
86 (int32_t)lj_fls((uint32_t)x);
87 #endif
88 if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) {
89 uint64_t rb = (uint64_t)1 << (-1075-ex2);
90 if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb;
91 x = (x & ~(rb+rb-1));
95 /* Convert to double using a signed int64_t conversion, then rescale. */
96 lua_assert((int64_t)x >= 0);
97 n = (double)(int64_t)x;
98 if (neg) n = -n;
99 if (ex2) n = ldexp(n, ex2);
100 o->n = n;
103 /* Parse hexadecimal number. */
104 static StrScanFmt strscan_hex(const uint8_t *p, TValue *o,
105 StrScanFmt fmt, uint32_t opt,
106 int32_t ex2, int32_t neg, uint32_t dig)
108 uint64_t x = 0;
109 uint32_t i;
111 /* Scan hex digits. */
112 for (i = dig > 16 ? 16 : dig ; i; i--, p++) {
113 uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9;
114 x = (x << 4) + (d & 15);
117 /* Summarize rounding-effect of excess digits. */
118 for (i = 16; i < dig; i++, p++)
119 x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4;
121 /* Format-specific handling. */
122 switch (fmt) {
123 case STRSCAN_INT:
124 if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
125 o->i = neg ? -(int32_t)x : (int32_t)x;
126 return STRSCAN_INT; /* Fast path for 32 bit integers. */
128 if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
129 /* fallthrough */
130 case STRSCAN_U32:
131 if (dig > 8) return STRSCAN_ERROR;
132 o->i = neg ? -(int32_t)x : (int32_t)x;
133 return STRSCAN_U32;
134 case STRSCAN_I64:
135 case STRSCAN_U64:
136 if (dig > 16) return STRSCAN_ERROR;
137 o->u64 = neg ? (uint64_t)-(int64_t)x : x;
138 return fmt;
139 default:
140 break;
143 /* Reduce range, then convert to double. */
144 if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
145 strscan_double(x, o, ex2, neg);
146 return fmt;
149 /* Parse octal number. */
150 static StrScanFmt strscan_oct(const uint8_t *p, TValue *o,
151 StrScanFmt fmt, int32_t neg, uint32_t dig)
153 uint64_t x = 0;
155 /* Scan octal digits. */
156 if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR;
157 while (dig-- > 0) {
158 if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR;
159 x = (x << 3) + (*p++ & 7);
162 /* Format-specific handling. */
163 switch (fmt) {
164 case STRSCAN_INT:
165 if (x >= 0x80000000u+neg) fmt = STRSCAN_U32;
166 /* fallthrough */
167 case STRSCAN_U32:
168 if ((x >> 32)) return STRSCAN_ERROR;
169 o->i = neg ? -(int32_t)x : (int32_t)x;
170 break;
171 default:
172 case STRSCAN_I64:
173 case STRSCAN_U64:
174 o->u64 = neg ? (uint64_t)-(int64_t)x : x;
175 break;
177 return fmt;
180 /* Parse decimal number. */
181 static StrScanFmt strscan_dec(const uint8_t *p, TValue *o,
182 StrScanFmt fmt, uint32_t opt,
183 int32_t ex10, int32_t neg, uint32_t dig)
185 uint8_t xi[STRSCAN_DDIG], *xip = xi;
187 if (dig) {
188 uint32_t i = dig;
189 if (i > STRSCAN_MAXDIG) {
190 ex10 += (int32_t)(i - STRSCAN_MAXDIG);
191 i = STRSCAN_MAXDIG;
193 /* Scan unaligned leading digit. */
194 if (((ex10^i) & 1))
195 *xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++;
196 /* Scan aligned double-digits. */
197 for ( ; i > 1; i -= 2) {
198 uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++;
199 *xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++;
201 /* Scan and realign trailing digit. */
202 if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, dig++, p++;
204 /* Summarize rounding-effect of excess digits. */
205 if (dig > STRSCAN_MAXDIG) {
206 do {
207 if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; }
208 p++;
209 } while (--dig > STRSCAN_MAXDIG);
210 dig = STRSCAN_MAXDIG;
211 } else { /* Simplify exponent. */
212 while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2;
214 } else { /* Only got zeros. */
215 ex10 = 0;
216 xi[0] = 0;
219 /* Fast path for numbers in integer format (but handles e.g. 1e6, too). */
220 if (dig <= 20 && ex10 == 0) {
221 uint8_t *xis;
222 uint64_t x = xi[0];
223 double n;
224 for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis;
225 if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) { /* No overflow? */
226 /* Format-specific handling. */
227 switch (fmt) {
228 case STRSCAN_INT:
229 if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
230 o->i = neg ? -(int32_t)x : (int32_t)x;
231 return STRSCAN_INT; /* Fast path for 32 bit integers. */
233 if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; }
234 /* fallthrough */
235 case STRSCAN_U32:
236 if ((x >> 32) != 0) return STRSCAN_ERROR;
237 o->i = neg ? -(int32_t)x : (int32_t)x;
238 return STRSCAN_U32;
239 case STRSCAN_I64:
240 case STRSCAN_U64:
241 o->u64 = neg ? (uint64_t)-(int64_t)x : x;
242 return fmt;
243 default:
244 plainnumber: /* Fast path for plain numbers < 2^63. */
245 if ((int64_t)x < 0) break;
246 n = (double)(int64_t)x;
247 if (neg) n = -n;
248 o->n = n;
249 return fmt;
254 /* Slow non-integer path. */
255 if (fmt == STRSCAN_INT) {
256 if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
257 fmt = STRSCAN_NUM;
258 } else if (fmt > STRSCAN_INT) {
259 return STRSCAN_ERROR;
262 uint32_t hi = 0, lo = (uint32_t)(xip-xi);
263 int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1);
265 lua_assert(lo > 0 && (ex10 & 1) == 0);
267 /* Handle simple overflow/underflow. */
268 if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; }
269 else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; }
271 /* Scale up until we have at least 17 or 18 integer part digits. */
272 while (idig < 9 && idig < DLEN(lo, hi)) {
273 uint32_t i, cy = 0;
274 ex2 -= 6;
275 for (i = DPREV(lo); ; i = DPREV(i)) {
276 uint32_t d = (xi[i] << 6) + cy;
277 cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100; /* Div/mod 100. */
278 xi[i] = (uint8_t)d;
279 if (i == hi) break;
280 if (d == 0 && i == DPREV(lo)) lo = i;
282 if (cy) {
283 hi = DPREV(hi);
284 if (xi[DPREV(lo)] == 0) lo = DPREV(lo);
285 else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; }
286 xi[hi] = (uint8_t)cy; idig++;
290 /* Scale down until no more than 17 or 18 integer part digits remain. */
291 while (idig > 9) {
292 uint32_t i = hi, cy = 0;
293 ex2 += 6;
294 do {
295 cy += xi[i];
296 xi[i] = (cy >> 6);
297 cy = 100 * (cy & 0x3f);
298 if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--;
299 i = DNEXT(i);
300 } while (i != lo);
301 while (cy) {
302 if (hi == lo) { xi[DPREV(lo)] |= 1; break; }
303 xi[lo] = (cy >> 6); lo = DNEXT(lo);
304 cy = 100 * (cy & 0x3f);
308 /* Collect integer part digits and convert to rescaled double. */
310 uint64_t x = xi[hi];
311 uint32_t i;
312 for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i))
313 x = x * 100 + xi[i];
314 if (i == lo) {
315 while (--idig >= 0) x = x * 100;
316 } else { /* Gather round bit from remaining digits. */
317 x <<= 1; ex2--;
318 do {
319 if (xi[i]) { x |= 1; break; }
320 i = DNEXT(i);
321 } while (i != lo);
323 strscan_double(x, o, ex2, neg);
326 return fmt;
329 /* Parse binary number. */
330 static StrScanFmt strscan_bin(const uint8_t *p, TValue *o,
331 StrScanFmt fmt, uint32_t opt,
332 int32_t ex2, int32_t neg, uint32_t dig)
334 uint64_t x = 0;
335 uint32_t i;
337 if (ex2 || dig > 64) return STRSCAN_ERROR;
339 /* Scan binary digits. */
340 for (i = dig; i; i--, p++) {
341 if ((*p & ~1) != '0') return STRSCAN_ERROR;
342 x = (x << 1) | (*p & 1);
345 /* Format-specific handling. */
346 switch (fmt) {
347 case STRSCAN_INT:
348 if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
349 o->i = neg ? -(int32_t)x : (int32_t)x;
350 return STRSCAN_INT; /* Fast path for 32 bit integers. */
352 if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
353 /* fallthrough */
354 case STRSCAN_U32:
355 if (dig > 32) return STRSCAN_ERROR;
356 o->i = neg ? -(int32_t)x : (int32_t)x;
357 return STRSCAN_U32;
358 case STRSCAN_I64:
359 case STRSCAN_U64:
360 o->u64 = neg ? (uint64_t)-(int64_t)x : x;
361 return fmt;
362 default:
363 break;
366 /* Reduce range, then convert to double. */
367 if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
368 strscan_double(x, o, ex2, neg);
369 return fmt;
372 /* Scan string containing a number. Returns format. Returns value in o. */
373 StrScanFmt lj_strscan_scan(const uint8_t *p, TValue *o, uint32_t opt)
375 int32_t neg = 0;
377 /* Remove leading space, parse sign and non-numbers. */
378 if (LJ_UNLIKELY(!lj_char_isdigit(*p))) {
379 while (lj_char_isspace(*p)) p++;
380 if (*p == '+' || *p == '-') neg = (*p++ == '-');
381 if (LJ_UNLIKELY(*p >= 'A')) { /* Parse "inf", "infinity" or "nan". */
382 TValue tmp;
383 setnanV(&tmp);
384 if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) {
385 if (neg) setminfV(&tmp); else setpinfV(&tmp);
386 p += 3;
387 if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') &&
388 casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5;
389 } else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) {
390 p += 3;
392 while (lj_char_isspace(*p)) p++;
393 if (*p) return STRSCAN_ERROR;
394 o->u64 = tmp.u64;
395 return STRSCAN_NUM;
399 /* Parse regular number. */
401 StrScanFmt fmt = STRSCAN_INT;
402 int cmask = LJ_CHAR_DIGIT;
403 int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10;
404 const uint8_t *sp, *dp = NULL;
405 uint32_t dig = 0, hasdig = 0, x = 0;
406 int32_t ex = 0;
408 /* Determine base and skip leading zeros. */
409 if (LJ_UNLIKELY(*p <= '0')) {
410 if (*p == '0') {
411 if (casecmp(p[1], 'x'))
412 base = 16, cmask = LJ_CHAR_XDIGIT, p += 2;
413 else if (casecmp(p[1], 'b'))
414 base = 2, cmask = LJ_CHAR_DIGIT, p += 2;
416 for ( ; ; p++) {
417 if (*p == '0') {
418 hasdig = 1;
419 } else if (*p == '.') {
420 if (dp) return STRSCAN_ERROR;
421 dp = p;
422 } else {
423 break;
428 /* Preliminary digit and decimal point scan. */
429 for (sp = p; ; p++) {
430 if (LJ_LIKELY(lj_char_isa(*p, cmask))) {
431 x = x * 10 + (*p & 15); /* For fast path below. */
432 dig++;
433 } else if (*p == '.') {
434 if (dp) return STRSCAN_ERROR;
435 dp = p;
436 } else {
437 break;
440 if (!(hasdig | dig)) return STRSCAN_ERROR;
442 /* Handle decimal point. */
443 if (dp) {
444 fmt = STRSCAN_NUM;
445 if (dig) {
446 ex = (int32_t)(dp-(p-1)); dp = p-1;
447 while (ex < 0 && *dp-- == '0') ex++, dig--; /* Skip trailing zeros. */
448 if (base == 16) ex *= 4;
452 /* Parse exponent. */
453 if (base >= 10 && casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) {
454 uint32_t xx;
455 int negx = 0;
456 fmt = STRSCAN_NUM; p++;
457 if (*p == '+' || *p == '-') negx = (*p++ == '-');
458 if (!lj_char_isdigit(*p)) return STRSCAN_ERROR;
459 xx = (*p++ & 15);
460 while (lj_char_isdigit(*p)) {
461 if (xx < 65536) xx = xx * 10 + (*p & 15);
462 p++;
464 ex += negx ? -(int32_t)xx : (int32_t)xx;
467 /* Parse suffix. */
468 if (*p) {
469 /* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */
470 /* NYI: f (float). Not needed until cp_number() handles non-integers. */
471 if (casecmp(*p, 'i')) {
472 if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR;
473 p++; fmt = STRSCAN_IMAG;
474 } else if (fmt == STRSCAN_INT) {
475 if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32;
476 if (casecmp(*p, 'l')) {
477 p++;
478 if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT;
479 else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
480 else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT;
482 if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64))
483 p++, fmt += STRSCAN_U32 - STRSCAN_INT;
484 if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) ||
485 (fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL)))
486 return STRSCAN_ERROR;
488 while (lj_char_isspace(*p)) p++;
489 if (*p) return STRSCAN_ERROR;
492 /* Fast path for decimal 32 bit integers. */
493 if (fmt == STRSCAN_INT && base == 10 &&
494 (dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) {
495 int32_t y = neg ? -(int32_t)x : (int32_t)x;
496 if ((opt & STRSCAN_OPT_TONUM)) {
497 o->n = (double)y;
498 return STRSCAN_NUM;
499 } else {
500 o->i = y;
501 return STRSCAN_INT;
505 /* Dispatch to base-specific parser. */
506 if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG))
507 return strscan_oct(sp, o, fmt, neg, dig);
508 if (base == 16)
509 fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig);
510 else if (base == 2)
511 fmt = strscan_bin(sp, o, fmt, opt, ex, neg, dig);
512 else
513 fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig);
515 /* Try to convert number to integer, if requested. */
516 if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT)) {
517 double n = o->n;
518 int32_t i = lj_num2int(n);
519 if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; }
521 return fmt;
525 int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o)
527 StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o,
528 STRSCAN_OPT_TONUM);
529 lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM);
530 return (fmt != STRSCAN_ERROR);
533 #if LJ_DUALNUM
534 int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o)
536 StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o,
537 STRSCAN_OPT_TOINT);
538 lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT);
539 if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM);
540 return (fmt != STRSCAN_ERROR);
542 #endif
544 #undef DNEXT
545 #undef DPREV
546 #undef DLEN