beta-0.89.2
[luatex.git] / source / libs / cairo / cairo-src / src / cairo-polygon-reduce.c
blobea457fe4edffbd7a54109ec07fc1e870088d3ac0
1 /*
2 * Copyright © 2004 Carl Worth
3 * Copyright © 2006 Red Hat, Inc.
4 * Copyright © 2008 Chris Wilson
6 * This library is free software; you can redistribute it and/or
7 * modify it either under the terms of the GNU Lesser General Public
8 * License version 2.1 as published by the Free Software Foundation
9 * (the "LGPL") or, at your option, under the terms of the Mozilla
10 * Public License Version 1.1 (the "MPL"). If you do not alter this
11 * notice, a recipient may use your version of this file under either
12 * the MPL or the LGPL.
14 * You should have received a copy of the LGPL along with this library
15 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17 * You should have received a copy of the MPL along with this library
18 * in the file COPYING-MPL-1.1
20 * The contents of this file are subject to the Mozilla Public License
21 * Version 1.1 (the "License"); you may not use this file except in
22 * compliance with the License. You may obtain a copy of the License at
23 * http://www.mozilla.org/MPL/
25 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27 * the specific language governing rights and limitations.
29 * The Original Code is the cairo graphics library.
31 * The Initial Developer of the Original Code is Carl Worth
33 * Contributor(s):
34 * Carl D. Worth <cworth@cworth.org>
35 * Chris Wilson <chris@chris-wilson.co.uk>
38 /* Provide definitions for standalone compilation */
39 #include "cairoint.h"
41 #include "cairo-error-private.h"
42 #include "cairo-freelist-private.h"
43 #include "cairo-combsort-inline.h"
45 #define DEBUG_POLYGON 0
47 typedef cairo_point_t cairo_bo_point32_t;
49 typedef struct _cairo_bo_intersect_ordinate {
50 int32_t ordinate;
51 enum { EXACT, INEXACT } exactness;
52 } cairo_bo_intersect_ordinate_t;
54 typedef struct _cairo_bo_intersect_point {
55 cairo_bo_intersect_ordinate_t x;
56 cairo_bo_intersect_ordinate_t y;
57 } cairo_bo_intersect_point_t;
59 typedef struct _cairo_bo_edge cairo_bo_edge_t;
61 typedef struct _cairo_bo_deferred {
62 cairo_bo_edge_t *right;
63 int32_t top;
64 } cairo_bo_deferred_t;
66 struct _cairo_bo_edge {
67 cairo_edge_t edge;
68 cairo_bo_edge_t *prev;
69 cairo_bo_edge_t *next;
70 cairo_bo_deferred_t deferred;
73 /* the parent is always given by index/2 */
74 #define PQ_PARENT_INDEX(i) ((i) >> 1)
75 #define PQ_FIRST_ENTRY 1
77 /* left and right children are index * 2 and (index * 2) +1 respectively */
78 #define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
80 typedef enum {
81 CAIRO_BO_EVENT_TYPE_STOP,
82 CAIRO_BO_EVENT_TYPE_INTERSECTION,
83 CAIRO_BO_EVENT_TYPE_START
84 } cairo_bo_event_type_t;
86 typedef struct _cairo_bo_event {
87 cairo_bo_event_type_t type;
88 cairo_point_t point;
89 } cairo_bo_event_t;
91 typedef struct _cairo_bo_start_event {
92 cairo_bo_event_type_t type;
93 cairo_point_t point;
94 cairo_bo_edge_t edge;
95 } cairo_bo_start_event_t;
97 typedef struct _cairo_bo_queue_event {
98 cairo_bo_event_type_t type;
99 cairo_point_t point;
100 cairo_bo_edge_t *e1;
101 cairo_bo_edge_t *e2;
102 } cairo_bo_queue_event_t;
104 typedef struct _pqueue {
105 int size, max_size;
107 cairo_bo_event_t **elements;
108 cairo_bo_event_t *elements_embedded[1024];
109 } pqueue_t;
111 typedef struct _cairo_bo_event_queue {
112 cairo_freepool_t pool;
113 pqueue_t pqueue;
114 cairo_bo_event_t **start_events;
115 } cairo_bo_event_queue_t;
117 typedef struct _cairo_bo_sweep_line {
118 cairo_bo_edge_t *head;
119 int32_t current_y;
120 cairo_bo_edge_t *current_edge;
121 } cairo_bo_sweep_line_t;
123 static cairo_fixed_t
124 _line_compute_intersection_x_for_y (const cairo_line_t *line,
125 cairo_fixed_t y)
127 cairo_fixed_t x, dy;
129 if (y == line->p1.y)
130 return line->p1.x;
131 if (y == line->p2.y)
132 return line->p2.x;
134 x = line->p1.x;
135 dy = line->p2.y - line->p1.y;
136 if (dy != 0) {
137 x += _cairo_fixed_mul_div_floor (y - line->p1.y,
138 line->p2.x - line->p1.x,
139 dy);
142 return x;
145 static inline int
146 _cairo_bo_point32_compare (cairo_bo_point32_t const *a,
147 cairo_bo_point32_t const *b)
149 int cmp;
151 cmp = a->y - b->y;
152 if (cmp)
153 return cmp;
155 return a->x - b->x;
158 /* Compare the slope of a to the slope of b, returning 1, 0, -1 if the
159 * slope a is respectively greater than, equal to, or less than the
160 * slope of b.
162 * For each edge, consider the direction vector formed from:
164 * top -> bottom
166 * which is:
168 * (dx, dy) = (line.p2.x - line.p1.x, line.p2.y - line.p1.y)
170 * We then define the slope of each edge as dx/dy, (which is the
171 * inverse of the slope typically used in math instruction). We never
172 * compute a slope directly as the value approaches infinity, but we
173 * can derive a slope comparison without division as follows, (where
174 * the ? represents our compare operator).
176 * 1. slope(a) ? slope(b)
177 * 2. adx/ady ? bdx/bdy
178 * 3. (adx * bdy) ? (bdx * ady)
180 * Note that from step 2 to step 3 there is no change needed in the
181 * sign of the result since both ady and bdy are guaranteed to be
182 * greater than or equal to 0.
184 * When using this slope comparison to sort edges, some care is needed
185 * when interpreting the results. Since the slope compare operates on
186 * distance vectors from top to bottom it gives a correct left to
187 * right sort for edges that have a common top point, (such as two
188 * edges with start events at the same location). On the other hand,
189 * the sense of the result will be exactly reversed for two edges that
190 * have a common stop point.
192 static inline int
193 _slope_compare (const cairo_bo_edge_t *a,
194 const cairo_bo_edge_t *b)
196 /* XXX: We're assuming here that dx and dy will still fit in 32
197 * bits. That's not true in general as there could be overflow. We
198 * should prevent that before the tessellation algorithm
199 * begins.
201 int32_t adx = a->edge.line.p2.x - a->edge.line.p1.x;
202 int32_t bdx = b->edge.line.p2.x - b->edge.line.p1.x;
204 /* Since the dy's are all positive by construction we can fast
205 * path several common cases.
208 /* First check for vertical lines. */
209 if (adx == 0)
210 return -bdx;
211 if (bdx == 0)
212 return adx;
214 /* Then where the two edges point in different directions wrt x. */
215 if ((adx ^ bdx) < 0)
216 return adx;
218 /* Finally we actually need to do the general comparison. */
220 int32_t ady = a->edge.line.p2.y - a->edge.line.p1.y;
221 int32_t bdy = b->edge.line.p2.y - b->edge.line.p1.y;
222 cairo_int64_t adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
223 cairo_int64_t bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
225 return _cairo_int64_cmp (adx_bdy, bdx_ady);
230 * We need to compare the x-coordinates of a pair of lines for a particular y,
231 * without loss of precision.
233 * The x-coordinate along an edge for a given y is:
234 * X = A_x + (Y - A_y) * A_dx / A_dy
236 * So the inequality we wish to test is:
237 * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
238 * where ∘ is our inequality operator.
240 * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
241 * all positive, so we can rearrange it thus without causing a sign change:
242 * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
243 * - (Y - A_y) * A_dx * B_dy
245 * Given the assumption that all the deltas fit within 32 bits, we can compute
246 * this comparison directly using 128 bit arithmetic. For certain, but common,
247 * input we can reduce this down to a single 32 bit compare by inspecting the
248 * deltas.
250 * (And put the burden of the work on developing fast 128 bit ops, which are
251 * required throughout the tessellator.)
253 * See the similar discussion for _slope_compare().
255 static int
256 edges_compare_x_for_y_general (const cairo_bo_edge_t *a,
257 const cairo_bo_edge_t *b,
258 int32_t y)
260 /* XXX: We're assuming here that dx and dy will still fit in 32
261 * bits. That's not true in general as there could be overflow. We
262 * should prevent that before the tessellation algorithm
263 * begins.
265 int32_t dx;
266 int32_t adx, ady;
267 int32_t bdx, bdy;
268 enum {
269 HAVE_NONE = 0x0,
270 HAVE_DX = 0x1,
271 HAVE_ADX = 0x2,
272 HAVE_DX_ADX = HAVE_DX | HAVE_ADX,
273 HAVE_BDX = 0x4,
274 HAVE_DX_BDX = HAVE_DX | HAVE_BDX,
275 HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
276 HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX
277 } have_dx_adx_bdx = HAVE_ALL;
279 /* don't bother solving for abscissa if the edges' bounding boxes
280 * can be used to order them. */
282 int32_t amin, amax;
283 int32_t bmin, bmax;
284 if (a->edge.line.p1.x < a->edge.line.p2.x) {
285 amin = a->edge.line.p1.x;
286 amax = a->edge.line.p2.x;
287 } else {
288 amin = a->edge.line.p2.x;
289 amax = a->edge.line.p1.x;
291 if (b->edge.line.p1.x < b->edge.line.p2.x) {
292 bmin = b->edge.line.p1.x;
293 bmax = b->edge.line.p2.x;
294 } else {
295 bmin = b->edge.line.p2.x;
296 bmax = b->edge.line.p1.x;
298 if (amax < bmin) return -1;
299 if (amin > bmax) return +1;
302 ady = a->edge.line.p2.y - a->edge.line.p1.y;
303 adx = a->edge.line.p2.x - a->edge.line.p1.x;
304 if (adx == 0)
305 have_dx_adx_bdx &= ~HAVE_ADX;
307 bdy = b->edge.line.p2.y - b->edge.line.p1.y;
308 bdx = b->edge.line.p2.x - b->edge.line.p1.x;
309 if (bdx == 0)
310 have_dx_adx_bdx &= ~HAVE_BDX;
312 dx = a->edge.line.p1.x - b->edge.line.p1.x;
313 if (dx == 0)
314 have_dx_adx_bdx &= ~HAVE_DX;
316 #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
317 #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->edge.line.p1.y)
318 #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->edge.line.p1.y)
319 switch (have_dx_adx_bdx) {
320 default:
321 case HAVE_NONE:
322 return 0;
323 case HAVE_DX:
324 /* A_dy * B_dy * (A_x - B_x) ∘ 0 */
325 return dx; /* ady * bdy is positive definite */
326 case HAVE_ADX:
327 /* 0 ∘ - (Y - A_y) * A_dx * B_dy */
328 return adx; /* bdy * (y - a->top.y) is positive definite */
329 case HAVE_BDX:
330 /* 0 ∘ (Y - B_y) * B_dx * A_dy */
331 return -bdx; /* ady * (y - b->top.y) is positive definite */
332 case HAVE_ADX_BDX:
333 /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
334 if ((adx ^ bdx) < 0) {
335 return adx;
336 } else if (a->edge.line.p1.y == b->edge.line.p1.y) { /* common origin */
337 cairo_int64_t adx_bdy, bdx_ady;
339 /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
341 adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
342 bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
344 return _cairo_int64_cmp (adx_bdy, bdx_ady);
345 } else
346 return _cairo_int128_cmp (A, B);
347 case HAVE_DX_ADX:
348 /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
349 if ((-adx ^ dx) < 0) {
350 return dx;
351 } else {
352 cairo_int64_t ady_dx, dy_adx;
354 ady_dx = _cairo_int32x32_64_mul (ady, dx);
355 dy_adx = _cairo_int32x32_64_mul (a->edge.line.p1.y - y, adx);
357 return _cairo_int64_cmp (ady_dx, dy_adx);
359 case HAVE_DX_BDX:
360 /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
361 if ((bdx ^ dx) < 0) {
362 return dx;
363 } else {
364 cairo_int64_t bdy_dx, dy_bdx;
366 bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
367 dy_bdx = _cairo_int32x32_64_mul (y - b->edge.line.p1.y, bdx);
369 return _cairo_int64_cmp (bdy_dx, dy_bdx);
371 case HAVE_ALL:
372 /* XXX try comparing (a->edge.line.p2.x - b->edge.line.p2.x) et al */
373 return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
375 #undef B
376 #undef A
377 #undef L
381 * We need to compare the x-coordinate of a line for a particular y wrt to a
382 * given x, without loss of precision.
384 * The x-coordinate along an edge for a given y is:
385 * X = A_x + (Y - A_y) * A_dx / A_dy
387 * So the inequality we wish to test is:
388 * A_x + (Y - A_y) * A_dx / A_dy ∘ X
389 * where ∘ is our inequality operator.
391 * By construction, we know that A_dy (and (Y - A_y)) are
392 * all positive, so we can rearrange it thus without causing a sign change:
393 * (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
395 * Given the assumption that all the deltas fit within 32 bits, we can compute
396 * this comparison directly using 64 bit arithmetic.
398 * See the similar discussion for _slope_compare() and
399 * edges_compare_x_for_y_general().
401 static int
402 edge_compare_for_y_against_x (const cairo_bo_edge_t *a,
403 int32_t y,
404 int32_t x)
406 int32_t adx, ady;
407 int32_t dx, dy;
408 cairo_int64_t L, R;
410 if (x < a->edge.line.p1.x && x < a->edge.line.p2.x)
411 return 1;
412 if (x > a->edge.line.p1.x && x > a->edge.line.p2.x)
413 return -1;
415 adx = a->edge.line.p2.x - a->edge.line.p1.x;
416 dx = x - a->edge.line.p1.x;
418 if (adx == 0)
419 return -dx;
420 if (dx == 0 || (adx ^ dx) < 0)
421 return adx;
423 dy = y - a->edge.line.p1.y;
424 ady = a->edge.line.p2.y - a->edge.line.p1.y;
426 L = _cairo_int32x32_64_mul (dy, adx);
427 R = _cairo_int32x32_64_mul (dx, ady);
429 return _cairo_int64_cmp (L, R);
432 static int
433 edges_compare_x_for_y (const cairo_bo_edge_t *a,
434 const cairo_bo_edge_t *b,
435 int32_t y)
437 /* If the sweep-line is currently on an end-point of a line,
438 * then we know its precise x value (and considering that we often need to
439 * compare events at end-points, this happens frequently enough to warrant
440 * special casing).
442 enum {
443 HAVE_NEITHER = 0x0,
444 HAVE_AX = 0x1,
445 HAVE_BX = 0x2,
446 HAVE_BOTH = HAVE_AX | HAVE_BX
447 } have_ax_bx = HAVE_BOTH;
448 int32_t ax, bx;
450 if (y == a->edge.line.p1.y)
451 ax = a->edge.line.p1.x;
452 else if (y == a->edge.line.p2.y)
453 ax = a->edge.line.p2.x;
454 else
455 have_ax_bx &= ~HAVE_AX;
457 if (y == b->edge.line.p1.y)
458 bx = b->edge.line.p1.x;
459 else if (y == b->edge.line.p2.y)
460 bx = b->edge.line.p2.x;
461 else
462 have_ax_bx &= ~HAVE_BX;
464 switch (have_ax_bx) {
465 default:
466 case HAVE_NEITHER:
467 return edges_compare_x_for_y_general (a, b, y);
468 case HAVE_AX:
469 return -edge_compare_for_y_against_x (b, y, ax);
470 case HAVE_BX:
471 return edge_compare_for_y_against_x (a, y, bx);
472 case HAVE_BOTH:
473 return ax - bx;
477 static inline int
478 _line_equal (const cairo_line_t *a, const cairo_line_t *b)
480 return (a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
481 a->p2.x == b->p2.x && a->p2.y == b->p2.y);
484 static int
485 _cairo_bo_sweep_line_compare_edges (cairo_bo_sweep_line_t *sweep_line,
486 const cairo_bo_edge_t *a,
487 const cairo_bo_edge_t *b)
489 int cmp;
491 /* compare the edges if not identical */
492 if (! _line_equal (&a->edge.line, &b->edge.line)) {
493 cmp = edges_compare_x_for_y (a, b, sweep_line->current_y);
494 if (cmp)
495 return cmp;
497 /* The two edges intersect exactly at y, so fall back on slope
498 * comparison. We know that this compare_edges function will be
499 * called only when starting a new edge, (not when stopping an
500 * edge), so we don't have to worry about conditionally inverting
501 * the sense of _slope_compare. */
502 cmp = _slope_compare (a, b);
503 if (cmp)
504 return cmp;
507 /* We've got two collinear edges now. */
508 return b->edge.bottom - a->edge.bottom;
511 static inline cairo_int64_t
512 det32_64 (int32_t a, int32_t b,
513 int32_t c, int32_t d)
515 /* det = a * d - b * c */
516 return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
517 _cairo_int32x32_64_mul (b, c));
520 static inline cairo_int128_t
521 det64x32_128 (cairo_int64_t a, int32_t b,
522 cairo_int64_t c, int32_t d)
524 /* det = a * d - b * c */
525 return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
526 _cairo_int64x32_128_mul (c, b));
529 /* Compute the intersection of two lines as defined by two edges. The
530 * result is provided as a coordinate pair of 128-bit integers.
532 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
533 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
535 static cairo_bool_t
536 intersect_lines (cairo_bo_edge_t *a,
537 cairo_bo_edge_t *b,
538 cairo_bo_intersect_point_t *intersection)
540 cairo_int64_t a_det, b_det;
542 /* XXX: We're assuming here that dx and dy will still fit in 32
543 * bits. That's not true in general as there could be overflow. We
544 * should prevent that before the tessellation algorithm begins.
545 * What we're doing to mitigate this is to perform clamping in
546 * cairo_bo_tessellate_polygon().
548 int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
549 int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
551 int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
552 int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
554 cairo_int64_t den_det;
555 cairo_int64_t R;
556 cairo_quorem64_t qr;
558 den_det = det32_64 (dx1, dy1, dx2, dy2);
560 /* Q: Can we determine that the lines do not intersect (within range)
561 * much more cheaply than computing the intersection point i.e. by
562 * avoiding the division?
564 * X = ax + t * adx = bx + s * bdx;
565 * Y = ay + t * ady = by + s * bdy;
566 * ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
567 * => t * L = R
569 * Therefore we can reject any intersection (under the criteria for
570 * valid intersection events) if:
571 * L^R < 0 => t < 0, or
572 * L<R => t > 1
574 * (where top/bottom must at least extend to the line endpoints).
576 * A similar substitution can be performed for s, yielding:
577 * s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
579 R = det32_64 (dx2, dy2,
580 b->edge.line.p1.x - a->edge.line.p1.x,
581 b->edge.line.p1.y - a->edge.line.p1.y);
582 if (_cairo_int64_negative (den_det)) {
583 if (_cairo_int64_ge (den_det, R))
584 return FALSE;
585 } else {
586 if (_cairo_int64_le (den_det, R))
587 return FALSE;
590 R = det32_64 (dy1, dx1,
591 a->edge.line.p1.y - b->edge.line.p1.y,
592 a->edge.line.p1.x - b->edge.line.p1.x);
593 if (_cairo_int64_negative (den_det)) {
594 if (_cairo_int64_ge (den_det, R))
595 return FALSE;
596 } else {
597 if (_cairo_int64_le (den_det, R))
598 return FALSE;
601 /* We now know that the two lines should intersect within range. */
603 a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
604 a->edge.line.p2.x, a->edge.line.p2.y);
605 b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
606 b->edge.line.p2.x, b->edge.line.p2.y);
608 /* x = det (a_det, dx1, b_det, dx2) / den_det */
609 qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
610 b_det, dx2),
611 den_det);
612 if (_cairo_int64_eq (qr.rem, den_det))
613 return FALSE;
614 #if 0
615 intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
616 #else
617 intersection->x.exactness = EXACT;
618 if (! _cairo_int64_is_zero (qr.rem)) {
619 if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
620 qr.rem = _cairo_int64_negate (qr.rem);
621 qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
622 if (_cairo_int64_ge (qr.rem, den_det)) {
623 qr.quo = _cairo_int64_add (qr.quo,
624 _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
625 } else
626 intersection->x.exactness = INEXACT;
628 #endif
629 intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
631 /* y = det (a_det, dy1, b_det, dy2) / den_det */
632 qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
633 b_det, dy2),
634 den_det);
635 if (_cairo_int64_eq (qr.rem, den_det))
636 return FALSE;
637 #if 0
638 intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
639 #else
640 intersection->y.exactness = EXACT;
641 if (! _cairo_int64_is_zero (qr.rem)) {
642 if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
643 qr.rem = _cairo_int64_negate (qr.rem);
644 qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
645 if (_cairo_int64_ge (qr.rem, den_det)) {
646 qr.quo = _cairo_int64_add (qr.quo,
647 _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
648 } else
649 intersection->y.exactness = INEXACT;
651 #endif
652 intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
654 return TRUE;
657 static int
658 _cairo_bo_intersect_ordinate_32_compare (cairo_bo_intersect_ordinate_t a,
659 int32_t b)
661 /* First compare the quotient */
662 if (a.ordinate > b)
663 return +1;
664 if (a.ordinate < b)
665 return -1;
666 /* With quotient identical, if remainder is 0 then compare equal */
667 /* Otherwise, the non-zero remainder makes a > b */
668 return INEXACT == a.exactness;
671 /* Does the given edge contain the given point. The point must already
672 * be known to be contained within the line determined by the edge,
673 * (most likely the point results from an intersection of this edge
674 * with another).
676 * If we had exact arithmetic, then this function would simply be a
677 * matter of examining whether the y value of the point lies within
678 * the range of y values of the edge. But since intersection points
679 * are not exact due to being rounded to the nearest integer within
680 * the available precision, we must also examine the x value of the
681 * point.
683 * The definition of "contains" here is that the given intersection
684 * point will be seen by the sweep line after the start event for the
685 * given edge and before the stop event for the edge. See the comments
686 * in the implementation for more details.
688 static cairo_bool_t
689 _cairo_bo_edge_contains_intersect_point (cairo_bo_edge_t *edge,
690 cairo_bo_intersect_point_t *point)
692 int cmp_top, cmp_bottom;
694 /* XXX: When running the actual algorithm, we don't actually need to
695 * compare against edge->top at all here, since any intersection above
696 * top is eliminated early via a slope comparison. We're leaving these
697 * here for now only for the sake of the quadratic-time intersection
698 * finder which needs them.
701 cmp_top = _cairo_bo_intersect_ordinate_32_compare (point->y,
702 edge->edge.top);
703 cmp_bottom = _cairo_bo_intersect_ordinate_32_compare (point->y,
704 edge->edge.bottom);
706 if (cmp_top < 0 || cmp_bottom > 0)
708 return FALSE;
711 if (cmp_top > 0 && cmp_bottom < 0)
713 return TRUE;
716 /* At this stage, the point lies on the same y value as either
717 * edge->top or edge->bottom, so we have to examine the x value in
718 * order to properly determine containment. */
720 /* If the y value of the point is the same as the y value of the
721 * top of the edge, then the x value of the point must be greater
722 * to be considered as inside the edge. Similarly, if the y value
723 * of the point is the same as the y value of the bottom of the
724 * edge, then the x value of the point must be less to be
725 * considered as inside. */
727 if (cmp_top == 0) {
728 cairo_fixed_t top_x;
730 top_x = _line_compute_intersection_x_for_y (&edge->edge.line,
731 edge->edge.top);
732 return _cairo_bo_intersect_ordinate_32_compare (point->x, top_x) > 0;
733 } else { /* cmp_bottom == 0 */
734 cairo_fixed_t bot_x;
736 bot_x = _line_compute_intersection_x_for_y (&edge->edge.line,
737 edge->edge.bottom);
738 return _cairo_bo_intersect_ordinate_32_compare (point->x, bot_x) < 0;
742 /* Compute the intersection of two edges. The result is provided as a
743 * coordinate pair of 128-bit integers.
745 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection
746 * that is within both edges, %CAIRO_BO_STATUS_NO_INTERSECTION if the
747 * intersection of the lines defined by the edges occurs outside of
748 * one or both edges, and %CAIRO_BO_STATUS_PARALLEL if the two edges
749 * are exactly parallel.
751 * Note that when determining if a candidate intersection is "inside"
752 * an edge, we consider both the infinitesimal shortening and the
753 * infinitesimal tilt rules described by John Hobby. Specifically, if
754 * the intersection is exactly the same as an edge point, it is
755 * effectively outside (no intersection is returned). Also, if the
756 * intersection point has the same
758 static cairo_bool_t
759 _cairo_bo_edge_intersect (cairo_bo_edge_t *a,
760 cairo_bo_edge_t *b,
761 cairo_bo_point32_t *intersection)
763 cairo_bo_intersect_point_t quorem;
765 if (! intersect_lines (a, b, &quorem))
766 return FALSE;
768 if (! _cairo_bo_edge_contains_intersect_point (a, &quorem))
769 return FALSE;
771 if (! _cairo_bo_edge_contains_intersect_point (b, &quorem))
772 return FALSE;
774 /* Now that we've correctly compared the intersection point and
775 * determined that it lies within the edge, then we know that we
776 * no longer need any more bits of storage for the intersection
777 * than we do for our edge coordinates. We also no longer need the
778 * remainder from the division. */
779 intersection->x = quorem.x.ordinate;
780 intersection->y = quorem.y.ordinate;
782 return TRUE;
785 static inline int
786 cairo_bo_event_compare (const cairo_bo_event_t *a,
787 const cairo_bo_event_t *b)
789 int cmp;
791 cmp = _cairo_bo_point32_compare (&a->point, &b->point);
792 if (cmp)
793 return cmp;
795 cmp = a->type - b->type;
796 if (cmp)
797 return cmp;
799 return a - b;
802 static inline void
803 _pqueue_init (pqueue_t *pq)
805 pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
806 pq->size = 0;
808 pq->elements = pq->elements_embedded;
811 static inline void
812 _pqueue_fini (pqueue_t *pq)
814 if (pq->elements != pq->elements_embedded)
815 free (pq->elements);
818 static cairo_status_t
819 _pqueue_grow (pqueue_t *pq)
821 cairo_bo_event_t **new_elements;
822 pq->max_size *= 2;
824 if (pq->elements == pq->elements_embedded) {
825 new_elements = _cairo_malloc_ab (pq->max_size,
826 sizeof (cairo_bo_event_t *));
827 if (unlikely (new_elements == NULL))
828 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
830 memcpy (new_elements, pq->elements_embedded,
831 sizeof (pq->elements_embedded));
832 } else {
833 new_elements = _cairo_realloc_ab (pq->elements,
834 pq->max_size,
835 sizeof (cairo_bo_event_t *));
836 if (unlikely (new_elements == NULL))
837 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
840 pq->elements = new_elements;
841 return CAIRO_STATUS_SUCCESS;
844 static inline cairo_status_t
845 _pqueue_push (pqueue_t *pq, cairo_bo_event_t *event)
847 cairo_bo_event_t **elements;
848 int i, parent;
850 if (unlikely (pq->size + 1 == pq->max_size)) {
851 cairo_status_t status;
853 status = _pqueue_grow (pq);
854 if (unlikely (status))
855 return status;
858 elements = pq->elements;
860 for (i = ++pq->size;
861 i != PQ_FIRST_ENTRY &&
862 cairo_bo_event_compare (event,
863 elements[parent = PQ_PARENT_INDEX (i)]) < 0;
864 i = parent)
866 elements[i] = elements[parent];
869 elements[i] = event;
871 return CAIRO_STATUS_SUCCESS;
874 static inline void
875 _pqueue_pop (pqueue_t *pq)
877 cairo_bo_event_t **elements = pq->elements;
878 cairo_bo_event_t *tail;
879 int child, i;
881 tail = elements[pq->size--];
882 if (pq->size == 0) {
883 elements[PQ_FIRST_ENTRY] = NULL;
884 return;
887 for (i = PQ_FIRST_ENTRY;
888 (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
889 i = child)
891 if (child != pq->size &&
892 cairo_bo_event_compare (elements[child+1],
893 elements[child]) < 0)
895 child++;
898 if (cairo_bo_event_compare (elements[child], tail) >= 0)
899 break;
901 elements[i] = elements[child];
903 elements[i] = tail;
906 static inline cairo_status_t
907 _cairo_bo_event_queue_insert (cairo_bo_event_queue_t *queue,
908 cairo_bo_event_type_t type,
909 cairo_bo_edge_t *e1,
910 cairo_bo_edge_t *e2,
911 const cairo_point_t *point)
913 cairo_bo_queue_event_t *event;
915 event = _cairo_freepool_alloc (&queue->pool);
916 if (unlikely (event == NULL))
917 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
919 event->type = type;
920 event->e1 = e1;
921 event->e2 = e2;
922 event->point = *point;
924 return _pqueue_push (&queue->pqueue, (cairo_bo_event_t *) event);
927 static void
928 _cairo_bo_event_queue_delete (cairo_bo_event_queue_t *queue,
929 cairo_bo_event_t *event)
931 _cairo_freepool_free (&queue->pool, event);
934 static cairo_bo_event_t *
935 _cairo_bo_event_dequeue (cairo_bo_event_queue_t *event_queue)
937 cairo_bo_event_t *event, *cmp;
939 event = event_queue->pqueue.elements[PQ_FIRST_ENTRY];
940 cmp = *event_queue->start_events;
941 if (event == NULL ||
942 (cmp != NULL && cairo_bo_event_compare (cmp, event) < 0))
944 event = cmp;
945 event_queue->start_events++;
947 else
949 _pqueue_pop (&event_queue->pqueue);
952 return event;
955 CAIRO_COMBSORT_DECLARE (_cairo_bo_event_queue_sort,
956 cairo_bo_event_t *,
957 cairo_bo_event_compare)
959 static void
960 _cairo_bo_event_queue_init (cairo_bo_event_queue_t *event_queue,
961 cairo_bo_event_t **start_events,
962 int num_events)
964 _cairo_bo_event_queue_sort (start_events, num_events);
965 start_events[num_events] = NULL;
967 event_queue->start_events = start_events;
969 _cairo_freepool_init (&event_queue->pool,
970 sizeof (cairo_bo_queue_event_t));
971 _pqueue_init (&event_queue->pqueue);
972 event_queue->pqueue.elements[PQ_FIRST_ENTRY] = NULL;
975 static cairo_status_t
976 _cairo_bo_event_queue_insert_stop (cairo_bo_event_queue_t *event_queue,
977 cairo_bo_edge_t *edge)
979 cairo_bo_point32_t point;
981 point.y = edge->edge.bottom;
982 point.x = _line_compute_intersection_x_for_y (&edge->edge.line,
983 point.y);
984 return _cairo_bo_event_queue_insert (event_queue,
985 CAIRO_BO_EVENT_TYPE_STOP,
986 edge, NULL,
987 &point);
990 static void
991 _cairo_bo_event_queue_fini (cairo_bo_event_queue_t *event_queue)
993 _pqueue_fini (&event_queue->pqueue);
994 _cairo_freepool_fini (&event_queue->pool);
997 static inline cairo_status_t
998 _cairo_bo_event_queue_insert_if_intersect_below_current_y (cairo_bo_event_queue_t *event_queue,
999 cairo_bo_edge_t *left,
1000 cairo_bo_edge_t *right)
1002 cairo_bo_point32_t intersection;
1004 if (_line_equal (&left->edge.line, &right->edge.line))
1005 return CAIRO_STATUS_SUCCESS;
1007 /* The names "left" and "right" here are correct descriptions of
1008 * the order of the two edges within the active edge list. So if a
1009 * slope comparison also puts left less than right, then we know
1010 * that the intersection of these two segments has already
1011 * occurred before the current sweep line position. */
1012 if (_slope_compare (left, right) <= 0)
1013 return CAIRO_STATUS_SUCCESS;
1015 if (! _cairo_bo_edge_intersect (left, right, &intersection))
1016 return CAIRO_STATUS_SUCCESS;
1018 return _cairo_bo_event_queue_insert (event_queue,
1019 CAIRO_BO_EVENT_TYPE_INTERSECTION,
1020 left, right,
1021 &intersection);
1024 static void
1025 _cairo_bo_sweep_line_init (cairo_bo_sweep_line_t *sweep_line)
1027 sweep_line->head = NULL;
1028 sweep_line->current_y = INT32_MIN;
1029 sweep_line->current_edge = NULL;
1032 static cairo_status_t
1033 _cairo_bo_sweep_line_insert (cairo_bo_sweep_line_t *sweep_line,
1034 cairo_bo_edge_t *edge)
1036 if (sweep_line->current_edge != NULL) {
1037 cairo_bo_edge_t *prev, *next;
1038 int cmp;
1040 cmp = _cairo_bo_sweep_line_compare_edges (sweep_line,
1041 sweep_line->current_edge,
1042 edge);
1043 if (cmp < 0) {
1044 prev = sweep_line->current_edge;
1045 next = prev->next;
1046 while (next != NULL &&
1047 _cairo_bo_sweep_line_compare_edges (sweep_line,
1048 next, edge) < 0)
1050 prev = next, next = prev->next;
1053 prev->next = edge;
1054 edge->prev = prev;
1055 edge->next = next;
1056 if (next != NULL)
1057 next->prev = edge;
1058 } else if (cmp > 0) {
1059 next = sweep_line->current_edge;
1060 prev = next->prev;
1061 while (prev != NULL &&
1062 _cairo_bo_sweep_line_compare_edges (sweep_line,
1063 prev, edge) > 0)
1065 next = prev, prev = next->prev;
1068 next->prev = edge;
1069 edge->next = next;
1070 edge->prev = prev;
1071 if (prev != NULL)
1072 prev->next = edge;
1073 else
1074 sweep_line->head = edge;
1075 } else {
1076 prev = sweep_line->current_edge;
1077 edge->prev = prev;
1078 edge->next = prev->next;
1079 if (prev->next != NULL)
1080 prev->next->prev = edge;
1081 prev->next = edge;
1083 } else {
1084 sweep_line->head = edge;
1087 sweep_line->current_edge = edge;
1089 return CAIRO_STATUS_SUCCESS;
1092 static void
1093 _cairo_bo_sweep_line_delete (cairo_bo_sweep_line_t *sweep_line,
1094 cairo_bo_edge_t *edge)
1096 if (edge->prev != NULL)
1097 edge->prev->next = edge->next;
1098 else
1099 sweep_line->head = edge->next;
1101 if (edge->next != NULL)
1102 edge->next->prev = edge->prev;
1104 if (sweep_line->current_edge == edge)
1105 sweep_line->current_edge = edge->prev ? edge->prev : edge->next;
1108 static void
1109 _cairo_bo_sweep_line_swap (cairo_bo_sweep_line_t *sweep_line,
1110 cairo_bo_edge_t *left,
1111 cairo_bo_edge_t *right)
1113 if (left->prev != NULL)
1114 left->prev->next = right;
1115 else
1116 sweep_line->head = right;
1118 if (right->next != NULL)
1119 right->next->prev = left;
1121 left->next = right->next;
1122 right->next = left;
1124 right->prev = left->prev;
1125 left->prev = right;
1128 static inline cairo_bool_t
1129 edges_colinear (const cairo_bo_edge_t *a, const cairo_bo_edge_t *b)
1131 if (_line_equal (&a->edge.line, &b->edge.line))
1132 return TRUE;
1134 if (_slope_compare (a, b))
1135 return FALSE;
1137 /* The choice of y is not truly arbitrary since we must guarantee that it
1138 * is greater than the start of either line.
1140 if (a->edge.line.p1.y == b->edge.line.p1.y) {
1141 return a->edge.line.p1.x == b->edge.line.p1.x;
1142 } else if (a->edge.line.p2.y == b->edge.line.p2.y) {
1143 return a->edge.line.p2.x == b->edge.line.p2.x;
1144 } else if (a->edge.line.p1.y < b->edge.line.p1.y) {
1145 return edge_compare_for_y_against_x (b,
1146 a->edge.line.p1.y,
1147 a->edge.line.p1.x) == 0;
1148 } else {
1149 return edge_compare_for_y_against_x (a,
1150 b->edge.line.p1.y,
1151 b->edge.line.p1.x) == 0;
1155 static void
1156 _cairo_bo_edge_end (cairo_bo_edge_t *left,
1157 int32_t bot,
1158 cairo_polygon_t *polygon)
1160 cairo_bo_deferred_t *d = &left->deferred;
1162 if (likely (d->top < bot)) {
1163 _cairo_polygon_add_line (polygon,
1164 &left->edge.line,
1165 d->top, bot,
1167 _cairo_polygon_add_line (polygon,
1168 &d->right->edge.line,
1169 d->top, bot,
1170 -1);
1173 d->right = NULL;
1177 static inline void
1178 _cairo_bo_edge_start_or_continue (cairo_bo_edge_t *left,
1179 cairo_bo_edge_t *right,
1180 int top,
1181 cairo_polygon_t *polygon)
1183 if (left->deferred.right == right)
1184 return;
1186 if (left->deferred.right != NULL) {
1187 if (right != NULL && edges_colinear (left->deferred.right, right))
1189 /* continuation on right, so just swap edges */
1190 left->deferred.right = right;
1191 return;
1194 _cairo_bo_edge_end (left, top, polygon);
1197 if (right != NULL && ! edges_colinear (left, right)) {
1198 left->deferred.top = top;
1199 left->deferred.right = right;
1203 static inline void
1204 _active_edges_to_polygon (cairo_bo_edge_t *left,
1205 int32_t top,
1206 cairo_fill_rule_t fill_rule,
1207 cairo_polygon_t *polygon)
1209 cairo_bo_edge_t *right;
1210 unsigned int mask;
1212 if (fill_rule == CAIRO_FILL_RULE_WINDING)
1213 mask = ~0;
1214 else
1215 mask = 1;
1217 while (left != NULL) {
1218 int in_out = left->edge.dir;
1220 right = left->next;
1221 if (left->deferred.right == NULL) {
1222 while (right != NULL && right->deferred.right == NULL)
1223 right = right->next;
1225 if (right != NULL && edges_colinear (left, right)) {
1226 /* continuation on left */
1227 left->deferred = right->deferred;
1228 right->deferred.right = NULL;
1232 right = left->next;
1233 while (right != NULL) {
1234 if (right->deferred.right != NULL)
1235 _cairo_bo_edge_end (right, top, polygon);
1237 in_out += right->edge.dir;
1238 if ((in_out & mask) == 0) {
1239 /* skip co-linear edges */
1240 if (right->next == NULL || !edges_colinear (right, right->next))
1241 break;
1244 right = right->next;
1247 _cairo_bo_edge_start_or_continue (left, right, top, polygon);
1249 left = right;
1250 if (left != NULL)
1251 left = left->next;
1256 static cairo_status_t
1257 _cairo_bentley_ottmann_tessellate_bo_edges (cairo_bo_event_t **start_events,
1258 int num_events,
1259 cairo_fill_rule_t fill_rule,
1260 cairo_polygon_t *polygon)
1262 cairo_status_t status = CAIRO_STATUS_SUCCESS; /* silence compiler */
1263 cairo_bo_event_queue_t event_queue;
1264 cairo_bo_sweep_line_t sweep_line;
1265 cairo_bo_event_t *event;
1266 cairo_bo_edge_t *left, *right;
1267 cairo_bo_edge_t *e1, *e2;
1269 _cairo_bo_event_queue_init (&event_queue, start_events, num_events);
1270 _cairo_bo_sweep_line_init (&sweep_line);
1272 while ((event = _cairo_bo_event_dequeue (&event_queue))) {
1273 if (event->point.y != sweep_line.current_y) {
1274 _active_edges_to_polygon (sweep_line.head,
1275 sweep_line.current_y,
1276 fill_rule, polygon);
1278 sweep_line.current_y = event->point.y;
1281 switch (event->type) {
1282 case CAIRO_BO_EVENT_TYPE_START:
1283 e1 = &((cairo_bo_start_event_t *) event)->edge;
1285 status = _cairo_bo_sweep_line_insert (&sweep_line, e1);
1286 if (unlikely (status))
1287 goto unwind;
1289 status = _cairo_bo_event_queue_insert_stop (&event_queue, e1);
1290 if (unlikely (status))
1291 goto unwind;
1293 left = e1->prev;
1294 right = e1->next;
1296 if (left != NULL) {
1297 status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e1);
1298 if (unlikely (status))
1299 goto unwind;
1302 if (right != NULL) {
1303 status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1304 if (unlikely (status))
1305 goto unwind;
1308 break;
1310 case CAIRO_BO_EVENT_TYPE_STOP:
1311 e1 = ((cairo_bo_queue_event_t *) event)->e1;
1312 _cairo_bo_event_queue_delete (&event_queue, event);
1314 left = e1->prev;
1315 right = e1->next;
1317 _cairo_bo_sweep_line_delete (&sweep_line, e1);
1319 if (e1->deferred.right != NULL)
1320 _cairo_bo_edge_end (e1, e1->edge.bottom, polygon);
1322 if (left != NULL && right != NULL) {
1323 status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, right);
1324 if (unlikely (status))
1325 goto unwind;
1328 break;
1330 case CAIRO_BO_EVENT_TYPE_INTERSECTION:
1331 e1 = ((cairo_bo_queue_event_t *) event)->e1;
1332 e2 = ((cairo_bo_queue_event_t *) event)->e2;
1333 _cairo_bo_event_queue_delete (&event_queue, event);
1335 /* skip this intersection if its edges are not adjacent */
1336 if (e2 != e1->next)
1337 break;
1339 left = e1->prev;
1340 right = e2->next;
1342 _cairo_bo_sweep_line_swap (&sweep_line, e1, e2);
1344 /* after the swap e2 is left of e1 */
1346 if (left != NULL) {
1347 status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, left, e2);
1348 if (unlikely (status))
1349 goto unwind;
1352 if (right != NULL) {
1353 status = _cairo_bo_event_queue_insert_if_intersect_below_current_y (&event_queue, e1, right);
1354 if (unlikely (status))
1355 goto unwind;
1358 break;
1362 unwind:
1363 _cairo_bo_event_queue_fini (&event_queue);
1365 return status;
1368 cairo_status_t
1369 _cairo_polygon_reduce (cairo_polygon_t *polygon,
1370 cairo_fill_rule_t fill_rule)
1372 cairo_status_t status;
1373 cairo_bo_start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (cairo_bo_start_event_t)];
1374 cairo_bo_start_event_t *events;
1375 cairo_bo_event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1376 cairo_bo_event_t **event_ptrs;
1377 int num_limits;
1378 int num_events;
1379 int i;
1381 num_events = polygon->num_edges;
1382 if (unlikely (0 == num_events))
1383 return CAIRO_STATUS_SUCCESS;
1385 if (DEBUG_POLYGON) {
1386 FILE *file = fopen ("reduce_in.txt", "w");
1387 _cairo_debug_print_polygon (file, polygon);
1388 fclose (file);
1391 events = stack_events;
1392 event_ptrs = stack_event_ptrs;
1393 if (num_events > ARRAY_LENGTH (stack_events)) {
1394 events = _cairo_malloc_ab_plus_c (num_events,
1395 sizeof (cairo_bo_start_event_t) +
1396 sizeof (cairo_bo_event_t *),
1397 sizeof (cairo_bo_event_t *));
1398 if (unlikely (events == NULL))
1399 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
1401 event_ptrs = (cairo_bo_event_t **) (events + num_events);
1404 for (i = 0; i < num_events; i++) {
1405 event_ptrs[i] = (cairo_bo_event_t *) &events[i];
1407 events[i].type = CAIRO_BO_EVENT_TYPE_START;
1408 events[i].point.y = polygon->edges[i].top;
1409 events[i].point.x =
1410 _line_compute_intersection_x_for_y (&polygon->edges[i].line,
1411 events[i].point.y);
1413 events[i].edge.edge = polygon->edges[i];
1414 events[i].edge.deferred.right = NULL;
1415 events[i].edge.prev = NULL;
1416 events[i].edge.next = NULL;
1419 num_limits = polygon->num_limits; polygon->num_limits = 0;
1420 polygon->num_edges = 0;
1422 status = _cairo_bentley_ottmann_tessellate_bo_edges (event_ptrs,
1423 num_events,
1424 fill_rule,
1425 polygon);
1426 polygon->num_limits = num_limits;
1428 if (events != stack_events)
1429 free (events);
1431 if (DEBUG_POLYGON) {
1432 FILE *file = fopen ("reduce_out.txt", "w");
1433 _cairo_debug_print_polygon (file, polygon);
1434 fclose (file);
1437 return status;