1 /* mpfr_const_catalan -- compute Catalan's constant.
3 Copyright 2005-2016 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramba projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* Declare the cache */
27 MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_catalan
, mpfr_const_catalan_internal
);
29 #ifdef MPFR_WIN_THREAD_SAFE_DLL
31 __gmpfr_cache_const_catalan_f()
33 return &__gmpfr_cache_const_catalan
;
37 /* Set User Interface */
38 #undef mpfr_const_catalan
40 mpfr_const_catalan (mpfr_ptr x
, mpfr_rnd_t rnd_mode
) {
41 return mpfr_cache (x
, __gmpfr_cache_const_catalan
, rnd_mode
);
44 /* return T, Q such that T/Q = sum(k!^2/(2k)!/(2k+1)^2, k=n1..n2-1) */
46 S (mpz_t T
, mpz_t P
, mpz_t Q
, unsigned long n1
, unsigned long n2
)
57 mpz_set_ui (P
, 2 * n1
- 1);
58 mpz_mul_ui (P
, P
, n1
);
59 mpz_ui_pow_ui (Q
, 2 * n1
+ 1, 2);
60 mpz_mul_2exp (Q
, Q
, 1);
66 unsigned long m
= (n1
+ n2
) / 2;
72 S (T2
, P2
, Q2
, m
, n2
);
84 /* Don't need to save/restore exponent range: the cache does it.
85 Catalan's constant is G = sum((-1)^k/(2*k+1)^2, k=0..infinity).
86 We compute it using formula (31) of Victor Adamchik's page
87 "33 representations for Catalan's constant"
88 http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
90 G = Pi/8*log(2+sqrt(3)) + 3/8*sum(k!^2/(2k)!/(2k+1)^2,k=0..infinity)
93 mpfr_const_catalan_internal (mpfr_ptr g
, mpfr_rnd_t rnd_mode
)
100 MPFR_GROUP_DECL (group
);
102 MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode
),
103 ("g[%Pu]=%.*Rg inex=%d", mpfr_get_prec (g
), mpfr_log_prec
, g
, inex
));
105 /* Here are the WC (max prec = 100.000.000)
106 Once we have found a chain of 11, we only look for bigger chain.
113 Found 14 '1' at 12762
114 Found 15 '1' at 152561
115 Found 16 '0' at 171725
116 Found 18 '0' at 525355
117 Found 20 '0' at 529245
118 Found 21 '1' at 6390133
119 Found 22 '0' at 7806417
120 Found 25 '1' at 11936239
121 Found 27 '1' at 51752950
124 p
= pg
+ MPFR_INT_CEIL_LOG2 (pg
) + 7;
126 MPFR_GROUP_INIT_3 (group
, p
, x
, y
, z
);
131 MPFR_ZIV_INIT (loop
, p
);
133 mpfr_sqrt_ui (x
, 3, MPFR_RNDU
);
134 mpfr_add_ui (x
, x
, 2, MPFR_RNDU
);
135 mpfr_log (x
, x
, MPFR_RNDU
);
136 mpfr_const_pi (y
, MPFR_RNDU
);
137 mpfr_mul (x
, x
, y
, MPFR_RNDN
);
138 S (T
, P
, Q
, 0, (p
- 1) / 2);
139 mpz_mul_ui (T
, T
, 3);
140 mpfr_set_z (y
, T
, MPFR_RNDU
);
141 mpfr_set_z (z
, Q
, MPFR_RNDD
);
142 mpfr_div (y
, y
, z
, MPFR_RNDN
);
143 mpfr_add (x
, x
, y
, MPFR_RNDN
);
144 mpfr_div_2ui (x
, x
, 3, MPFR_RNDN
);
146 if (MPFR_LIKELY (MPFR_CAN_ROUND (x
, p
- 5, pg
, rnd_mode
)))
149 MPFR_ZIV_NEXT (loop
, p
);
150 MPFR_GROUP_REPREC_3 (group
, p
, x
, y
, z
);
152 MPFR_ZIV_FREE (loop
);
153 inex
= mpfr_set (g
, x
, rnd_mode
);
155 MPFR_GROUP_CLEAR (group
);