new beta-0.90.0
[luatex.git] / source / libs / mpfr / mpfr-src / src / const_catalan.c
blob41b6bd97d64caa13f9c7cc3064d974538661123c
1 /* mpfr_const_catalan -- compute Catalan's constant.
3 Copyright 2005-2016 Free Software Foundation, Inc.
4 Contributed by the AriC and Caramba projects, INRIA.
6 This file is part of the GNU MPFR Library.
8 The GNU MPFR Library is free software; you can redistribute it and/or modify
9 it under the terms of the GNU Lesser General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or (at your
11 option) any later version.
13 The GNU MPFR Library is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
16 License for more details.
18 You should have received a copy of the GNU Lesser General Public License
19 along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
20 http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
21 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
23 #define MPFR_NEED_LONGLONG_H
24 #include "mpfr-impl.h"
26 /* Declare the cache */
27 MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_catalan, mpfr_const_catalan_internal);
29 #ifdef MPFR_WIN_THREAD_SAFE_DLL
30 mpfr_cache_t *
31 __gmpfr_cache_const_catalan_f()
33 return &__gmpfr_cache_const_catalan;
35 #endif
37 /* Set User Interface */
38 #undef mpfr_const_catalan
39 int
40 mpfr_const_catalan (mpfr_ptr x, mpfr_rnd_t rnd_mode) {
41 return mpfr_cache (x, __gmpfr_cache_const_catalan, rnd_mode);
44 /* return T, Q such that T/Q = sum(k!^2/(2k)!/(2k+1)^2, k=n1..n2-1) */
45 static void
46 S (mpz_t T, mpz_t P, mpz_t Q, unsigned long n1, unsigned long n2)
48 if (n2 == n1 + 1)
50 if (n1 == 0)
52 mpz_set_ui (P, 1);
53 mpz_set_ui (Q, 1);
55 else
57 mpz_set_ui (P, 2 * n1 - 1);
58 mpz_mul_ui (P, P, n1);
59 mpz_ui_pow_ui (Q, 2 * n1 + 1, 2);
60 mpz_mul_2exp (Q, Q, 1);
62 mpz_set (T, P);
64 else
66 unsigned long m = (n1 + n2) / 2;
67 mpz_t T2, P2, Q2;
68 S (T, P, Q, n1, m);
69 mpz_init (T2);
70 mpz_init (P2);
71 mpz_init (Q2);
72 S (T2, P2, Q2, m, n2);
73 mpz_mul (T, T, Q2);
74 mpz_mul (T2, T2, P);
75 mpz_add (T, T, T2);
76 mpz_mul (P, P, P2);
77 mpz_mul (Q, Q, Q2);
78 mpz_clear (T2);
79 mpz_clear (P2);
80 mpz_clear (Q2);
84 /* Don't need to save/restore exponent range: the cache does it.
85 Catalan's constant is G = sum((-1)^k/(2*k+1)^2, k=0..infinity).
86 We compute it using formula (31) of Victor Adamchik's page
87 "33 representations for Catalan's constant"
88 http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm
90 G = Pi/8*log(2+sqrt(3)) + 3/8*sum(k!^2/(2k)!/(2k+1)^2,k=0..infinity)
92 int
93 mpfr_const_catalan_internal (mpfr_ptr g, mpfr_rnd_t rnd_mode)
95 mpfr_t x, y, z;
96 mpz_t T, P, Q;
97 mpfr_prec_t pg, p;
98 int inex;
99 MPFR_ZIV_DECL (loop);
100 MPFR_GROUP_DECL (group);
102 MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode),
103 ("g[%Pu]=%.*Rg inex=%d", mpfr_get_prec (g), mpfr_log_prec, g, inex));
105 /* Here are the WC (max prec = 100.000.000)
106 Once we have found a chain of 11, we only look for bigger chain.
107 Found 3 '1' at 0
108 Found 5 '1' at 9
109 Found 6 '0' at 34
110 Found 9 '1' at 176
111 Found 11 '1' at 705
112 Found 12 '0' at 913
113 Found 14 '1' at 12762
114 Found 15 '1' at 152561
115 Found 16 '0' at 171725
116 Found 18 '0' at 525355
117 Found 20 '0' at 529245
118 Found 21 '1' at 6390133
119 Found 22 '0' at 7806417
120 Found 25 '1' at 11936239
121 Found 27 '1' at 51752950
123 pg = MPFR_PREC (g);
124 p = pg + MPFR_INT_CEIL_LOG2 (pg) + 7;
126 MPFR_GROUP_INIT_3 (group, p, x, y, z);
127 mpz_init (T);
128 mpz_init (P);
129 mpz_init (Q);
131 MPFR_ZIV_INIT (loop, p);
132 for (;;) {
133 mpfr_sqrt_ui (x, 3, MPFR_RNDU);
134 mpfr_add_ui (x, x, 2, MPFR_RNDU);
135 mpfr_log (x, x, MPFR_RNDU);
136 mpfr_const_pi (y, MPFR_RNDU);
137 mpfr_mul (x, x, y, MPFR_RNDN);
138 S (T, P, Q, 0, (p - 1) / 2);
139 mpz_mul_ui (T, T, 3);
140 mpfr_set_z (y, T, MPFR_RNDU);
141 mpfr_set_z (z, Q, MPFR_RNDD);
142 mpfr_div (y, y, z, MPFR_RNDN);
143 mpfr_add (x, x, y, MPFR_RNDN);
144 mpfr_div_2ui (x, x, 3, MPFR_RNDN);
146 if (MPFR_LIKELY (MPFR_CAN_ROUND (x, p - 5, pg, rnd_mode)))
147 break;
149 MPFR_ZIV_NEXT (loop, p);
150 MPFR_GROUP_REPREC_3 (group, p, x, y, z);
152 MPFR_ZIV_FREE (loop);
153 inex = mpfr_set (g, x, rnd_mode);
155 MPFR_GROUP_CLEAR (group);
156 mpz_clear (T);
157 mpz_clear (P);
158 mpz_clear (Q);
160 return inex;