beta-0.89.2
[luatex.git] / source / libs / cairo / cairo-src / src / cairo-bentley-ottmann-rectangular.c
blob5541bdc3a2d15569d5995fc97b929ea8d881ed3e
1 /*
2 * Copyright © 2004 Carl Worth
3 * Copyright © 2006 Red Hat, Inc.
4 * Copyright © 2009 Chris Wilson
6 * This library is free software; you can redistribute it and/or
7 * modify it either under the terms of the GNU Lesser General Public
8 * License version 2.1 as published by the Free Software Foundation
9 * (the "LGPL") or, at your option, under the terms of the Mozilla
10 * Public License Version 1.1 (the "MPL"). If you do not alter this
11 * notice, a recipient may use your version of this file under either
12 * the MPL or the LGPL.
14 * You should have received a copy of the LGPL along with this library
15 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
17 * You should have received a copy of the MPL along with this library
18 * in the file COPYING-MPL-1.1
20 * The contents of this file are subject to the Mozilla Public License
21 * Version 1.1 (the "License"); you may not use this file except in
22 * compliance with the License. You may obtain a copy of the License at
23 * http://www.mozilla.org/MPL/
25 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
26 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
27 * the specific language governing rights and limitations.
29 * The Original Code is the cairo graphics library.
31 * The Initial Developer of the Original Code is Carl Worth
33 * Contributor(s):
34 * Carl D. Worth <cworth@cworth.org>
35 * Chris Wilson <chris@chris-wilson.co.uk>
38 /* Provide definitions for standalone compilation */
39 #include "cairoint.h"
41 #include "cairo-boxes-private.h"
42 #include "cairo-error-private.h"
43 #include "cairo-combsort-inline.h"
44 #include "cairo-list-private.h"
45 #include "cairo-traps-private.h"
47 #include <setjmp.h>
49 typedef struct _rectangle rectangle_t;
50 typedef struct _edge edge_t;
52 struct _edge {
53 edge_t *next, *prev;
54 edge_t *right;
55 cairo_fixed_t x, top;
56 int dir;
59 struct _rectangle {
60 edge_t left, right;
61 int32_t top, bottom;
64 #define UNROLL3(x) x x x
66 /* the parent is always given by index/2 */
67 #define PQ_PARENT_INDEX(i) ((i) >> 1)
68 #define PQ_FIRST_ENTRY 1
70 /* left and right children are index * 2 and (index * 2) +1 respectively */
71 #define PQ_LEFT_CHILD_INDEX(i) ((i) << 1)
73 typedef struct _sweep_line {
74 rectangle_t **rectangles;
75 rectangle_t **stop;
76 edge_t head, tail, *insert, *cursor;
77 int32_t current_y;
78 int32_t last_y;
79 int stop_size;
81 int32_t insert_x;
82 cairo_fill_rule_t fill_rule;
84 cairo_bool_t do_traps;
85 void *container;
87 jmp_buf unwind;
88 } sweep_line_t;
90 #define DEBUG_TRAPS 0
92 #if DEBUG_TRAPS
93 static void
94 dump_traps (cairo_traps_t *traps, const char *filename)
96 FILE *file;
97 int n;
99 if (getenv ("CAIRO_DEBUG_TRAPS") == NULL)
100 return;
102 file = fopen (filename, "a");
103 if (file != NULL) {
104 for (n = 0; n < traps->num_traps; n++) {
105 fprintf (file, "%d %d L:(%d, %d), (%d, %d) R:(%d, %d), (%d, %d)\n",
106 traps->traps[n].top,
107 traps->traps[n].bottom,
108 traps->traps[n].left.p1.x,
109 traps->traps[n].left.p1.y,
110 traps->traps[n].left.p2.x,
111 traps->traps[n].left.p2.y,
112 traps->traps[n].right.p1.x,
113 traps->traps[n].right.p1.y,
114 traps->traps[n].right.p2.x,
115 traps->traps[n].right.p2.y);
117 fprintf (file, "\n");
118 fclose (file);
121 #else
122 #define dump_traps(traps, filename)
123 #endif
125 static inline int
126 rectangle_compare_start (const rectangle_t *a,
127 const rectangle_t *b)
129 return a->top - b->top;
132 static inline int
133 rectangle_compare_stop (const rectangle_t *a,
134 const rectangle_t *b)
136 return a->bottom - b->bottom;
139 static inline void
140 pqueue_push (sweep_line_t *sweep, rectangle_t *rectangle)
142 rectangle_t **elements;
143 int i, parent;
145 elements = sweep->stop;
146 for (i = ++sweep->stop_size;
147 i != PQ_FIRST_ENTRY &&
148 rectangle_compare_stop (rectangle,
149 elements[parent = PQ_PARENT_INDEX (i)]) < 0;
150 i = parent)
152 elements[i] = elements[parent];
155 elements[i] = rectangle;
158 static inline void
159 rectangle_pop_stop (sweep_line_t *sweep)
161 rectangle_t **elements = sweep->stop;
162 rectangle_t *tail;
163 int child, i;
165 tail = elements[sweep->stop_size--];
166 if (sweep->stop_size == 0) {
167 elements[PQ_FIRST_ENTRY] = NULL;
168 return;
171 for (i = PQ_FIRST_ENTRY;
172 (child = PQ_LEFT_CHILD_INDEX (i)) <= sweep->stop_size;
173 i = child)
175 if (child != sweep->stop_size &&
176 rectangle_compare_stop (elements[child+1],
177 elements[child]) < 0)
179 child++;
182 if (rectangle_compare_stop (elements[child], tail) >= 0)
183 break;
185 elements[i] = elements[child];
187 elements[i] = tail;
190 static inline rectangle_t *
191 rectangle_pop_start (sweep_line_t *sweep_line)
193 return *sweep_line->rectangles++;
196 static inline rectangle_t *
197 rectangle_peek_stop (sweep_line_t *sweep_line)
199 return sweep_line->stop[PQ_FIRST_ENTRY];
202 CAIRO_COMBSORT_DECLARE (_rectangle_sort,
203 rectangle_t *,
204 rectangle_compare_start)
206 static void
207 sweep_line_init (sweep_line_t *sweep_line,
208 rectangle_t **rectangles,
209 int num_rectangles,
210 cairo_fill_rule_t fill_rule,
211 cairo_bool_t do_traps,
212 void *container)
214 rectangles[-2] = NULL;
215 rectangles[-1] = NULL;
216 rectangles[num_rectangles] = NULL;
217 sweep_line->rectangles = rectangles;
218 sweep_line->stop = rectangles - 2;
219 sweep_line->stop_size = 0;
221 sweep_line->insert = NULL;
222 sweep_line->insert_x = INT_MAX;
223 sweep_line->cursor = &sweep_line->tail;
225 sweep_line->head.dir = 0;
226 sweep_line->head.x = INT32_MIN;
227 sweep_line->head.right = NULL;
228 sweep_line->head.prev = NULL;
229 sweep_line->head.next = &sweep_line->tail;
230 sweep_line->tail.prev = &sweep_line->head;
231 sweep_line->tail.next = NULL;
232 sweep_line->tail.right = NULL;
233 sweep_line->tail.x = INT32_MAX;
234 sweep_line->tail.dir = 0;
236 sweep_line->current_y = INT32_MIN;
237 sweep_line->last_y = INT32_MIN;
239 sweep_line->fill_rule = fill_rule;
240 sweep_line->container = container;
241 sweep_line->do_traps = do_traps;
244 static void
245 edge_end_box (sweep_line_t *sweep_line, edge_t *left, int32_t bot)
247 cairo_status_t status = CAIRO_STATUS_SUCCESS;
249 /* Only emit (trivial) non-degenerate trapezoids with positive height. */
250 if (likely (left->top < bot)) {
251 if (sweep_line->do_traps) {
252 cairo_line_t _left = {
253 { left->x, left->top },
254 { left->x, bot },
255 }, _right = {
256 { left->right->x, left->top },
257 { left->right->x, bot },
259 _cairo_traps_add_trap (sweep_line->container, left->top, bot, &_left, &_right);
260 status = _cairo_traps_status ((cairo_traps_t *) sweep_line->container);
261 } else {
262 cairo_box_t box;
264 box.p1.x = left->x;
265 box.p1.y = left->top;
266 box.p2.x = left->right->x;
267 box.p2.y = bot;
269 status = _cairo_boxes_add (sweep_line->container,
270 CAIRO_ANTIALIAS_DEFAULT,
271 &box);
274 if (unlikely (status))
275 longjmp (sweep_line->unwind, status);
277 left->right = NULL;
280 /* Start a new trapezoid at the given top y coordinate, whose edges
281 * are `edge' and `edge->next'. If `edge' already has a trapezoid,
282 * then either add it to the traps in `traps', if the trapezoid's
283 * right edge differs from `edge->next', or do nothing if the new
284 * trapezoid would be a continuation of the existing one. */
285 static inline void
286 edge_start_or_continue_box (sweep_line_t *sweep_line,
287 edge_t *left,
288 edge_t *right,
289 int top)
291 if (left->right == right)
292 return;
294 if (left->right != NULL) {
295 if (left->right->x == right->x) {
296 /* continuation on right, so just swap edges */
297 left->right = right;
298 return;
301 edge_end_box (sweep_line, left, top);
304 if (left->x != right->x) {
305 left->top = top;
306 left->right = right;
310 * Merge two sorted edge lists.
311 * Input:
312 * - head_a: The head of the first list.
313 * - head_b: The head of the second list; head_b cannot be NULL.
314 * Output:
315 * Returns the head of the merged list.
317 * Implementation notes:
318 * To make it fast (in particular, to reduce to an insertion sort whenever
319 * one of the two input lists only has a single element) we iterate through
320 * a list until its head becomes greater than the head of the other list,
321 * then we switch their roles. As soon as one of the two lists is empty, we
322 * just attach the other one to the current list and exit.
323 * Writes to memory are only needed to "switch" lists (as it also requires
324 * attaching to the output list the list which we will be iterating next) and
325 * to attach the last non-empty list.
327 static edge_t *
328 merge_sorted_edges (edge_t *head_a, edge_t *head_b)
330 edge_t *head, *prev;
331 int32_t x;
333 prev = head_a->prev;
334 if (head_a->x <= head_b->x) {
335 head = head_a;
336 } else {
337 head_b->prev = prev;
338 head = head_b;
339 goto start_with_b;
342 do {
343 x = head_b->x;
344 while (head_a != NULL && head_a->x <= x) {
345 prev = head_a;
346 head_a = head_a->next;
349 head_b->prev = prev;
350 prev->next = head_b;
351 if (head_a == NULL)
352 return head;
354 start_with_b:
355 x = head_a->x;
356 while (head_b != NULL && head_b->x <= x) {
357 prev = head_b;
358 head_b = head_b->next;
361 head_a->prev = prev;
362 prev->next = head_a;
363 if (head_b == NULL)
364 return head;
365 } while (1);
369 * Sort (part of) a list.
370 * Input:
371 * - list: The list to be sorted; list cannot be NULL.
372 * - limit: Recursion limit.
373 * Output:
374 * - head_out: The head of the sorted list containing the first 2^(level+1) elements of the
375 * input list; if the input list has fewer elements, head_out be a sorted list
376 * containing all the elements of the input list.
377 * Returns the head of the list of unprocessed elements (NULL if the sorted list contains
378 * all the elements of the input list).
380 * Implementation notes:
381 * Special case single element list, unroll/inline the sorting of the first two elements.
382 * Some tail recursion is used since we iterate on the bottom-up solution of the problem
383 * (we start with a small sorted list and keep merging other lists of the same size to it).
385 static edge_t *
386 sort_edges (edge_t *list,
387 unsigned int level,
388 edge_t **head_out)
390 edge_t *head_other, *remaining;
391 unsigned int i;
393 head_other = list->next;
395 if (head_other == NULL) {
396 *head_out = list;
397 return NULL;
400 remaining = head_other->next;
401 if (list->x <= head_other->x) {
402 *head_out = list;
403 head_other->next = NULL;
404 } else {
405 *head_out = head_other;
406 head_other->prev = list->prev;
407 head_other->next = list;
408 list->prev = head_other;
409 list->next = NULL;
412 for (i = 0; i < level && remaining; i++) {
413 remaining = sort_edges (remaining, i, &head_other);
414 *head_out = merge_sorted_edges (*head_out, head_other);
417 return remaining;
420 static edge_t *
421 merge_unsorted_edges (edge_t *head, edge_t *unsorted)
423 sort_edges (unsorted, UINT_MAX, &unsorted);
424 return merge_sorted_edges (head, unsorted);
427 static void
428 active_edges_insert (sweep_line_t *sweep)
430 edge_t *prev;
431 int x;
433 x = sweep->insert_x;
434 prev = sweep->cursor;
435 if (prev->x > x) {
436 do {
437 prev = prev->prev;
438 } while (prev->x > x);
439 } else {
440 while (prev->next->x < x)
441 prev = prev->next;
444 prev->next = merge_unsorted_edges (prev->next, sweep->insert);
445 sweep->cursor = sweep->insert;
446 sweep->insert = NULL;
447 sweep->insert_x = INT_MAX;
450 static inline void
451 active_edges_to_traps (sweep_line_t *sweep)
453 int top = sweep->current_y;
454 edge_t *pos;
456 if (sweep->last_y == sweep->current_y)
457 return;
459 if (sweep->insert)
460 active_edges_insert (sweep);
462 pos = sweep->head.next;
463 if (pos == &sweep->tail)
464 return;
466 if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING) {
467 do {
468 edge_t *left, *right;
469 int winding;
471 left = pos;
472 winding = left->dir;
474 right = left->next;
476 /* Check if there is a co-linear edge with an existing trap */
477 while (right->x == left->x) {
478 if (right->right != NULL) {
479 assert (left->right == NULL);
480 /* continuation on left */
481 left->top = right->top;
482 left->right = right->right;
483 right->right = NULL;
485 winding += right->dir;
486 right = right->next;
489 if (winding == 0) {
490 if (left->right != NULL)
491 edge_end_box (sweep, left, top);
492 pos = right;
493 continue;
496 do {
497 /* End all subsumed traps */
498 if (unlikely (right->right != NULL))
499 edge_end_box (sweep, right, top);
501 /* Greedily search for the closing edge, so that we generate
502 * the * maximal span width with the minimal number of
503 * boxes.
505 winding += right->dir;
506 if (winding == 0 && right->x != right->next->x)
507 break;
509 right = right->next;
510 } while (TRUE);
512 edge_start_or_continue_box (sweep, left, right, top);
514 pos = right->next;
515 } while (pos != &sweep->tail);
516 } else {
517 do {
518 edge_t *right = pos->next;
519 int count = 0;
521 do {
522 /* End all subsumed traps */
523 if (unlikely (right->right != NULL))
524 edge_end_box (sweep, right, top);
526 /* skip co-linear edges */
527 if (++count & 1 && right->x != right->next->x)
528 break;
530 right = right->next;
531 } while (TRUE);
533 edge_start_or_continue_box (sweep, pos, right, top);
535 pos = right->next;
536 } while (pos != &sweep->tail);
539 sweep->last_y = sweep->current_y;
542 static inline void
543 sweep_line_delete_edge (sweep_line_t *sweep, edge_t *edge)
545 if (edge->right != NULL) {
546 edge_t *next = edge->next;
547 if (next->x == edge->x) {
548 next->top = edge->top;
549 next->right = edge->right;
550 } else
551 edge_end_box (sweep, edge, sweep->current_y);
554 if (sweep->cursor == edge)
555 sweep->cursor = edge->prev;
557 edge->prev->next = edge->next;
558 edge->next->prev = edge->prev;
561 static inline cairo_bool_t
562 sweep_line_delete (sweep_line_t *sweep, rectangle_t *rectangle)
564 cairo_bool_t update;
566 update = TRUE;
567 if (sweep->fill_rule == CAIRO_FILL_RULE_WINDING &&
568 rectangle->left.prev->dir == rectangle->left.dir)
570 update = rectangle->left.next != &rectangle->right;
573 sweep_line_delete_edge (sweep, &rectangle->left);
574 sweep_line_delete_edge (sweep, &rectangle->right);
576 rectangle_pop_stop (sweep);
577 return update;
580 static inline void
581 sweep_line_insert (sweep_line_t *sweep, rectangle_t *rectangle)
583 if (sweep->insert)
584 sweep->insert->prev = &rectangle->right;
585 rectangle->right.next = sweep->insert;
586 rectangle->right.prev = &rectangle->left;
587 rectangle->left.next = &rectangle->right;
588 rectangle->left.prev = NULL;
589 sweep->insert = &rectangle->left;
590 if (rectangle->left.x < sweep->insert_x)
591 sweep->insert_x = rectangle->left.x;
593 pqueue_push (sweep, rectangle);
596 static cairo_status_t
597 _cairo_bentley_ottmann_tessellate_rectangular (rectangle_t **rectangles,
598 int num_rectangles,
599 cairo_fill_rule_t fill_rule,
600 cairo_bool_t do_traps,
601 void *container)
603 sweep_line_t sweep_line;
604 rectangle_t *rectangle;
605 cairo_status_t status;
606 cairo_bool_t update = FALSE;
608 sweep_line_init (&sweep_line,
609 rectangles, num_rectangles,
610 fill_rule,
611 do_traps, container);
612 if ((status = setjmp (sweep_line.unwind)))
613 return status;
615 rectangle = rectangle_pop_start (&sweep_line);
616 do {
617 if (rectangle->top != sweep_line.current_y) {
618 rectangle_t *stop;
620 stop = rectangle_peek_stop (&sweep_line);
621 while (stop != NULL && stop->bottom < rectangle->top) {
622 if (stop->bottom != sweep_line.current_y) {
623 if (update) {
624 active_edges_to_traps (&sweep_line);
625 update = FALSE;
628 sweep_line.current_y = stop->bottom;
631 update |= sweep_line_delete (&sweep_line, stop);
632 stop = rectangle_peek_stop (&sweep_line);
635 if (update) {
636 active_edges_to_traps (&sweep_line);
637 update = FALSE;
640 sweep_line.current_y = rectangle->top;
643 do {
644 sweep_line_insert (&sweep_line, rectangle);
645 } while ((rectangle = rectangle_pop_start (&sweep_line)) != NULL &&
646 sweep_line.current_y == rectangle->top);
647 update = TRUE;
648 } while (rectangle);
650 while ((rectangle = rectangle_peek_stop (&sweep_line)) != NULL) {
651 if (rectangle->bottom != sweep_line.current_y) {
652 if (update) {
653 active_edges_to_traps (&sweep_line);
654 update = FALSE;
656 sweep_line.current_y = rectangle->bottom;
659 update |= sweep_line_delete (&sweep_line, rectangle);
662 return CAIRO_STATUS_SUCCESS;
665 cairo_status_t
666 _cairo_bentley_ottmann_tessellate_rectangular_traps (cairo_traps_t *traps,
667 cairo_fill_rule_t fill_rule)
669 rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
670 rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
671 rectangle_t *rectangles, **rectangles_ptrs;
672 cairo_status_t status;
673 int i;
675 if (unlikely (traps->num_traps <= 1))
676 return CAIRO_STATUS_SUCCESS;
678 assert (traps->is_rectangular);
680 dump_traps (traps, "bo-rects-traps-in.txt");
682 rectangles = stack_rectangles;
683 rectangles_ptrs = stack_rectangles_ptrs;
684 if (traps->num_traps > ARRAY_LENGTH (stack_rectangles)) {
685 rectangles = _cairo_malloc_ab_plus_c (traps->num_traps,
686 sizeof (rectangle_t) +
687 sizeof (rectangle_t *),
688 3*sizeof (rectangle_t *));
689 if (unlikely (rectangles == NULL))
690 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
692 rectangles_ptrs = (rectangle_t **) (rectangles + traps->num_traps);
695 for (i = 0; i < traps->num_traps; i++) {
696 if (traps->traps[i].left.p1.x < traps->traps[i].right.p1.x) {
697 rectangles[i].left.x = traps->traps[i].left.p1.x;
698 rectangles[i].left.dir = 1;
700 rectangles[i].right.x = traps->traps[i].right.p1.x;
701 rectangles[i].right.dir = -1;
702 } else {
703 rectangles[i].right.x = traps->traps[i].left.p1.x;
704 rectangles[i].right.dir = 1;
706 rectangles[i].left.x = traps->traps[i].right.p1.x;
707 rectangles[i].left.dir = -1;
710 rectangles[i].left.right = NULL;
711 rectangles[i].right.right = NULL;
713 rectangles[i].top = traps->traps[i].top;
714 rectangles[i].bottom = traps->traps[i].bottom;
716 rectangles_ptrs[i+2] = &rectangles[i];
718 /* XXX incremental sort */
719 _rectangle_sort (rectangles_ptrs+2, i);
721 _cairo_traps_clear (traps);
722 status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, i,
723 fill_rule,
724 TRUE, traps);
725 traps->is_rectilinear = TRUE;
726 traps->is_rectangular = TRUE;
728 if (rectangles != stack_rectangles)
729 free (rectangles);
731 dump_traps (traps, "bo-rects-traps-out.txt");
733 return status;
736 cairo_status_t
737 _cairo_bentley_ottmann_tessellate_boxes (const cairo_boxes_t *in,
738 cairo_fill_rule_t fill_rule,
739 cairo_boxes_t *out)
741 rectangle_t stack_rectangles[CAIRO_STACK_ARRAY_LENGTH (rectangle_t)];
742 rectangle_t *stack_rectangles_ptrs[ARRAY_LENGTH (stack_rectangles) + 3];
743 rectangle_t *rectangles, **rectangles_ptrs;
744 rectangle_t *stack_rectangles_chain[CAIRO_STACK_ARRAY_LENGTH (rectangle_t *) ];
745 rectangle_t **rectangles_chain = NULL;
746 const struct _cairo_boxes_chunk *chunk;
747 cairo_status_t status;
748 int i, j, y_min, y_max;
750 if (unlikely (in->num_boxes == 0)) {
751 _cairo_boxes_clear (out);
752 return CAIRO_STATUS_SUCCESS;
755 if (in->num_boxes == 1) {
756 if (in == out) {
757 cairo_box_t *box = &in->chunks.base[0];
759 if (box->p1.x > box->p2.x) {
760 cairo_fixed_t tmp = box->p1.x;
761 box->p1.x = box->p2.x;
762 box->p2.x = tmp;
764 } else {
765 cairo_box_t box = in->chunks.base[0];
767 if (box.p1.x > box.p2.x) {
768 cairo_fixed_t tmp = box.p1.x;
769 box.p1.x = box.p2.x;
770 box.p2.x = tmp;
773 _cairo_boxes_clear (out);
774 status = _cairo_boxes_add (out, CAIRO_ANTIALIAS_DEFAULT, &box);
775 assert (status == CAIRO_STATUS_SUCCESS);
777 return CAIRO_STATUS_SUCCESS;
780 y_min = INT_MAX; y_max = INT_MIN;
781 for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
782 const cairo_box_t *box = chunk->base;
783 for (i = 0; i < chunk->count; i++) {
784 if (box[i].p1.y < y_min)
785 y_min = box[i].p1.y;
786 if (box[i].p1.y > y_max)
787 y_max = box[i].p1.y;
790 y_min = _cairo_fixed_integer_floor (y_min);
791 y_max = _cairo_fixed_integer_floor (y_max) + 1;
792 y_max -= y_min;
794 if (y_max < in->num_boxes) {
795 rectangles_chain = stack_rectangles_chain;
796 if (y_max > ARRAY_LENGTH (stack_rectangles_chain)) {
797 rectangles_chain = _cairo_malloc_ab (y_max, sizeof (rectangle_t *));
798 if (unlikely (rectangles_chain == NULL))
799 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
801 memset (rectangles_chain, 0, y_max * sizeof (rectangle_t*));
804 rectangles = stack_rectangles;
805 rectangles_ptrs = stack_rectangles_ptrs;
806 if (in->num_boxes > ARRAY_LENGTH (stack_rectangles)) {
807 rectangles = _cairo_malloc_ab_plus_c (in->num_boxes,
808 sizeof (rectangle_t) +
809 sizeof (rectangle_t *),
810 3*sizeof (rectangle_t *));
811 if (unlikely (rectangles == NULL)) {
812 if (rectangles_chain != stack_rectangles_chain)
813 free (rectangles_chain);
814 return _cairo_error (CAIRO_STATUS_NO_MEMORY);
817 rectangles_ptrs = (rectangle_t **) (rectangles + in->num_boxes);
820 j = 0;
821 for (chunk = &in->chunks; chunk != NULL; chunk = chunk->next) {
822 const cairo_box_t *box = chunk->base;
823 for (i = 0; i < chunk->count; i++) {
824 int h;
826 if (box[i].p1.x < box[i].p2.x) {
827 rectangles[j].left.x = box[i].p1.x;
828 rectangles[j].left.dir = 1;
830 rectangles[j].right.x = box[i].p2.x;
831 rectangles[j].right.dir = -1;
832 } else {
833 rectangles[j].right.x = box[i].p1.x;
834 rectangles[j].right.dir = 1;
836 rectangles[j].left.x = box[i].p2.x;
837 rectangles[j].left.dir = -1;
840 rectangles[j].left.right = NULL;
841 rectangles[j].right.right = NULL;
843 rectangles[j].top = box[i].p1.y;
844 rectangles[j].bottom = box[i].p2.y;
846 if (rectangles_chain) {
847 h = _cairo_fixed_integer_floor (box[i].p1.y) - y_min;
848 rectangles[j].left.next = (edge_t *)rectangles_chain[h];
849 rectangles_chain[h] = &rectangles[j];
850 } else {
851 rectangles_ptrs[j+2] = &rectangles[j];
853 j++;
857 if (rectangles_chain) {
858 j = 2;
859 for (y_min = 0; y_min < y_max; y_min++) {
860 rectangle_t *r;
861 int start = j;
862 for (r = rectangles_chain[y_min]; r; r = (rectangle_t *)r->left.next)
863 rectangles_ptrs[j++] = r;
864 if (j > start + 1)
865 _rectangle_sort (rectangles_ptrs + start, j - start);
868 if (rectangles_chain != stack_rectangles_chain)
869 free (rectangles_chain);
871 j -= 2;
872 } else {
873 _rectangle_sort (rectangles_ptrs + 2, j);
876 _cairo_boxes_clear (out);
877 status = _cairo_bentley_ottmann_tessellate_rectangular (rectangles_ptrs+2, j,
878 fill_rule,
879 FALSE, out);
880 if (rectangles != stack_rectangles)
881 free (rectangles);
883 return status;