beta-0.89.2
[luatex.git] / source / libs / luajit / LuaJIT-src / src / lj_opt_narrow.c
blobd1993452a6afff14da2b9b57184507528381eaa1
1 /*
2 ** NARROW: Narrowing of numbers to integers (double to int32_t).
3 ** STRIPOV: Stripping of overflow checks.
4 ** Copyright (C) 2005-2015 Mike Pall. See Copyright Notice in luajit.h
5 */
7 #define lj_opt_narrow_c
8 #define LUA_CORE
10 #include "lj_obj.h"
12 #if LJ_HASJIT
14 #include "lj_bc.h"
15 #include "lj_ir.h"
16 #include "lj_jit.h"
17 #include "lj_iropt.h"
18 #include "lj_trace.h"
19 #include "lj_vm.h"
20 #include "lj_strscan.h"
22 /* Rationale for narrowing optimizations:
24 ** Lua has only a single number type and this is a FP double by default.
25 ** Narrowing doubles to integers does not pay off for the interpreter on a
26 ** current-generation x86/x64 machine. Most FP operations need the same
27 ** amount of execution resources as their integer counterparts, except
28 ** with slightly longer latencies. Longer latencies are a non-issue for
29 ** the interpreter, since they are usually hidden by other overhead.
31 ** The total CPU execution bandwidth is the sum of the bandwidth of the FP
32 ** and the integer units, because they execute in parallel. The FP units
33 ** have an equal or higher bandwidth than the integer units. Not using
34 ** them means losing execution bandwidth. Moving work away from them to
35 ** the already quite busy integer units is a losing proposition.
37 ** The situation for JIT-compiled code is a bit different: the higher code
38 ** density makes the extra latencies much more visible. Tight loops expose
39 ** the latencies for updating the induction variables. Array indexing
40 ** requires narrowing conversions with high latencies and additional
41 ** guards (to check that the index is really an integer). And many common
42 ** optimizations only work on integers.
44 ** One solution would be speculative, eager narrowing of all number loads.
45 ** This causes many problems, like losing -0 or the need to resolve type
46 ** mismatches between traces. It also effectively forces the integer type
47 ** to have overflow-checking semantics. This impedes many basic
48 ** optimizations and requires adding overflow checks to all integer
49 ** arithmetic operations (whereas FP arithmetics can do without).
51 ** Always replacing an FP op with an integer op plus an overflow check is
52 ** counter-productive on a current-generation super-scalar CPU. Although
53 ** the overflow check branches are highly predictable, they will clog the
54 ** execution port for the branch unit and tie up reorder buffers. This is
55 ** turning a pure data-flow dependency into a different data-flow
56 ** dependency (with slightly lower latency) *plus* a control dependency.
57 ** In general, you don't want to do this since latencies due to data-flow
58 ** dependencies can be well hidden by out-of-order execution.
60 ** A better solution is to keep all numbers as FP values and only narrow
61 ** when it's beneficial to do so. LuaJIT uses predictive narrowing for
62 ** induction variables and demand-driven narrowing for index expressions,
63 ** integer arguments and bit operations. Additionally it can eliminate or
64 ** hoist most of the resulting overflow checks. Regular arithmetic
65 ** computations are never narrowed to integers.
67 ** The integer type in the IR has convenient wrap-around semantics and
68 ** ignores overflow. Extra operations have been added for
69 ** overflow-checking arithmetic (ADDOV/SUBOV) instead of an extra type.
70 ** Apart from reducing overall complexity of the compiler, this also
71 ** nicely solves the problem where you want to apply algebraic
72 ** simplifications to ADD, but not to ADDOV. And the x86/x64 assembler can
73 ** use lea instead of an add for integer ADD, but not for ADDOV (lea does
74 ** not affect the flags, but it helps to avoid register moves).
77 ** All of the above has to be reconsidered for architectures with slow FP
78 ** operations or without a hardware FPU. The dual-number mode of LuaJIT
79 ** addresses this issue. Arithmetic operations are performed on integers
80 ** as far as possible and overflow checks are added as needed.
82 ** This implies that narrowing for integer arguments and bit operations
83 ** should also strip overflow checks, e.g. replace ADDOV with ADD. The
84 ** original overflow guards are weak and can be eliminated by DCE, if
85 ** there's no other use.
87 ** A slight twist is that it's usually beneficial to use overflow-checked
88 ** integer arithmetics if all inputs are already integers. This is the only
89 ** change that affects the single-number mode, too.
92 /* Some local macros to save typing. Undef'd at the end. */
93 #define IR(ref) (&J->cur.ir[(ref)])
94 #define fins (&J->fold.ins)
96 /* Pass IR on to next optimization in chain (FOLD). */
97 #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
99 #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J))
101 /* -- Elimination of narrowing type conversions --------------------------- */
103 /* Narrowing of index expressions and bit operations is demand-driven. The
104 ** trace recorder emits a narrowing type conversion (CONV.int.num or TOBIT)
105 ** in all of these cases (e.g. array indexing or string indexing). FOLD
106 ** already takes care of eliminating simple redundant conversions like
107 ** CONV.int.num(CONV.num.int(x)) ==> x.
109 ** But the surrounding code is FP-heavy and arithmetic operations are
110 ** performed on FP numbers (for the single-number mode). Consider a common
111 ** example such as 'x=t[i+1]', with 'i' already an integer (due to induction
112 ** variable narrowing). The index expression would be recorded as
113 ** CONV.int.num(ADD(CONV.num.int(i), 1))
114 ** which is clearly suboptimal.
116 ** One can do better by recursively backpropagating the narrowing type
117 ** conversion across FP arithmetic operations. This turns FP ops into
118 ** their corresponding integer counterparts. Depending on the semantics of
119 ** the conversion they also need to check for overflow. Currently only ADD
120 ** and SUB are supported.
122 ** The above example can be rewritten as
123 ** ADDOV(CONV.int.num(CONV.num.int(i)), 1)
124 ** and then into ADDOV(i, 1) after folding of the conversions. The original
125 ** FP ops remain in the IR and are eliminated by DCE since all references to
126 ** them are gone.
128 ** [In dual-number mode the trace recorder already emits ADDOV etc., but
129 ** this can be further reduced. See below.]
131 ** Special care has to be taken to avoid narrowing across an operation
132 ** which is potentially operating on non-integral operands. One obvious
133 ** case is when an expression contains a non-integral constant, but ends
134 ** up as an integer index at runtime (like t[x+1.5] with x=0.5).
136 ** Operations with two non-constant operands illustrate a similar problem
137 ** (like t[a+b] with a=1.5 and b=2.5). Backpropagation has to stop there,
138 ** unless it can be proven that either operand is integral (e.g. by CSEing
139 ** a previous conversion). As a not-so-obvious corollary this logic also
140 ** applies for a whole expression tree (e.g. t[(a+1)+(b+1)]).
142 ** Correctness of the transformation is guaranteed by avoiding to expand
143 ** the tree by adding more conversions than the one we would need to emit
144 ** if not backpropagating. TOBIT employs a more optimistic rule, because
145 ** the conversion has special semantics, designed to make the life of the
146 ** compiler writer easier. ;-)
148 ** Using on-the-fly backpropagation of an expression tree doesn't work
149 ** because it's unknown whether the transform is correct until the end.
150 ** This either requires IR rollback and cache invalidation for every
151 ** subtree or a two-pass algorithm. The former didn't work out too well,
152 ** so the code now combines a recursive collector with a stack-based
153 ** emitter.
155 ** [A recursive backpropagation algorithm with backtracking, employing
156 ** skip-list lookup and round-robin caching, emitting stack operations
157 ** on-the-fly for a stack-based interpreter -- and all of that in a meager
158 ** kilobyte? Yep, compilers are a great treasure chest. Throw away your
159 ** textbooks and read the codebase of a compiler today!]
161 ** There's another optimization opportunity for array indexing: it's
162 ** always accompanied by an array bounds-check. The outermost overflow
163 ** check may be delegated to the ABC operation. This works because ABC is
164 ** an unsigned comparison and wrap-around due to overflow creates negative
165 ** numbers.
167 ** But this optimization is only valid for constants that cannot overflow
168 ** an int32_t into the range of valid array indexes [0..2^27+1). A check
169 ** for +-2^30 is safe since -2^31 - 2^30 wraps to 2^30 and 2^31-1 + 2^30
170 ** wraps to -2^30-1.
172 ** It's also good enough in practice, since e.g. t[i+1] or t[i-10] are
173 ** quite common. So the above example finally ends up as ADD(i, 1)!
175 ** Later on, the assembler is able to fuse the whole array reference and
176 ** the ADD into the memory operands of loads and other instructions. This
177 ** is why LuaJIT is able to generate very pretty (and fast) machine code
178 ** for array indexing. And that, my dear, concludes another story about
179 ** one of the hidden secrets of LuaJIT ...
182 /* Maximum backpropagation depth and maximum stack size. */
183 #define NARROW_MAX_BACKPROP 100
184 #define NARROW_MAX_STACK 256
186 /* The stack machine has a 32 bit instruction format: [IROpT | IRRef1]
187 ** The lower 16 bits hold a reference (or 0). The upper 16 bits hold
188 ** the IR opcode + type or one of the following special opcodes:
190 enum {
191 NARROW_REF, /* Push ref. */
192 NARROW_CONV, /* Push conversion of ref. */
193 NARROW_SEXT, /* Push sign-extension of ref. */
194 NARROW_INT /* Push KINT ref. The next code holds an int32_t. */
197 typedef uint32_t NarrowIns;
199 #define NARROWINS(op, ref) (((op) << 16) + (ref))
200 #define narrow_op(ins) ((IROpT)((ins) >> 16))
201 #define narrow_ref(ins) ((IRRef1)(ins))
203 /* Context used for narrowing of type conversions. */
204 typedef struct NarrowConv {
205 jit_State *J; /* JIT compiler state. */
206 NarrowIns *sp; /* Current stack pointer. */
207 NarrowIns *maxsp; /* Maximum stack pointer minus redzone. */
208 IRRef mode; /* Conversion mode (IRCONV_*). */
209 IRType t; /* Destination type: IRT_INT or IRT_I64. */
210 NarrowIns stack[NARROW_MAX_STACK]; /* Stack holding stack-machine code. */
211 } NarrowConv;
213 /* Lookup a reference in the backpropagation cache. */
214 static BPropEntry *narrow_bpc_get(jit_State *J, IRRef1 key, IRRef mode)
216 ptrdiff_t i;
217 for (i = 0; i < BPROP_SLOTS; i++) {
218 BPropEntry *bp = &J->bpropcache[i];
219 /* Stronger checks are ok, too. */
220 if (bp->key == key && bp->mode >= mode &&
221 ((bp->mode ^ mode) & IRCONV_MODEMASK) == 0)
222 return bp;
224 return NULL;
227 /* Add an entry to the backpropagation cache. */
228 static void narrow_bpc_set(jit_State *J, IRRef1 key, IRRef1 val, IRRef mode)
230 uint32_t slot = J->bpropslot;
231 BPropEntry *bp = &J->bpropcache[slot];
232 J->bpropslot = (slot + 1) & (BPROP_SLOTS-1);
233 bp->key = key;
234 bp->val = val;
235 bp->mode = mode;
238 /* Backpropagate overflow stripping. */
239 static void narrow_stripov_backprop(NarrowConv *nc, IRRef ref, int depth)
241 jit_State *J = nc->J;
242 IRIns *ir = IR(ref);
243 if (ir->o == IR_ADDOV || ir->o == IR_SUBOV ||
244 (ir->o == IR_MULOV && (nc->mode & IRCONV_CONVMASK) == IRCONV_ANY)) {
245 BPropEntry *bp = narrow_bpc_get(nc->J, ref, IRCONV_TOBIT);
246 if (bp) {
247 ref = bp->val;
248 } else if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
249 NarrowIns *savesp = nc->sp;
250 narrow_stripov_backprop(nc, ir->op1, depth);
251 if (nc->sp < nc->maxsp) {
252 narrow_stripov_backprop(nc, ir->op2, depth);
253 if (nc->sp < nc->maxsp) {
254 *nc->sp++ = NARROWINS(IRT(ir->o - IR_ADDOV + IR_ADD, IRT_INT), ref);
255 return;
258 nc->sp = savesp; /* Path too deep, need to backtrack. */
261 *nc->sp++ = NARROWINS(NARROW_REF, ref);
264 /* Backpropagate narrowing conversion. Return number of needed conversions. */
265 static int narrow_conv_backprop(NarrowConv *nc, IRRef ref, int depth)
267 jit_State *J = nc->J;
268 IRIns *ir = IR(ref);
269 IRRef cref;
271 if (nc->sp >= nc->maxsp) return 10; /* Path too deep. */
273 /* Check the easy cases first. */
274 if (ir->o == IR_CONV && (ir->op2 & IRCONV_SRCMASK) == IRT_INT) {
275 if ((nc->mode & IRCONV_CONVMASK) <= IRCONV_ANY)
276 narrow_stripov_backprop(nc, ir->op1, depth+1);
277 else
278 *nc->sp++ = NARROWINS(NARROW_REF, ir->op1); /* Undo conversion. */
279 if (nc->t == IRT_I64)
280 *nc->sp++ = NARROWINS(NARROW_SEXT, 0); /* Sign-extend integer. */
281 return 0;
282 } else if (ir->o == IR_KNUM) { /* Narrow FP constant. */
283 lua_Number n = ir_knum(ir)->n;
284 if ((nc->mode & IRCONV_CONVMASK) == IRCONV_TOBIT) {
285 /* Allows a wider range of constants. */
286 int64_t k64 = (int64_t)n;
287 if (n == (lua_Number)k64) { /* Only if const doesn't lose precision. */
288 *nc->sp++ = NARROWINS(NARROW_INT, 0);
289 *nc->sp++ = (NarrowIns)k64; /* But always truncate to 32 bits. */
290 return 0;
292 } else {
293 int32_t k = lj_num2int(n);
294 /* Only if constant is a small integer. */
295 if (checki16(k) && n == (lua_Number)k) {
296 *nc->sp++ = NARROWINS(NARROW_INT, 0);
297 *nc->sp++ = (NarrowIns)k;
298 return 0;
301 return 10; /* Never narrow other FP constants (this is rare). */
304 /* Try to CSE the conversion. Stronger checks are ok, too. */
305 cref = J->chain[fins->o];
306 while (cref > ref) {
307 IRIns *cr = IR(cref);
308 if (cr->op1 == ref &&
309 (fins->o == IR_TOBIT ||
310 ((cr->op2 & IRCONV_MODEMASK) == (nc->mode & IRCONV_MODEMASK) &&
311 irt_isguard(cr->t) >= irt_isguard(fins->t)))) {
312 *nc->sp++ = NARROWINS(NARROW_REF, cref);
313 return 0; /* Already there, no additional conversion needed. */
315 cref = cr->prev;
318 /* Backpropagate across ADD/SUB. */
319 if (ir->o == IR_ADD || ir->o == IR_SUB) {
320 /* Try cache lookup first. */
321 IRRef mode = nc->mode;
322 BPropEntry *bp;
323 /* Inner conversions need a stronger check. */
324 if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX && depth > 0)
325 mode += IRCONV_CHECK-IRCONV_INDEX;
326 bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
327 if (bp) {
328 *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
329 return 0;
330 } else if (nc->t == IRT_I64) {
331 /* Try sign-extending from an existing (checked) conversion to int. */
332 mode = (IRT_INT<<5)|IRT_NUM|IRCONV_INDEX;
333 bp = narrow_bpc_get(nc->J, (IRRef1)ref, mode);
334 if (bp) {
335 *nc->sp++ = NARROWINS(NARROW_REF, bp->val);
336 *nc->sp++ = NARROWINS(NARROW_SEXT, 0);
337 return 0;
340 if (++depth < NARROW_MAX_BACKPROP && nc->sp < nc->maxsp) {
341 NarrowIns *savesp = nc->sp;
342 int count = narrow_conv_backprop(nc, ir->op1, depth);
343 count += narrow_conv_backprop(nc, ir->op2, depth);
344 if (count <= 1) { /* Limit total number of conversions. */
345 *nc->sp++ = NARROWINS(IRT(ir->o, nc->t), ref);
346 return count;
348 nc->sp = savesp; /* Too many conversions, need to backtrack. */
352 /* Otherwise add a conversion. */
353 *nc->sp++ = NARROWINS(NARROW_CONV, ref);
354 return 1;
357 /* Emit the conversions collected during backpropagation. */
358 static IRRef narrow_conv_emit(jit_State *J, NarrowConv *nc)
360 /* The fins fields must be saved now -- emitir() overwrites them. */
361 IROpT guardot = irt_isguard(fins->t) ? IRTG(IR_ADDOV-IR_ADD, 0) : 0;
362 IROpT convot = fins->ot;
363 IRRef1 convop2 = fins->op2;
364 NarrowIns *next = nc->stack; /* List of instructions from backpropagation. */
365 NarrowIns *last = nc->sp;
366 NarrowIns *sp = nc->stack; /* Recycle the stack to store operands. */
367 while (next < last) { /* Simple stack machine to process the ins. list. */
368 NarrowIns ref = *next++;
369 IROpT op = narrow_op(ref);
370 if (op == NARROW_REF) {
371 *sp++ = ref;
372 } else if (op == NARROW_CONV) {
373 *sp++ = emitir_raw(convot, ref, convop2); /* Raw emit avoids a loop. */
374 } else if (op == NARROW_SEXT) {
375 lua_assert(sp >= nc->stack+1);
376 sp[-1] = emitir(IRT(IR_CONV, IRT_I64), sp[-1],
377 (IRT_I64<<5)|IRT_INT|IRCONV_SEXT);
378 } else if (op == NARROW_INT) {
379 lua_assert(next < last);
380 *sp++ = nc->t == IRT_I64 ?
381 lj_ir_kint64(J, (int64_t)(int32_t)*next++) :
382 lj_ir_kint(J, *next++);
383 } else { /* Regular IROpT. Pops two operands and pushes one result. */
384 IRRef mode = nc->mode;
385 lua_assert(sp >= nc->stack+2);
386 sp--;
387 /* Omit some overflow checks for array indexing. See comments above. */
388 if ((mode & IRCONV_CONVMASK) == IRCONV_INDEX) {
389 if (next == last && irref_isk(narrow_ref(sp[0])) &&
390 (uint32_t)IR(narrow_ref(sp[0]))->i + 0x40000000u < 0x80000000u)
391 guardot = 0;
392 else /* Otherwise cache a stronger check. */
393 mode += IRCONV_CHECK-IRCONV_INDEX;
395 sp[-1] = emitir(op+guardot, sp[-1], sp[0]);
396 /* Add to cache. */
397 if (narrow_ref(ref))
398 narrow_bpc_set(J, narrow_ref(ref), narrow_ref(sp[-1]), mode);
401 lua_assert(sp == nc->stack+1);
402 return nc->stack[0];
405 /* Narrow a type conversion of an arithmetic operation. */
406 TRef LJ_FASTCALL lj_opt_narrow_convert(jit_State *J)
408 if ((J->flags & JIT_F_OPT_NARROW)) {
409 NarrowConv nc;
410 nc.J = J;
411 nc.sp = nc.stack;
412 nc.maxsp = &nc.stack[NARROW_MAX_STACK-4];
413 nc.t = irt_type(fins->t);
414 if (fins->o == IR_TOBIT) {
415 nc.mode = IRCONV_TOBIT; /* Used only in the backpropagation cache. */
416 } else {
417 nc.mode = fins->op2;
419 if (narrow_conv_backprop(&nc, fins->op1, 0) <= 1)
420 return narrow_conv_emit(J, &nc);
422 return NEXTFOLD;
425 /* -- Narrowing of implicit conversions ----------------------------------- */
427 /* Recursively strip overflow checks. */
428 static TRef narrow_stripov(jit_State *J, TRef tr, int lastop, IRRef mode)
430 IRRef ref = tref_ref(tr);
431 IRIns *ir = IR(ref);
432 int op = ir->o;
433 if (op >= IR_ADDOV && op <= lastop) {
434 BPropEntry *bp = narrow_bpc_get(J, ref, mode);
435 if (bp) {
436 return TREF(bp->val, irt_t(IR(bp->val)->t));
437 } else {
438 IRRef op1 = ir->op1, op2 = ir->op2; /* The IR may be reallocated. */
439 op1 = narrow_stripov(J, op1, lastop, mode);
440 op2 = narrow_stripov(J, op2, lastop, mode);
441 tr = emitir(IRT(op - IR_ADDOV + IR_ADD,
442 ((mode & IRCONV_DSTMASK) >> IRCONV_DSH)), op1, op2);
443 narrow_bpc_set(J, ref, tref_ref(tr), mode);
445 } else if (LJ_64 && (mode & IRCONV_SEXT) && !irt_is64(ir->t)) {
446 tr = emitir(IRT(IR_CONV, IRT_INTP), tr, mode);
448 return tr;
451 /* Narrow array index. */
452 TRef LJ_FASTCALL lj_opt_narrow_index(jit_State *J, TRef tr)
454 IRIns *ir;
455 lua_assert(tref_isnumber(tr));
456 if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */
457 return emitir(IRTGI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_INDEX);
458 /* Omit some overflow checks for array indexing. See comments above. */
459 ir = IR(tref_ref(tr));
460 if ((ir->o == IR_ADDOV || ir->o == IR_SUBOV) && irref_isk(ir->op2) &&
461 (uint32_t)IR(ir->op2)->i + 0x40000000u < 0x80000000u)
462 return emitir(IRTI(ir->o - IR_ADDOV + IR_ADD), ir->op1, ir->op2);
463 return tr;
466 /* Narrow conversion to integer operand (overflow undefined). */
467 TRef LJ_FASTCALL lj_opt_narrow_toint(jit_State *J, TRef tr)
469 if (tref_isstr(tr))
470 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
471 if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */
472 return emitir(IRTI(IR_CONV), tr, IRCONV_INT_NUM|IRCONV_ANY);
473 if (!tref_isinteger(tr))
474 lj_trace_err(J, LJ_TRERR_BADTYPE);
476 ** Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV.
477 ** Use IRCONV_TOBIT for the cache entries, since the semantics are the same.
479 return narrow_stripov(J, tr, IR_MULOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
482 /* Narrow conversion to bitop operand (overflow wrapped). */
483 TRef LJ_FASTCALL lj_opt_narrow_tobit(jit_State *J, TRef tr)
485 if (tref_isstr(tr))
486 tr = emitir(IRTG(IR_STRTO, IRT_NUM), tr, 0);
487 if (tref_isnum(tr)) /* Conversion may be narrowed, too. See above. */
488 return emitir(IRTI(IR_TOBIT), tr, lj_ir_knum_tobit(J));
489 if (!tref_isinteger(tr))
490 lj_trace_err(J, LJ_TRERR_BADTYPE);
492 ** Wrapped overflow semantics allow stripping of ADDOV and SUBOV.
493 ** MULOV cannot be stripped due to precision widening.
495 return narrow_stripov(J, tr, IR_SUBOV, (IRT_INT<<5)|IRT_INT|IRCONV_TOBIT);
498 #if LJ_HASFFI
499 /* Narrow C array index (overflow undefined). */
500 TRef LJ_FASTCALL lj_opt_narrow_cindex(jit_State *J, TRef tr)
502 lua_assert(tref_isnumber(tr));
503 if (tref_isnum(tr))
504 return emitir(IRT(IR_CONV, IRT_INTP), tr, (IRT_INTP<<5)|IRT_NUM|IRCONV_ANY);
505 /* Undefined overflow semantics allow stripping of ADDOV, SUBOV and MULOV. */
506 return narrow_stripov(J, tr, IR_MULOV,
507 LJ_64 ? ((IRT_INTP<<5)|IRT_INT|IRCONV_SEXT) :
508 ((IRT_INTP<<5)|IRT_INT|IRCONV_TOBIT));
510 #endif
512 /* -- Narrowing of arithmetic operators ----------------------------------- */
514 /* Check whether a number fits into an int32_t (-0 is ok, too). */
515 static int numisint(lua_Number n)
517 return (n == (lua_Number)lj_num2int(n));
520 /* Narrowing of arithmetic operations. */
521 TRef lj_opt_narrow_arith(jit_State *J, TRef rb, TRef rc,
522 TValue *vb, TValue *vc, IROp op)
524 if (tref_isstr(rb)) {
525 rb = emitir(IRTG(IR_STRTO, IRT_NUM), rb, 0);
526 lj_strscan_num(strV(vb), vb);
528 if (tref_isstr(rc)) {
529 rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0);
530 lj_strscan_num(strV(vc), vc);
532 /* Must not narrow MUL in non-DUALNUM variant, because it loses -0. */
533 if ((op >= IR_ADD && op <= (LJ_DUALNUM ? IR_MUL : IR_SUB)) &&
534 tref_isinteger(rb) && tref_isinteger(rc) &&
535 numisint(lj_vm_foldarith(numberVnum(vb), numberVnum(vc),
536 (int)op - (int)IR_ADD)))
537 return emitir(IRTGI((int)op - (int)IR_ADD + (int)IR_ADDOV), rb, rc);
538 if (!tref_isnum(rb)) rb = emitir(IRTN(IR_CONV), rb, IRCONV_NUM_INT);
539 if (!tref_isnum(rc)) rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
540 return emitir(IRTN(op), rb, rc);
543 /* Narrowing of unary minus operator. */
544 TRef lj_opt_narrow_unm(jit_State *J, TRef rc, TValue *vc)
546 if (tref_isstr(rc)) {
547 rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0);
548 lj_strscan_num(strV(vc), vc);
550 if (tref_isinteger(rc)) {
551 if ((uint32_t)numberVint(vc) != 0x80000000u)
552 return emitir(IRTGI(IR_SUBOV), lj_ir_kint(J, 0), rc);
553 rc = emitir(IRTN(IR_CONV), rc, IRCONV_NUM_INT);
555 return emitir(IRTN(IR_NEG), rc, lj_ir_knum_neg(J));
558 /* Narrowing of modulo operator. */
559 TRef lj_opt_narrow_mod(jit_State *J, TRef rb, TRef rc, TValue *vc)
561 TRef tmp;
562 if (tvisstr(vc) && !lj_strscan_num(strV(vc), vc))
563 lj_trace_err(J, LJ_TRERR_BADTYPE);
564 if ((LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) &&
565 tref_isinteger(rb) && tref_isinteger(rc) &&
566 (tvisint(vc) ? intV(vc) != 0 : !tviszero(vc))) {
567 emitir(IRTGI(IR_NE), rc, lj_ir_kint(J, 0));
568 return emitir(IRTI(IR_MOD), rb, rc);
570 /* b % c ==> b - floor(b/c)*c */
571 rb = lj_ir_tonum(J, rb);
572 rc = lj_ir_tonum(J, rc);
573 tmp = emitir(IRTN(IR_DIV), rb, rc);
574 tmp = emitir(IRTN(IR_FPMATH), tmp, IRFPM_FLOOR);
575 tmp = emitir(IRTN(IR_MUL), tmp, rc);
576 return emitir(IRTN(IR_SUB), rb, tmp);
579 /* Narrowing of power operator or math.pow. */
580 TRef lj_opt_narrow_pow(jit_State *J, TRef rb, TRef rc, TValue *vc)
582 if (tvisstr(vc) && !lj_strscan_num(strV(vc), vc))
583 lj_trace_err(J, LJ_TRERR_BADTYPE);
584 /* Narrowing must be unconditional to preserve (-x)^i semantics. */
585 if (tvisint(vc) || numisint(numV(vc))) {
586 int checkrange = 0;
587 /* Split pow is faster for bigger exponents. But do this only for (+k)^i. */
588 if (tref_isk(rb) && (int32_t)ir_knum(IR(tref_ref(rb)))->u32.hi >= 0) {
589 int32_t k = numberVint(vc);
590 if (!(k >= -65536 && k <= 65536)) goto split_pow;
591 checkrange = 1;
593 if (!tref_isinteger(rc)) {
594 if (tref_isstr(rc))
595 rc = emitir(IRTG(IR_STRTO, IRT_NUM), rc, 0);
596 /* Guarded conversion to integer! */
597 rc = emitir(IRTGI(IR_CONV), rc, IRCONV_INT_NUM|IRCONV_CHECK);
599 if (checkrange && !tref_isk(rc)) { /* Range guard: -65536 <= i <= 65536 */
600 TRef tmp = emitir(IRTI(IR_ADD), rc, lj_ir_kint(J, 65536));
601 emitir(IRTGI(IR_ULE), tmp, lj_ir_kint(J, 2*65536));
603 return emitir(IRTN(IR_POW), rb, rc);
605 split_pow:
606 /* FOLD covers most cases, but some are easier to do here. */
607 if (tref_isk(rb) && tvispone(ir_knum(IR(tref_ref(rb)))))
608 return rb; /* 1 ^ x ==> 1 */
609 rc = lj_ir_tonum(J, rc);
610 if (tref_isk(rc) && ir_knum(IR(tref_ref(rc)))->n == 0.5)
611 return emitir(IRTN(IR_FPMATH), rb, IRFPM_SQRT); /* x ^ 0.5 ==> sqrt(x) */
612 /* Split up b^c into exp2(c*log2(b)). Assembler may rejoin later. */
613 rb = emitir(IRTN(IR_FPMATH), rb, IRFPM_LOG2);
614 rc = emitir(IRTN(IR_MUL), rb, rc);
615 return emitir(IRTN(IR_FPMATH), rc, IRFPM_EXP2);
618 /* -- Predictive narrowing of induction variables ------------------------- */
620 /* Narrow a single runtime value. */
621 static int narrow_forl(jit_State *J, cTValue *o)
623 if (tvisint(o)) return 1;
624 if (LJ_DUALNUM || (J->flags & JIT_F_OPT_NARROW)) return numisint(numV(o));
625 return 0;
628 /* Narrow the FORL index type by looking at the runtime values. */
629 IRType lj_opt_narrow_forl(jit_State *J, cTValue *tv)
631 lua_assert(tvisnumber(&tv[FORL_IDX]) &&
632 tvisnumber(&tv[FORL_STOP]) &&
633 tvisnumber(&tv[FORL_STEP]));
634 /* Narrow only if the runtime values of start/stop/step are all integers. */
635 if (narrow_forl(J, &tv[FORL_IDX]) &&
636 narrow_forl(J, &tv[FORL_STOP]) &&
637 narrow_forl(J, &tv[FORL_STEP])) {
638 /* And if the loop index can't possibly overflow. */
639 lua_Number step = numberVnum(&tv[FORL_STEP]);
640 lua_Number sum = numberVnum(&tv[FORL_STOP]) + step;
641 if (0 <= step ? (sum <= 2147483647.0) : (sum >= -2147483648.0))
642 return IRT_INT;
644 return IRT_NUM;
647 #undef IR
648 #undef fins
649 #undef emitir
650 #undef emitir_raw
652 #endif