beta-0.89.2
[luatex.git] / source / libs / cairo / cairo-src / src / cairo-path-stroke-polygon.c
blobe5082bbec68bf4dcf78d62b06f35b4ef024c4562
1 /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
2 /* cairo - a vector graphics library with display and print output
4 * Copyright © 2002 University of Southern California
5 * Copyright © 2011 Intel Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it either under the terms of the GNU Lesser General Public
9 * License version 2.1 as published by the Free Software Foundation
10 * (the "LGPL") or, at your option, under the terms of the Mozilla
11 * Public License Version 1.1 (the "MPL"). If you do not alter this
12 * notice, a recipient may use your version of this file under either
13 * the MPL or the LGPL.
15 * You should have received a copy of the LGPL along with this library
16 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
18 * You should have received a copy of the MPL along with this library
19 * in the file COPYING-MPL-1.1
21 * The contents of this file are subject to the Mozilla Public License
22 * Version 1.1 (the "License"); you may not use this file except in
23 * compliance with the License. You may obtain a copy of the License at
24 * http://www.mozilla.org/MPL/
26 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
27 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
28 * the specific language governing rights and limitations.
30 * The Original Code is the cairo graphics library.
32 * The Initial Developer of the Original Code is University of Southern
33 * California.
35 * Contributor(s):
36 * Carl D. Worth <cworth@cworth.org>
37 * Chris Wilson <chris@chris-wilson.co.uk>
40 #define _BSD_SOURCE /* for hypot() */
41 #include "cairoint.h"
43 #include "cairo-box-inline.h"
44 #include "cairo-boxes-private.h"
45 #include "cairo-contour-inline.h"
46 #include "cairo-contour-private.h"
47 #include "cairo-error-private.h"
48 #include "cairo-path-fixed-private.h"
49 #include "cairo-slope-private.h"
51 #define DEBUG 0
53 struct stroker {
54 cairo_stroke_style_t style;
56 #if DEBUG
57 cairo_contour_t path;
58 #endif
60 struct stroke_contour {
61 /* Note that these are not strictly contours as they may intersect */
62 cairo_contour_t contour;
63 } cw, ccw;
64 cairo_uint64_t contour_tolerance;
65 cairo_polygon_t *polygon;
67 const cairo_matrix_t *ctm;
68 const cairo_matrix_t *ctm_inverse;
69 double tolerance;
70 double spline_cusp_tolerance;
71 double half_line_width;
72 cairo_bool_t ctm_det_positive;
74 cairo_pen_t pen;
76 cairo_point_t first_point;
78 cairo_bool_t has_initial_sub_path;
80 cairo_bool_t has_current_face;
81 cairo_stroke_face_t current_face;
83 cairo_bool_t has_first_face;
84 cairo_stroke_face_t first_face;
86 cairo_bool_t has_bounds;
87 cairo_box_t bounds;
90 static inline double
91 normalize_slope (double *dx, double *dy);
93 static void
94 compute_face (const cairo_point_t *point,
95 const cairo_slope_t *dev_slope,
96 struct stroker *stroker,
97 cairo_stroke_face_t *face);
99 static cairo_uint64_t
100 point_distance_sq (const cairo_point_t *p1,
101 const cairo_point_t *p2)
103 int32_t dx = p1->x - p2->x;
104 int32_t dy = p1->y - p2->y;
105 return _cairo_int32x32_64_mul (dx, dx) + _cairo_int32x32_64_mul (dy, dy);
108 static cairo_bool_t
109 within_tolerance (const cairo_point_t *p1,
110 const cairo_point_t *p2,
111 cairo_uint64_t tolerance)
113 return FALSE;
114 return _cairo_int64_lt (point_distance_sq (p1, p2), tolerance);
117 static void
118 contour_add_point (struct stroker *stroker,
119 struct stroke_contour *c,
120 const cairo_point_t *point)
122 if (! within_tolerance (point, _cairo_contour_last_point (&c->contour),
123 stroker->contour_tolerance))
124 _cairo_contour_add_point (&c->contour, point);
125 //*_cairo_contour_last_point (&c->contour) = *point;
128 static void
129 translate_point (cairo_point_t *point, const cairo_point_t *offset)
131 point->x += offset->x;
132 point->y += offset->y;
135 static int
136 slope_compare_sgn (double dx1, double dy1, double dx2, double dy2)
138 double c = (dx1 * dy2 - dx2 * dy1);
140 if (c > 0) return 1;
141 if (c < 0) return -1;
142 return 0;
145 static inline int
146 range_step (int i, int step, int max)
148 i += step;
149 if (i < 0)
150 i = max - 1;
151 if (i >= max)
152 i = 0;
153 return i;
157 * Construct a fan around the midpoint using the vertices from pen between
158 * inpt and outpt.
160 static void
161 add_fan (struct stroker *stroker,
162 const cairo_slope_t *in_vector,
163 const cairo_slope_t *out_vector,
164 const cairo_point_t *midpt,
165 cairo_bool_t clockwise,
166 struct stroke_contour *c)
168 cairo_pen_t *pen = &stroker->pen;
169 int start, stop;
171 if (stroker->has_bounds &&
172 ! _cairo_box_contains_point (&stroker->bounds, midpt))
173 return;
175 assert (stroker->pen.num_vertices);
177 if (clockwise) {
178 _cairo_pen_find_active_cw_vertices (pen,
179 in_vector, out_vector,
180 &start, &stop);
181 while (start != stop) {
182 cairo_point_t p = *midpt;
183 translate_point (&p, &pen->vertices[start].point);
184 contour_add_point (stroker, c, &p);
186 if (++start == pen->num_vertices)
187 start = 0;
189 } else {
190 _cairo_pen_find_active_ccw_vertices (pen,
191 in_vector, out_vector,
192 &start, &stop);
193 while (start != stop) {
194 cairo_point_t p = *midpt;
195 translate_point (&p, &pen->vertices[start].point);
196 contour_add_point (stroker, c, &p);
198 if (start-- == 0)
199 start += pen->num_vertices;
204 static int
205 join_is_clockwise (const cairo_stroke_face_t *in,
206 const cairo_stroke_face_t *out)
208 return _cairo_slope_compare (&in->dev_vector, &out->dev_vector) < 0;
211 static void
212 inner_join (struct stroker *stroker,
213 const cairo_stroke_face_t *in,
214 const cairo_stroke_face_t *out,
215 int clockwise)
217 #if 0
218 cairo_point_t last;
219 const cairo_point_t *p, *outpt;
220 struct stroke_contour *inner;
221 cairo_int64_t d_p, d_last;
222 cairo_int64_t half_line_width;
223 cairo_bool_t negate;
225 /* XXX line segments shorter than line-width */
227 if (clockwise) {
228 inner = &stroker->ccw;
229 outpt = &out->ccw;
230 negate = 1;
231 } else {
232 inner = &stroker->cw;
233 outpt = &out->cw;
234 negate = 0;
237 half_line_width = CAIRO_FIXED_ONE*CAIRO_FIXED_ONE/2 * stroker->style.line_width * out->length + .5;
239 /* On the inside, the previous end-point is always
240 * closer to the new face by definition.
242 last = *_cairo_contour_last_point (&inner->contour);
243 d_last = distance_from_face (out, &last, negate);
244 _cairo_contour_remove_last_point (&inner->contour);
246 prev:
247 if (inner->contour.chain.num_points == 0) {
248 contour_add_point (stroker, inner, outpt);
249 return;
251 p = _cairo_contour_last_point (&inner->contour);
252 d_p = distance_from_face (out, p, negate);
253 if (_cairo_int64_lt (d_p, half_line_width) &&
254 !_cairo_int64_negative (distance_along_face (out, p)))
256 last = *p;
257 d_last = d_p;
258 _cairo_contour_remove_last_point (&inner->contour);
259 goto prev;
262 compute_inner_joint (&last, d_last, p, d_p, half_line_width);
263 contour_add_point (stroker, inner, &last);
264 #else
265 const cairo_point_t *outpt;
266 struct stroke_contour *inner;
268 if (clockwise) {
269 inner = &stroker->ccw;
270 outpt = &out->ccw;
271 } else {
272 inner = &stroker->cw;
273 outpt = &out->cw;
275 contour_add_point (stroker, inner, &in->point);
276 contour_add_point (stroker, inner, outpt);
277 #endif
280 static void
281 inner_close (struct stroker *stroker,
282 const cairo_stroke_face_t *in,
283 cairo_stroke_face_t *out)
285 #if 0
286 cairo_point_t last;
287 const cairo_point_t *p, *outpt, *inpt;
288 struct stroke_contour *inner;
289 struct _cairo_contour_chain *chain;
291 /* XXX line segments shorter than line-width */
293 if (join_is_clockwise (in, out)) {
294 inner = &stroker->ccw;
295 outpt = &in->ccw;
296 inpt = &out->ccw;
297 } else {
298 inner = &stroker->cw;
299 outpt = &in->cw;
300 inpt = &out->cw;
303 if (inner->contour.chain.num_points == 0) {
304 contour_add_point (stroker, inner, &in->point);
305 contour_add_point (stroker, inner, inpt);
306 *_cairo_contour_first_point (&inner->contour) =
307 *_cairo_contour_last_point (&inner->contour);
308 return;
311 line_width = stroker->style.line_width/2;
312 line_width *= CAIRO_FIXED_ONE;
314 d_last = sign * distance_from_face (out, outpt);
315 last = *outpt;
317 for (chain = &inner->contour.chain; chain; chain = chain->next) {
318 for (i = 0; i < chain->num_points; i++) {
319 p = &chain->points[i];
320 if ((d_p = sign * distance_from_face (in, p)) >= line_width &&
321 distance_from_edge (stroker, inpt, &last, p) < line_width)
323 goto out;
326 if (p->x != last.x || p->y != last.y) {
327 last = *p;
328 d_last = d_p;
332 out:
334 if (d_p != d_last) {
335 double dot = (line_width - d_last) / (d_p - d_last);
336 last.x += dot * (p->x - last.x);
337 last.y += dot * (p->y - last.y);
339 *_cairo_contour_last_point (&inner->contour) = last;
341 for (chain = &inner->contour.chain; chain; chain = chain->next) {
342 for (i = 0; i < chain->num_points; i++) {
343 cairo_point_t *pp = &chain->points[i];
344 if (pp == p)
345 return;
346 *pp = last;
349 #else
350 const cairo_point_t *inpt;
351 struct stroke_contour *inner;
353 if (join_is_clockwise (in, out)) {
354 inner = &stroker->ccw;
355 inpt = &out->ccw;
356 } else {
357 inner = &stroker->cw;
358 inpt = &out->cw;
361 contour_add_point (stroker, inner, &in->point);
362 contour_add_point (stroker, inner, inpt);
363 *_cairo_contour_first_point (&inner->contour) =
364 *_cairo_contour_last_point (&inner->contour);
365 #endif
368 static void
369 outer_close (struct stroker *stroker,
370 const cairo_stroke_face_t *in,
371 const cairo_stroke_face_t *out)
373 const cairo_point_t *inpt, *outpt;
374 struct stroke_contour *outer;
375 int clockwise;
377 if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
378 in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
380 return;
383 clockwise = join_is_clockwise (in, out);
384 if (clockwise) {
385 inpt = &in->cw;
386 outpt = &out->cw;
387 outer = &stroker->cw;
388 } else {
389 inpt = &in->ccw;
390 outpt = &out->ccw;
391 outer = &stroker->ccw;
394 if (within_tolerance (inpt, outpt, stroker->contour_tolerance)) {
395 *_cairo_contour_first_point (&outer->contour) =
396 *_cairo_contour_last_point (&outer->contour);
397 return;
400 switch (stroker->style.line_join) {
401 case CAIRO_LINE_JOIN_ROUND:
402 /* construct a fan around the common midpoint */
403 if ((in->dev_slope.x * out->dev_slope.x +
404 in->dev_slope.y * out->dev_slope.y) < stroker->spline_cusp_tolerance)
406 add_fan (stroker,
407 &in->dev_vector, &out->dev_vector, &in->point,
408 clockwise, outer);
409 break;
412 case CAIRO_LINE_JOIN_MITER:
413 default: {
414 /* dot product of incoming slope vector with outgoing slope vector */
415 double in_dot_out = in->dev_slope.x * out->dev_slope.x +
416 in->dev_slope.y * out->dev_slope.y;
417 double ml = stroker->style.miter_limit;
419 /* Check the miter limit -- lines meeting at an acute angle
420 * can generate long miters, the limit converts them to bevel
422 * Consider the miter join formed when two line segments
423 * meet at an angle psi:
425 * /.\
426 * /. .\
427 * /./ \.\
428 * /./psi\.\
430 * We can zoom in on the right half of that to see:
432 * |\
433 * | \ psi/2
434 * | \
435 * | \
436 * | \
437 * | \
438 * miter \
439 * length \
440 * | \
441 * | .\
442 * | . \
443 * |. line \
444 * \ width \
445 * \ \
448 * The right triangle in that figure, (the line-width side is
449 * shown faintly with three '.' characters), gives us the
450 * following expression relating miter length, angle and line
451 * width:
453 * 1 /sin (psi/2) = miter_length / line_width
455 * The right-hand side of this relationship is the same ratio
456 * in which the miter limit (ml) is expressed. We want to know
457 * when the miter length is within the miter limit. That is
458 * when the following condition holds:
460 * 1/sin(psi/2) <= ml
461 * 1 <= ml sin(psi/2)
462 * 1 <= ml² sin²(psi/2)
463 * 2 <= ml² 2 sin²(psi/2)
464 * 2·sin²(psi/2) = 1-cos(psi)
465 * 2 <= ml² (1-cos(psi))
467 * in · out = |in| |out| cos (psi)
469 * in and out are both unit vectors, so:
471 * in · out = cos (psi)
473 * 2 <= ml² (1 - in · out)
476 if (2 <= ml * ml * (1 + in_dot_out)) {
477 double x1, y1, x2, y2;
478 double mx, my;
479 double dx1, dx2, dy1, dy2;
480 double ix, iy;
481 double fdx1, fdy1, fdx2, fdy2;
482 double mdx, mdy;
485 * we've got the points already transformed to device
486 * space, but need to do some computation with them and
487 * also need to transform the slope from user space to
488 * device space
490 /* outer point of incoming line face */
491 x1 = _cairo_fixed_to_double (inpt->x);
492 y1 = _cairo_fixed_to_double (inpt->y);
493 dx1 = in->dev_slope.x;
494 dy1 = in->dev_slope.y;
496 /* outer point of outgoing line face */
497 x2 = _cairo_fixed_to_double (outpt->x);
498 y2 = _cairo_fixed_to_double (outpt->y);
499 dx2 = out->dev_slope.x;
500 dy2 = out->dev_slope.y;
503 * Compute the location of the outer corner of the miter.
504 * That's pretty easy -- just the intersection of the two
505 * outer edges. We've got slopes and points on each
506 * of those edges. Compute my directly, then compute
507 * mx by using the edge with the larger dy; that avoids
508 * dividing by values close to zero.
510 my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
511 (dx1 * dy2 - dx2 * dy1));
512 if (fabs (dy1) >= fabs (dy2))
513 mx = (my - y1) * dx1 / dy1 + x1;
514 else
515 mx = (my - y2) * dx2 / dy2 + x2;
518 * When the two outer edges are nearly parallel, slight
519 * perturbations in the position of the outer points of the lines
520 * caused by representing them in fixed point form can cause the
521 * intersection point of the miter to move a large amount. If
522 * that moves the miter intersection from between the two faces,
523 * then draw a bevel instead.
526 ix = _cairo_fixed_to_double (in->point.x);
527 iy = _cairo_fixed_to_double (in->point.y);
529 /* slope of one face */
530 fdx1 = x1 - ix; fdy1 = y1 - iy;
532 /* slope of the other face */
533 fdx2 = x2 - ix; fdy2 = y2 - iy;
535 /* slope from the intersection to the miter point */
536 mdx = mx - ix; mdy = my - iy;
539 * Make sure the miter point line lies between the two
540 * faces by comparing the slopes
542 if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
543 slope_compare_sgn (fdx2, fdy2, mdx, mdy))
545 cairo_point_t p;
547 p.x = _cairo_fixed_from_double (mx);
548 p.y = _cairo_fixed_from_double (my);
550 *_cairo_contour_last_point (&outer->contour) = p;
551 *_cairo_contour_first_point (&outer->contour) = p;
552 return;
555 break;
558 case CAIRO_LINE_JOIN_BEVEL:
559 break;
561 contour_add_point (stroker, outer, outpt);
564 static void
565 outer_join (struct stroker *stroker,
566 const cairo_stroke_face_t *in,
567 const cairo_stroke_face_t *out,
568 int clockwise)
570 const cairo_point_t *inpt, *outpt;
571 struct stroke_contour *outer;
573 if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
574 in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
576 return;
578 if (clockwise) {
579 inpt = &in->cw;
580 outpt = &out->cw;
581 outer = &stroker->cw;
582 } else {
583 inpt = &in->ccw;
584 outpt = &out->ccw;
585 outer = &stroker->ccw;
588 switch (stroker->style.line_join) {
589 case CAIRO_LINE_JOIN_ROUND:
590 /* construct a fan around the common midpoint */
591 add_fan (stroker,
592 &in->dev_vector, &out->dev_vector, &in->point,
593 clockwise, outer);
594 break;
596 case CAIRO_LINE_JOIN_MITER:
597 default: {
598 /* dot product of incoming slope vector with outgoing slope vector */
599 double in_dot_out = in->dev_slope.x * out->dev_slope.x +
600 in->dev_slope.y * out->dev_slope.y;
601 double ml = stroker->style.miter_limit;
603 /* Check the miter limit -- lines meeting at an acute angle
604 * can generate long miters, the limit converts them to bevel
606 * Consider the miter join formed when two line segments
607 * meet at an angle psi:
609 * /.\
610 * /. .\
611 * /./ \.\
612 * /./psi\.\
614 * We can zoom in on the right half of that to see:
616 * |\
617 * | \ psi/2
618 * | \
619 * | \
620 * | \
621 * | \
622 * miter \
623 * length \
624 * | \
625 * | .\
626 * | . \
627 * |. line \
628 * \ width \
629 * \ \
632 * The right triangle in that figure, (the line-width side is
633 * shown faintly with three '.' characters), gives us the
634 * following expression relating miter length, angle and line
635 * width:
637 * 1 /sin (psi/2) = miter_length / line_width
639 * The right-hand side of this relationship is the same ratio
640 * in which the miter limit (ml) is expressed. We want to know
641 * when the miter length is within the miter limit. That is
642 * when the following condition holds:
644 * 1/sin(psi/2) <= ml
645 * 1 <= ml sin(psi/2)
646 * 1 <= ml² sin²(psi/2)
647 * 2 <= ml² 2 sin²(psi/2)
648 * 2·sin²(psi/2) = 1-cos(psi)
649 * 2 <= ml² (1-cos(psi))
651 * in · out = |in| |out| cos (psi)
653 * in and out are both unit vectors, so:
655 * in · out = cos (psi)
657 * 2 <= ml² (1 - in · out)
660 if (2 <= ml * ml * (1 + in_dot_out)) {
661 double x1, y1, x2, y2;
662 double mx, my;
663 double dx1, dx2, dy1, dy2;
664 double ix, iy;
665 double fdx1, fdy1, fdx2, fdy2;
666 double mdx, mdy;
669 * we've got the points already transformed to device
670 * space, but need to do some computation with them and
671 * also need to transform the slope from user space to
672 * device space
674 /* outer point of incoming line face */
675 x1 = _cairo_fixed_to_double (inpt->x);
676 y1 = _cairo_fixed_to_double (inpt->y);
677 dx1 = in->dev_slope.x;
678 dy1 = in->dev_slope.y;
680 /* outer point of outgoing line face */
681 x2 = _cairo_fixed_to_double (outpt->x);
682 y2 = _cairo_fixed_to_double (outpt->y);
683 dx2 = out->dev_slope.x;
684 dy2 = out->dev_slope.y;
687 * Compute the location of the outer corner of the miter.
688 * That's pretty easy -- just the intersection of the two
689 * outer edges. We've got slopes and points on each
690 * of those edges. Compute my directly, then compute
691 * mx by using the edge with the larger dy; that avoids
692 * dividing by values close to zero.
694 my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
695 (dx1 * dy2 - dx2 * dy1));
696 if (fabs (dy1) >= fabs (dy2))
697 mx = (my - y1) * dx1 / dy1 + x1;
698 else
699 mx = (my - y2) * dx2 / dy2 + x2;
702 * When the two outer edges are nearly parallel, slight
703 * perturbations in the position of the outer points of the lines
704 * caused by representing them in fixed point form can cause the
705 * intersection point of the miter to move a large amount. If
706 * that moves the miter intersection from between the two faces,
707 * then draw a bevel instead.
710 ix = _cairo_fixed_to_double (in->point.x);
711 iy = _cairo_fixed_to_double (in->point.y);
713 /* slope of one face */
714 fdx1 = x1 - ix; fdy1 = y1 - iy;
716 /* slope of the other face */
717 fdx2 = x2 - ix; fdy2 = y2 - iy;
719 /* slope from the intersection to the miter point */
720 mdx = mx - ix; mdy = my - iy;
723 * Make sure the miter point line lies between the two
724 * faces by comparing the slopes
726 if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
727 slope_compare_sgn (fdx2, fdy2, mdx, mdy))
729 cairo_point_t p;
731 p.x = _cairo_fixed_from_double (mx);
732 p.y = _cairo_fixed_from_double (my);
734 *_cairo_contour_last_point (&outer->contour) = p;
735 return;
738 break;
741 case CAIRO_LINE_JOIN_BEVEL:
742 break;
744 contour_add_point (stroker,outer, outpt);
747 static void
748 add_cap (struct stroker *stroker,
749 const cairo_stroke_face_t *f,
750 struct stroke_contour *c)
752 switch (stroker->style.line_cap) {
753 case CAIRO_LINE_CAP_ROUND: {
754 cairo_slope_t slope;
756 slope.dx = -f->dev_vector.dx;
757 slope.dy = -f->dev_vector.dy;
759 add_fan (stroker, &f->dev_vector, &slope, &f->point, FALSE, c);
760 break;
763 case CAIRO_LINE_CAP_SQUARE: {
764 cairo_slope_t fvector;
765 cairo_point_t p;
766 double dx, dy;
768 dx = f->usr_vector.x;
769 dy = f->usr_vector.y;
770 dx *= stroker->half_line_width;
771 dy *= stroker->half_line_width;
772 cairo_matrix_transform_distance (stroker->ctm, &dx, &dy);
773 fvector.dx = _cairo_fixed_from_double (dx);
774 fvector.dy = _cairo_fixed_from_double (dy);
776 p.x = f->ccw.x + fvector.dx;
777 p.y = f->ccw.y + fvector.dy;
778 contour_add_point (stroker, c, &p);
780 p.x = f->cw.x + fvector.dx;
781 p.y = f->cw.y + fvector.dy;
782 contour_add_point (stroker, c, &p);
785 case CAIRO_LINE_CAP_BUTT:
786 default:
787 break;
789 contour_add_point (stroker, c, &f->cw);
792 static void
793 add_leading_cap (struct stroker *stroker,
794 const cairo_stroke_face_t *face,
795 struct stroke_contour *c)
797 cairo_stroke_face_t reversed;
798 cairo_point_t t;
800 reversed = *face;
802 /* The initial cap needs an outward facing vector. Reverse everything */
803 reversed.usr_vector.x = -reversed.usr_vector.x;
804 reversed.usr_vector.y = -reversed.usr_vector.y;
805 reversed.dev_vector.dx = -reversed.dev_vector.dx;
806 reversed.dev_vector.dy = -reversed.dev_vector.dy;
808 t = reversed.cw;
809 reversed.cw = reversed.ccw;
810 reversed.ccw = t;
812 add_cap (stroker, &reversed, c);
815 static void
816 add_trailing_cap (struct stroker *stroker,
817 const cairo_stroke_face_t *face,
818 struct stroke_contour *c)
820 add_cap (stroker, face, c);
823 static inline double
824 normalize_slope (double *dx, double *dy)
826 double dx0 = *dx, dy0 = *dy;
827 double mag;
829 assert (dx0 != 0.0 || dy0 != 0.0);
831 if (dx0 == 0.0) {
832 *dx = 0.0;
833 if (dy0 > 0.0) {
834 mag = dy0;
835 *dy = 1.0;
836 } else {
837 mag = -dy0;
838 *dy = -1.0;
840 } else if (dy0 == 0.0) {
841 *dy = 0.0;
842 if (dx0 > 0.0) {
843 mag = dx0;
844 *dx = 1.0;
845 } else {
846 mag = -dx0;
847 *dx = -1.0;
849 } else {
850 mag = hypot (dx0, dy0);
851 *dx = dx0 / mag;
852 *dy = dy0 / mag;
855 return mag;
858 static void
859 compute_face (const cairo_point_t *point,
860 const cairo_slope_t *dev_slope,
861 struct stroker *stroker,
862 cairo_stroke_face_t *face)
864 double face_dx, face_dy;
865 cairo_point_t offset_ccw, offset_cw;
866 double slope_dx, slope_dy;
868 slope_dx = _cairo_fixed_to_double (dev_slope->dx);
869 slope_dy = _cairo_fixed_to_double (dev_slope->dy);
870 face->length = normalize_slope (&slope_dx, &slope_dy);
871 face->dev_slope.x = slope_dx;
872 face->dev_slope.y = slope_dy;
875 * rotate to get a line_width/2 vector along the face, note that
876 * the vector must be rotated the right direction in device space,
877 * but by 90° in user space. So, the rotation depends on
878 * whether the ctm reflects or not, and that can be determined
879 * by looking at the determinant of the matrix.
881 if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) {
882 /* Normalize the matrix! */
883 cairo_matrix_transform_distance (stroker->ctm_inverse,
884 &slope_dx, &slope_dy);
885 normalize_slope (&slope_dx, &slope_dy);
887 if (stroker->ctm_det_positive) {
888 face_dx = - slope_dy * stroker->half_line_width;
889 face_dy = slope_dx * stroker->half_line_width;
890 } else {
891 face_dx = slope_dy * stroker->half_line_width;
892 face_dy = - slope_dx * stroker->half_line_width;
895 /* back to device space */
896 cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
897 } else {
898 face_dx = - slope_dy * stroker->half_line_width;
899 face_dy = slope_dx * stroker->half_line_width;
902 offset_ccw.x = _cairo_fixed_from_double (face_dx);
903 offset_ccw.y = _cairo_fixed_from_double (face_dy);
904 offset_cw.x = -offset_ccw.x;
905 offset_cw.y = -offset_ccw.y;
907 face->ccw = *point;
908 translate_point (&face->ccw, &offset_ccw);
910 face->point = *point;
912 face->cw = *point;
913 translate_point (&face->cw, &offset_cw);
915 face->usr_vector.x = slope_dx;
916 face->usr_vector.y = slope_dy;
918 face->dev_vector = *dev_slope;
921 static void
922 add_caps (struct stroker *stroker)
924 /* check for a degenerative sub_path */
925 if (stroker->has_initial_sub_path &&
926 ! stroker->has_first_face &&
927 ! stroker->has_current_face &&
928 stroker->style.line_cap == CAIRO_LINE_CAP_ROUND)
930 /* pick an arbitrary slope to use */
931 cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 };
932 cairo_stroke_face_t face;
934 /* arbitrarily choose first_point */
935 compute_face (&stroker->first_point, &slope, stroker, &face);
937 add_leading_cap (stroker, &face, &stroker->ccw);
938 add_trailing_cap (stroker, &face, &stroker->ccw);
940 /* ensure the circle is complete */
941 _cairo_contour_add_point (&stroker->ccw.contour,
942 _cairo_contour_first_point (&stroker->ccw.contour));
944 _cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour);
945 _cairo_contour_reset (&stroker->ccw.contour);
946 } else {
947 if (stroker->has_current_face)
948 add_trailing_cap (stroker, &stroker->current_face, &stroker->ccw);
950 #if DEBUG
952 FILE *file = fopen ("contours.txt", "a");
953 _cairo_debug_print_contour (file, &stroker->path);
954 _cairo_debug_print_contour (file, &stroker->cw.contour);
955 _cairo_debug_print_contour (file, &stroker->ccw.contour);
956 fclose (file);
957 _cairo_contour_reset (&stroker->path);
959 #endif
961 _cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour);
962 _cairo_contour_reset (&stroker->ccw.contour);
964 if (stroker->has_first_face) {
965 _cairo_contour_add_point (&stroker->ccw.contour,
966 &stroker->first_face.cw);
967 add_leading_cap (stroker, &stroker->first_face, &stroker->ccw);
968 #if DEBUG
970 FILE *file = fopen ("contours.txt", "a");
971 _cairo_debug_print_contour (file, &stroker->ccw.contour);
972 fclose (file);
974 #endif
976 _cairo_polygon_add_contour (stroker->polygon,
977 &stroker->ccw.contour);
978 _cairo_contour_reset (&stroker->ccw.contour);
981 _cairo_polygon_add_contour (stroker->polygon, &stroker->cw.contour);
982 _cairo_contour_reset (&stroker->cw.contour);
986 static cairo_status_t
987 close_path (void *closure);
989 static cairo_status_t
990 move_to (void *closure,
991 const cairo_point_t *point)
993 struct stroker *stroker = closure;
995 /* Cap the start and end of the previous sub path as needed */
996 add_caps (stroker);
998 stroker->has_first_face = FALSE;
999 stroker->has_current_face = FALSE;
1000 stroker->has_initial_sub_path = FALSE;
1002 stroker->first_point = *point;
1004 #if DEBUG
1005 _cairo_contour_add_point (&stroker->path, point);
1006 #endif
1008 stroker->current_face.point = *point;
1010 return CAIRO_STATUS_SUCCESS;
1013 static cairo_status_t
1014 line_to (void *closure,
1015 const cairo_point_t *point)
1017 struct stroker *stroker = closure;
1018 cairo_stroke_face_t start;
1019 cairo_point_t *p1 = &stroker->current_face.point;
1020 cairo_slope_t dev_slope;
1022 stroker->has_initial_sub_path = TRUE;
1024 if (p1->x == point->x && p1->y == point->y)
1025 return CAIRO_STATUS_SUCCESS;
1027 #if DEBUG
1028 _cairo_contour_add_point (&stroker->path, point);
1029 #endif
1031 _cairo_slope_init (&dev_slope, p1, point);
1032 compute_face (p1, &dev_slope, stroker, &start);
1034 if (stroker->has_current_face) {
1035 int clockwise = _cairo_slope_compare (&stroker->current_face.dev_vector,
1036 &start.dev_vector);
1037 if (clockwise) {
1038 clockwise = clockwise < 0;
1039 /* Join with final face from previous segment */
1040 if (! within_tolerance (&stroker->current_face.ccw, &start.ccw,
1041 stroker->contour_tolerance) ||
1042 ! within_tolerance (&stroker->current_face.cw, &start.cw,
1043 stroker->contour_tolerance))
1045 outer_join (stroker, &stroker->current_face, &start, clockwise);
1046 inner_join (stroker, &stroker->current_face, &start, clockwise);
1049 } else {
1050 if (! stroker->has_first_face) {
1051 /* Save sub path's first face in case needed for closing join */
1052 stroker->first_face = start;
1053 stroker->has_first_face = TRUE;
1055 stroker->has_current_face = TRUE;
1057 contour_add_point (stroker, &stroker->cw, &start.cw);
1058 contour_add_point (stroker, &stroker->ccw, &start.ccw);
1061 stroker->current_face = start;
1062 stroker->current_face.point = *point;
1063 stroker->current_face.ccw.x += dev_slope.dx;
1064 stroker->current_face.ccw.y += dev_slope.dy;
1065 stroker->current_face.cw.x += dev_slope.dx;
1066 stroker->current_face.cw.y += dev_slope.dy;
1068 contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);
1069 contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);
1071 return CAIRO_STATUS_SUCCESS;
1074 static cairo_status_t
1075 spline_to (void *closure,
1076 const cairo_point_t *point,
1077 const cairo_slope_t *tangent)
1079 struct stroker *stroker = closure;
1080 cairo_stroke_face_t face;
1082 #if DEBUG
1083 _cairo_contour_add_point (&stroker->path, point);
1084 #endif
1085 if ((tangent->dx | tangent->dy) == 0) {
1086 struct stroke_contour *outer;
1087 cairo_point_t t;
1088 int clockwise;
1090 face = stroker->current_face;
1092 face.usr_vector.x = -face.usr_vector.x;
1093 face.usr_vector.y = -face.usr_vector.y;
1094 face.dev_vector.dx = -face.dev_vector.dx;
1095 face.dev_vector.dy = -face.dev_vector.dy;
1097 t = face.cw;
1098 face.cw = face.ccw;
1099 face.ccw = t;
1101 clockwise = join_is_clockwise (&stroker->current_face, &face);
1102 if (clockwise) {
1103 outer = &stroker->cw;
1104 } else {
1105 outer = &stroker->ccw;
1108 add_fan (stroker,
1109 &stroker->current_face.dev_vector,
1110 &face.dev_vector,
1111 &stroker->current_face.point,
1112 clockwise, outer);
1113 } else {
1114 compute_face (point, tangent, stroker, &face);
1116 if ((face.dev_slope.x * stroker->current_face.dev_slope.x +
1117 face.dev_slope.y * stroker->current_face.dev_slope.y) < stroker->spline_cusp_tolerance)
1119 struct stroke_contour *outer;
1120 int clockwise = join_is_clockwise (&stroker->current_face, &face);
1122 stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x;
1123 stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y;
1124 contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw);
1126 stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x;
1127 stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y;
1128 contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw);
1130 if (clockwise) {
1131 outer = &stroker->cw;
1132 } else {
1133 outer = &stroker->ccw;
1135 add_fan (stroker,
1136 &stroker->current_face.dev_vector,
1137 &face.dev_vector,
1138 &stroker->current_face.point,
1139 clockwise, outer);
1142 contour_add_point (stroker, &stroker->cw, &face.cw);
1143 contour_add_point (stroker, &stroker->ccw, &face.ccw);
1146 stroker->current_face = face;
1148 return CAIRO_STATUS_SUCCESS;
1151 static cairo_status_t
1152 curve_to (void *closure,
1153 const cairo_point_t *b,
1154 const cairo_point_t *c,
1155 const cairo_point_t *d)
1157 struct stroker *stroker = closure;
1158 cairo_spline_t spline;
1159 cairo_stroke_face_t face;
1161 if (stroker->has_bounds &&
1162 ! _cairo_spline_intersects (&stroker->current_face.point, b, c, d,
1163 &stroker->bounds))
1164 return line_to (closure, d);
1166 if (! _cairo_spline_init (&spline, spline_to, stroker,
1167 &stroker->current_face.point, b, c, d))
1168 return line_to (closure, d);
1170 compute_face (&stroker->current_face.point, &spline.initial_slope,
1171 stroker, &face);
1173 if (stroker->has_current_face) {
1174 int clockwise = join_is_clockwise (&stroker->current_face, &face);
1175 /* Join with final face from previous segment */
1176 outer_join (stroker, &stroker->current_face, &face, clockwise);
1177 inner_join (stroker, &stroker->current_face, &face, clockwise);
1178 } else {
1179 if (! stroker->has_first_face) {
1180 /* Save sub path's first face in case needed for closing join */
1181 stroker->first_face = face;
1182 stroker->has_first_face = TRUE;
1184 stroker->has_current_face = TRUE;
1186 contour_add_point (stroker, &stroker->cw, &face.cw);
1187 contour_add_point (stroker, &stroker->ccw, &face.ccw);
1189 stroker->current_face = face;
1191 return _cairo_spline_decompose (&spline, stroker->tolerance);
1194 static cairo_status_t
1195 close_path (void *closure)
1197 struct stroker *stroker = closure;
1198 cairo_status_t status;
1200 status = line_to (stroker, &stroker->first_point);
1201 if (unlikely (status))
1202 return status;
1204 if (stroker->has_first_face && stroker->has_current_face) {
1205 /* Join first and final faces of sub path */
1206 outer_close (stroker, &stroker->current_face, &stroker->first_face);
1207 inner_close (stroker, &stroker->current_face, &stroker->first_face);
1208 #if 0
1209 *_cairo_contour_first_point (&stroker->ccw.contour) =
1210 *_cairo_contour_last_point (&stroker->ccw.contour);
1212 *_cairo_contour_first_point (&stroker->cw.contour) =
1213 *_cairo_contour_last_point (&stroker->cw.contour);
1214 #endif
1216 _cairo_polygon_add_contour (stroker->polygon, &stroker->cw.contour);
1217 _cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour);
1219 #if DEBUG
1221 FILE *file = fopen ("contours.txt", "a");
1222 _cairo_debug_print_contour (file, &stroker->path);
1223 _cairo_debug_print_contour (file, &stroker->cw.contour);
1224 _cairo_debug_print_contour (file, &stroker->ccw.contour);
1225 fclose (file);
1227 _cairo_contour_reset (&stroker->path);
1229 #endif
1230 _cairo_contour_reset (&stroker->cw.contour);
1231 _cairo_contour_reset (&stroker->ccw.contour);
1232 } else {
1233 /* Cap the start and end of the sub path as needed */
1234 add_caps (stroker);
1237 stroker->has_initial_sub_path = FALSE;
1238 stroker->has_first_face = FALSE;
1239 stroker->has_current_face = FALSE;
1241 return CAIRO_STATUS_SUCCESS;
1244 cairo_status_t
1245 _cairo_path_fixed_stroke_to_polygon (const cairo_path_fixed_t *path,
1246 const cairo_stroke_style_t *style,
1247 const cairo_matrix_t *ctm,
1248 const cairo_matrix_t *ctm_inverse,
1249 double tolerance,
1250 cairo_polygon_t *polygon)
1252 struct stroker stroker;
1253 cairo_status_t status;
1255 if (style->num_dashes) {
1256 return _cairo_path_fixed_stroke_dashed_to_polygon (path,
1257 style,
1258 ctm,
1259 ctm_inverse,
1260 tolerance,
1261 polygon);
1264 stroker.has_bounds = polygon->num_limits;
1265 if (stroker.has_bounds) {
1266 /* Extend the bounds in each direction to account for the maximum area
1267 * we might generate trapezoids, to capture line segments that are
1268 * outside of the bounds but which might generate rendering that's
1269 * within bounds.
1271 double dx, dy;
1272 cairo_fixed_t fdx, fdy;
1273 int i;
1275 stroker.bounds = polygon->limits[0];
1276 for (i = 1; i < polygon->num_limits; i++)
1277 _cairo_box_add_box (&stroker.bounds, &polygon->limits[i]);
1279 _cairo_stroke_style_max_distance_from_path (style, path, ctm, &dx, &dy);
1280 fdx = _cairo_fixed_from_double (dx);
1281 fdy = _cairo_fixed_from_double (dy);
1283 stroker.bounds.p1.x -= fdx;
1284 stroker.bounds.p2.x += fdx;
1285 stroker.bounds.p1.y -= fdy;
1286 stroker.bounds.p2.y += fdy;
1289 stroker.style = *style;
1290 stroker.ctm = ctm;
1291 stroker.ctm_inverse = ctm_inverse;
1292 stroker.tolerance = tolerance;
1293 stroker.half_line_width = style->line_width / 2.;
1294 /* To test whether we need to join two segments of a spline using
1295 * a round-join or a bevel-join, we can inspect the angle between the
1296 * two segments. If the difference between the chord distance
1297 * (half-line-width times the cosine of the bisection angle) and the
1298 * half-line-width itself is greater than tolerance then we need to
1299 * inject a point.
1301 stroker.spline_cusp_tolerance = 1 - tolerance / stroker.half_line_width;
1302 stroker.spline_cusp_tolerance *= stroker.spline_cusp_tolerance;
1303 stroker.spline_cusp_tolerance *= 2;
1304 stroker.spline_cusp_tolerance -= 1;
1305 stroker.ctm_det_positive =
1306 _cairo_matrix_compute_determinant (ctm) >= 0.0;
1308 stroker.pen.num_vertices = 0;
1309 if (path->has_curve_to ||
1310 style->line_join == CAIRO_LINE_JOIN_ROUND ||
1311 style->line_cap == CAIRO_LINE_CAP_ROUND) {
1312 status = _cairo_pen_init (&stroker.pen,
1313 stroker.half_line_width,
1314 tolerance, ctm);
1315 if (unlikely (status))
1316 return status;
1318 /* If the line width is so small that the pen is reduced to a
1319 single point, then we have nothing to do. */
1320 if (stroker.pen.num_vertices <= 1)
1321 return CAIRO_STATUS_SUCCESS;
1324 stroker.has_current_face = FALSE;
1325 stroker.has_first_face = FALSE;
1326 stroker.has_initial_sub_path = FALSE;
1328 #if DEBUG
1329 remove ("contours.txt");
1330 remove ("polygons.txt");
1331 _cairo_contour_init (&stroker.path, 0);
1332 #endif
1333 _cairo_contour_init (&stroker.cw.contour, 1);
1334 _cairo_contour_init (&stroker.ccw.contour, -1);
1335 tolerance *= CAIRO_FIXED_ONE;
1336 tolerance *= tolerance;
1337 stroker.contour_tolerance = tolerance;
1338 stroker.polygon = polygon;
1340 status = _cairo_path_fixed_interpret (path,
1341 move_to,
1342 line_to,
1343 curve_to,
1344 close_path,
1345 &stroker);
1346 /* Cap the start and end of the final sub path as needed */
1347 if (likely (status == CAIRO_STATUS_SUCCESS))
1348 add_caps (&stroker);
1350 _cairo_contour_fini (&stroker.cw.contour);
1351 _cairo_contour_fini (&stroker.ccw.contour);
1352 if (stroker.pen.num_vertices)
1353 _cairo_pen_fini (&stroker.pen);
1355 #if DEBUG
1357 FILE *file = fopen ("polygons.txt", "a");
1358 _cairo_debug_print_polygon (file, polygon);
1359 fclose (file);
1361 #endif
1363 return status;