Replace some trivial uses of fprintf() with fputs.
[luajit-2.0/celess22.git] / doc / ext_ffi_semantics.html
blobafe7e6130d6ec49ed0d3adf2999e59ce9ac9ab9a
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
2 <html>
3 <head>
4 <title>FFI Semantics</title>
5 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6 <meta name="Author" content="Mike Pall">
7 <meta name="Copyright" content="Copyright (C) 2005-2012, Mike Pall">
8 <meta name="Language" content="en">
9 <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
10 <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
11 <style type="text/css">
12 table.convtable { line-height: 1.2; }
13 tr.convhead td { font-weight: bold; }
14 td.convin { width: 11em; }
15 td.convop { font-style: italic; width: 16em; }
16 </style>
17 </head>
18 <body>
19 <div id="site">
20 <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
21 </div>
22 <div id="head">
23 <h1>FFI Semantics</h1>
24 </div>
25 <div id="nav">
26 <ul><li>
27 <a href="luajit.html">LuaJIT</a>
28 <ul><li>
29 <a href="install.html">Installation</a>
30 </li><li>
31 <a href="running.html">Running</a>
32 </li></ul>
33 </li><li>
34 <a href="extensions.html">Extensions</a>
35 <ul><li>
36 <a href="ext_ffi.html">FFI Library</a>
37 <ul><li>
38 <a href="ext_ffi_tutorial.html">FFI Tutorial</a>
39 </li><li>
40 <a href="ext_ffi_api.html">ffi.* API</a>
41 </li><li>
42 <a class="current" href="ext_ffi_semantics.html">FFI Semantics</a>
43 </li></ul>
44 </li><li>
45 <a href="ext_jit.html">jit.* Library</a>
46 </li><li>
47 <a href="ext_c_api.html">Lua/C API</a>
48 </li></ul>
49 </li><li>
50 <a href="status.html">Status</a>
51 <ul><li>
52 <a href="changes.html">Changes</a>
53 </li></ul>
54 </li><li>
55 <a href="faq.html">FAQ</a>
56 </li><li>
57 <a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
58 </li><li>
59 <a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
60 </li><li>
61 <a href="http://wiki.luajit.org/">Wiki <span class="ext">&raquo;</span></a>
62 </li><li>
63 <a href="http://luajit.org/list.html">Mailing List <span class="ext">&raquo;</span></a>
64 </li></ul>
65 </div>
66 <div id="main">
67 <p>
68 This page describes the detailed semantics underlying the FFI library
69 and its interaction with both Lua and C&nbsp;code.
70 </p>
71 <p>
72 Given that the FFI library is designed to interface with C&nbsp;code
73 and that declarations can be written in plain C&nbsp;syntax, <b>it
74 closely follows the C&nbsp;language semantics</b>, wherever possible.
75 Some minor concessions are needed for smoother interoperation with Lua
76 language semantics.
77 </p>
78 <p>
79 Please don't be overwhelmed by the contents of this page &mdash; this
80 is a reference and you may need to consult it, if in doubt. It doesn't
81 hurt to skim this page, but most of the semantics "just work" as you'd
82 expect them to work. It should be straightforward to write
83 applications using the LuaJIT FFI for developers with a C or C++
84 background.
85 </p>
86 <p class="indent" style="color: #c00000;">
87 Please note: this doesn't comprise the final specification for the FFI
88 semantics, yet. Some semantics may need to be changed, based on your
89 feedback. Please <a href="contact.html">report</a> any problems you may
90 encounter or any improvements you'd like to see &mdash; thank you!
91 </p>
93 <h2 id="clang">C Language Support</h2>
94 <p>
95 The FFI library has a built-in C&nbsp;parser with a minimal memory
96 footprint. It's used by the <a href="ext_ffi_api.html">ffi.* library
97 functions</a> to declare C&nbsp;types or external symbols.
98 </p>
99 <p>
100 It's only purpose is to parse C&nbsp;declarations, as found e.g. in
101 C&nbsp;header files. Although it does evaluate constant expressions,
102 it's <em>not</em> a C&nbsp;compiler. The body of <tt>inline</tt>
103 C&nbsp;function definitions is simply ignored.
104 </p>
106 Also, this is <em>not</em> a validating C&nbsp;parser. It expects and
107 accepts correctly formed C&nbsp;declarations, but it may choose to
108 ignore bad declarations or show rather generic error messages. If in
109 doubt, please check the input against your favorite C&nbsp;compiler.
110 </p>
112 The C&nbsp;parser complies to the <b>C99 language standard</b> plus
113 the following extensions:
114 </p>
115 <ul>
117 <li>The <tt>'\e'</tt> escape in character and string literals.</li>
119 <li>The C99/C++ boolean type, declared with the keywords <tt>bool</tt>
120 or <tt>_Bool</tt>.</li>
122 <li>Complex numbers, declared with the keywords <tt>complex</tt> or
123 <tt>_Complex</tt>.</li>
125 <li>Two complex number types: <tt>complex</tt> (aka
126 <tt>complex&nbsp;double</tt>) and <tt>complex&nbsp;float</tt>.</li>
128 <li>Vector types, declared with the GCC <tt>mode</tt> or
129 <tt>vector_size</tt> attribute.</li>
131 <li>Unnamed ('transparent') <tt>struct</tt>/<tt>union</tt> fields
132 inside a <tt>struct</tt>/<tt>union</tt>.</li>
134 <li>Incomplete <tt>enum</tt> declarations, handled like incomplete
135 <tt>struct</tt> declarations.</li>
137 <li>Unnamed <tt>enum</tt> fields inside a
138 <tt>struct</tt>/<tt>union</tt>. This is similar to a scoped C++
139 <tt>enum</tt>, except that declared constants are visible in the
140 global namespace, too.</li>
142 <li>Scoped <tt>static&nbsp;const</tt> declarations inside a
143 <tt>struct</tt>/<tt>union</tt> (from C++).</li>
145 <li>Zero-length arrays (<tt>[0]</tt>), empty
146 <tt>struct</tt>/<tt>union</tt>, variable-length arrays (VLA,
147 <tt>[?]</tt>) and variable-length structs (VLS, with a trailing
148 VLA).</li>
150 <li>C++ reference types (<tt>int&nbsp;&amp;x</tt>).</li>
152 <li>Alternate GCC keywords with '<tt>__</tt>', e.g.
153 <tt>__const__</tt>.</li>
155 <li>GCC <tt>__attribute__</tt> with the following attributes:
156 <tt>aligned</tt>, <tt>packed</tt>, <tt>mode</tt>,
157 <tt>vector_size</tt>, <tt>cdecl</tt>, <tt>fastcall</tt>,
158 <tt>stdcall</tt>.</li>
160 <li>The GCC <tt>__extension__</tt> keyword and the GCC
161 <tt>__alignof__</tt> operator.</li>
163 <li>GCC <tt>__asm__("symname")</tt> symbol name redirection for
164 function declarations.</li>
166 <li>MSVC keywords for fixed-length types: <tt>__int8</tt>,
167 <tt>__int16</tt>, <tt>__int32</tt> and <tt>__int64</tt>.</li>
169 <li>MSVC <tt>__cdecl</tt>, <tt>__fastcall</tt>, <tt>__stdcall</tt>,
170 <tt>__ptr32</tt>, <tt>__ptr64</tt>, <tt>__declspec(align(n))</tt>
171 and <tt>#pragma&nbsp;pack</tt>.</li>
173 <li>All other GCC/MSVC-specific attributes are ignored.</li>
175 </ul>
177 The following C&nbsp;types are pre-defined by the C&nbsp;parser (like
178 a <tt>typedef</tt>, except re-declarations will be ignored):
179 </p>
180 <ul>
182 <li>Vararg handling: <tt>va_list</tt>, <tt>__builtin_va_list</tt>,
183 <tt>__gnuc_va_list</tt>.</li>
185 <li>From <tt>&lt;stddef.h&gt;</tt>: <tt>ptrdiff_t</tt>,
186 <tt>size_t</tt>, <tt>wchar_t</tt>.</li>
188 <li>From <tt>&lt;stdint.h&gt;</tt>: <tt>int8_t</tt>, <tt>int16_t</tt>,
189 <tt>int32_t</tt>, <tt>int64_t</tt>, <tt>uint8_t</tt>,
190 <tt>uint16_t</tt>, <tt>uint32_t</tt>, <tt>uint64_t</tt>,
191 <tt>intptr_t</tt>, <tt>uintptr_t</tt>.</li>
193 </ul>
195 You're encouraged to use these types in preference to the
196 compiler-specific extensions or the target-dependent standard types.
197 E.g. <tt>char</tt> differs in signedness and <tt>long</tt> differs in
198 size, depending on the target architecture and platform ABI.
199 </p>
201 The following C&nbsp;features are <b>not</b> supported:
202 </p>
203 <ul>
205 <li>A declaration must always have a type specifier; it doesn't
206 default to an <tt>int</tt> type.</li>
208 <li>Old-style empty function declarations (K&amp;R) are not allowed.
209 All C&nbsp;functions must have a proper prototype declaration. A
210 function declared without parameters (<tt>int&nbsp;foo();</tt>) is
211 treated as a function taking zero arguments, like in C++.</li>
213 <li>The <tt>long double</tt> C&nbsp;type is parsed correctly, but
214 there's no support for the related conversions, accesses or arithmetic
215 operations.</li>
217 <li>Wide character strings and character literals are not
218 supported.</li>
220 <li><a href="#status">See below</a> for features that are currently
221 not implemented.</li>
223 </ul>
225 <h2 id="convert">C Type Conversion Rules</h2>
227 <h3 id="convert_tolua">Conversions from C&nbsp;types to Lua objects</h3>
229 These conversion rules apply for <em>read accesses</em> to
230 C&nbsp;types: indexing pointers, arrays or
231 <tt>struct</tt>/<tt>union</tt> types; reading external variables or
232 constant values; retrieving return values from C&nbsp;calls:
233 </p>
234 <table class="convtable">
235 <tr class="convhead">
236 <td class="convin">Input</td>
237 <td class="convop">Conversion</td>
238 <td class="convout">Output</td>
239 </tr>
240 <tr class="odd separate">
241 <td class="convin"><tt>int8_t</tt>, <tt>int16_t</tt></td><td class="convop">&rarr;<sup>sign-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
242 <tr class="even">
243 <td class="convin"><tt>uint8_t</tt>, <tt>uint16_t</tt></td><td class="convop">&rarr;<sup>zero-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
244 <tr class="odd">
245 <td class="convin"><tt>int32_t</tt>, <tt>uint32_t</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
246 <tr class="even">
247 <td class="convin"><tt>int64_t</tt>, <tt>uint64_t</tt></td><td class="convop">boxed value</td><td class="convout">64 bit int cdata</td></tr>
248 <tr class="odd separate">
249 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
250 <tr class="even separate">
251 <td class="convin"><tt>bool</tt></td><td class="convop">0 &rarr; <tt>false</tt>, otherwise <tt>true</tt></td><td class="convout">boolean</td></tr>
252 <tr class="odd separate">
253 <td class="convin"><tt>enum</tt></td><td class="convop">boxed value</td><td class="convout">enum cdata</td></tr>
254 <tr class="even">
255 <td class="convin">Complex number</td><td class="convop">boxed value</td><td class="convout">complex cdata</td></tr>
256 <tr class="odd">
257 <td class="convin">Vector</td><td class="convop">boxed value</td><td class="convout">vector cdata</td></tr>
258 <tr class="even">
259 <td class="convin">Pointer</td><td class="convop">boxed value</td><td class="convout">pointer cdata</td></tr>
260 <tr class="odd separate">
261 <td class="convin">Array</td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
262 <tr class="even">
263 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
264 </table>
266 Bitfields are treated like their underlying type.
267 </p>
269 Reference types are dereferenced <em>before</em> a conversion can take
270 place &mdash; the conversion is applied to the C&nbsp;type pointed to
271 by the reference.
272 </p>
274 <h3 id="convert_fromlua">Conversions from Lua objects to C&nbsp;types</h3>
276 These conversion rules apply for <em>write accesses</em> to
277 C&nbsp;types: indexing pointers, arrays or
278 <tt>struct</tt>/<tt>union</tt> types; initializing cdata objects;
279 casts to C&nbsp;types; writing to external variables; passing
280 arguments to C&nbsp;calls:
281 </p>
282 <table class="convtable">
283 <tr class="convhead">
284 <td class="convin">Input</td>
285 <td class="convop">Conversion</td>
286 <td class="convout">Output</td>
287 </tr>
288 <tr class="odd separate">
289 <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
290 <tr class="even">
291 <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
292 <tr class="odd separate">
293 <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
294 <tr class="even">
295 <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
296 <tr class="odd">
297 <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
298 <tr class="even">
299 <td class="convin">io.* file</td><td class="convop">get FILE * handle &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
300 <tr class="odd separate">
301 <td class="convin">string</td><td class="convop">match against <tt>enum</tt> constant</td><td class="convout"><tt>enum</tt></td></tr>
302 <tr class="even">
303 <td class="convin">string</td><td class="convop">copy string data + zero-byte</td><td class="convout"><tt>int8_t[]</tt>, <tt>uint8_t[]</tt></td></tr>
304 <tr class="odd">
305 <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char[]</tt></td></tr>
306 <tr class="even separate">
307 <td class="convin">function</td><td class="convop"><a href="#callback">create callback</a> &rarr;</td><td class="convout">C function type</td></tr>
308 <tr class="odd separate">
309 <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout">Array</td></tr>
310 <tr class="even">
311 <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
312 <tr class="odd separate">
313 <td class="convin">cdata</td><td class="convop">cdata payload &rarr;</td><td class="convout">C type</td></tr>
314 </table>
316 If the result type of this conversion doesn't match the
317 C&nbsp;type of the destination, the
318 <a href="#convert_between">conversion rules between C&nbsp;types</a>
319 are applied.
320 </p>
322 Reference types are immutable after initialization ("no re-seating of
323 references"). For initialization purposes or when passing values to
324 reference parameters, they are treated like pointers. Note that unlike
325 in C++, there's no way to implement automatic reference generation of
326 variables under the Lua language semantics. If you want to call a
327 function with a reference parameter, you need to explicitly pass a
328 one-element array.
329 </p>
331 <h3 id="convert_between">Conversions between C&nbsp;types</h3>
333 These conversion rules are more or less the same as the standard
334 C&nbsp;conversion rules. Some rules only apply to casts, or require
335 pointer or type compatibility:
336 </p>
337 <table class="convtable">
338 <tr class="convhead">
339 <td class="convin">Input</td>
340 <td class="convop">Conversion</td>
341 <td class="convout">Output</td>
342 </tr>
343 <tr class="odd separate">
344 <td class="convin">Signed integer</td><td class="convop">&rarr;<sup>narrow or sign-extend</sup></td><td class="convout">Integer</td></tr>
345 <tr class="even">
346 <td class="convin">Unsigned integer</td><td class="convop">&rarr;<sup>narrow or zero-extend</sup></td><td class="convout">Integer</td></tr>
347 <tr class="odd">
348 <td class="convin">Integer</td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>double</tt>, <tt>float</tt></td></tr>
349 <tr class="even">
350 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup> <tt>int32_t</tt> &rarr;<sup>narrow</sup></td><td class="convout"><tt>(u)int8_t</tt>, <tt>(u)int16_t</tt></td></tr>
351 <tr class="odd">
352 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup></td><td class="convout"><tt>(u)int32_t</tt>, <tt>(u)int64_t</tt></td></tr>
353 <tr class="even">
354 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>float</tt>, <tt>double</tt></td></tr>
355 <tr class="odd separate">
356 <td class="convin">Number</td><td class="convop">n == 0 &rarr; 0, otherwise 1</td><td class="convout"><tt>bool</tt></td></tr>
357 <tr class="even">
358 <td class="convin"><tt>bool</tt></td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout">Number</td></tr>
359 <tr class="odd separate">
360 <td class="convin">Complex number</td><td class="convop">convert real part</td><td class="convout">Number</td></tr>
361 <tr class="even">
362 <td class="convin">Number</td><td class="convop">convert real part, imag = 0</td><td class="convout">Complex number</td></tr>
363 <tr class="odd">
364 <td class="convin">Complex number</td><td class="convop">convert real and imag part</td><td class="convout">Complex number</td></tr>
365 <tr class="even separate">
366 <td class="convin">Number</td><td class="convop">convert scalar and replicate</td><td class="convout">Vector</td></tr>
367 <tr class="odd">
368 <td class="convin">Vector</td><td class="convop">copy (same size)</td><td class="convout">Vector</td></tr>
369 <tr class="even separate">
370 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
371 <tr class="odd">
372 <td class="convin">Array</td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
373 <tr class="even">
374 <td class="convin">Function</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
375 <tr class="odd separate">
376 <td class="convin">Number</td><td class="convop">convert via <tt>uintptr_t</tt> (cast)</td><td class="convout">Pointer</td></tr>
377 <tr class="even">
378 <td class="convin">Pointer</td><td class="convop">convert address (compat/cast)</td><td class="convout">Pointer</td></tr>
379 <tr class="odd">
380 <td class="convin">Pointer</td><td class="convop">convert address (cast)</td><td class="convout">Integer</td></tr>
381 <tr class="even">
382 <td class="convin">Array</td><td class="convop">convert base address (cast)</td><td class="convout">Integer</td></tr>
383 <tr class="odd separate">
384 <td class="convin">Array</td><td class="convop">copy (compat)</td><td class="convout">Array</td></tr>
385 <tr class="even">
386 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">copy (identical type)</td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
387 </table>
389 Bitfields or <tt>enum</tt> types are treated like their underlying
390 type.
391 </p>
393 Conversions not listed above will raise an error. E.g. it's not
394 possible to convert a pointer to a complex number or vice versa.
395 </p>
397 <h3 id="convert_vararg">Conversions for vararg C&nbsp;function arguments</h3>
399 The following default conversion rules apply when passing Lua objects
400 to the variable argument part of vararg C&nbsp;functions:
401 </p>
402 <table class="convtable">
403 <tr class="convhead">
404 <td class="convin">Input</td>
405 <td class="convop">Conversion</td>
406 <td class="convout">Output</td>
407 </tr>
408 <tr class="odd separate">
409 <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
410 <tr class="even">
411 <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
412 <tr class="odd separate">
413 <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
414 <tr class="even">
415 <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
416 <tr class="odd">
417 <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
418 <tr class="even separate">
419 <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char *</tt></td></tr>
420 <tr class="odd separate">
421 <td class="convin"><tt>float</tt> cdata</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
422 <tr class="even">
423 <td class="convin">Array cdata</td><td class="convop">take base address</td><td class="convout">Element pointer</td></tr>
424 <tr class="odd">
425 <td class="convin"><tt>struct</tt>/<tt>union</tt> cdata</td><td class="convop">take base address</td><td class="convout"><tt>struct</tt>/<tt>union</tt> pointer</td></tr>
426 <tr class="even">
427 <td class="convin">Function cdata</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
428 <tr class="odd">
429 <td class="convin">Any other cdata</td><td class="convop">no conversion</td><td class="convout">C type</td></tr>
430 </table>
432 To pass a Lua object, other than a cdata object, as a specific type,
433 you need to override the conversion rules: create a temporary cdata
434 object with a constructor or a cast and initialize it with the value
435 to pass:
436 </p>
438 Assuming <tt>x</tt> is a Lua number, here's how to pass it as an
439 integer to a vararg function:
440 </p>
441 <pre class="code">
442 ffi.cdef[[
443 int printf(const char *fmt, ...);
445 ffi.C.printf("integer value: %d\n", ffi.new("int", x))
446 </pre>
448 If you don't do this, the default Lua number &rarr; <tt>double</tt>
449 conversion rule applies. A vararg C&nbsp;function expecting an integer
450 will see a garbled or uninitialized value.
451 </p>
453 <h2 id="init">Initializers</h2>
455 Creating a cdata object with
456 <a href="ext_ffi_api.html#ffi_new"><tt>ffi.new()</tt></a> or the
457 equivalent constructor syntax always initializes its contents, too.
458 Different rules apply, depending on the number of optional
459 initializers and the C&nbsp;types involved:
460 </p>
461 <ul>
462 <li>If no initializers are given, the object is filled with zero bytes.</li>
464 <li>Scalar types (numbers and pointers) accept a single initializer.
465 The Lua object is <a href="#convert_fromlua">converted to the scalar
466 C&nbsp;type</a>.</li>
468 <li>Valarrays (complex numbers and vectors) are treated like scalars
469 when a single initializer is given. Otherwise they are treated like
470 regular arrays.</li>
472 <li>Aggregate types (arrays and structs) accept either a single
473 <a href="#init_table">table initializer</a> or a flat list of
474 initializers.</li>
476 <li>The elements of an array are initialized, starting at index zero.
477 If a single initializer is given for an array, it's repeated for all
478 remaining elements. This doesn't happen if two or more initializers
479 are given: all remaining uninitialized elements are filled with zero
480 bytes.</li>
482 <li>Byte arrays may also be initialized with a Lua string. This copies
483 the whole string plus a terminating zero-byte. The copy stops early only
484 if the array has a known, fixed size.</li>
486 <li>The fields of a <tt>struct</tt> are initialized in the order of
487 their declaration. Uninitialized fields are filled with zero
488 bytes.</li>
490 <li>Only the first field of a <tt>union</tt> can be initialized with a
491 flat initializer.</li>
493 <li>Elements or fields which are aggregates themselves are initialized
494 with a <em>single</em> initializer, but this may be a table
495 initializer or a compatible aggregate.</li>
497 <li>Excess initializers cause an error.</li>
499 </ul>
501 <h2 id="init_table">Table Initializers</h2>
503 The following rules apply if a Lua table is used to initialize an
504 Array or a <tt>struct</tt>/<tt>union</tt>:
505 </p>
506 <ul>
508 <li>If the table index <tt>[0]</tt> is non-<tt>nil</tt>, then the
509 table is assumed to be zero-based. Otherwise it's assumed to be
510 one-based.</li>
512 <li>Array elements, starting at index zero, are initialized one-by-one
513 with the consecutive table elements, starting at either index
514 <tt>[0]</tt> or <tt>[1]</tt>. This process stops at the first
515 <tt>nil</tt> table element.</li>
517 <li>If exactly one array element was initialized, it's repeated for
518 all the remaining elements. Otherwise all remaining uninitialized
519 elements are filled with zero bytes.</li>
521 <li>The above logic only applies to arrays with a known fixed size.
522 A VLA is only initialized with the element(s) given in the table.
523 Depending on the use case, you may need to explicitly add a
524 <tt>NULL</tt> or <tt>0</tt> terminator to a VLA.</li>
526 <li>If the table has a non-empty hash part, a
527 <tt>struct</tt>/<tt>union</tt> is initialized by looking up each field
528 name (as a string key) in the table. Each non-<tt>nil</tt> value is
529 used to initialize the corresponding field.</li>
531 <li>Otherwise a <tt>struct</tt>/<tt>union</tt> is initialized in the
532 order of the declaration of its fields. Each field is initialized with
533 the consecutive table elements, starting at either index <tt>[0]</tt>
534 or <tt>[1]</tt>. This process stops at the first <tt>nil</tt> table
535 element.</li>
537 <li>Uninitialized fields of a <tt>struct</tt> are filled with zero
538 bytes, except for the trailing VLA of a VLS.</li>
540 <li>Initialization of a <tt>union</tt> stops after one field has been
541 initialized. If no field has been initialized, the <tt>union</tt> is
542 filled with zero bytes.</li>
544 <li>Elements or fields which are aggregates themselves are initialized
545 with a <em>single</em> initializer, but this may be a nested table
546 initializer (or a compatible aggregate).</li>
548 <li>Excess initializers for an array cause an error. Excess
549 initializers for a <tt>struct</tt>/<tt>union</tt> are ignored.
550 Unrelated table entries are ignored, too.</li>
552 </ul>
554 Example:
555 </p>
556 <pre class="code">
557 local ffi = require("ffi")
559 ffi.cdef[[
560 struct foo { int a, b; };
561 union bar { int i; double d; };
562 struct nested { int x; struct foo y; };
565 ffi.new("int[3]", {}) --> 0, 0, 0
566 ffi.new("int[3]", {1}) --> 1, 1, 1
567 ffi.new("int[3]", {1,2}) --> 1, 2, 0
568 ffi.new("int[3]", {1,2,3}) --> 1, 2, 3
569 ffi.new("int[3]", {[0]=1}) --> 1, 1, 1
570 ffi.new("int[3]", {[0]=1,2}) --> 1, 2, 0
571 ffi.new("int[3]", {[0]=1,2,3}) --> 1, 2, 3
572 ffi.new("int[3]", {[0]=1,2,3,4}) --> error: too many initializers
574 ffi.new("struct foo", {}) --> a = 0, b = 0
575 ffi.new("struct foo", {1}) --> a = 1, b = 0
576 ffi.new("struct foo", {1,2}) --> a = 1, b = 2
577 ffi.new("struct foo", {[0]=1,2}) --> a = 1, b = 2
578 ffi.new("struct foo", {b=2}) --> a = 0, b = 2
579 ffi.new("struct foo", {a=1,b=2,c=3}) --> a = 1, b = 2 'c' is ignored
581 ffi.new("union bar", {}) --> i = 0, d = 0.0
582 ffi.new("union bar", {1}) --> i = 1, d = ?
583 ffi.new("union bar", {[0]=1,2}) --> i = 1, d = ? '2' is ignored
584 ffi.new("union bar", {d=2}) --> i = ?, d = 2.0
586 ffi.new("struct nested", {1,{2,3}}) --> x = 1, y.a = 2, y.b = 3
587 ffi.new("struct nested", {x=1,y={2,3}}) --> x = 1, y.a = 2, y.b = 3
588 </pre>
590 <h2 id="cdata_ops">Operations on cdata Objects</h2>
592 All of the standard Lua operators can be applied to cdata objects or a
593 mix of a cdata object and another Lua object. The following list shows
594 the pre-defined operations.
595 </p>
597 Reference types are dereferenced <em>before</em> performing each of
598 the operations below &mdash; the operation is applied to the
599 C&nbsp;type pointed to by the reference.
600 </p>
602 The pre-defined operations are always tried first before deferring to a
603 metamethod or index table (if any) for the corresponding ctype (except
604 for <tt>__new</tt>). An error is raised if the metamethod lookup or
605 index table lookup fails.
606 </p>
608 <h3 id="cdata_array">Indexing a cdata object</h3>
609 <ul>
611 <li><b>Indexing a pointer/array</b>: a cdata pointer/array can be
612 indexed by a cdata number or a Lua number. The element address is
613 computed as the base address plus the number value multiplied by the
614 element size in bytes. A read access loads the element value and
615 <a href="#convert_tolua">converts it to a Lua object</a>. A write
616 access <a href="#convert_fromlua">converts a Lua object to the element
617 type</a> and stores the converted value to the element. An error is
618 raised if the element size is undefined or a write access to a
619 constant element is attempted.</li>
621 <li><b>Dereferencing a <tt>struct</tt>/<tt>union</tt> field</b>: a
622 cdata <tt>struct</tt>/<tt>union</tt> or a pointer to a
623 <tt>struct</tt>/<tt>union</tt> can be dereferenced by a string key,
624 giving the field name. The field address is computed as the base
625 address plus the relative offset of the field. A read access loads the
626 field value and <a href="#convert_tolua">converts it to a Lua
627 object</a>. A write access <a href="#convert_fromlua">converts a Lua
628 object to the field type</a> and stores the converted value to the
629 field. An error is raised if a write access to a constant
630 <tt>struct</tt>/<tt>union</tt> or a constant field is attempted.
631 Scoped enum constants or static constants are treated like a constant
632 field.</li>
634 <li><b>Indexing a complex number</b>: a complex number can be indexed
635 either by a cdata number or a Lua number with the values 0 or 1, or by
636 the strings <tt>"re"</tt> or <tt>"im"</tt>. A read access loads the
637 real part (<tt>[0]</tt>, <tt>.re</tt>) or the imaginary part
638 (<tt>[1]</tt>, <tt>.im</tt>) part of a complex number and
639 <a href="#convert_tolua">converts it to a Lua number</a>. The
640 sub-parts of a complex number are immutable &mdash; assigning to an
641 index of a complex number raises an error. Accessing out-of-bound
642 indexes returns unspecified results, but is guaranteed not to trigger
643 memory access violations.</li>
645 <li><b>Indexing a vector</b>: a vector is treated like an array for
646 indexing purposes, except the vector elements are immutable &mdash;
647 assigning to an index of a vector raises an error.</li>
649 </ul>
651 A ctype object can be indexed with a string key, too. The only
652 pre-defined operation is reading scoped constants of
653 <tt>struct</tt>/<tt>union</tt> types. All other accesses defer
654 to the corresponding metamethods or index tables (if any).
655 </p>
657 Note: since there's (deliberately) no address-of operator, a cdata
658 object holding a value type is effectively immutable after
659 initialization. The JIT compiler benefits from this fact when applying
660 certain optimizations.
661 </p>
663 As a consequence of this, the <em>elements</em> of complex numbers and
664 vectors are immutable. But the elements of an aggregate holding these
665 types <em>may</em> be modified of course. I.e. you cannot assign to
666 <tt>foo.c.im</tt>, but you can assign a (newly created) complex number
667 to <tt>foo.c</tt>.
668 </p>
670 <h3 id="cdata_call">Calling a cdata object</h3>
671 <ul>
673 <li><b>Constructor</b>: a ctype object can be called and used as a
674 <a href="ext_ffi_api.html#ffi_new">constructor</a>. This is equivalent
675 to <tt>ffi.new(ct, ...)</tt>, unless a <tt>__new</tt> metamethod is
676 defined. The <tt>__new</tt> metamethod is called with the ctype object
677 plus any other arguments passed to the contructor. Note that you have to
678 use <tt>ffi.new</tt> inside of it, since calling <tt>ct(...)</tt> would
679 cause infinite recursion.</li>
681 <li><b>C&nbsp;function call</b>: a cdata function or cdata function
682 pointer can be called. The passed arguments are
683 <a href="#convert_fromlua">converted to the C&nbsp;types</a> of the
684 parameters given by the function declaration. Arguments passed to the
685 variable argument part of vararg C&nbsp;function use
686 <a href="#convert_vararg">special conversion rules</a>. This
687 C&nbsp;function is called and the return value (if any) is
688 <a href="#convert_tolua">converted to a Lua object</a>.<br>
689 On Windows/x86 systems, <tt>__stdcall</tt> functions are automatically
690 detected and a function declared as <tt>__cdecl</tt> (the default) is
691 silently fixed up after the first call.</li>
693 </ul>
695 <h3 id="cdata_arith">Arithmetic on cdata objects</h3>
696 <ul>
698 <li><b>Pointer arithmetic</b>: a cdata pointer/array and a cdata
699 number or a Lua number can be added or subtracted. The number must be
700 on the right hand side for a subtraction. The result is a pointer of
701 the same type with an address plus or minus the number value
702 multiplied by the element size in bytes. An error is raised if the
703 element size is undefined.</li>
705 <li><b>Pointer difference</b>: two compatible cdata pointers/arrays
706 can be subtracted. The result is the difference between their
707 addresses, divided by the element size in bytes. An error is raised if
708 the element size is undefined or zero.</li>
710 <li><b>64&nbsp;bit integer arithmetic</b>: the standard arithmetic
711 operators (<tt>+&nbsp;-&nbsp;*&nbsp;/&nbsp;%&nbsp;^</tt> and unary
712 minus) can be applied to two cdata numbers, or a cdata number and a
713 Lua number. If one of them is an <tt>uint64_t</tt>, the other side is
714 converted to an <tt>uint64_t</tt> and an unsigned arithmetic operation
715 is performed. Otherwise both sides are converted to an
716 <tt>int64_t</tt> and a signed arithmetic operation is performed. The
717 result is a boxed 64&nbsp;bit cdata object.<br>
719 If one of the operands is an <tt>enum</tt> and the other operand is a
720 string, the string is converted to the value of a matching <tt>enum</tt>
721 constant before the above conversion.<br>
723 These rules ensure that 64&nbsp;bit integers are "sticky". Any
724 expression involving at least one 64&nbsp;bit integer operand results
725 in another one. The undefined cases for the division, modulo and power
726 operators return <tt>2LL&nbsp;^&nbsp;63</tt> or
727 <tt>2ULL&nbsp;^&nbsp;63</tt>.<br>
729 You'll have to explicitly convert a 64&nbsp;bit integer to a Lua
730 number (e.g. for regular floating-point calculations) with
731 <tt>tonumber()</tt>. But note this may incur a precision loss.</li>
733 </ul>
735 <h3 id="cdata_comp">Comparisons of cdata objects</h3>
736 <ul>
738 <li><b>Pointer comparison</b>: two compatible cdata pointers/arrays
739 can be compared. The result is the same as an unsigned comparison of
740 their addresses. <tt>nil</tt> is treated like a <tt>NULL</tt> pointer,
741 which is compatible with any other pointer type.</li>
743 <li><b>64&nbsp;bit integer comparison</b>: two cdata numbers, or a
744 cdata number and a Lua number can be compared with each other. If one
745 of them is an <tt>uint64_t</tt>, the other side is converted to an
746 <tt>uint64_t</tt> and an unsigned comparison is performed. Otherwise
747 both sides are converted to an <tt>int64_t</tt> and a signed
748 comparison is performed.<br>
750 If one of the operands is an <tt>enum</tt> and the other operand is a
751 string, the string is converted to the value of a matching <tt>enum</tt>
752 constant before the above conversion.<br>
754 <li><b>Comparisons for equality/inequality</b> never raise an error.
755 Even incompatible pointers can be compared for equality by address. Any
756 other incompatible comparison (also with non-cdata objects) treats the
757 two sides as unequal.</li>
759 </ul>
761 <h3 id="cdata_key">cdata objects as table keys</h3>
763 Lua tables may be indexed by cdata objects, but this doesn't provide
764 any useful semantics &mdash; <b>cdata objects are unsuitable as table
765 keys!</b>
766 </p>
768 A cdata object is treated like any other garbage-collected object and
769 is hashed and compared by its address for table indexing. Since
770 there's no interning for cdata value types, the same value may be
771 boxed in different cdata objects with different addresses. Thus
772 <tt>t[1LL+1LL]</tt> and <tt>t[2LL]</tt> usually <b>do not</b> point to
773 the same hash slot and they certainly <b>do not</b> point to the same
774 hash slot as <tt>t[2]</tt>.
775 </p>
777 It would seriously drive up implementation complexity and slow down
778 the common case, if one were to add extra handling for by-value
779 hashing and comparisons to Lua tables. Given the ubiquity of their use
780 inside the VM, this is not acceptable.
781 </p>
783 There are three viable alternatives, if you really need to use cdata
784 objects as keys:
785 </p>
786 <ul>
788 <li>If you can get by with the precision of Lua numbers
789 (52&nbsp;bits), then use <tt>tonumber()</tt> on a cdata number or
790 combine multiple fields of a cdata aggregate to a Lua number. Then use
791 the resulting Lua number as a key when indexing tables.<br>
792 One obvious benefit: <tt>t[tonumber(2LL)]</tt> <b>does</b> point to
793 the same slot as <tt>t[2]</tt>.</li>
795 <li>Otherwise use either <tt>tostring()</tt> on 64&nbsp;bit integers
796 or complex numbers or combine multiple fields of a cdata aggregate to
797 a Lua string (e.g. with
798 <a href="ext_ffi_api.html#ffi_string"><tt>ffi.string()</tt></a>). Then
799 use the resulting Lua string as a key when indexing tables.</li>
801 <li>Create your own specialized hash table implementation using the
802 C&nbsp;types provided by the FFI library, just like you would in
803 C&nbsp;code. Ultimately this may give much better performance than the
804 other alternatives or what a generic by-value hash table could
805 possibly provide.</li>
807 </ul>
809 <h2 id="gc">Garbage Collection of cdata Objects</h2>
811 All explicitly (<tt>ffi.new()</tt>, <tt>ffi.cast()</tt> etc.) or
812 implicitly (accessors) created cdata objects are garbage collected.
813 You need to ensure to retain valid references to cdata objects
814 somewhere on a Lua stack, an upvalue or in a Lua table while they are
815 still in use. Once the last reference to a cdata object is gone, the
816 garbage collector will automatically free the memory used by it (at
817 the end of the next GC cycle).
818 </p>
820 Please note that pointers themselves are cdata objects, however they
821 are <b>not</b> followed by the garbage collector. So e.g. if you
822 assign a cdata array to a pointer, you must keep the cdata object
823 holding the array alive as long as the pointer is still in use:
824 </p>
825 <pre class="code">
826 ffi.cdef[[
827 typedef struct { int *a; } foo_t;
830 local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span>
832 local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span>
833 local s = ffi.new("foo_t", a)
834 -- Now do something with 's', but keep 'a' alive until you're done.
835 </pre>
837 Similar rules apply for Lua strings which are implicitly converted to
838 <tt>"const&nbsp;char&nbsp;*"</tt>: the string object itself must be
839 referenced somewhere or it'll be garbage collected eventually. The
840 pointer will then point to stale data, which may have already been
841 overwritten. Note that <em>string literals</em> are automatically kept
842 alive as long as the function containing it (actually its prototype)
843 is not garbage collected.
844 </p>
846 Objects which are passed as an argument to an external C&nbsp;function
847 are kept alive until the call returns. So it's generally safe to
848 create temporary cdata objects in argument lists. This is a common
849 idiom for <a href="#convert_vararg">passing specific C&nbsp;types to
850 vararg functions</a>.
851 </p>
853 Memory areas returned by C functions (e.g. from <tt>malloc()</tt>)
854 must be manually managed, of course (or use
855 <a href="ext_ffi_api.html#ffi_gc"><tt>ffi.gc()</tt></a>). Pointers to
856 cdata objects are indistinguishable from pointers returned by C
857 functions (which is one of the reasons why the GC cannot follow them).
858 </p>
860 <h2 id="callback">Callbacks</h2>
862 The LuaJIT FFI automatically generates special callback functions
863 whenever a Lua function is converted to a C&nbsp;function pointer. This
864 associates the generated callback function pointer with the C&nbsp;type
865 of the function pointer and the Lua function object (closure).
866 </p>
868 This can happen implicitly due to the usual conversions, e.g. when
869 passing a Lua function to a function pointer argument. Or you can use
870 <tt>ffi.cast()</tt> to explicitly cast a Lua function to a
871 C&nbsp;function pointer.
872 </p>
874 Currently only certain C&nbsp;function types can be used as callback
875 functions. Neither C&nbsp;vararg functions nor functions with
876 pass-by-value aggregate argument or result types are supported. There
877 are no restrictions for the kind of Lua functions that can be called
878 from the callback &mdash; no checks for the proper number of arguments
879 are made. The return value of the Lua function will be converted to the
880 result type and an error will be thrown for invalid conversions.
881 </p>
883 It's allowed to throw errors across a callback invocation, but it's not
884 advisable in general. Do this only if you know the C&nbsp;function, that
885 called the callback, copes with the forced stack unwinding and doesn't
886 leak resources.
887 </p>
889 <h3 id="callback_resources">Callback resource handling</h3>
891 Callbacks take up resources &mdash; you can only have a limited number
892 of them at the same time (500&nbsp;-&nbsp;1000, depending on the
893 architecture). The associated Lua functions are anchored to prevent
894 garbage collection, too.
895 </p>
897 <b>Callbacks due to implicit conversions are permanent!</b> There is no
898 way to guess their lifetime, since the C&nbsp;side might store the
899 function pointer for later use (typical for GUI toolkits). The associated
900 resources cannot be reclaimed until termination:
901 </p>
902 <pre class="code">
903 ffi.cdef[[
904 typedef int (__stdcall *WNDENUMPROC)(void *hwnd, intptr_t l);
905 int EnumWindows(WNDENUMPROC func, intptr_t l);
908 -- Implicit conversion to a callback via function pointer argument.
909 local count = 0
910 ffi.C.EnumWindows(function(hwnd, l)
911 count = count + 1
912 return true
913 end, 0)
914 -- The callback is permanent and its resources cannot be reclaimed!
915 -- Ok, so this may not be a problem, if you do this only once.
916 </pre>
918 Note: this example shows that you <em>must</em> properly declare
919 <tt>__stdcall</tt> callbacks on Windows/x86 systems. The calling
920 convention cannot be automatically detected, unlike for
921 <tt>__stdcall</tt> calls <em>to</em> Windows functions.
922 </p>
924 For some use cases it's necessary to free up the resources or to
925 dynamically redirect callbacks. Use an explicit cast to a
926 C&nbsp;function pointer and keep the resulting cdata object. Then use
927 the <a href="ext_ffi_api.html#callback_free"><tt>cb:free()</tt></a>
928 or <a href="ext_ffi_api.html#callback_set"><tt>cb:set()</tt></a> methods
929 on the cdata object:
930 </p>
931 <pre class="code">
932 -- Explicitly convert to a callback via cast.
933 local count = 0
934 local cb = ffi.cast("WNDENUMPROC", function(hwnd, l)
935 count = count + 1
936 return true
937 end)
939 -- Pass it to a C function.
940 ffi.C.EnumWindows(cb, 0)
941 -- EnumWindows doesn't need the callback after it returns, so free it.
943 cb:free()
944 -- The callback function pointer is no longer valid and its resources
945 -- will be reclaimed. The created Lua closure will be garbage collected.
946 </pre>
948 <h3 id="callback_performance">Callback performance</h3>
950 <b>Callbacks are slow!</b> First, the C&nbsp;to Lua transition itself
951 has an unavoidable cost, similar to a <tt>lua_call()</tt> or
952 <tt>lua_pcall()</tt>. Argument and result marshalling add to that cost.
953 And finally, neither the C&nbsp;compiler nor LuaJIT can inline or
954 optimize across the language barrier and hoist repeated computations out
955 of a callback function.
956 </p>
958 Do not use callbacks for performance-sensitive work: e.g. consider a
959 numerical integration routine which takes a user-defined function to
960 integrate over. It's a bad idea to call a user-defined Lua function from
961 C&nbsp;code millions of times. The callback overhead will be absolutely
962 detrimental for performance.
963 </p>
965 It's considerably faster to write the numerical integration routine
966 itself in Lua &mdash; the JIT compiler will be able to inline the
967 user-defined function and optimize it together with its calling context,
968 with very competitive performance.
969 </p>
971 As a general guideline: <b>use callbacks only when you must</b>, because
972 of existing C&nbsp;APIs. E.g. callback performance is irrelevant for a
973 GUI application, which waits for user input most of the time, anyway.
974 </p>
976 For new designs <b>avoid push-style APIs</b> (C&nbsp;function repeatedly
977 calling a callback for each result). Instead <b>use pull-style APIs</b>
978 (call a C&nbsp;function repeatedly to get a new result). Calls from Lua
979 to C via the FFI are much faster than the other way round. Most well-designed
980 libraries already use pull-style APIs (read/write, get/put).
981 </p>
983 <h2 id="clib">C Library Namespaces</h2>
985 A C&nbsp;library namespace is a special kind of object which allows
986 access to the symbols contained in shared libraries or the default
987 symbol namespace. The default
988 <a href="ext_ffi_api.html#ffi_C"><tt>ffi.C</tt></a> namespace is
989 automatically created when the FFI library is loaded. C&nbsp;library
990 namespaces for specific shared libraries may be created with the
991 <a href="ext_ffi_api.html#ffi_load"><tt>ffi.load()</tt></a> API
992 function.
993 </p>
995 Indexing a C&nbsp;library namespace object with a symbol name (a Lua
996 string) automatically binds it to the library. First the symbol type
997 is resolved &mdash; it must have been declared with
998 <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a>. Then the
999 symbol address is resolved by searching for the symbol name in the
1000 associated shared libraries or the default symbol namespace. Finally,
1001 the resulting binding between the symbol name, the symbol type and its
1002 address is cached. Missing symbol declarations or nonexistent symbol
1003 names cause an error.
1004 </p>
1006 This is what happens on a <b>read access</b> for the different kinds of
1007 symbols:
1008 </p>
1009 <ul>
1011 <li>External functions: a cdata object with the type of the function
1012 and its address is returned.</li>
1014 <li>External variables: the symbol address is dereferenced and the
1015 loaded value is <a href="#convert_tolua">converted to a Lua object</a>
1016 and returned.</li>
1018 <li>Constant values (<tt>static&nbsp;const</tt> or <tt>enum</tt>
1019 constants): the constant is <a href="#convert_tolua">converted to a
1020 Lua object</a> and returned.</li>
1022 </ul>
1024 This is what happens on a <b>write access</b>:
1025 </p>
1026 <ul>
1028 <li>External variables: the value to be written is
1029 <a href="#convert_fromlua">converted to the C&nbsp;type</a> of the
1030 variable and then stored at the symbol address.</li>
1032 <li>Writing to constant variables or to any other symbol type causes
1033 an error, like any other attempted write to a constant location.</li>
1035 </ul>
1037 C&nbsp;library namespaces themselves are garbage collected objects. If
1038 the last reference to the namespace object is gone, the garbage
1039 collector will eventually release the shared library reference and
1040 remove all memory associated with the namespace. Since this may
1041 trigger the removal of the shared library from the memory of the
1042 running process, it's generally <em>not safe</em> to use function
1043 cdata objects obtained from a library if the namespace object may be
1044 unreferenced.
1045 </p>
1047 Performance notice: the JIT compiler specializes to the identity of
1048 namespace objects and to the strings used to index it. This
1049 effectively turns function cdata objects into constants. It's not
1050 useful and actually counter-productive to explicitly cache these
1051 function objects, e.g. <tt>local strlen = ffi.C.strlen</tt>. OTOH it
1052 <em>is</em> useful to cache the namespace itself, e.g. <tt>local C =
1053 ffi.C</tt>.
1054 </p>
1056 <h2 id="policy">No Hand-holding!</h2>
1058 The FFI library has been designed as <b>a low-level library</b>. The
1059 goal is to interface with C&nbsp;code and C&nbsp;data types with a
1060 minimum of overhead. This means <b>you can do anything you can do
1061 from&nbsp;C</b>: access all memory, overwrite anything in memory, call
1062 machine code at any memory address and so on.
1063 </p>
1065 The FFI library provides <b>no memory safety</b>, unlike regular Lua
1066 code. It will happily allow you to dereference a <tt>NULL</tt>
1067 pointer, to access arrays out of bounds or to misdeclare
1068 C&nbsp;functions. If you make a mistake, your application might crash,
1069 just like equivalent C&nbsp;code would.
1070 </p>
1072 This behavior is inevitable, since the goal is to provide full
1073 interoperability with C&nbsp;code. Adding extra safety measures, like
1074 bounds checks, would be futile. There's no way to detect
1075 misdeclarations of C&nbsp;functions, since shared libraries only
1076 provide symbol names, but no type information. Likewise there's no way
1077 to infer the valid range of indexes for a returned pointer.
1078 </p>
1080 Again: the FFI library is a low-level library. This implies it needs
1081 to be used with care, but it's flexibility and performance often
1082 outweigh this concern. If you're a C or C++ developer, it'll be easy
1083 to apply your existing knowledge. OTOH writing code for the FFI
1084 library is not for the faint of heart and probably shouldn't be the
1085 first exercise for someone with little experience in Lua, C or C++.
1086 </p>
1088 As a corollary of the above, the FFI library is <b>not safe for use by
1089 untrusted Lua code</b>. If you're sandboxing untrusted Lua code, you
1090 definitely don't want to give this code access to the FFI library or
1091 to <em>any</em> cdata object (except 64&nbsp;bit integers or complex
1092 numbers). Any properly engineered Lua sandbox needs to provide safety
1093 wrappers for many of the standard Lua library functions &mdash;
1094 similar wrappers need to be written for high-level operations on FFI
1095 data types, too.
1096 </p>
1098 <h2 id="status">Current Status</h2>
1100 The initial release of the FFI library has some limitations and is
1101 missing some features. Most of these will be fixed in future releases.
1102 </p>
1104 <a href="#clang">C language support</a> is
1105 currently incomplete:
1106 </p>
1107 <ul>
1108 <li>C&nbsp;declarations are not passed through a C&nbsp;pre-processor,
1109 yet.</li>
1110 <li>The C&nbsp;parser is able to evaluate most constant expressions
1111 commonly found in C&nbsp;header files. However it doesn't handle the
1112 full range of C&nbsp;expression semantics and may fail for some
1113 obscure constructs.</li>
1114 <li><tt>static const</tt> declarations only work for integer types
1115 up to 32&nbsp;bits. Neither declaring string constants nor
1116 floating-point constants is supported.</li>
1117 <li>Packed <tt>struct</tt> bitfields that cross container boundaries
1118 are not implemented.</li>
1119 <li>Native vector types may be defined with the GCC <tt>mode</tt> or
1120 <tt>vector_size</tt> attribute. But no operations other than loading,
1121 storing and initializing them are supported, yet.</li>
1122 <li>The <tt>volatile</tt> type qualifier is currently ignored by
1123 compiled code.</li>
1124 <li><a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> silently
1125 ignores all re-declarations.</li>
1126 </ul>
1128 The JIT compiler already handles a large subset of all FFI operations.
1129 It automatically falls back to the interpreter for unimplemented
1130 operations (you can check for this with the
1131 <a href="running.html#opt_j"><tt>-jv</tt></a> command line option).
1132 The following operations are currently not compiled and may exhibit
1133 suboptimal performance, especially when used in inner loops:
1134 </p>
1135 <ul>
1136 <li>Array/<tt>struct</tt> copies and bulk initializations.</li>
1137 <li>Bitfield accesses and initializations.</li>
1138 <li>Vector operations.</li>
1139 <li>Table initializers.</li>
1140 <li>Initialization of nested <tt>struct</tt>/<tt>union</tt> types.</li>
1141 <li>Allocations of variable-length arrays or structs.</li>
1142 <li>Allocations of C&nbsp;types with a size &gt; 128&nbsp;bytes or an
1143 alignment &gt; 8&nbsp;bytes.</li>
1144 <li>Conversions from lightuserdata to <tt>void&nbsp;*</tt>.</li>
1145 <li>Pointer differences for element sizes that are not a power of
1146 two.</li>
1147 <li>Calls to C&nbsp;functions with aggregates passed or returned by
1148 value.</li>
1149 <li>Calls to ctype metamethods which are not plain functions.</li>
1150 <li>ctype <tt>__newindex</tt> tables and non-string lookups in ctype
1151 <tt>__index</tt> tables.</li>
1152 <li><tt>tostring()</tt> for cdata types.</li>
1153 <li>Calls to the following <a href="ext_ffi_api.html">ffi.* API</a>
1154 functions: <tt>cdef</tt>, <tt>load</tt>, <tt>typeof</tt>,
1155 <tt>metatype</tt>, <tt>gc</tt>, <tt>sizeof</tt>, <tt>alignof</tt>,
1156 <tt>offsetof</tt>.</li>
1157 </ul>
1159 Other missing features:
1160 </p>
1161 <ul>
1162 <li>Bit operations for 64&nbsp;bit types.</li>
1163 <li>Arithmetic for <tt>complex</tt> numbers.</li>
1164 <li>Passing structs by value to vararg C&nbsp;functions.</li>
1165 <li><a href="extensions.html#exceptions">C++ exception interoperability</a>
1166 does not extend to C&nbsp;functions called via the FFI, if the call is
1167 compiled.</li>
1168 </ul>
1169 <br class="flush">
1170 </div>
1171 <div id="foot">
1172 <hr class="hide">
1173 Copyright &copy; 2005-2012 Mike Pall
1174 <span class="noprint">
1175 &middot;
1176 <a href="contact.html">Contact</a>
1177 </span>
1178 </div>
1179 </body>
1180 </html>