beta-0.89.2
[luatex.git] / source / libs / cairo / cairo-src / src / cairo-botor-scan-converter.c
blob515305bf24e31ba47c95998fa34a129270309e6c
1 /*
2 * Copyright © 2004 Carl Worth
3 * Copyright © 2006 Red Hat, Inc.
4 * Copyright © 2007 David Turner
5 * Copyright © 2008 M Joonas Pihlaja
6 * Copyright © 2008 Chris Wilson
7 * Copyright © 2009 Intel Corporation
9 * This library is free software; you can redistribute it and/or
10 * modify it either under the terms of the GNU Lesser General Public
11 * License version 2.1 as published by the Free Software Foundation
12 * (the "LGPL") or, at your option, under the terms of the Mozilla
13 * Public License Version 1.1 (the "MPL"). If you do not alter this
14 * notice, a recipient may use your version of this file under either
15 * the MPL or the LGPL.
17 * You should have received a copy of the LGPL along with this library
18 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
20 * You should have received a copy of the MPL along with this library
21 * in the file COPYING-MPL-1.1
23 * The contents of this file are subject to the Mozilla Public License
24 * Version 1.1 (the "License"); you may not use this file except in
25 * compliance with the License. You may obtain a copy of the License at
26 * http://www.mozilla.org/MPL/
28 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
29 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
30 * the specific language governing rights and limitations.
32 * The Original Code is the cairo graphics library.
34 * The Initial Developer of the Original Code is Carl Worth
36 * Contributor(s):
37 * Carl D. Worth <cworth@cworth.org>
38 * M Joonas Pihlaja <jpihlaja@cc.helsinki.fi>
39 * Chris Wilson <chris@chris-wilson.co.uk>
42 /* Provide definitions for standalone compilation */
43 #include "cairoint.h"
45 #include "cairo-error-private.h"
46 #include "cairo-list-inline.h"
47 #include "cairo-freelist-private.h"
48 #include "cairo-combsort-inline.h"
50 #include <setjmp.h>
52 #define STEP_X CAIRO_FIXED_ONE
53 #define STEP_Y CAIRO_FIXED_ONE
54 #define UNROLL3(x) x x x
56 #define STEP_XY (2*STEP_X*STEP_Y) /* Unit area in the step. */
57 #define AREA_TO_ALPHA(c) (((c)*255 + STEP_XY/2) / STEP_XY)
59 typedef struct _cairo_bo_intersect_ordinate {
60 int32_t ordinate;
61 enum { EXACT, INEXACT } exactness;
62 } cairo_bo_intersect_ordinate_t;
64 typedef struct _cairo_bo_intersect_point {
65 cairo_bo_intersect_ordinate_t x;
66 cairo_bo_intersect_ordinate_t y;
67 } cairo_bo_intersect_point_t;
69 struct quorem {
70 cairo_fixed_t quo;
71 cairo_fixed_t rem;
74 struct run {
75 struct run *next;
76 int sign;
77 cairo_fixed_t y;
80 typedef struct edge {
81 cairo_list_t link;
83 cairo_edge_t edge;
85 /* Current x coordinate and advancement.
86 * Initialised to the x coordinate of the top of the
87 * edge. The quotient is in cairo_fixed_t units and the
88 * remainder is mod dy in cairo_fixed_t units.
90 cairo_fixed_t dy;
91 struct quorem x;
92 struct quorem dxdy;
93 struct quorem dxdy_full;
95 cairo_bool_t vertical;
96 unsigned int flags;
98 int current_sign;
99 struct run *runs;
100 } edge_t;
102 enum {
103 START = 0x1,
104 STOP = 0x2,
107 /* the parent is always given by index/2 */
108 #define PQ_PARENT_INDEX(i) ((i) >> 1)
109 #define PQ_FIRST_ENTRY 1
111 /* left and right children are index * 2 and (index * 2) +1 respectively */
112 #define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
114 typedef enum {
115 EVENT_TYPE_STOP,
116 EVENT_TYPE_INTERSECTION,
117 EVENT_TYPE_START
118 } event_type_t;
120 typedef struct _event {
121 cairo_fixed_t y;
122 event_type_t type;
123 } event_t;
125 typedef struct _start_event {
126 cairo_fixed_t y;
127 event_type_t type;
128 edge_t *edge;
129 } start_event_t;
131 typedef struct _queue_event {
132 cairo_fixed_t y;
133 event_type_t type;
134 edge_t *e1;
135 edge_t *e2;
136 } queue_event_t;
138 typedef struct _pqueue {
139 int size, max_size;
141 event_t **elements;
142 event_t *elements_embedded[1024];
143 } pqueue_t;
145 struct cell {
146 struct cell *prev;
147 struct cell *next;
148 int x;
149 int uncovered_area;
150 int covered_height;
153 typedef struct _sweep_line {
154 cairo_list_t active;
155 cairo_list_t stopped;
156 cairo_list_t *insert_cursor;
157 cairo_bool_t is_vertical;
159 cairo_fixed_t current_row;
160 cairo_fixed_t current_subrow;
162 struct coverage {
163 struct cell head;
164 struct cell tail;
166 struct cell *cursor;
167 int count;
169 cairo_freepool_t pool;
170 } coverage;
172 struct event_queue {
173 pqueue_t pq;
174 event_t **start_events;
176 cairo_freepool_t pool;
177 } queue;
179 cairo_freepool_t runs;
181 jmp_buf unwind;
182 } sweep_line_t;
184 cairo_always_inline static struct quorem
185 floored_divrem (int a, int b)
187 struct quorem qr;
188 qr.quo = a/b;
189 qr.rem = a%b;
190 if ((a^b)<0 && qr.rem) {
191 qr.quo--;
192 qr.rem += b;
194 return qr;
197 static struct quorem
198 floored_muldivrem(int x, int a, int b)
200 struct quorem qr;
201 long long xa = (long long)x*a;
202 qr.quo = xa/b;
203 qr.rem = xa%b;
204 if ((xa>=0) != (b>=0) && qr.rem) {
205 qr.quo--;
206 qr.rem += b;
208 return qr;
211 static cairo_fixed_t
212 line_compute_intersection_x_for_y (const cairo_line_t *line,
213 cairo_fixed_t y)
215 cairo_fixed_t x, dy;
217 if (y == line->p1.y)
218 return line->p1.x;
219 if (y == line->p2.y)
220 return line->p2.x;
222 x = line->p1.x;
223 dy = line->p2.y - line->p1.y;
224 if (dy != 0) {
225 x += _cairo_fixed_mul_div_floor (y - line->p1.y,
226 line->p2.x - line->p1.x,
227 dy);
230 return x;
234 * We need to compare the x-coordinates of a pair of lines for a particular y,
235 * without loss of precision.
237 * The x-coordinate along an edge for a given y is:
238 * X = A_x + (Y - A_y) * A_dx / A_dy
240 * So the inequality we wish to test is:
241 * A_x + (Y - A_y) * A_dx / A_dy ∘ B_x + (Y - B_y) * B_dx / B_dy,
242 * where ∘ is our inequality operator.
244 * By construction, we know that A_dy and B_dy (and (Y - A_y), (Y - B_y)) are
245 * all positive, so we can rearrange it thus without causing a sign change:
246 * A_dy * B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx * A_dy
247 * - (Y - A_y) * A_dx * B_dy
249 * Given the assumption that all the deltas fit within 32 bits, we can compute
250 * this comparison directly using 128 bit arithmetic. For certain, but common,
251 * input we can reduce this down to a single 32 bit compare by inspecting the
252 * deltas.
254 * (And put the burden of the work on developing fast 128 bit ops, which are
255 * required throughout the tessellator.)
257 * See the similar discussion for _slope_compare().
259 static int
260 edges_compare_x_for_y_general (const cairo_edge_t *a,
261 const cairo_edge_t *b,
262 int32_t y)
264 /* XXX: We're assuming here that dx and dy will still fit in 32
265 * bits. That's not true in general as there could be overflow. We
266 * should prevent that before the tessellation algorithm
267 * begins.
269 int32_t dx;
270 int32_t adx, ady;
271 int32_t bdx, bdy;
272 enum {
273 HAVE_NONE = 0x0,
274 HAVE_DX = 0x1,
275 HAVE_ADX = 0x2,
276 HAVE_DX_ADX = HAVE_DX | HAVE_ADX,
277 HAVE_BDX = 0x4,
278 HAVE_DX_BDX = HAVE_DX | HAVE_BDX,
279 HAVE_ADX_BDX = HAVE_ADX | HAVE_BDX,
280 HAVE_ALL = HAVE_DX | HAVE_ADX | HAVE_BDX
281 } have_dx_adx_bdx = HAVE_ALL;
283 /* don't bother solving for abscissa if the edges' bounding boxes
284 * can be used to order them. */
286 int32_t amin, amax;
287 int32_t bmin, bmax;
288 if (a->line.p1.x < a->line.p2.x) {
289 amin = a->line.p1.x;
290 amax = a->line.p2.x;
291 } else {
292 amin = a->line.p2.x;
293 amax = a->line.p1.x;
295 if (b->line.p1.x < b->line.p2.x) {
296 bmin = b->line.p1.x;
297 bmax = b->line.p2.x;
298 } else {
299 bmin = b->line.p2.x;
300 bmax = b->line.p1.x;
302 if (amax < bmin) return -1;
303 if (amin > bmax) return +1;
306 ady = a->line.p2.y - a->line.p1.y;
307 adx = a->line.p2.x - a->line.p1.x;
308 if (adx == 0)
309 have_dx_adx_bdx &= ~HAVE_ADX;
311 bdy = b->line.p2.y - b->line.p1.y;
312 bdx = b->line.p2.x - b->line.p1.x;
313 if (bdx == 0)
314 have_dx_adx_bdx &= ~HAVE_BDX;
316 dx = a->line.p1.x - b->line.p1.x;
317 if (dx == 0)
318 have_dx_adx_bdx &= ~HAVE_DX;
320 #define L _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (ady, bdy), dx)
321 #define A _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (adx, bdy), y - a->line.p1.y)
322 #define B _cairo_int64x32_128_mul (_cairo_int32x32_64_mul (bdx, ady), y - b->line.p1.y)
323 switch (have_dx_adx_bdx) {
324 default:
325 case HAVE_NONE:
326 return 0;
327 case HAVE_DX:
328 /* A_dy * B_dy * (A_x - B_x) ∘ 0 */
329 return dx; /* ady * bdy is positive definite */
330 case HAVE_ADX:
331 /* 0 ∘ - (Y - A_y) * A_dx * B_dy */
332 return adx; /* bdy * (y - a->top.y) is positive definite */
333 case HAVE_BDX:
334 /* 0 ∘ (Y - B_y) * B_dx * A_dy */
335 return -bdx; /* ady * (y - b->top.y) is positive definite */
336 case HAVE_ADX_BDX:
337 /* 0 ∘ (Y - B_y) * B_dx * A_dy - (Y - A_y) * A_dx * B_dy */
338 if ((adx ^ bdx) < 0) {
339 return adx;
340 } else if (a->line.p1.y == b->line.p1.y) { /* common origin */
341 cairo_int64_t adx_bdy, bdx_ady;
343 /* ∴ A_dx * B_dy ∘ B_dx * A_dy */
345 adx_bdy = _cairo_int32x32_64_mul (adx, bdy);
346 bdx_ady = _cairo_int32x32_64_mul (bdx, ady);
348 return _cairo_int64_cmp (adx_bdy, bdx_ady);
349 } else
350 return _cairo_int128_cmp (A, B);
351 case HAVE_DX_ADX:
352 /* A_dy * (A_x - B_x) ∘ - (Y - A_y) * A_dx */
353 if ((-adx ^ dx) < 0) {
354 return dx;
355 } else {
356 cairo_int64_t ady_dx, dy_adx;
358 ady_dx = _cairo_int32x32_64_mul (ady, dx);
359 dy_adx = _cairo_int32x32_64_mul (a->line.p1.y - y, adx);
361 return _cairo_int64_cmp (ady_dx, dy_adx);
363 case HAVE_DX_BDX:
364 /* B_dy * (A_x - B_x) ∘ (Y - B_y) * B_dx */
365 if ((bdx ^ dx) < 0) {
366 return dx;
367 } else {
368 cairo_int64_t bdy_dx, dy_bdx;
370 bdy_dx = _cairo_int32x32_64_mul (bdy, dx);
371 dy_bdx = _cairo_int32x32_64_mul (y - b->line.p1.y, bdx);
373 return _cairo_int64_cmp (bdy_dx, dy_bdx);
375 case HAVE_ALL:
376 /* XXX try comparing (a->line.p2.x - b->line.p2.x) et al */
377 return _cairo_int128_cmp (L, _cairo_int128_sub (B, A));
379 #undef B
380 #undef A
381 #undef L
385 * We need to compare the x-coordinate of a line for a particular y wrt to a
386 * given x, without loss of precision.
388 * The x-coordinate along an edge for a given y is:
389 * X = A_x + (Y - A_y) * A_dx / A_dy
391 * So the inequality we wish to test is:
392 * A_x + (Y - A_y) * A_dx / A_dy ∘ X
393 * where ∘ is our inequality operator.
395 * By construction, we know that A_dy (and (Y - A_y)) are
396 * all positive, so we can rearrange it thus without causing a sign change:
397 * (Y - A_y) * A_dx ∘ (X - A_x) * A_dy
399 * Given the assumption that all the deltas fit within 32 bits, we can compute
400 * this comparison directly using 64 bit arithmetic.
402 * See the similar discussion for _slope_compare() and
403 * edges_compare_x_for_y_general().
405 static int
406 edge_compare_for_y_against_x (const cairo_edge_t *a,
407 int32_t y,
408 int32_t x)
410 int32_t adx, ady;
411 int32_t dx, dy;
412 cairo_int64_t L, R;
414 if (a->line.p1.x <= a->line.p2.x) {
415 if (x < a->line.p1.x)
416 return 1;
417 if (x > a->line.p2.x)
418 return -1;
419 } else {
420 if (x < a->line.p2.x)
421 return 1;
422 if (x > a->line.p1.x)
423 return -1;
426 adx = a->line.p2.x - a->line.p1.x;
427 dx = x - a->line.p1.x;
429 if (adx == 0)
430 return -dx;
431 if (dx == 0 || (adx ^ dx) < 0)
432 return adx;
434 dy = y - a->line.p1.y;
435 ady = a->line.p2.y - a->line.p1.y;
437 L = _cairo_int32x32_64_mul (dy, adx);
438 R = _cairo_int32x32_64_mul (dx, ady);
440 return _cairo_int64_cmp (L, R);
443 static int
444 edges_compare_x_for_y (const cairo_edge_t *a,
445 const cairo_edge_t *b,
446 int32_t y)
448 /* If the sweep-line is currently on an end-point of a line,
449 * then we know its precise x value (and considering that we often need to
450 * compare events at end-points, this happens frequently enough to warrant
451 * special casing).
453 enum {
454 HAVE_NEITHER = 0x0,
455 HAVE_AX = 0x1,
456 HAVE_BX = 0x2,
457 HAVE_BOTH = HAVE_AX | HAVE_BX
458 } have_ax_bx = HAVE_BOTH;
459 int32_t ax, bx;
461 /* XXX given we have x and dx? */
463 if (y == a->line.p1.y)
464 ax = a->line.p1.x;
465 else if (y == a->line.p2.y)
466 ax = a->line.p2.x;
467 else
468 have_ax_bx &= ~HAVE_AX;
470 if (y == b->line.p1.y)
471 bx = b->line.p1.x;
472 else if (y == b->line.p2.y)
473 bx = b->line.p2.x;
474 else
475 have_ax_bx &= ~HAVE_BX;
477 switch (have_ax_bx) {
478 default:
479 case HAVE_NEITHER:
480 return edges_compare_x_for_y_general (a, b, y);
481 case HAVE_AX:
482 return -edge_compare_for_y_against_x (b, y, ax);
483 case HAVE_BX:
484 return edge_compare_for_y_against_x (a, y, bx);
485 case HAVE_BOTH:
486 return ax - bx;
490 static inline int
491 slope_compare (const edge_t *a,
492 const edge_t *b)
494 cairo_int64_t L, R;
495 int cmp;
497 cmp = a->dxdy.quo - b->dxdy.quo;
498 if (cmp)
499 return cmp;
501 if (a->dxdy.rem == 0)
502 return -b->dxdy.rem;
503 if (b->dxdy.rem == 0)
504 return a->dxdy.rem;
506 L = _cairo_int32x32_64_mul (b->dy, a->dxdy.rem);
507 R = _cairo_int32x32_64_mul (a->dy, b->dxdy.rem);
508 return _cairo_int64_cmp (L, R);
511 static inline int
512 line_equal (const cairo_line_t *a, const cairo_line_t *b)
514 return a->p1.x == b->p1.x && a->p1.y == b->p1.y &&
515 a->p2.x == b->p2.x && a->p2.y == b->p2.y;
518 static inline int
519 sweep_line_compare_edges (const edge_t *a,
520 const edge_t *b,
521 cairo_fixed_t y)
523 int cmp;
525 if (line_equal (&a->edge.line, &b->edge.line))
526 return 0;
528 cmp = edges_compare_x_for_y (&a->edge, &b->edge, y);
529 if (cmp)
530 return cmp;
532 return slope_compare (a, b);
535 static inline cairo_int64_t
536 det32_64 (int32_t a, int32_t b,
537 int32_t c, int32_t d)
539 /* det = a * d - b * c */
540 return _cairo_int64_sub (_cairo_int32x32_64_mul (a, d),
541 _cairo_int32x32_64_mul (b, c));
544 static inline cairo_int128_t
545 det64x32_128 (cairo_int64_t a, int32_t b,
546 cairo_int64_t c, int32_t d)
548 /* det = a * d - b * c */
549 return _cairo_int128_sub (_cairo_int64x32_128_mul (a, d),
550 _cairo_int64x32_128_mul (c, b));
553 /* Compute the intersection of two lines as defined by two edges. The
554 * result is provided as a coordinate pair of 128-bit integers.
556 * Returns %CAIRO_BO_STATUS_INTERSECTION if there is an intersection or
557 * %CAIRO_BO_STATUS_PARALLEL if the two lines are exactly parallel.
559 static cairo_bool_t
560 intersect_lines (const edge_t *a, const edge_t *b,
561 cairo_bo_intersect_point_t *intersection)
563 cairo_int64_t a_det, b_det;
565 /* XXX: We're assuming here that dx and dy will still fit in 32
566 * bits. That's not true in general as there could be overflow. We
567 * should prevent that before the tessellation algorithm begins.
568 * What we're doing to mitigate this is to perform clamping in
569 * cairo_bo_tessellate_polygon().
571 int32_t dx1 = a->edge.line.p1.x - a->edge.line.p2.x;
572 int32_t dy1 = a->edge.line.p1.y - a->edge.line.p2.y;
574 int32_t dx2 = b->edge.line.p1.x - b->edge.line.p2.x;
575 int32_t dy2 = b->edge.line.p1.y - b->edge.line.p2.y;
577 cairo_int64_t den_det;
578 cairo_int64_t R;
579 cairo_quorem64_t qr;
581 den_det = det32_64 (dx1, dy1, dx2, dy2);
583 /* Q: Can we determine that the lines do not intersect (within range)
584 * much more cheaply than computing the intersection point i.e. by
585 * avoiding the division?
587 * X = ax + t * adx = bx + s * bdx;
588 * Y = ay + t * ady = by + s * bdy;
589 * ∴ t * (ady*bdx - bdy*adx) = bdx * (by - ay) + bdy * (ax - bx)
590 * => t * L = R
592 * Therefore we can reject any intersection (under the criteria for
593 * valid intersection events) if:
594 * L^R < 0 => t < 0, or
595 * L<R => t > 1
597 * (where top/bottom must at least extend to the line endpoints).
599 * A similar substitution can be performed for s, yielding:
600 * s * (ady*bdx - bdy*adx) = ady * (ax - bx) - adx * (ay - by)
602 R = det32_64 (dx2, dy2,
603 b->edge.line.p1.x - a->edge.line.p1.x,
604 b->edge.line.p1.y - a->edge.line.p1.y);
605 if (_cairo_int64_negative (den_det)) {
606 if (_cairo_int64_ge (den_det, R))
607 return FALSE;
608 } else {
609 if (_cairo_int64_le (den_det, R))
610 return FALSE;
613 R = det32_64 (dy1, dx1,
614 a->edge.line.p1.y - b->edge.line.p1.y,
615 a->edge.line.p1.x - b->edge.line.p1.x);
616 if (_cairo_int64_negative (den_det)) {
617 if (_cairo_int64_ge (den_det, R))
618 return FALSE;
619 } else {
620 if (_cairo_int64_le (den_det, R))
621 return FALSE;
624 /* We now know that the two lines should intersect within range. */
626 a_det = det32_64 (a->edge.line.p1.x, a->edge.line.p1.y,
627 a->edge.line.p2.x, a->edge.line.p2.y);
628 b_det = det32_64 (b->edge.line.p1.x, b->edge.line.p1.y,
629 b->edge.line.p2.x, b->edge.line.p2.y);
631 /* x = det (a_det, dx1, b_det, dx2) / den_det */
632 qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dx1,
633 b_det, dx2),
634 den_det);
635 if (_cairo_int64_eq (qr.rem, den_det))
636 return FALSE;
637 #if 0
638 intersection->x.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
639 #else
640 intersection->x.exactness = EXACT;
641 if (! _cairo_int64_is_zero (qr.rem)) {
642 if (_cairo_int64_negative (den_det) ^ _cairo_int64_negative (qr.rem))
643 qr.rem = _cairo_int64_negate (qr.rem);
644 qr.rem = _cairo_int64_mul (qr.rem, _cairo_int32_to_int64 (2));
645 if (_cairo_int64_ge (qr.rem, den_det)) {
646 qr.quo = _cairo_int64_add (qr.quo,
647 _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
648 } else
649 intersection->x.exactness = INEXACT;
651 #endif
652 intersection->x.ordinate = _cairo_int64_to_int32 (qr.quo);
654 /* y = det (a_det, dy1, b_det, dy2) / den_det */
655 qr = _cairo_int_96by64_32x64_divrem (det64x32_128 (a_det, dy1,
656 b_det, dy2),
657 den_det);
658 if (_cairo_int64_eq (qr.rem, den_det))
659 return FALSE;
660 #if 0
661 intersection->y.exactness = _cairo_int64_is_zero (qr.rem) ? EXACT : INEXACT;
662 #else
663 intersection->y.exactness = EXACT;
664 if (! _cairo_int64_is_zero (qr.rem)) {
665 /* compute ceiling away from zero */
666 qr.quo = _cairo_int64_add (qr.quo,
667 _cairo_int32_to_int64 (_cairo_int64_negative (qr.quo) ? -1 : 1));
668 intersection->y.exactness = INEXACT;
670 #endif
671 intersection->y.ordinate = _cairo_int64_to_int32 (qr.quo);
673 return TRUE;
676 static int
677 bo_intersect_ordinate_32_compare (int32_t a, int32_t b, int exactness)
679 int cmp;
681 /* First compare the quotient */
682 cmp = a - b;
683 if (cmp)
684 return cmp;
686 /* With quotient identical, if remainder is 0 then compare equal */
687 /* Otherwise, the non-zero remainder makes a > b */
688 return -(INEXACT == exactness);
691 /* Does the given edge contain the given point. The point must already
692 * be known to be contained within the line determined by the edge,
693 * (most likely the point results from an intersection of this edge
694 * with another).
696 * If we had exact arithmetic, then this function would simply be a
697 * matter of examining whether the y value of the point lies within
698 * the range of y values of the edge. But since intersection points
699 * are not exact due to being rounded to the nearest integer within
700 * the available precision, we must also examine the x value of the
701 * point.
703 * The definition of "contains" here is that the given intersection
704 * point will be seen by the sweep line after the start event for the
705 * given edge and before the stop event for the edge. See the comments
706 * in the implementation for more details.
708 static cairo_bool_t
709 bo_edge_contains_intersect_point (const edge_t *edge,
710 cairo_bo_intersect_point_t *point)
712 int cmp_top, cmp_bottom;
714 /* XXX: When running the actual algorithm, we don't actually need to
715 * compare against edge->top at all here, since any intersection above
716 * top is eliminated early via a slope comparison. We're leaving these
717 * here for now only for the sake of the quadratic-time intersection
718 * finder which needs them.
721 cmp_top = bo_intersect_ordinate_32_compare (point->y.ordinate,
722 edge->edge.top,
723 point->y.exactness);
724 if (cmp_top < 0)
725 return FALSE;
727 cmp_bottom = bo_intersect_ordinate_32_compare (point->y.ordinate,
728 edge->edge.bottom,
729 point->y.exactness);
730 if (cmp_bottom > 0)
731 return FALSE;
733 if (cmp_top > 0 && cmp_bottom < 0)
734 return TRUE;
736 /* At this stage, the point lies on the same y value as either
737 * edge->top or edge->bottom, so we have to examine the x value in
738 * order to properly determine containment. */
740 /* If the y value of the point is the same as the y value of the
741 * top of the edge, then the x value of the point must be greater
742 * to be considered as inside the edge. Similarly, if the y value
743 * of the point is the same as the y value of the bottom of the
744 * edge, then the x value of the point must be less to be
745 * considered as inside. */
747 if (cmp_top == 0) {
748 cairo_fixed_t top_x;
750 top_x = line_compute_intersection_x_for_y (&edge->edge.line,
751 edge->edge.top);
752 return bo_intersect_ordinate_32_compare (top_x, point->x.ordinate, point->x.exactness) < 0;
753 } else { /* cmp_bottom == 0 */
754 cairo_fixed_t bot_x;
756 bot_x = line_compute_intersection_x_for_y (&edge->edge.line,
757 edge->edge.bottom);
758 return bo_intersect_ordinate_32_compare (point->x.ordinate, bot_x, point->x.exactness) < 0;
762 static cairo_bool_t
763 edge_intersect (const edge_t *a,
764 const edge_t *b,
765 cairo_point_t *intersection)
767 cairo_bo_intersect_point_t quorem;
769 if (! intersect_lines (a, b, &quorem))
770 return FALSE;
772 if (a->edge.top != a->edge.line.p1.y || a->edge.bottom != a->edge.line.p2.y) {
773 if (! bo_edge_contains_intersect_point (a, &quorem))
774 return FALSE;
777 if (b->edge.top != b->edge.line.p1.y || b->edge.bottom != b->edge.line.p2.y) {
778 if (! bo_edge_contains_intersect_point (b, &quorem))
779 return FALSE;
782 /* Now that we've correctly compared the intersection point and
783 * determined that it lies within the edge, then we know that we
784 * no longer need any more bits of storage for the intersection
785 * than we do for our edge coordinates. We also no longer need the
786 * remainder from the division. */
787 intersection->x = quorem.x.ordinate;
788 intersection->y = quorem.y.ordinate;
790 return TRUE;
793 static inline int
794 event_compare (const event_t *a, const event_t *b)
796 return a->y - b->y;
799 static void
800 pqueue_init (pqueue_t *pq)
802 pq->max_size = ARRAY_LENGTH (pq->elements_embedded);
803 pq->size = 0;
805 pq->elements = pq->elements_embedded;
808 static void
809 pqueue_fini (pqueue_t *pq)
811 if (pq->elements != pq->elements_embedded)
812 free (pq->elements);
815 static cairo_bool_t
816 pqueue_grow (pqueue_t *pq)
818 event_t **new_elements;
819 pq->max_size *= 2;
821 if (pq->elements == pq->elements_embedded) {
822 new_elements = _cairo_malloc_ab (pq->max_size,
823 sizeof (event_t *));
824 if (unlikely (new_elements == NULL))
825 return FALSE;
827 memcpy (new_elements, pq->elements_embedded,
828 sizeof (pq->elements_embedded));
829 } else {
830 new_elements = _cairo_realloc_ab (pq->elements,
831 pq->max_size,
832 sizeof (event_t *));
833 if (unlikely (new_elements == NULL))
834 return FALSE;
837 pq->elements = new_elements;
838 return TRUE;
841 static inline void
842 pqueue_push (sweep_line_t *sweep_line, event_t *event)
844 event_t **elements;
845 int i, parent;
847 if (unlikely (sweep_line->queue.pq.size + 1 == sweep_line->queue.pq.max_size)) {
848 if (unlikely (! pqueue_grow (&sweep_line->queue.pq))) {
849 longjmp (sweep_line->unwind,
850 _cairo_error (CAIRO_STATUS_NO_MEMORY));
854 elements = sweep_line->queue.pq.elements;
855 for (i = ++sweep_line->queue.pq.size;
856 i != PQ_FIRST_ENTRY &&
857 event_compare (event,
858 elements[parent = PQ_PARENT_INDEX (i)]) < 0;
859 i = parent)
861 elements[i] = elements[parent];
864 elements[i] = event;
867 static inline void
868 pqueue_pop (pqueue_t *pq)
870 event_t **elements = pq->elements;
871 event_t *tail;
872 int child, i;
874 tail = elements[pq->size--];
875 if (pq->size == 0) {
876 elements[PQ_FIRST_ENTRY] = NULL;
877 return;
880 for (i = PQ_FIRST_ENTRY;
881 (child = PQ_LEFT_CHILD_INDEX (i)) <= pq->size;
882 i = child)
884 if (child != pq->size &&
885 event_compare (elements[child+1],
886 elements[child]) < 0)
888 child++;
891 if (event_compare (elements[child], tail) >= 0)
892 break;
894 elements[i] = elements[child];
896 elements[i] = tail;
899 static inline void
900 event_insert (sweep_line_t *sweep_line,
901 event_type_t type,
902 edge_t *e1,
903 edge_t *e2,
904 cairo_fixed_t y)
906 queue_event_t *event;
908 event = _cairo_freepool_alloc (&sweep_line->queue.pool);
909 if (unlikely (event == NULL)) {
910 longjmp (sweep_line->unwind,
911 _cairo_error (CAIRO_STATUS_NO_MEMORY));
914 event->y = y;
915 event->type = type;
916 event->e1 = e1;
917 event->e2 = e2;
919 pqueue_push (sweep_line, (event_t *) event);
922 static void
923 event_delete (sweep_line_t *sweep_line,
924 event_t *event)
926 _cairo_freepool_free (&sweep_line->queue.pool, event);
929 static inline event_t *
930 event_next (sweep_line_t *sweep_line)
932 event_t *event, *cmp;
934 event = sweep_line->queue.pq.elements[PQ_FIRST_ENTRY];
935 cmp = *sweep_line->queue.start_events;
936 if (event == NULL ||
937 (cmp != NULL && event_compare (cmp, event) < 0))
939 event = cmp;
940 sweep_line->queue.start_events++;
942 else
944 pqueue_pop (&sweep_line->queue.pq);
947 return event;
950 CAIRO_COMBSORT_DECLARE (start_event_sort, event_t *, event_compare)
952 static inline void
953 event_insert_stop (sweep_line_t *sweep_line,
954 edge_t *edge)
956 event_insert (sweep_line,
957 EVENT_TYPE_STOP,
958 edge, NULL,
959 edge->edge.bottom);
962 static inline void
963 event_insert_if_intersect_below_current_y (sweep_line_t *sweep_line,
964 edge_t *left,
965 edge_t *right)
967 cairo_point_t intersection;
969 /* start points intersect */
970 if (left->edge.line.p1.x == right->edge.line.p1.x &&
971 left->edge.line.p1.y == right->edge.line.p1.y)
973 return;
976 /* end points intersect, process DELETE events first */
977 if (left->edge.line.p2.x == right->edge.line.p2.x &&
978 left->edge.line.p2.y == right->edge.line.p2.y)
980 return;
983 if (slope_compare (left, right) <= 0)
984 return;
986 if (! edge_intersect (left, right, &intersection))
987 return;
989 event_insert (sweep_line,
990 EVENT_TYPE_INTERSECTION,
991 left, right,
992 intersection.y);
995 static inline edge_t *
996 link_to_edge (cairo_list_t *link)
998 return (edge_t *) link;
1001 static void
1002 sweep_line_insert (sweep_line_t *sweep_line,
1003 edge_t *edge)
1005 cairo_list_t *pos;
1006 cairo_fixed_t y = sweep_line->current_subrow;
1008 pos = sweep_line->insert_cursor;
1009 if (pos == &sweep_line->active)
1010 pos = sweep_line->active.next;
1011 if (pos != &sweep_line->active) {
1012 int cmp;
1014 cmp = sweep_line_compare_edges (link_to_edge (pos),
1015 edge,
1017 if (cmp < 0) {
1018 while (pos->next != &sweep_line->active &&
1019 sweep_line_compare_edges (link_to_edge (pos->next),
1020 edge,
1021 y) < 0)
1023 pos = pos->next;
1025 } else if (cmp > 0) {
1026 do {
1027 pos = pos->prev;
1028 } while (pos != &sweep_line->active &&
1029 sweep_line_compare_edges (link_to_edge (pos),
1030 edge,
1031 y) > 0);
1034 cairo_list_add (&edge->link, pos);
1035 sweep_line->insert_cursor = &edge->link;
1038 inline static void
1039 coverage_rewind (struct coverage *cells)
1041 cells->cursor = &cells->head;
1044 static void
1045 coverage_init (struct coverage *cells)
1047 _cairo_freepool_init (&cells->pool,
1048 sizeof (struct cell));
1049 cells->head.prev = NULL;
1050 cells->head.next = &cells->tail;
1051 cells->head.x = INT_MIN;
1052 cells->tail.prev = &cells->head;
1053 cells->tail.next = NULL;
1054 cells->tail.x = INT_MAX;
1055 cells->count = 0;
1056 coverage_rewind (cells);
1059 static void
1060 coverage_fini (struct coverage *cells)
1062 _cairo_freepool_fini (&cells->pool);
1065 inline static void
1066 coverage_reset (struct coverage *cells)
1068 cells->head.next = &cells->tail;
1069 cells->tail.prev = &cells->head;
1070 cells->count = 0;
1071 _cairo_freepool_reset (&cells->pool);
1072 coverage_rewind (cells);
1075 static struct cell *
1076 coverage_alloc (sweep_line_t *sweep_line,
1077 struct cell *tail,
1078 int x)
1080 struct cell *cell;
1082 cell = _cairo_freepool_alloc (&sweep_line->coverage.pool);
1083 if (unlikely (NULL == cell)) {
1084 longjmp (sweep_line->unwind,
1085 _cairo_error (CAIRO_STATUS_NO_MEMORY));
1088 tail->prev->next = cell;
1089 cell->prev = tail->prev;
1090 cell->next = tail;
1091 tail->prev = cell;
1092 cell->x = x;
1093 cell->uncovered_area = 0;
1094 cell->covered_height = 0;
1095 sweep_line->coverage.count++;
1096 return cell;
1099 inline static struct cell *
1100 coverage_find (sweep_line_t *sweep_line, int x)
1102 struct cell *cell;
1104 cell = sweep_line->coverage.cursor;
1105 if (unlikely (cell->x > x)) {
1106 do {
1107 if (cell->prev->x < x)
1108 break;
1109 cell = cell->prev;
1110 } while (TRUE);
1111 } else {
1112 if (cell->x == x)
1113 return cell;
1115 do {
1116 UNROLL3({
1117 cell = cell->next;
1118 if (cell->x >= x)
1119 break;
1121 } while (TRUE);
1124 if (cell->x != x)
1125 cell = coverage_alloc (sweep_line, cell, x);
1127 return sweep_line->coverage.cursor = cell;
1130 static void
1131 coverage_render_cells (sweep_line_t *sweep_line,
1132 cairo_fixed_t left, cairo_fixed_t right,
1133 cairo_fixed_t y1, cairo_fixed_t y2,
1134 int sign)
1136 int fx1, fx2;
1137 int ix1, ix2;
1138 int dx, dy;
1140 /* Orient the edge left-to-right. */
1141 dx = right - left;
1142 if (dx >= 0) {
1143 ix1 = _cairo_fixed_integer_part (left);
1144 fx1 = _cairo_fixed_fractional_part (left);
1146 ix2 = _cairo_fixed_integer_part (right);
1147 fx2 = _cairo_fixed_fractional_part (right);
1149 dy = y2 - y1;
1150 } else {
1151 ix1 = _cairo_fixed_integer_part (right);
1152 fx1 = _cairo_fixed_fractional_part (right);
1154 ix2 = _cairo_fixed_integer_part (left);
1155 fx2 = _cairo_fixed_fractional_part (left);
1157 dx = -dx;
1158 sign = -sign;
1159 dy = y1 - y2;
1160 y1 = y2 - dy;
1161 y2 = y1 + dy;
1164 /* Add coverage for all pixels [ix1,ix2] on this row crossed
1165 * by the edge. */
1167 struct quorem y = floored_divrem ((STEP_X - fx1)*dy, dx);
1168 struct cell *cell;
1170 cell = sweep_line->coverage.cursor;
1171 if (cell->x != ix1) {
1172 if (unlikely (cell->x > ix1)) {
1173 do {
1174 if (cell->prev->x < ix1)
1175 break;
1176 cell = cell->prev;
1177 } while (TRUE);
1178 } else do {
1179 UNROLL3({
1180 if (cell->x >= ix1)
1181 break;
1182 cell = cell->next;
1184 } while (TRUE);
1186 if (cell->x != ix1)
1187 cell = coverage_alloc (sweep_line, cell, ix1);
1190 cell->uncovered_area += sign * y.quo * (STEP_X + fx1);
1191 cell->covered_height += sign * y.quo;
1192 y.quo += y1;
1194 cell = cell->next;
1195 if (cell->x != ++ix1)
1196 cell = coverage_alloc (sweep_line, cell, ix1);
1197 if (ix1 < ix2) {
1198 struct quorem dydx_full = floored_divrem (STEP_X*dy, dx);
1200 do {
1201 cairo_fixed_t y_skip = dydx_full.quo;
1202 y.rem += dydx_full.rem;
1203 if (y.rem >= dx) {
1204 ++y_skip;
1205 y.rem -= dx;
1208 y.quo += y_skip;
1210 y_skip *= sign;
1211 cell->covered_height += y_skip;
1212 cell->uncovered_area += y_skip*STEP_X;
1214 cell = cell->next;
1215 if (cell->x != ++ix1)
1216 cell = coverage_alloc (sweep_line, cell, ix1);
1217 } while (ix1 != ix2);
1219 cell->uncovered_area += sign*(y2 - y.quo)*fx2;
1220 cell->covered_height += sign*(y2 - y.quo);
1221 sweep_line->coverage.cursor = cell;
1225 inline static void
1226 full_inc_edge (edge_t *edge)
1228 edge->x.quo += edge->dxdy_full.quo;
1229 edge->x.rem += edge->dxdy_full.rem;
1230 if (edge->x.rem >= 0) {
1231 ++edge->x.quo;
1232 edge->x.rem -= edge->dy;
1236 static void
1237 full_add_edge (sweep_line_t *sweep_line, edge_t *edge, int sign)
1239 struct cell *cell;
1240 cairo_fixed_t x1, x2;
1241 int ix1, ix2;
1242 int frac;
1244 edge->current_sign = sign;
1246 ix1 = _cairo_fixed_integer_part (edge->x.quo);
1248 if (edge->vertical) {
1249 frac = _cairo_fixed_fractional_part (edge->x.quo);
1250 cell = coverage_find (sweep_line, ix1);
1251 cell->covered_height += sign * STEP_Y;
1252 cell->uncovered_area += sign * 2 * frac * STEP_Y;
1253 return;
1256 x1 = edge->x.quo;
1257 full_inc_edge (edge);
1258 x2 = edge->x.quo;
1260 ix2 = _cairo_fixed_integer_part (edge->x.quo);
1262 /* Edge is entirely within a column? */
1263 if (likely (ix1 == ix2)) {
1264 frac = _cairo_fixed_fractional_part (x1) +
1265 _cairo_fixed_fractional_part (x2);
1266 cell = coverage_find (sweep_line, ix1);
1267 cell->covered_height += sign * STEP_Y;
1268 cell->uncovered_area += sign * frac * STEP_Y;
1269 return;
1272 coverage_render_cells (sweep_line, x1, x2, 0, STEP_Y, sign);
1275 static void
1276 full_nonzero (sweep_line_t *sweep_line)
1278 cairo_list_t *pos;
1280 sweep_line->is_vertical = TRUE;
1281 pos = sweep_line->active.next;
1282 do {
1283 edge_t *left = link_to_edge (pos), *right;
1284 int winding = left->edge.dir;
1286 sweep_line->is_vertical &= left->vertical;
1288 pos = left->link.next;
1289 do {
1290 if (unlikely (pos == &sweep_line->active)) {
1291 full_add_edge (sweep_line, left, +1);
1292 return;
1295 right = link_to_edge (pos);
1296 pos = pos->next;
1297 sweep_line->is_vertical &= right->vertical;
1299 winding += right->edge.dir;
1300 if (0 == winding) {
1301 if (pos == &sweep_line->active ||
1302 link_to_edge (pos)->x.quo != right->x.quo)
1304 break;
1308 if (! right->vertical)
1309 full_inc_edge (right);
1310 } while (TRUE);
1312 full_add_edge (sweep_line, left, +1);
1313 full_add_edge (sweep_line, right, -1);
1314 } while (pos != &sweep_line->active);
1317 static void
1318 full_evenodd (sweep_line_t *sweep_line)
1320 cairo_list_t *pos;
1322 sweep_line->is_vertical = TRUE;
1323 pos = sweep_line->active.next;
1324 do {
1325 edge_t *left = link_to_edge (pos), *right;
1326 int winding = 0;
1328 sweep_line->is_vertical &= left->vertical;
1330 pos = left->link.next;
1331 do {
1332 if (pos == &sweep_line->active) {
1333 full_add_edge (sweep_line, left, +1);
1334 return;
1337 right = link_to_edge (pos);
1338 pos = pos->next;
1339 sweep_line->is_vertical &= right->vertical;
1341 if (++winding & 1) {
1342 if (pos == &sweep_line->active ||
1343 link_to_edge (pos)->x.quo != right->x.quo)
1345 break;
1349 if (! right->vertical)
1350 full_inc_edge (right);
1351 } while (TRUE);
1353 full_add_edge (sweep_line, left, +1);
1354 full_add_edge (sweep_line, right, -1);
1355 } while (pos != &sweep_line->active);
1358 static void
1359 render_rows (cairo_botor_scan_converter_t *self,
1360 sweep_line_t *sweep_line,
1361 int y, int height,
1362 cairo_span_renderer_t *renderer)
1364 cairo_half_open_span_t spans_stack[CAIRO_STACK_ARRAY_LENGTH (cairo_half_open_span_t)];
1365 cairo_half_open_span_t *spans = spans_stack;
1366 struct cell *cell;
1367 int prev_x, cover;
1368 int num_spans;
1369 cairo_status_t status;
1371 if (unlikely (sweep_line->coverage.count == 0)) {
1372 status = renderer->render_rows (renderer, y, height, NULL, 0);
1373 if (unlikely (status))
1374 longjmp (sweep_line->unwind, status);
1375 return;
1378 /* Allocate enough spans for the row. */
1380 num_spans = 2*sweep_line->coverage.count+2;
1381 if (unlikely (num_spans > ARRAY_LENGTH (spans_stack))) {
1382 spans = _cairo_malloc_ab (num_spans, sizeof (cairo_half_open_span_t));
1383 if (unlikely (spans == NULL)) {
1384 longjmp (sweep_line->unwind,
1385 _cairo_error (CAIRO_STATUS_NO_MEMORY));
1389 /* Form the spans from the coverage and areas. */
1390 num_spans = 0;
1391 prev_x = self->xmin;
1392 cover = 0;
1393 cell = sweep_line->coverage.head.next;
1394 do {
1395 int x = cell->x;
1396 int area;
1398 if (x > prev_x) {
1399 spans[num_spans].x = prev_x;
1400 spans[num_spans].inverse = 0;
1401 spans[num_spans].coverage = AREA_TO_ALPHA (cover);
1402 ++num_spans;
1405 cover += cell->covered_height*STEP_X*2;
1406 area = cover - cell->uncovered_area;
1408 spans[num_spans].x = x;
1409 spans[num_spans].coverage = AREA_TO_ALPHA (area);
1410 ++num_spans;
1412 prev_x = x + 1;
1413 } while ((cell = cell->next) != &sweep_line->coverage.tail);
1415 if (prev_x <= self->xmax) {
1416 spans[num_spans].x = prev_x;
1417 spans[num_spans].inverse = 0;
1418 spans[num_spans].coverage = AREA_TO_ALPHA (cover);
1419 ++num_spans;
1422 if (cover && prev_x < self->xmax) {
1423 spans[num_spans].x = self->xmax;
1424 spans[num_spans].inverse = 1;
1425 spans[num_spans].coverage = 0;
1426 ++num_spans;
1429 status = renderer->render_rows (renderer, y, height, spans, num_spans);
1431 if (unlikely (spans != spans_stack))
1432 free (spans);
1434 coverage_reset (&sweep_line->coverage);
1436 if (unlikely (status))
1437 longjmp (sweep_line->unwind, status);
1440 static void
1441 full_repeat (sweep_line_t *sweep)
1443 edge_t *edge;
1445 cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
1446 if (edge->current_sign)
1447 full_add_edge (sweep, edge, edge->current_sign);
1448 else if (! edge->vertical)
1449 full_inc_edge (edge);
1453 static void
1454 full_reset (sweep_line_t *sweep)
1456 edge_t *edge;
1458 cairo_list_foreach_entry (edge, edge_t, &sweep->active, link)
1459 edge->current_sign = 0;
1462 static void
1463 full_step (cairo_botor_scan_converter_t *self,
1464 sweep_line_t *sweep_line,
1465 cairo_fixed_t row,
1466 cairo_span_renderer_t *renderer)
1468 int top, bottom;
1470 top = _cairo_fixed_integer_part (sweep_line->current_row);
1471 bottom = _cairo_fixed_integer_part (row);
1472 if (cairo_list_is_empty (&sweep_line->active)) {
1473 cairo_status_t status;
1475 status = renderer->render_rows (renderer, top, bottom - top, NULL, 0);
1476 if (unlikely (status))
1477 longjmp (sweep_line->unwind, status);
1479 return;
1482 if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
1483 full_nonzero (sweep_line);
1484 else
1485 full_evenodd (sweep_line);
1487 if (sweep_line->is_vertical || bottom == top + 1) {
1488 render_rows (self, sweep_line, top, bottom - top, renderer);
1489 full_reset (sweep_line);
1490 return;
1493 render_rows (self, sweep_line, top++, 1, renderer);
1494 do {
1495 full_repeat (sweep_line);
1496 render_rows (self, sweep_line, top, 1, renderer);
1497 } while (++top != bottom);
1499 full_reset (sweep_line);
1502 cairo_always_inline static void
1503 sub_inc_edge (edge_t *edge,
1504 cairo_fixed_t height)
1506 if (height == 1) {
1507 edge->x.quo += edge->dxdy.quo;
1508 edge->x.rem += edge->dxdy.rem;
1509 if (edge->x.rem >= 0) {
1510 ++edge->x.quo;
1511 edge->x.rem -= edge->dy;
1513 } else {
1514 edge->x.quo += height * edge->dxdy.quo;
1515 edge->x.rem += height * edge->dxdy.rem;
1516 if (edge->x.rem >= 0) {
1517 int carry = edge->x.rem / edge->dy + 1;
1518 edge->x.quo += carry;
1519 edge->x.rem -= carry * edge->dy;
1524 static void
1525 sub_add_run (sweep_line_t *sweep_line, edge_t *edge, int y, int sign)
1527 struct run *run;
1529 run = _cairo_freepool_alloc (&sweep_line->runs);
1530 if (unlikely (run == NULL))
1531 longjmp (sweep_line->unwind, _cairo_error (CAIRO_STATUS_NO_MEMORY));
1533 run->y = y;
1534 run->sign = sign;
1535 run->next = edge->runs;
1536 edge->runs = run;
1538 edge->current_sign = sign;
1541 inline static cairo_bool_t
1542 edges_coincident (edge_t *left, edge_t *right, cairo_fixed_t y)
1544 /* XXX is compare_x_for_y() worth executing during sub steps? */
1545 return line_equal (&left->edge.line, &right->edge.line);
1546 //edges_compare_x_for_y (&left->edge, &right->edge, y) >= 0;
1549 static void
1550 sub_nonzero (sweep_line_t *sweep_line)
1552 cairo_fixed_t y = sweep_line->current_subrow;
1553 cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
1554 cairo_list_t *pos;
1556 pos = sweep_line->active.next;
1557 do {
1558 edge_t *left = link_to_edge (pos), *right;
1559 int winding = left->edge.dir;
1561 pos = left->link.next;
1562 do {
1563 if (unlikely (pos == &sweep_line->active)) {
1564 if (left->current_sign != +1)
1565 sub_add_run (sweep_line, left, fy, +1);
1566 return;
1569 right = link_to_edge (pos);
1570 pos = pos->next;
1572 winding += right->edge.dir;
1573 if (0 == winding) {
1574 if (pos == &sweep_line->active ||
1575 ! edges_coincident (right, link_to_edge (pos), y))
1577 break;
1581 if (right->current_sign)
1582 sub_add_run (sweep_line, right, fy, 0);
1583 } while (TRUE);
1585 if (left->current_sign != +1)
1586 sub_add_run (sweep_line, left, fy, +1);
1587 if (right->current_sign != -1)
1588 sub_add_run (sweep_line, right, fy, -1);
1589 } while (pos != &sweep_line->active);
1592 static void
1593 sub_evenodd (sweep_line_t *sweep_line)
1595 cairo_fixed_t y = sweep_line->current_subrow;
1596 cairo_fixed_t fy = _cairo_fixed_fractional_part (y);
1597 cairo_list_t *pos;
1599 pos = sweep_line->active.next;
1600 do {
1601 edge_t *left = link_to_edge (pos), *right;
1602 int winding = 0;
1604 pos = left->link.next;
1605 do {
1606 if (unlikely (pos == &sweep_line->active)) {
1607 if (left->current_sign != +1)
1608 sub_add_run (sweep_line, left, fy, +1);
1609 return;
1612 right = link_to_edge (pos);
1613 pos = pos->next;
1615 if (++winding & 1) {
1616 if (pos == &sweep_line->active ||
1617 ! edges_coincident (right, link_to_edge (pos), y))
1619 break;
1623 if (right->current_sign)
1624 sub_add_run (sweep_line, right, fy, 0);
1625 } while (TRUE);
1627 if (left->current_sign != +1)
1628 sub_add_run (sweep_line, left, fy, +1);
1629 if (right->current_sign != -1)
1630 sub_add_run (sweep_line, right, fy, -1);
1631 } while (pos != &sweep_line->active);
1634 cairo_always_inline static void
1635 sub_step (cairo_botor_scan_converter_t *self,
1636 sweep_line_t *sweep_line)
1638 if (cairo_list_is_empty (&sweep_line->active))
1639 return;
1641 if (self->fill_rule == CAIRO_FILL_RULE_WINDING)
1642 sub_nonzero (sweep_line);
1643 else
1644 sub_evenodd (sweep_line);
1647 static void
1648 coverage_render_runs (sweep_line_t *sweep, edge_t *edge,
1649 cairo_fixed_t y1, cairo_fixed_t y2)
1651 struct run tail;
1652 struct run *run = &tail;
1654 tail.next = NULL;
1655 tail.y = y2;
1657 /* Order the runs top->bottom */
1658 while (edge->runs) {
1659 struct run *r;
1661 r = edge->runs;
1662 edge->runs = r->next;
1663 r->next = run;
1664 run = r;
1667 if (run->y > y1)
1668 sub_inc_edge (edge, run->y - y1);
1670 do {
1671 cairo_fixed_t x1, x2;
1673 y1 = run->y;
1674 y2 = run->next->y;
1676 x1 = edge->x.quo;
1677 if (y2 - y1 == STEP_Y)
1678 full_inc_edge (edge);
1679 else
1680 sub_inc_edge (edge, y2 - y1);
1681 x2 = edge->x.quo;
1683 if (run->sign) {
1684 int ix1, ix2;
1686 ix1 = _cairo_fixed_integer_part (x1);
1687 ix2 = _cairo_fixed_integer_part (x2);
1689 /* Edge is entirely within a column? */
1690 if (likely (ix1 == ix2)) {
1691 struct cell *cell;
1692 int frac;
1694 frac = _cairo_fixed_fractional_part (x1) +
1695 _cairo_fixed_fractional_part (x2);
1696 cell = coverage_find (sweep, ix1);
1697 cell->covered_height += run->sign * (y2 - y1);
1698 cell->uncovered_area += run->sign * (y2 - y1) * frac;
1699 } else {
1700 coverage_render_cells (sweep, x1, x2, y1, y2, run->sign);
1704 run = run->next;
1705 } while (run->next != NULL);
1708 static void
1709 coverage_render_vertical_runs (sweep_line_t *sweep, edge_t *edge, cairo_fixed_t y2)
1711 struct cell *cell;
1712 struct run *run;
1713 int height = 0;
1715 for (run = edge->runs; run != NULL; run = run->next) {
1716 if (run->sign)
1717 height += run->sign * (y2 - run->y);
1718 y2 = run->y;
1721 cell = coverage_find (sweep, _cairo_fixed_integer_part (edge->x.quo));
1722 cell->covered_height += height;
1723 cell->uncovered_area += 2 * _cairo_fixed_fractional_part (edge->x.quo) * height;
1726 cairo_always_inline static void
1727 sub_emit (cairo_botor_scan_converter_t *self,
1728 sweep_line_t *sweep,
1729 cairo_span_renderer_t *renderer)
1731 edge_t *edge;
1733 sub_step (self, sweep);
1735 /* convert the runs into coverages */
1737 cairo_list_foreach_entry (edge, edge_t, &sweep->active, link) {
1738 if (edge->runs == NULL) {
1739 if (! edge->vertical) {
1740 if (edge->flags & START) {
1741 sub_inc_edge (edge,
1742 STEP_Y - _cairo_fixed_fractional_part (edge->edge.top));
1743 edge->flags &= ~START;
1744 } else
1745 full_inc_edge (edge);
1747 } else {
1748 if (edge->vertical) {
1749 coverage_render_vertical_runs (sweep, edge, STEP_Y);
1750 } else {
1751 int y1 = 0;
1752 if (edge->flags & START) {
1753 y1 = _cairo_fixed_fractional_part (edge->edge.top);
1754 edge->flags &= ~START;
1756 coverage_render_runs (sweep, edge, y1, STEP_Y);
1759 edge->current_sign = 0;
1760 edge->runs = NULL;
1763 cairo_list_foreach_entry (edge, edge_t, &sweep->stopped, link) {
1764 int y2 = _cairo_fixed_fractional_part (edge->edge.bottom);
1765 if (edge->vertical) {
1766 coverage_render_vertical_runs (sweep, edge, y2);
1767 } else {
1768 int y1 = 0;
1769 if (edge->flags & START)
1770 y1 = _cairo_fixed_fractional_part (edge->edge.top);
1771 coverage_render_runs (sweep, edge, y1, y2);
1774 cairo_list_init (&sweep->stopped);
1776 _cairo_freepool_reset (&sweep->runs);
1778 render_rows (self, sweep,
1779 _cairo_fixed_integer_part (sweep->current_row), 1,
1780 renderer);
1783 static void
1784 sweep_line_init (sweep_line_t *sweep_line,
1785 event_t **start_events,
1786 int num_events)
1788 cairo_list_init (&sweep_line->active);
1789 cairo_list_init (&sweep_line->stopped);
1790 sweep_line->insert_cursor = &sweep_line->active;
1792 sweep_line->current_row = INT32_MIN;
1793 sweep_line->current_subrow = INT32_MIN;
1795 coverage_init (&sweep_line->coverage);
1796 _cairo_freepool_init (&sweep_line->runs, sizeof (struct run));
1798 start_event_sort (start_events, num_events);
1799 start_events[num_events] = NULL;
1801 sweep_line->queue.start_events = start_events;
1803 _cairo_freepool_init (&sweep_line->queue.pool,
1804 sizeof (queue_event_t));
1805 pqueue_init (&sweep_line->queue.pq);
1806 sweep_line->queue.pq.elements[PQ_FIRST_ENTRY] = NULL;
1809 static void
1810 sweep_line_delete (sweep_line_t *sweep_line,
1811 edge_t *edge)
1813 if (sweep_line->insert_cursor == &edge->link)
1814 sweep_line->insert_cursor = edge->link.prev;
1816 cairo_list_del (&edge->link);
1817 if (edge->runs)
1818 cairo_list_add_tail (&edge->link, &sweep_line->stopped);
1819 edge->flags |= STOP;
1822 static void
1823 sweep_line_swap (sweep_line_t *sweep_line,
1824 edge_t *left,
1825 edge_t *right)
1827 right->link.prev = left->link.prev;
1828 left->link.next = right->link.next;
1829 right->link.next = &left->link;
1830 left->link.prev = &right->link;
1831 left->link.next->prev = &left->link;
1832 right->link.prev->next = &right->link;
1835 static void
1836 sweep_line_fini (sweep_line_t *sweep_line)
1838 pqueue_fini (&sweep_line->queue.pq);
1839 _cairo_freepool_fini (&sweep_line->queue.pool);
1840 coverage_fini (&sweep_line->coverage);
1841 _cairo_freepool_fini (&sweep_line->runs);
1844 static cairo_status_t
1845 botor_generate (cairo_botor_scan_converter_t *self,
1846 event_t **start_events,
1847 cairo_span_renderer_t *renderer)
1849 cairo_status_t status;
1850 sweep_line_t sweep_line;
1851 cairo_fixed_t ybot;
1852 event_t *event;
1853 cairo_list_t *left, *right;
1854 edge_t *e1, *e2;
1855 int bottom;
1857 sweep_line_init (&sweep_line, start_events, self->num_edges);
1858 if ((status = setjmp (sweep_line.unwind)))
1859 goto unwind;
1861 ybot = self->extents.p2.y;
1862 sweep_line.current_subrow = self->extents.p1.y;
1863 sweep_line.current_row = _cairo_fixed_floor (self->extents.p1.y);
1864 event = *sweep_line.queue.start_events++;
1865 do {
1866 /* Can we process a full step in one go? */
1867 if (event->y >= sweep_line.current_row + STEP_Y) {
1868 bottom = _cairo_fixed_floor (event->y);
1869 full_step (self, &sweep_line, bottom, renderer);
1870 sweep_line.current_row = bottom;
1871 sweep_line.current_subrow = bottom;
1874 do {
1875 if (event->y > sweep_line.current_subrow) {
1876 sub_step (self, &sweep_line);
1877 sweep_line.current_subrow = event->y;
1880 do {
1881 /* Update the active list using Bentley-Ottmann */
1882 switch (event->type) {
1883 case EVENT_TYPE_START:
1884 e1 = ((start_event_t *) event)->edge;
1886 sweep_line_insert (&sweep_line, e1);
1887 event_insert_stop (&sweep_line, e1);
1889 left = e1->link.prev;
1890 right = e1->link.next;
1892 if (left != &sweep_line.active) {
1893 event_insert_if_intersect_below_current_y (&sweep_line,
1894 link_to_edge (left), e1);
1897 if (right != &sweep_line.active) {
1898 event_insert_if_intersect_below_current_y (&sweep_line,
1899 e1, link_to_edge (right));
1902 break;
1904 case EVENT_TYPE_STOP:
1905 e1 = ((queue_event_t *) event)->e1;
1906 event_delete (&sweep_line, event);
1908 left = e1->link.prev;
1909 right = e1->link.next;
1911 sweep_line_delete (&sweep_line, e1);
1913 if (left != &sweep_line.active &&
1914 right != &sweep_line.active)
1916 event_insert_if_intersect_below_current_y (&sweep_line,
1917 link_to_edge (left),
1918 link_to_edge (right));
1921 break;
1923 case EVENT_TYPE_INTERSECTION:
1924 e1 = ((queue_event_t *) event)->e1;
1925 e2 = ((queue_event_t *) event)->e2;
1927 event_delete (&sweep_line, event);
1928 if (e1->flags & STOP)
1929 break;
1930 if (e2->flags & STOP)
1931 break;
1933 /* skip this intersection if its edges are not adjacent */
1934 if (&e2->link != e1->link.next)
1935 break;
1937 left = e1->link.prev;
1938 right = e2->link.next;
1940 sweep_line_swap (&sweep_line, e1, e2);
1942 /* after the swap e2 is left of e1 */
1943 if (left != &sweep_line.active) {
1944 event_insert_if_intersect_below_current_y (&sweep_line,
1945 link_to_edge (left), e2);
1948 if (right != &sweep_line.active) {
1949 event_insert_if_intersect_below_current_y (&sweep_line,
1950 e1, link_to_edge (right));
1953 break;
1956 event = event_next (&sweep_line);
1957 if (event == NULL)
1958 goto end;
1959 } while (event->y == sweep_line.current_subrow);
1960 } while (event->y < sweep_line.current_row + STEP_Y);
1962 bottom = sweep_line.current_row + STEP_Y;
1963 sub_emit (self, &sweep_line, renderer);
1964 sweep_line.current_subrow = bottom;
1965 sweep_line.current_row = sweep_line.current_subrow;
1966 } while (TRUE);
1968 end:
1969 /* flush any partial spans */
1970 if (sweep_line.current_subrow != sweep_line.current_row) {
1971 sub_emit (self, &sweep_line, renderer);
1972 sweep_line.current_row += STEP_Y;
1973 sweep_line.current_subrow = sweep_line.current_row;
1975 /* clear the rest */
1976 if (sweep_line.current_subrow < ybot) {
1977 bottom = _cairo_fixed_integer_part (sweep_line.current_row);
1978 status = renderer->render_rows (renderer,
1979 bottom, _cairo_fixed_integer_ceil (ybot) - bottom,
1980 NULL, 0);
1983 unwind:
1984 sweep_line_fini (&sweep_line);
1986 return status;
1989 static cairo_status_t
1990 _cairo_botor_scan_converter_generate (void *converter,
1991 cairo_span_renderer_t *renderer)
1993 cairo_botor_scan_converter_t *self = converter;
1994 start_event_t stack_events[CAIRO_STACK_ARRAY_LENGTH (start_event_t)];
1995 start_event_t *events;
1996 event_t *stack_event_ptrs[ARRAY_LENGTH (stack_events) + 1];
1997 event_t **event_ptrs;
1998 struct _cairo_botor_scan_converter_chunk *chunk;
1999 cairo_status_t status;
2000 int num_events;
2001 int i, j;
2003 num_events = self->num_edges;
2004 if (unlikely (0 == num_events)) {
2005 return renderer->render_rows (renderer,
2006 _cairo_fixed_integer_floor (self->extents.p1.y),
2007 _cairo_fixed_integer_ceil (self->extents.p2.y) -
2008 _cairo_fixed_integer_floor (self->extents.p1.y),
2009 NULL, 0);
2012 events = stack_events;
2013 event_ptrs = stack_event_ptrs;
2014 if (unlikely (num_events >= ARRAY_LENGTH (stack_events))) {
2015 events = _cairo_malloc_ab_plus_c (num_events,
2016 sizeof (start_event_t) + sizeof (event_t *),
2017 sizeof (event_t *));
2018 if (unlikely (events == NULL))
2019 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
2021 event_ptrs = (event_t **) (events + num_events);
2024 j = 0;
2025 for (chunk = &self->chunks; chunk != NULL; chunk = chunk->next) {
2026 edge_t *edge;
2028 edge = chunk->base;
2029 for (i = 0; i < chunk->count; i++) {
2030 event_ptrs[j] = (event_t *) &events[j];
2032 events[j].y = edge->edge.top;
2033 events[j].type = EVENT_TYPE_START;
2034 events[j].edge = edge;
2036 edge++, j++;
2040 status = botor_generate (self, event_ptrs, renderer);
2042 if (events != stack_events)
2043 free (events);
2045 return status;
2048 static edge_t *
2049 botor_allocate_edge (cairo_botor_scan_converter_t *self)
2051 struct _cairo_botor_scan_converter_chunk *chunk;
2053 chunk = self->tail;
2054 if (chunk->count == chunk->size) {
2055 int size;
2057 size = chunk->size * 2;
2058 chunk->next = _cairo_malloc_ab_plus_c (size,
2059 sizeof (edge_t),
2060 sizeof (struct _cairo_botor_scan_converter_chunk));
2061 if (unlikely (chunk->next == NULL))
2062 return NULL;
2064 chunk = chunk->next;
2065 chunk->next = NULL;
2066 chunk->count = 0;
2067 chunk->size = size;
2068 chunk->base = chunk + 1;
2069 self->tail = chunk;
2072 return (edge_t *) chunk->base + chunk->count++;
2075 static cairo_status_t
2076 botor_add_edge (cairo_botor_scan_converter_t *self,
2077 const cairo_edge_t *edge)
2079 edge_t *e;
2080 cairo_fixed_t dx, dy;
2082 e = botor_allocate_edge (self);
2083 if (unlikely (e == NULL))
2084 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
2086 cairo_list_init (&e->link);
2087 e->edge = *edge;
2089 dx = edge->line.p2.x - edge->line.p1.x;
2090 dy = edge->line.p2.y - edge->line.p1.y;
2091 e->dy = dy;
2093 if (dx == 0) {
2094 e->vertical = TRUE;
2095 e->x.quo = edge->line.p1.x;
2096 e->x.rem = 0;
2097 e->dxdy.quo = 0;
2098 e->dxdy.rem = 0;
2099 e->dxdy_full.quo = 0;
2100 e->dxdy_full.rem = 0;
2101 } else {
2102 e->vertical = FALSE;
2103 e->dxdy = floored_divrem (dx, dy);
2104 if (edge->top == edge->line.p1.y) {
2105 e->x.quo = edge->line.p1.x;
2106 e->x.rem = 0;
2107 } else {
2108 e->x = floored_muldivrem (edge->top - edge->line.p1.y,
2109 dx, dy);
2110 e->x.quo += edge->line.p1.x;
2113 if (_cairo_fixed_integer_part (edge->bottom) - _cairo_fixed_integer_part (edge->top) > 1) {
2114 e->dxdy_full = floored_muldivrem (STEP_Y, dx, dy);
2115 } else {
2116 e->dxdy_full.quo = 0;
2117 e->dxdy_full.rem = 0;
2121 e->x.rem = -e->dy;
2122 e->current_sign = 0;
2123 e->runs = NULL;
2124 e->flags = START;
2126 self->num_edges++;
2128 return CAIRO_STATUS_SUCCESS;
2131 static void
2132 _cairo_botor_scan_converter_destroy (void *converter)
2134 cairo_botor_scan_converter_t *self = converter;
2135 struct _cairo_botor_scan_converter_chunk *chunk, *next;
2137 for (chunk = self->chunks.next; chunk != NULL; chunk = next) {
2138 next = chunk->next;
2139 free (chunk);
2143 void
2144 _cairo_botor_scan_converter_init (cairo_botor_scan_converter_t *self,
2145 const cairo_box_t *extents,
2146 cairo_fill_rule_t fill_rule)
2148 self->base.destroy = _cairo_botor_scan_converter_destroy;
2149 self->base.generate = _cairo_botor_scan_converter_generate;
2151 self->extents = *extents;
2152 self->fill_rule = fill_rule;
2154 self->xmin = _cairo_fixed_integer_floor (extents->p1.x);
2155 self->xmax = _cairo_fixed_integer_ceil (extents->p2.x);
2157 self->chunks.base = self->buf;
2158 self->chunks.next = NULL;
2159 self->chunks.count = 0;
2160 self->chunks.size = sizeof (self->buf) / sizeof (edge_t);
2161 self->tail = &self->chunks;
2163 self->num_edges = 0;