beta-0.89.2
[luatex.git] / source / libs / luajit / LuaJIT-src / src / lj_alloc.c
blobddd50cae4f14b7af3816707c33af514203046a3d
1 /*
2 ** Bundled memory allocator.
3 **
4 ** Beware: this is a HEAVILY CUSTOMIZED version of dlmalloc.
5 ** The original bears the following remark:
6 **
7 ** This is a version (aka dlmalloc) of malloc/free/realloc written by
8 ** Doug Lea and released to the public domain, as explained at
9 ** http://creativecommons.org/licenses/publicdomain.
11 ** * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
13 ** No additional copyright is claimed over the customizations.
14 ** Please do NOT bother the original author about this version here!
16 ** If you want to use dlmalloc in another project, you should get
17 ** the original from: ftp://gee.cs.oswego.edu/pub/misc/
18 ** For thread-safe derivatives, take a look at:
19 ** - ptmalloc: http://www.malloc.de/
20 ** - nedmalloc: http://www.nedprod.com/programs/portable/nedmalloc/
23 #define lj_alloc_c
24 #define LUA_CORE
26 /* To get the mremap prototype. Must be defined before any system includes. */
27 #if defined(__linux__) && !defined(_GNU_SOURCE)
28 #define _GNU_SOURCE
29 #endif
31 #include "lj_def.h"
32 #include "lj_arch.h"
33 #include "lj_alloc.h"
35 #ifndef LUAJIT_USE_SYSMALLOC
37 #define MAX_SIZE_T (~(size_t)0)
38 #define MALLOC_ALIGNMENT ((size_t)8U)
40 #define DEFAULT_GRANULARITY ((size_t)128U * (size_t)1024U)
41 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
42 #define DEFAULT_MMAP_THRESHOLD ((size_t)128U * (size_t)1024U)
43 #define MAX_RELEASE_CHECK_RATE 255
45 /* ------------------- size_t and alignment properties -------------------- */
47 /* The byte and bit size of a size_t */
48 #define SIZE_T_SIZE (sizeof(size_t))
49 #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
51 /* Some constants coerced to size_t */
52 /* Annoying but necessary to avoid errors on some platforms */
53 #define SIZE_T_ZERO ((size_t)0)
54 #define SIZE_T_ONE ((size_t)1)
55 #define SIZE_T_TWO ((size_t)2)
56 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
57 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
58 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
60 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
61 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
63 /* the number of bytes to offset an address to align it */
64 #define align_offset(A)\
65 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
66 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
68 /* -------------------------- MMAP support ------------------------------- */
70 #define MFAIL ((void *)(MAX_SIZE_T))
71 #define CMFAIL ((char *)(MFAIL)) /* defined for convenience */
73 #define IS_DIRECT_BIT (SIZE_T_ONE)
75 #if LJ_TARGET_WINDOWS
77 #define WIN32_LEAN_AND_MEAN
78 #include <windows.h>
80 #if LJ_64 && !LJ_GC64
82 /* Undocumented, but hey, that's what we all love so much about Windows. */
83 typedef long (*PNTAVM)(HANDLE handle, void **addr, ULONG zbits,
84 size_t *size, ULONG alloctype, ULONG prot);
85 static PNTAVM ntavm;
87 /* Number of top bits of the lower 32 bits of an address that must be zero.
88 ** Apparently 0 gives us full 64 bit addresses and 1 gives us the lower 2GB.
90 #define NTAVM_ZEROBITS 1
92 static void INIT_MMAP(void)
94 ntavm = (PNTAVM)GetProcAddress(GetModuleHandleA("ntdll.dll"),
95 "NtAllocateVirtualMemory");
98 /* Win64 32 bit MMAP via NtAllocateVirtualMemory. */
99 static LJ_AINLINE void *CALL_MMAP(size_t size)
101 DWORD olderr = GetLastError();
102 void *ptr = NULL;
103 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
104 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
105 SetLastError(olderr);
106 return st == 0 ? ptr : MFAIL;
109 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
110 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
112 DWORD olderr = GetLastError();
113 void *ptr = NULL;
114 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
115 MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE);
116 SetLastError(olderr);
117 return st == 0 ? ptr : MFAIL;
120 #else
122 #define INIT_MMAP() ((void)0)
124 /* Win32 MMAP via VirtualAlloc */
125 static LJ_AINLINE void *CALL_MMAP(size_t size)
127 DWORD olderr = GetLastError();
128 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
129 SetLastError(olderr);
130 return ptr ? ptr : MFAIL;
133 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
134 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
136 DWORD olderr = GetLastError();
137 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
138 PAGE_READWRITE);
139 SetLastError(olderr);
140 return ptr ? ptr : MFAIL;
143 #endif
145 /* This function supports releasing coalesed segments */
146 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
148 DWORD olderr = GetLastError();
149 MEMORY_BASIC_INFORMATION minfo;
150 char *cptr = (char *)ptr;
151 while (size) {
152 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
153 return -1;
154 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
155 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
156 return -1;
157 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
158 return -1;
159 cptr += minfo.RegionSize;
160 size -= minfo.RegionSize;
162 SetLastError(olderr);
163 return 0;
166 #else
168 #include <errno.h>
169 #include <sys/mman.h>
171 #define MMAP_PROT (PROT_READ|PROT_WRITE)
172 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
173 #define MAP_ANONYMOUS MAP_ANON
174 #endif
175 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
177 #if LJ_64 && !LJ_GC64
178 /* 64 bit mode with 32 bit pointers needs special support for allocating
179 ** memory in the lower 2GB.
182 #if defined(MAP_32BIT)
184 #if defined(__sun__)
185 #define MMAP_REGION_START ((uintptr_t)0x1000)
186 #else
187 /* Actually this only gives us max. 1GB in current Linux kernels. */
188 #define MMAP_REGION_START ((uintptr_t)0)
189 #endif
191 static LJ_AINLINE void *CALL_MMAP(size_t size)
193 int olderr = errno;
194 void *ptr = mmap((void *)MMAP_REGION_START, size, MMAP_PROT, MAP_32BIT|MMAP_FLAGS, -1, 0);
195 errno = olderr;
196 return ptr;
199 #elif LJ_TARGET_OSX || LJ_TARGET_PS4 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__sun__) || defined(__CYGWIN__)
201 /* OSX and FreeBSD mmap() use a naive first-fit linear search.
202 ** That's perfect for us. Except that -pagezero_size must be set for OSX,
203 ** otherwise the lower 4GB are blocked. And the 32GB RLIMIT_DATA needs
204 ** to be reduced to 250MB on FreeBSD.
206 #if LJ_TARGET_OSX || defined(__DragonFly__)
207 #define MMAP_REGION_START ((uintptr_t)0x10000)
208 #elif LJ_TARGET_PS4
209 #define MMAP_REGION_START ((uintptr_t)0x4000)
210 #else
211 #define MMAP_REGION_START ((uintptr_t)0x10000000)
212 #endif
213 #define MMAP_REGION_END ((uintptr_t)0x80000000)
215 #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4
216 #include <sys/resource.h>
217 #endif
219 static LJ_AINLINE void *CALL_MMAP(size_t size)
221 int olderr = errno;
222 /* Hint for next allocation. Doesn't need to be thread-safe. */
223 static uintptr_t alloc_hint = MMAP_REGION_START;
224 int retry = 0;
225 #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4
226 static int rlimit_modified = 0;
227 if (LJ_UNLIKELY(rlimit_modified == 0)) {
228 struct rlimit rlim;
229 rlim.rlim_cur = rlim.rlim_max = MMAP_REGION_START;
230 setrlimit(RLIMIT_DATA, &rlim); /* Ignore result. May fail below. */
231 rlimit_modified = 1;
233 #endif
234 for (;;) {
235 void *p = mmap((void *)alloc_hint, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
236 if ((uintptr_t)p >= MMAP_REGION_START &&
237 (uintptr_t)p + size < MMAP_REGION_END) {
238 alloc_hint = (uintptr_t)p + size;
239 errno = olderr;
240 return p;
242 if (p != CMFAIL) munmap(p, size);
243 #if defined(__sun__) || defined(__DragonFly__)
244 alloc_hint += 0x1000000; /* Need near-exhaustive linear scan. */
245 if (alloc_hint + size < MMAP_REGION_END) continue;
246 #endif
247 if (retry) break;
248 retry = 1;
249 alloc_hint = MMAP_REGION_START;
251 errno = olderr;
252 return CMFAIL;
255 #else
257 #error "NYI: need an equivalent of MAP_32BIT for this 64 bit OS"
259 #endif
261 #else
263 /* 32 bit mode and GC64 mode is easy. */
264 static LJ_AINLINE void *CALL_MMAP(size_t size)
266 int olderr = errno;
267 void *ptr = mmap(NULL, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
268 errno = olderr;
269 return ptr;
272 #endif
274 #define INIT_MMAP() ((void)0)
275 #define DIRECT_MMAP(s) CALL_MMAP(s)
277 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
279 int olderr = errno;
280 int ret = munmap(ptr, size);
281 errno = olderr;
282 return ret;
285 #if LJ_TARGET_LINUX
286 /* Need to define _GNU_SOURCE to get the mremap prototype. */
287 static LJ_AINLINE void *CALL_MREMAP_(void *ptr, size_t osz, size_t nsz,
288 int flags)
290 int olderr = errno;
291 ptr = mremap(ptr, osz, nsz, flags);
292 errno = olderr;
293 return ptr;
296 #define CALL_MREMAP(addr, osz, nsz, mv) CALL_MREMAP_((addr), (osz), (nsz), (mv))
297 #define CALL_MREMAP_NOMOVE 0
298 #define CALL_MREMAP_MAYMOVE 1
299 #if LJ_64 && !LJ_GC64
300 #define CALL_MREMAP_MV CALL_MREMAP_NOMOVE
301 #else
302 #define CALL_MREMAP_MV CALL_MREMAP_MAYMOVE
303 #endif
304 #endif
306 #endif
308 #ifndef CALL_MREMAP
309 #define CALL_MREMAP(addr, osz, nsz, mv) ((void)osz, MFAIL)
310 #endif
312 /* ----------------------- Chunk representations ------------------------ */
314 struct malloc_chunk {
315 size_t prev_foot; /* Size of previous chunk (if free). */
316 size_t head; /* Size and inuse bits. */
317 struct malloc_chunk *fd; /* double links -- used only if free. */
318 struct malloc_chunk *bk;
321 typedef struct malloc_chunk mchunk;
322 typedef struct malloc_chunk *mchunkptr;
323 typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */
324 typedef size_t bindex_t; /* Described below */
325 typedef unsigned int binmap_t; /* Described below */
326 typedef unsigned int flag_t; /* The type of various bit flag sets */
328 /* ------------------- Chunks sizes and alignments ----------------------- */
330 #define MCHUNK_SIZE (sizeof(mchunk))
332 #define CHUNK_OVERHEAD (SIZE_T_SIZE)
334 /* Direct chunks need a second word of overhead ... */
335 #define DIRECT_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
336 /* ... and additional padding for fake next-chunk at foot */
337 #define DIRECT_FOOT_PAD (FOUR_SIZE_T_SIZES)
339 /* The smallest size we can malloc is an aligned minimal chunk */
340 #define MIN_CHUNK_SIZE\
341 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
343 /* conversion from malloc headers to user pointers, and back */
344 #define chunk2mem(p) ((void *)((char *)(p) + TWO_SIZE_T_SIZES))
345 #define mem2chunk(mem) ((mchunkptr)((char *)(mem) - TWO_SIZE_T_SIZES))
346 /* chunk associated with aligned address A */
347 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
349 /* Bounds on request (not chunk) sizes. */
350 #define MAX_REQUEST ((~MIN_CHUNK_SIZE+1) << 2)
351 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
353 /* pad request bytes into a usable size */
354 #define pad_request(req) \
355 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
357 /* pad request, checking for minimum (but not maximum) */
358 #define request2size(req) \
359 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
361 /* ------------------ Operations on head and foot fields ----------------- */
363 #define PINUSE_BIT (SIZE_T_ONE)
364 #define CINUSE_BIT (SIZE_T_TWO)
365 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
367 /* Head value for fenceposts */
368 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
370 /* extraction of fields from head words */
371 #define cinuse(p) ((p)->head & CINUSE_BIT)
372 #define pinuse(p) ((p)->head & PINUSE_BIT)
373 #define chunksize(p) ((p)->head & ~(INUSE_BITS))
375 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
376 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
378 /* Treat space at ptr +/- offset as a chunk */
379 #define chunk_plus_offset(p, s) ((mchunkptr)(((char *)(p)) + (s)))
380 #define chunk_minus_offset(p, s) ((mchunkptr)(((char *)(p)) - (s)))
382 /* Ptr to next or previous physical malloc_chunk. */
383 #define next_chunk(p) ((mchunkptr)(((char *)(p)) + ((p)->head & ~INUSE_BITS)))
384 #define prev_chunk(p) ((mchunkptr)(((char *)(p)) - ((p)->prev_foot) ))
386 /* extract next chunk's pinuse bit */
387 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
389 /* Get/set size at footer */
390 #define get_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot)
391 #define set_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot = (s))
393 /* Set size, pinuse bit, and foot */
394 #define set_size_and_pinuse_of_free_chunk(p, s)\
395 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
397 /* Set size, pinuse bit, foot, and clear next pinuse */
398 #define set_free_with_pinuse(p, s, n)\
399 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
401 #define is_direct(p)\
402 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_DIRECT_BIT))
404 /* Get the internal overhead associated with chunk p */
405 #define overhead_for(p)\
406 (is_direct(p)? DIRECT_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
408 /* ---------------------- Overlaid data structures ----------------------- */
410 struct malloc_tree_chunk {
411 /* The first four fields must be compatible with malloc_chunk */
412 size_t prev_foot;
413 size_t head;
414 struct malloc_tree_chunk *fd;
415 struct malloc_tree_chunk *bk;
417 struct malloc_tree_chunk *child[2];
418 struct malloc_tree_chunk *parent;
419 bindex_t index;
422 typedef struct malloc_tree_chunk tchunk;
423 typedef struct malloc_tree_chunk *tchunkptr;
424 typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */
426 /* A little helper macro for trees */
427 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
429 /* ----------------------------- Segments -------------------------------- */
431 struct malloc_segment {
432 char *base; /* base address */
433 size_t size; /* allocated size */
434 struct malloc_segment *next; /* ptr to next segment */
437 typedef struct malloc_segment msegment;
438 typedef struct malloc_segment *msegmentptr;
440 /* ---------------------------- malloc_state ----------------------------- */
442 /* Bin types, widths and sizes */
443 #define NSMALLBINS (32U)
444 #define NTREEBINS (32U)
445 #define SMALLBIN_SHIFT (3U)
446 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
447 #define TREEBIN_SHIFT (8U)
448 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
449 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
450 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
452 struct malloc_state {
453 binmap_t smallmap;
454 binmap_t treemap;
455 size_t dvsize;
456 size_t topsize;
457 mchunkptr dv;
458 mchunkptr top;
459 size_t trim_check;
460 size_t release_checks;
461 mchunkptr smallbins[(NSMALLBINS+1)*2];
462 tbinptr treebins[NTREEBINS];
463 msegment seg;
466 typedef struct malloc_state *mstate;
468 #define is_initialized(M) ((M)->top != 0)
470 /* -------------------------- system alloc setup ------------------------- */
472 /* page-align a size */
473 #define page_align(S)\
474 (((S) + (LJ_PAGESIZE - SIZE_T_ONE)) & ~(LJ_PAGESIZE - SIZE_T_ONE))
476 /* granularity-align a size */
477 #define granularity_align(S)\
478 (((S) + (DEFAULT_GRANULARITY - SIZE_T_ONE))\
479 & ~(DEFAULT_GRANULARITY - SIZE_T_ONE))
481 #if LJ_TARGET_WINDOWS
482 #define mmap_align(S) granularity_align(S)
483 #else
484 #define mmap_align(S) page_align(S)
485 #endif
487 /* True if segment S holds address A */
488 #define segment_holds(S, A)\
489 ((char *)(A) >= S->base && (char *)(A) < S->base + S->size)
491 /* Return segment holding given address */
492 static msegmentptr segment_holding(mstate m, char *addr)
494 msegmentptr sp = &m->seg;
495 for (;;) {
496 if (addr >= sp->base && addr < sp->base + sp->size)
497 return sp;
498 if ((sp = sp->next) == 0)
499 return 0;
503 /* Return true if segment contains a segment link */
504 static int has_segment_link(mstate m, msegmentptr ss)
506 msegmentptr sp = &m->seg;
507 for (;;) {
508 if ((char *)sp >= ss->base && (char *)sp < ss->base + ss->size)
509 return 1;
510 if ((sp = sp->next) == 0)
511 return 0;
516 TOP_FOOT_SIZE is padding at the end of a segment, including space
517 that may be needed to place segment records and fenceposts when new
518 noncontiguous segments are added.
520 #define TOP_FOOT_SIZE\
521 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
523 /* ---------------------------- Indexing Bins ---------------------------- */
525 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
526 #define small_index(s) ((s) >> SMALLBIN_SHIFT)
527 #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
528 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
530 /* addressing by index. See above about smallbin repositioning */
531 #define smallbin_at(M, i) ((sbinptr)((char *)&((M)->smallbins[(i)<<1])))
532 #define treebin_at(M,i) (&((M)->treebins[i]))
534 /* assign tree index for size S to variable I */
535 #define compute_tree_index(S, I)\
537 unsigned int X = (unsigned int)(S >> TREEBIN_SHIFT);\
538 if (X == 0) {\
539 I = 0;\
540 } else if (X > 0xFFFF) {\
541 I = NTREEBINS-1;\
542 } else {\
543 unsigned int K = lj_fls(X);\
544 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
548 /* Bit representing maximum resolved size in a treebin at i */
549 #define bit_for_tree_index(i) \
550 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
552 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
553 #define leftshift_for_tree_index(i) \
554 ((i == NTREEBINS-1)? 0 : \
555 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
557 /* The size of the smallest chunk held in bin with index i */
558 #define minsize_for_tree_index(i) \
559 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
560 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
562 /* ------------------------ Operations on bin maps ----------------------- */
564 /* bit corresponding to given index */
565 #define idx2bit(i) ((binmap_t)(1) << (i))
567 /* Mark/Clear bits with given index */
568 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
569 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
570 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
572 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
573 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
574 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
576 /* mask with all bits to left of least bit of x on */
577 #define left_bits(x) ((x<<1) | (~(x<<1)+1))
579 /* Set cinuse bit and pinuse bit of next chunk */
580 #define set_inuse(M,p,s)\
581 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
582 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
584 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
585 #define set_inuse_and_pinuse(M,p,s)\
586 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
587 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
589 /* Set size, cinuse and pinuse bit of this chunk */
590 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
591 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
593 /* ----------------------- Operations on smallbins ----------------------- */
595 /* Link a free chunk into a smallbin */
596 #define insert_small_chunk(M, P, S) {\
597 bindex_t I = small_index(S);\
598 mchunkptr B = smallbin_at(M, I);\
599 mchunkptr F = B;\
600 if (!smallmap_is_marked(M, I))\
601 mark_smallmap(M, I);\
602 else\
603 F = B->fd;\
604 B->fd = P;\
605 F->bk = P;\
606 P->fd = F;\
607 P->bk = B;\
610 /* Unlink a chunk from a smallbin */
611 #define unlink_small_chunk(M, P, S) {\
612 mchunkptr F = P->fd;\
613 mchunkptr B = P->bk;\
614 bindex_t I = small_index(S);\
615 if (F == B) {\
616 clear_smallmap(M, I);\
617 } else {\
618 F->bk = B;\
619 B->fd = F;\
623 /* Unlink the first chunk from a smallbin */
624 #define unlink_first_small_chunk(M, B, P, I) {\
625 mchunkptr F = P->fd;\
626 if (B == F) {\
627 clear_smallmap(M, I);\
628 } else {\
629 B->fd = F;\
630 F->bk = B;\
634 /* Replace dv node, binning the old one */
635 /* Used only when dvsize known to be small */
636 #define replace_dv(M, P, S) {\
637 size_t DVS = M->dvsize;\
638 if (DVS != 0) {\
639 mchunkptr DV = M->dv;\
640 insert_small_chunk(M, DV, DVS);\
642 M->dvsize = S;\
643 M->dv = P;\
646 /* ------------------------- Operations on trees ------------------------- */
648 /* Insert chunk into tree */
649 #define insert_large_chunk(M, X, S) {\
650 tbinptr *H;\
651 bindex_t I;\
652 compute_tree_index(S, I);\
653 H = treebin_at(M, I);\
654 X->index = I;\
655 X->child[0] = X->child[1] = 0;\
656 if (!treemap_is_marked(M, I)) {\
657 mark_treemap(M, I);\
658 *H = X;\
659 X->parent = (tchunkptr)H;\
660 X->fd = X->bk = X;\
661 } else {\
662 tchunkptr T = *H;\
663 size_t K = S << leftshift_for_tree_index(I);\
664 for (;;) {\
665 if (chunksize(T) != S) {\
666 tchunkptr *C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
667 K <<= 1;\
668 if (*C != 0) {\
669 T = *C;\
670 } else {\
671 *C = X;\
672 X->parent = T;\
673 X->fd = X->bk = X;\
674 break;\
676 } else {\
677 tchunkptr F = T->fd;\
678 T->fd = F->bk = X;\
679 X->fd = F;\
680 X->bk = T;\
681 X->parent = 0;\
682 break;\
688 #define unlink_large_chunk(M, X) {\
689 tchunkptr XP = X->parent;\
690 tchunkptr R;\
691 if (X->bk != X) {\
692 tchunkptr F = X->fd;\
693 R = X->bk;\
694 F->bk = R;\
695 R->fd = F;\
696 } else {\
697 tchunkptr *RP;\
698 if (((R = *(RP = &(X->child[1]))) != 0) ||\
699 ((R = *(RP = &(X->child[0]))) != 0)) {\
700 tchunkptr *CP;\
701 while ((*(CP = &(R->child[1])) != 0) ||\
702 (*(CP = &(R->child[0])) != 0)) {\
703 R = *(RP = CP);\
705 *RP = 0;\
708 if (XP != 0) {\
709 tbinptr *H = treebin_at(M, X->index);\
710 if (X == *H) {\
711 if ((*H = R) == 0) \
712 clear_treemap(M, X->index);\
713 } else {\
714 if (XP->child[0] == X) \
715 XP->child[0] = R;\
716 else \
717 XP->child[1] = R;\
719 if (R != 0) {\
720 tchunkptr C0, C1;\
721 R->parent = XP;\
722 if ((C0 = X->child[0]) != 0) {\
723 R->child[0] = C0;\
724 C0->parent = R;\
726 if ((C1 = X->child[1]) != 0) {\
727 R->child[1] = C1;\
728 C1->parent = R;\
734 /* Relays to large vs small bin operations */
736 #define insert_chunk(M, P, S)\
737 if (is_small(S)) { insert_small_chunk(M, P, S)\
738 } else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
740 #define unlink_chunk(M, P, S)\
741 if (is_small(S)) { unlink_small_chunk(M, P, S)\
742 } else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
744 /* ----------------------- Direct-mmapping chunks ----------------------- */
746 static void *direct_alloc(size_t nb)
748 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
749 if (LJ_LIKELY(mmsize > nb)) { /* Check for wrap around 0 */
750 char *mm = (char *)(DIRECT_MMAP(mmsize));
751 if (mm != CMFAIL) {
752 size_t offset = align_offset(chunk2mem(mm));
753 size_t psize = mmsize - offset - DIRECT_FOOT_PAD;
754 mchunkptr p = (mchunkptr)(mm + offset);
755 p->prev_foot = offset | IS_DIRECT_BIT;
756 p->head = psize|CINUSE_BIT;
757 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
758 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
759 return chunk2mem(p);
762 return NULL;
765 static mchunkptr direct_resize(mchunkptr oldp, size_t nb)
767 size_t oldsize = chunksize(oldp);
768 if (is_small(nb)) /* Can't shrink direct regions below small size */
769 return NULL;
770 /* Keep old chunk if big enough but not too big */
771 if (oldsize >= nb + SIZE_T_SIZE &&
772 (oldsize - nb) <= (DEFAULT_GRANULARITY >> 1)) {
773 return oldp;
774 } else {
775 size_t offset = oldp->prev_foot & ~IS_DIRECT_BIT;
776 size_t oldmmsize = oldsize + offset + DIRECT_FOOT_PAD;
777 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
778 char *cp = (char *)CALL_MREMAP((char *)oldp - offset,
779 oldmmsize, newmmsize, CALL_MREMAP_MV);
780 if (cp != CMFAIL) {
781 mchunkptr newp = (mchunkptr)(cp + offset);
782 size_t psize = newmmsize - offset - DIRECT_FOOT_PAD;
783 newp->head = psize|CINUSE_BIT;
784 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
785 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
786 return newp;
789 return NULL;
792 /* -------------------------- mspace management -------------------------- */
794 /* Initialize top chunk and its size */
795 static void init_top(mstate m, mchunkptr p, size_t psize)
797 /* Ensure alignment */
798 size_t offset = align_offset(chunk2mem(p));
799 p = (mchunkptr)((char *)p + offset);
800 psize -= offset;
802 m->top = p;
803 m->topsize = psize;
804 p->head = psize | PINUSE_BIT;
805 /* set size of fake trailing chunk holding overhead space only once */
806 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
807 m->trim_check = DEFAULT_TRIM_THRESHOLD; /* reset on each update */
810 /* Initialize bins for a new mstate that is otherwise zeroed out */
811 static void init_bins(mstate m)
813 /* Establish circular links for smallbins */
814 bindex_t i;
815 for (i = 0; i < NSMALLBINS; i++) {
816 sbinptr bin = smallbin_at(m,i);
817 bin->fd = bin->bk = bin;
821 /* Allocate chunk and prepend remainder with chunk in successor base. */
822 static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
824 mchunkptr p = align_as_chunk(newbase);
825 mchunkptr oldfirst = align_as_chunk(oldbase);
826 size_t psize = (size_t)((char *)oldfirst - (char *)p);
827 mchunkptr q = chunk_plus_offset(p, nb);
828 size_t qsize = psize - nb;
829 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
831 /* consolidate remainder with first chunk of old base */
832 if (oldfirst == m->top) {
833 size_t tsize = m->topsize += qsize;
834 m->top = q;
835 q->head = tsize | PINUSE_BIT;
836 } else if (oldfirst == m->dv) {
837 size_t dsize = m->dvsize += qsize;
838 m->dv = q;
839 set_size_and_pinuse_of_free_chunk(q, dsize);
840 } else {
841 if (!cinuse(oldfirst)) {
842 size_t nsize = chunksize(oldfirst);
843 unlink_chunk(m, oldfirst, nsize);
844 oldfirst = chunk_plus_offset(oldfirst, nsize);
845 qsize += nsize;
847 set_free_with_pinuse(q, qsize, oldfirst);
848 insert_chunk(m, q, qsize);
851 return chunk2mem(p);
854 /* Add a segment to hold a new noncontiguous region */
855 static void add_segment(mstate m, char *tbase, size_t tsize)
857 /* Determine locations and sizes of segment, fenceposts, old top */
858 char *old_top = (char *)m->top;
859 msegmentptr oldsp = segment_holding(m, old_top);
860 char *old_end = oldsp->base + oldsp->size;
861 size_t ssize = pad_request(sizeof(struct malloc_segment));
862 char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
863 size_t offset = align_offset(chunk2mem(rawsp));
864 char *asp = rawsp + offset;
865 char *csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
866 mchunkptr sp = (mchunkptr)csp;
867 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
868 mchunkptr tnext = chunk_plus_offset(sp, ssize);
869 mchunkptr p = tnext;
871 /* reset top to new space */
872 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
874 /* Set up segment record */
875 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
876 *ss = m->seg; /* Push current record */
877 m->seg.base = tbase;
878 m->seg.size = tsize;
879 m->seg.next = ss;
881 /* Insert trailing fenceposts */
882 for (;;) {
883 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
884 p->head = FENCEPOST_HEAD;
885 if ((char *)(&(nextp->head)) < old_end)
886 p = nextp;
887 else
888 break;
891 /* Insert the rest of old top into a bin as an ordinary free chunk */
892 if (csp != old_top) {
893 mchunkptr q = (mchunkptr)old_top;
894 size_t psize = (size_t)(csp - old_top);
895 mchunkptr tn = chunk_plus_offset(q, psize);
896 set_free_with_pinuse(q, psize, tn);
897 insert_chunk(m, q, psize);
901 /* -------------------------- System allocation -------------------------- */
903 static void *alloc_sys(mstate m, size_t nb)
905 char *tbase = CMFAIL;
906 size_t tsize = 0;
908 /* Directly map large chunks */
909 if (LJ_UNLIKELY(nb >= DEFAULT_MMAP_THRESHOLD)) {
910 void *mem = direct_alloc(nb);
911 if (mem != 0)
912 return mem;
916 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
917 size_t rsize = granularity_align(req);
918 if (LJ_LIKELY(rsize > nb)) { /* Fail if wraps around zero */
919 char *mp = (char *)(CALL_MMAP(rsize));
920 if (mp != CMFAIL) {
921 tbase = mp;
922 tsize = rsize;
927 if (tbase != CMFAIL) {
928 msegmentptr sp = &m->seg;
929 /* Try to merge with an existing segment */
930 while (sp != 0 && tbase != sp->base + sp->size)
931 sp = sp->next;
932 if (sp != 0 && segment_holds(sp, m->top)) { /* append */
933 sp->size += tsize;
934 init_top(m, m->top, m->topsize + tsize);
935 } else {
936 sp = &m->seg;
937 while (sp != 0 && sp->base != tbase + tsize)
938 sp = sp->next;
939 if (sp != 0) {
940 char *oldbase = sp->base;
941 sp->base = tbase;
942 sp->size += tsize;
943 return prepend_alloc(m, tbase, oldbase, nb);
944 } else {
945 add_segment(m, tbase, tsize);
949 if (nb < m->topsize) { /* Allocate from new or extended top space */
950 size_t rsize = m->topsize -= nb;
951 mchunkptr p = m->top;
952 mchunkptr r = m->top = chunk_plus_offset(p, nb);
953 r->head = rsize | PINUSE_BIT;
954 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
955 return chunk2mem(p);
959 return NULL;
962 /* ----------------------- system deallocation -------------------------- */
964 /* Unmap and unlink any mmapped segments that don't contain used chunks */
965 static size_t release_unused_segments(mstate m)
967 size_t released = 0;
968 size_t nsegs = 0;
969 msegmentptr pred = &m->seg;
970 msegmentptr sp = pred->next;
971 while (sp != 0) {
972 char *base = sp->base;
973 size_t size = sp->size;
974 msegmentptr next = sp->next;
975 nsegs++;
977 mchunkptr p = align_as_chunk(base);
978 size_t psize = chunksize(p);
979 /* Can unmap if first chunk holds entire segment and not pinned */
980 if (!cinuse(p) && (char *)p + psize >= base + size - TOP_FOOT_SIZE) {
981 tchunkptr tp = (tchunkptr)p;
982 if (p == m->dv) {
983 m->dv = 0;
984 m->dvsize = 0;
985 } else {
986 unlink_large_chunk(m, tp);
988 if (CALL_MUNMAP(base, size) == 0) {
989 released += size;
990 /* unlink obsoleted record */
991 sp = pred;
992 sp->next = next;
993 } else { /* back out if cannot unmap */
994 insert_large_chunk(m, tp, psize);
998 pred = sp;
999 sp = next;
1001 /* Reset check counter */
1002 m->release_checks = nsegs > MAX_RELEASE_CHECK_RATE ?
1003 nsegs : MAX_RELEASE_CHECK_RATE;
1004 return released;
1007 static int alloc_trim(mstate m, size_t pad)
1009 size_t released = 0;
1010 if (pad < MAX_REQUEST && is_initialized(m)) {
1011 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
1013 if (m->topsize > pad) {
1014 /* Shrink top space in granularity-size units, keeping at least one */
1015 size_t unit = DEFAULT_GRANULARITY;
1016 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
1017 SIZE_T_ONE) * unit;
1018 msegmentptr sp = segment_holding(m, (char *)m->top);
1020 if (sp->size >= extra &&
1021 !has_segment_link(m, sp)) { /* can't shrink if pinned */
1022 size_t newsize = sp->size - extra;
1023 /* Prefer mremap, fall back to munmap */
1024 if ((CALL_MREMAP(sp->base, sp->size, newsize, CALL_MREMAP_NOMOVE) != MFAIL) ||
1025 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
1026 released = extra;
1030 if (released != 0) {
1031 sp->size -= released;
1032 init_top(m, m->top, m->topsize - released);
1036 /* Unmap any unused mmapped segments */
1037 released += release_unused_segments(m);
1039 /* On failure, disable autotrim to avoid repeated failed future calls */
1040 if (released == 0 && m->topsize > m->trim_check)
1041 m->trim_check = MAX_SIZE_T;
1044 return (released != 0)? 1 : 0;
1047 /* ---------------------------- malloc support --------------------------- */
1049 /* allocate a large request from the best fitting chunk in a treebin */
1050 static void *tmalloc_large(mstate m, size_t nb)
1052 tchunkptr v = 0;
1053 size_t rsize = ~nb+1; /* Unsigned negation */
1054 tchunkptr t;
1055 bindex_t idx;
1056 compute_tree_index(nb, idx);
1058 if ((t = *treebin_at(m, idx)) != 0) {
1059 /* Traverse tree for this bin looking for node with size == nb */
1060 size_t sizebits = nb << leftshift_for_tree_index(idx);
1061 tchunkptr rst = 0; /* The deepest untaken right subtree */
1062 for (;;) {
1063 tchunkptr rt;
1064 size_t trem = chunksize(t) - nb;
1065 if (trem < rsize) {
1066 v = t;
1067 if ((rsize = trem) == 0)
1068 break;
1070 rt = t->child[1];
1071 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
1072 if (rt != 0 && rt != t)
1073 rst = rt;
1074 if (t == 0) {
1075 t = rst; /* set t to least subtree holding sizes > nb */
1076 break;
1078 sizebits <<= 1;
1082 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
1083 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
1084 if (leftbits != 0)
1085 t = *treebin_at(m, lj_ffs(leftbits));
1088 while (t != 0) { /* find smallest of tree or subtree */
1089 size_t trem = chunksize(t) - nb;
1090 if (trem < rsize) {
1091 rsize = trem;
1092 v = t;
1094 t = leftmost_child(t);
1097 /* If dv is a better fit, return NULL so malloc will use it */
1098 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
1099 mchunkptr r = chunk_plus_offset(v, nb);
1100 unlink_large_chunk(m, v);
1101 if (rsize < MIN_CHUNK_SIZE) {
1102 set_inuse_and_pinuse(m, v, (rsize + nb));
1103 } else {
1104 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1105 set_size_and_pinuse_of_free_chunk(r, rsize);
1106 insert_chunk(m, r, rsize);
1108 return chunk2mem(v);
1110 return NULL;
1113 /* allocate a small request from the best fitting chunk in a treebin */
1114 static void *tmalloc_small(mstate m, size_t nb)
1116 tchunkptr t, v;
1117 mchunkptr r;
1118 size_t rsize;
1119 bindex_t i = lj_ffs(m->treemap);
1121 v = t = *treebin_at(m, i);
1122 rsize = chunksize(t) - nb;
1124 while ((t = leftmost_child(t)) != 0) {
1125 size_t trem = chunksize(t) - nb;
1126 if (trem < rsize) {
1127 rsize = trem;
1128 v = t;
1132 r = chunk_plus_offset(v, nb);
1133 unlink_large_chunk(m, v);
1134 if (rsize < MIN_CHUNK_SIZE) {
1135 set_inuse_and_pinuse(m, v, (rsize + nb));
1136 } else {
1137 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1138 set_size_and_pinuse_of_free_chunk(r, rsize);
1139 replace_dv(m, r, rsize);
1141 return chunk2mem(v);
1144 /* ----------------------------------------------------------------------- */
1146 void *lj_alloc_create(void)
1148 size_t tsize = DEFAULT_GRANULARITY;
1149 char *tbase;
1150 INIT_MMAP();
1151 tbase = (char *)(CALL_MMAP(tsize));
1152 if (tbase != CMFAIL) {
1153 size_t msize = pad_request(sizeof(struct malloc_state));
1154 mchunkptr mn;
1155 mchunkptr msp = align_as_chunk(tbase);
1156 mstate m = (mstate)(chunk2mem(msp));
1157 memset(m, 0, msize);
1158 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
1159 m->seg.base = tbase;
1160 m->seg.size = tsize;
1161 m->release_checks = MAX_RELEASE_CHECK_RATE;
1162 init_bins(m);
1163 mn = next_chunk(mem2chunk(m));
1164 init_top(m, mn, (size_t)((tbase + tsize) - (char *)mn) - TOP_FOOT_SIZE);
1165 return m;
1167 return NULL;
1170 void lj_alloc_destroy(void *msp)
1172 mstate ms = (mstate)msp;
1173 msegmentptr sp = &ms->seg;
1174 while (sp != 0) {
1175 char *base = sp->base;
1176 size_t size = sp->size;
1177 sp = sp->next;
1178 CALL_MUNMAP(base, size);
1182 static LJ_NOINLINE void *lj_alloc_malloc(void *msp, size_t nsize)
1184 mstate ms = (mstate)msp;
1185 void *mem;
1186 size_t nb;
1187 if (nsize <= MAX_SMALL_REQUEST) {
1188 bindex_t idx;
1189 binmap_t smallbits;
1190 nb = (nsize < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(nsize);
1191 idx = small_index(nb);
1192 smallbits = ms->smallmap >> idx;
1194 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
1195 mchunkptr b, p;
1196 idx += ~smallbits & 1; /* Uses next bin if idx empty */
1197 b = smallbin_at(ms, idx);
1198 p = b->fd;
1199 unlink_first_small_chunk(ms, b, p, idx);
1200 set_inuse_and_pinuse(ms, p, small_index2size(idx));
1201 mem = chunk2mem(p);
1202 return mem;
1203 } else if (nb > ms->dvsize) {
1204 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
1205 mchunkptr b, p, r;
1206 size_t rsize;
1207 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
1208 bindex_t i = lj_ffs(leftbits);
1209 b = smallbin_at(ms, i);
1210 p = b->fd;
1211 unlink_first_small_chunk(ms, b, p, i);
1212 rsize = small_index2size(i) - nb;
1213 /* Fit here cannot be remainderless if 4byte sizes */
1214 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) {
1215 set_inuse_and_pinuse(ms, p, small_index2size(i));
1216 } else {
1217 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1218 r = chunk_plus_offset(p, nb);
1219 set_size_and_pinuse_of_free_chunk(r, rsize);
1220 replace_dv(ms, r, rsize);
1222 mem = chunk2mem(p);
1223 return mem;
1224 } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
1225 return mem;
1228 } else if (nsize >= MAX_REQUEST) {
1229 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
1230 } else {
1231 nb = pad_request(nsize);
1232 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
1233 return mem;
1237 if (nb <= ms->dvsize) {
1238 size_t rsize = ms->dvsize - nb;
1239 mchunkptr p = ms->dv;
1240 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
1241 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
1242 ms->dvsize = rsize;
1243 set_size_and_pinuse_of_free_chunk(r, rsize);
1244 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1245 } else { /* exhaust dv */
1246 size_t dvs = ms->dvsize;
1247 ms->dvsize = 0;
1248 ms->dv = 0;
1249 set_inuse_and_pinuse(ms, p, dvs);
1251 mem = chunk2mem(p);
1252 return mem;
1253 } else if (nb < ms->topsize) { /* Split top */
1254 size_t rsize = ms->topsize -= nb;
1255 mchunkptr p = ms->top;
1256 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
1257 r->head = rsize | PINUSE_BIT;
1258 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1259 mem = chunk2mem(p);
1260 return mem;
1262 return alloc_sys(ms, nb);
1265 static LJ_NOINLINE void *lj_alloc_free(void *msp, void *ptr)
1267 if (ptr != 0) {
1268 mchunkptr p = mem2chunk(ptr);
1269 mstate fm = (mstate)msp;
1270 size_t psize = chunksize(p);
1271 mchunkptr next = chunk_plus_offset(p, psize);
1272 if (!pinuse(p)) {
1273 size_t prevsize = p->prev_foot;
1274 if ((prevsize & IS_DIRECT_BIT) != 0) {
1275 prevsize &= ~IS_DIRECT_BIT;
1276 psize += prevsize + DIRECT_FOOT_PAD;
1277 CALL_MUNMAP((char *)p - prevsize, psize);
1278 return NULL;
1279 } else {
1280 mchunkptr prev = chunk_minus_offset(p, prevsize);
1281 psize += prevsize;
1282 p = prev;
1283 /* consolidate backward */
1284 if (p != fm->dv) {
1285 unlink_chunk(fm, p, prevsize);
1286 } else if ((next->head & INUSE_BITS) == INUSE_BITS) {
1287 fm->dvsize = psize;
1288 set_free_with_pinuse(p, psize, next);
1289 return NULL;
1293 if (!cinuse(next)) { /* consolidate forward */
1294 if (next == fm->top) {
1295 size_t tsize = fm->topsize += psize;
1296 fm->top = p;
1297 p->head = tsize | PINUSE_BIT;
1298 if (p == fm->dv) {
1299 fm->dv = 0;
1300 fm->dvsize = 0;
1302 if (tsize > fm->trim_check)
1303 alloc_trim(fm, 0);
1304 return NULL;
1305 } else if (next == fm->dv) {
1306 size_t dsize = fm->dvsize += psize;
1307 fm->dv = p;
1308 set_size_and_pinuse_of_free_chunk(p, dsize);
1309 return NULL;
1310 } else {
1311 size_t nsize = chunksize(next);
1312 psize += nsize;
1313 unlink_chunk(fm, next, nsize);
1314 set_size_and_pinuse_of_free_chunk(p, psize);
1315 if (p == fm->dv) {
1316 fm->dvsize = psize;
1317 return NULL;
1320 } else {
1321 set_free_with_pinuse(p, psize, next);
1324 if (is_small(psize)) {
1325 insert_small_chunk(fm, p, psize);
1326 } else {
1327 tchunkptr tp = (tchunkptr)p;
1328 insert_large_chunk(fm, tp, psize);
1329 if (--fm->release_checks == 0)
1330 release_unused_segments(fm);
1333 return NULL;
1336 static LJ_NOINLINE void *lj_alloc_realloc(void *msp, void *ptr, size_t nsize)
1338 if (nsize >= MAX_REQUEST) {
1339 return NULL;
1340 } else {
1341 mstate m = (mstate)msp;
1342 mchunkptr oldp = mem2chunk(ptr);
1343 size_t oldsize = chunksize(oldp);
1344 mchunkptr next = chunk_plus_offset(oldp, oldsize);
1345 mchunkptr newp = 0;
1346 size_t nb = request2size(nsize);
1348 /* Try to either shrink or extend into top. Else malloc-copy-free */
1349 if (is_direct(oldp)) {
1350 newp = direct_resize(oldp, nb); /* this may return NULL. */
1351 } else if (oldsize >= nb) { /* already big enough */
1352 size_t rsize = oldsize - nb;
1353 newp = oldp;
1354 if (rsize >= MIN_CHUNK_SIZE) {
1355 mchunkptr rem = chunk_plus_offset(newp, nb);
1356 set_inuse(m, newp, nb);
1357 set_inuse(m, rem, rsize);
1358 lj_alloc_free(m, chunk2mem(rem));
1360 } else if (next == m->top && oldsize + m->topsize > nb) {
1361 /* Expand into top */
1362 size_t newsize = oldsize + m->topsize;
1363 size_t newtopsize = newsize - nb;
1364 mchunkptr newtop = chunk_plus_offset(oldp, nb);
1365 set_inuse(m, oldp, nb);
1366 newtop->head = newtopsize |PINUSE_BIT;
1367 m->top = newtop;
1368 m->topsize = newtopsize;
1369 newp = oldp;
1372 if (newp != 0) {
1373 return chunk2mem(newp);
1374 } else {
1375 void *newmem = lj_alloc_malloc(m, nsize);
1376 if (newmem != 0) {
1377 size_t oc = oldsize - overhead_for(oldp);
1378 memcpy(newmem, ptr, oc < nsize ? oc : nsize);
1379 lj_alloc_free(m, ptr);
1381 return newmem;
1386 void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize)
1388 (void)osize;
1389 if (nsize == 0) {
1390 return lj_alloc_free(msp, ptr);
1391 } else if (ptr == NULL) {
1392 return lj_alloc_malloc(msp, nsize);
1393 } else {
1394 return lj_alloc_realloc(msp, ptr, nsize);
1398 #endif