Fix constructor bytecode generation for conditional values.
[luajit-2.0/celess22.git] / src / lj_alloc.c
blob9aa6440dac5283e98d4e59c4f654a1f63ffb213a
1 /*
2 ** Bundled memory allocator.
3 **
4 ** Beware: this is a HEAVILY CUSTOMIZED version of dlmalloc.
5 ** The original bears the following remark:
6 **
7 ** This is a version (aka dlmalloc) of malloc/free/realloc written by
8 ** Doug Lea and released to the public domain, as explained at
9 ** http://creativecommons.org/licenses/publicdomain.
11 ** * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
13 ** No additional copyright is claimed over the customizations.
14 ** Please do NOT bother the original author about this version here!
16 ** If you want to use dlmalloc in another project, you should get
17 ** the original from: ftp://gee.cs.oswego.edu/pub/misc/
18 ** For thread-safe derivatives, take a look at:
19 ** - ptmalloc: http://www.malloc.de/
20 ** - nedmalloc: http://www.nedprod.com/programs/portable/nedmalloc/
23 #define lj_alloc_c
24 #define LUA_CORE
26 /* To get the mremap prototype. Must be defind before any system includes. */
27 #if defined(__linux__) && !defined(_GNU_SOURCE)
28 #define _GNU_SOURCE
29 #endif
31 #include "lj_def.h"
32 #include "lj_arch.h"
33 #include "lj_alloc.h"
35 #ifndef LUAJIT_USE_SYSMALLOC
37 #define MAX_SIZE_T (~(size_t)0)
38 #define MALLOC_ALIGNMENT ((size_t)8U)
40 #define DEFAULT_GRANULARITY ((size_t)128U * (size_t)1024U)
41 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
42 #define DEFAULT_MMAP_THRESHOLD ((size_t)128U * (size_t)1024U)
43 #define MAX_RELEASE_CHECK_RATE 255
45 /* ------------------- size_t and alignment properties -------------------- */
47 /* The byte and bit size of a size_t */
48 #define SIZE_T_SIZE (sizeof(size_t))
49 #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
51 /* Some constants coerced to size_t */
52 /* Annoying but necessary to avoid errors on some platforms */
53 #define SIZE_T_ZERO ((size_t)0)
54 #define SIZE_T_ONE ((size_t)1)
55 #define SIZE_T_TWO ((size_t)2)
56 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
57 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
58 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
60 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
61 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
63 /* the number of bytes to offset an address to align it */
64 #define align_offset(A)\
65 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
66 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
68 /* -------------------------- MMAP support ------------------------------- */
70 #define MFAIL ((void *)(MAX_SIZE_T))
71 #define CMFAIL ((char *)(MFAIL)) /* defined for convenience */
73 #define IS_DIRECT_BIT (SIZE_T_ONE)
75 #ifdef LUA_USE_WIN
77 #define WIN32_LEAN_AND_MEAN
78 #include <windows.h>
80 #if LJ_64
82 /* Undocumented, but hey, that's what we all love so much about Windows. */
83 typedef long (*PNTAVM)(HANDLE handle, void **addr, ULONG zbits,
84 size_t *size, ULONG alloctype, ULONG prot);
85 static PNTAVM ntavm;
87 /* Number of top bits of the lower 32 bits of an address that must be zero.
88 ** Apparently 0 gives us full 64 bit addresses and 1 gives us the lower 2GB.
90 #define NTAVM_ZEROBITS 1
92 static void INIT_MMAP(void)
94 ntavm = (PNTAVM)GetProcAddress(GetModuleHandle("ntdll.dll"),
95 "NtAllocateVirtualMemory");
98 /* Win64 32 bit MMAP via NtAllocateVirtualMemory. */
99 static LJ_AINLINE void *CALL_MMAP(size_t size)
101 void *ptr = NULL;
102 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
103 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
104 return st == 0 ? ptr : MFAIL;
107 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
108 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
110 void *ptr = NULL;
111 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
112 MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE);
113 return st == 0 ? ptr : MFAIL;
116 #else
118 #define INIT_MMAP() ((void)0)
120 /* Win32 MMAP via VirtualAlloc */
121 static LJ_AINLINE void *CALL_MMAP(size_t size)
123 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
124 return ptr ? ptr : MFAIL;
127 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
128 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
130 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
131 PAGE_READWRITE);
132 return ptr ? ptr : MFAIL;
135 #endif
137 /* This function supports releasing coalesed segments */
138 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
140 MEMORY_BASIC_INFORMATION minfo;
141 char *cptr = (char *)ptr;
142 while (size) {
143 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
144 return -1;
145 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
146 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
147 return -1;
148 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
149 return -1;
150 cptr += minfo.RegionSize;
151 size -= minfo.RegionSize;
153 return 0;
156 #else
158 #include <sys/mman.h>
160 #define MMAP_PROT (PROT_READ|PROT_WRITE)
161 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
162 #define MAP_ANONYMOUS MAP_ANON
163 #endif /* MAP_ANON */
165 #if LJ_64
166 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS|MAP_32BIT)
167 #else
168 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
169 #endif
171 #define INIT_MMAP() ((void)0)
172 #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
173 #define DIRECT_MMAP(s) CALL_MMAP(s)
174 #define CALL_MUNMAP(a, s) munmap((a), (s))
176 #ifdef __linux__
177 /* Need to define _GNU_SOURCE to get the mremap prototype. */
178 #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
179 #define CALL_MREMAP_NOMOVE 0
180 #define CALL_MREMAP_MAYMOVE 1
181 #if LJ_64
182 #define CALL_MREMAP_MV CALL_MREMAP_NOMOVE
183 #else
184 #define CALL_MREMAP_MV CALL_MREMAP_MAYMOVE
185 #endif
186 #endif
188 #endif
190 #ifndef CALL_MREMAP
191 #define CALL_MREMAP(addr, osz, nsz, mv) ((void)osz, MFAIL)
192 #endif
194 /* ----------------------- Chunk representations ------------------------ */
196 struct malloc_chunk {
197 size_t prev_foot; /* Size of previous chunk (if free). */
198 size_t head; /* Size and inuse bits. */
199 struct malloc_chunk *fd; /* double links -- used only if free. */
200 struct malloc_chunk *bk;
203 typedef struct malloc_chunk mchunk;
204 typedef struct malloc_chunk *mchunkptr;
205 typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */
206 typedef size_t bindex_t; /* Described below */
207 typedef unsigned int binmap_t; /* Described below */
208 typedef unsigned int flag_t; /* The type of various bit flag sets */
210 /* ------------------- Chunks sizes and alignments ----------------------- */
212 #define MCHUNK_SIZE (sizeof(mchunk))
214 #define CHUNK_OVERHEAD (SIZE_T_SIZE)
216 /* Direct chunks need a second word of overhead ... */
217 #define DIRECT_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
218 /* ... and additional padding for fake next-chunk at foot */
219 #define DIRECT_FOOT_PAD (FOUR_SIZE_T_SIZES)
221 /* The smallest size we can malloc is an aligned minimal chunk */
222 #define MIN_CHUNK_SIZE\
223 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
225 /* conversion from malloc headers to user pointers, and back */
226 #define chunk2mem(p) ((void *)((char *)(p) + TWO_SIZE_T_SIZES))
227 #define mem2chunk(mem) ((mchunkptr)((char *)(mem) - TWO_SIZE_T_SIZES))
228 /* chunk associated with aligned address A */
229 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
231 /* Bounds on request (not chunk) sizes. */
232 #define MAX_REQUEST ((~MIN_CHUNK_SIZE+1) << 2)
233 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
235 /* pad request bytes into a usable size */
236 #define pad_request(req) \
237 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
239 /* pad request, checking for minimum (but not maximum) */
240 #define request2size(req) \
241 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
243 /* ------------------ Operations on head and foot fields ----------------- */
245 #define PINUSE_BIT (SIZE_T_ONE)
246 #define CINUSE_BIT (SIZE_T_TWO)
247 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
249 /* Head value for fenceposts */
250 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
252 /* extraction of fields from head words */
253 #define cinuse(p) ((p)->head & CINUSE_BIT)
254 #define pinuse(p) ((p)->head & PINUSE_BIT)
255 #define chunksize(p) ((p)->head & ~(INUSE_BITS))
257 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
258 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
260 /* Treat space at ptr +/- offset as a chunk */
261 #define chunk_plus_offset(p, s) ((mchunkptr)(((char *)(p)) + (s)))
262 #define chunk_minus_offset(p, s) ((mchunkptr)(((char *)(p)) - (s)))
264 /* Ptr to next or previous physical malloc_chunk. */
265 #define next_chunk(p) ((mchunkptr)(((char *)(p)) + ((p)->head & ~INUSE_BITS)))
266 #define prev_chunk(p) ((mchunkptr)(((char *)(p)) - ((p)->prev_foot) ))
268 /* extract next chunk's pinuse bit */
269 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
271 /* Get/set size at footer */
272 #define get_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot)
273 #define set_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot = (s))
275 /* Set size, pinuse bit, and foot */
276 #define set_size_and_pinuse_of_free_chunk(p, s)\
277 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
279 /* Set size, pinuse bit, foot, and clear next pinuse */
280 #define set_free_with_pinuse(p, s, n)\
281 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
283 #define is_direct(p)\
284 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_DIRECT_BIT))
286 /* Get the internal overhead associated with chunk p */
287 #define overhead_for(p)\
288 (is_direct(p)? DIRECT_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
290 /* ---------------------- Overlaid data structures ----------------------- */
292 struct malloc_tree_chunk {
293 /* The first four fields must be compatible with malloc_chunk */
294 size_t prev_foot;
295 size_t head;
296 struct malloc_tree_chunk *fd;
297 struct malloc_tree_chunk *bk;
299 struct malloc_tree_chunk *child[2];
300 struct malloc_tree_chunk *parent;
301 bindex_t index;
304 typedef struct malloc_tree_chunk tchunk;
305 typedef struct malloc_tree_chunk *tchunkptr;
306 typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */
308 /* A little helper macro for trees */
309 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
311 /* ----------------------------- Segments -------------------------------- */
313 struct malloc_segment {
314 char *base; /* base address */
315 size_t size; /* allocated size */
316 struct malloc_segment *next; /* ptr to next segment */
319 typedef struct malloc_segment msegment;
320 typedef struct malloc_segment *msegmentptr;
322 /* ---------------------------- malloc_state ----------------------------- */
324 /* Bin types, widths and sizes */
325 #define NSMALLBINS (32U)
326 #define NTREEBINS (32U)
327 #define SMALLBIN_SHIFT (3U)
328 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
329 #define TREEBIN_SHIFT (8U)
330 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
331 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
332 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
334 struct malloc_state {
335 binmap_t smallmap;
336 binmap_t treemap;
337 size_t dvsize;
338 size_t topsize;
339 mchunkptr dv;
340 mchunkptr top;
341 size_t trim_check;
342 size_t release_checks;
343 mchunkptr smallbins[(NSMALLBINS+1)*2];
344 tbinptr treebins[NTREEBINS];
345 msegment seg;
348 typedef struct malloc_state *mstate;
350 #define is_initialized(M) ((M)->top != 0)
352 /* -------------------------- system alloc setup ------------------------- */
354 /* page-align a size */
355 #define page_align(S)\
356 (((S) + (LJ_PAGESIZE - SIZE_T_ONE)) & ~(LJ_PAGESIZE - SIZE_T_ONE))
358 /* granularity-align a size */
359 #define granularity_align(S)\
360 (((S) + (DEFAULT_GRANULARITY - SIZE_T_ONE))\
361 & ~(DEFAULT_GRANULARITY - SIZE_T_ONE))
363 #ifdef LUA_USE_WIN
364 #define mmap_align(S) granularity_align(S)
365 #else
366 #define mmap_align(S) page_align(S)
367 #endif
369 /* True if segment S holds address A */
370 #define segment_holds(S, A)\
371 ((char *)(A) >= S->base && (char *)(A) < S->base + S->size)
373 /* Return segment holding given address */
374 static msegmentptr segment_holding(mstate m, char *addr)
376 msegmentptr sp = &m->seg;
377 for (;;) {
378 if (addr >= sp->base && addr < sp->base + sp->size)
379 return sp;
380 if ((sp = sp->next) == 0)
381 return 0;
385 /* Return true if segment contains a segment link */
386 static int has_segment_link(mstate m, msegmentptr ss)
388 msegmentptr sp = &m->seg;
389 for (;;) {
390 if ((char *)sp >= ss->base && (char *)sp < ss->base + ss->size)
391 return 1;
392 if ((sp = sp->next) == 0)
393 return 0;
398 TOP_FOOT_SIZE is padding at the end of a segment, including space
399 that may be needed to place segment records and fenceposts when new
400 noncontiguous segments are added.
402 #define TOP_FOOT_SIZE\
403 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
405 /* ---------------------------- Indexing Bins ---------------------------- */
407 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
408 #define small_index(s) ((s) >> SMALLBIN_SHIFT)
409 #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
410 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
412 /* addressing by index. See above about smallbin repositioning */
413 #define smallbin_at(M, i) ((sbinptr)((char *)&((M)->smallbins[(i)<<1])))
414 #define treebin_at(M,i) (&((M)->treebins[i]))
416 /* assign tree index for size S to variable I */
417 #define compute_tree_index(S, I)\
419 unsigned int X = (unsigned int)(S >> TREEBIN_SHIFT);\
420 if (X == 0) {\
421 I = 0;\
422 } else if (X > 0xFFFF) {\
423 I = NTREEBINS-1;\
424 } else {\
425 unsigned int K = lj_fls(X);\
426 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
430 /* Bit representing maximum resolved size in a treebin at i */
431 #define bit_for_tree_index(i) \
432 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
434 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
435 #define leftshift_for_tree_index(i) \
436 ((i == NTREEBINS-1)? 0 : \
437 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
439 /* The size of the smallest chunk held in bin with index i */
440 #define minsize_for_tree_index(i) \
441 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
442 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
444 /* ------------------------ Operations on bin maps ----------------------- */
446 /* bit corresponding to given index */
447 #define idx2bit(i) ((binmap_t)(1) << (i))
449 /* Mark/Clear bits with given index */
450 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
451 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
452 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
454 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
455 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
456 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
458 /* mask with all bits to left of least bit of x on */
459 #define left_bits(x) ((x<<1) | (~(x<<1)+1))
461 /* Set cinuse bit and pinuse bit of next chunk */
462 #define set_inuse(M,p,s)\
463 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
464 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
466 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
467 #define set_inuse_and_pinuse(M,p,s)\
468 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
469 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
471 /* Set size, cinuse and pinuse bit of this chunk */
472 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
473 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
475 /* ----------------------- Operations on smallbins ----------------------- */
477 /* Link a free chunk into a smallbin */
478 #define insert_small_chunk(M, P, S) {\
479 bindex_t I = small_index(S);\
480 mchunkptr B = smallbin_at(M, I);\
481 mchunkptr F = B;\
482 if (!smallmap_is_marked(M, I))\
483 mark_smallmap(M, I);\
484 else\
485 F = B->fd;\
486 B->fd = P;\
487 F->bk = P;\
488 P->fd = F;\
489 P->bk = B;\
492 /* Unlink a chunk from a smallbin */
493 #define unlink_small_chunk(M, P, S) {\
494 mchunkptr F = P->fd;\
495 mchunkptr B = P->bk;\
496 bindex_t I = small_index(S);\
497 if (F == B) {\
498 clear_smallmap(M, I);\
499 } else {\
500 F->bk = B;\
501 B->fd = F;\
505 /* Unlink the first chunk from a smallbin */
506 #define unlink_first_small_chunk(M, B, P, I) {\
507 mchunkptr F = P->fd;\
508 if (B == F) {\
509 clear_smallmap(M, I);\
510 } else {\
511 B->fd = F;\
512 F->bk = B;\
516 /* Replace dv node, binning the old one */
517 /* Used only when dvsize known to be small */
518 #define replace_dv(M, P, S) {\
519 size_t DVS = M->dvsize;\
520 if (DVS != 0) {\
521 mchunkptr DV = M->dv;\
522 insert_small_chunk(M, DV, DVS);\
524 M->dvsize = S;\
525 M->dv = P;\
528 /* ------------------------- Operations on trees ------------------------- */
530 /* Insert chunk into tree */
531 #define insert_large_chunk(M, X, S) {\
532 tbinptr *H;\
533 bindex_t I;\
534 compute_tree_index(S, I);\
535 H = treebin_at(M, I);\
536 X->index = I;\
537 X->child[0] = X->child[1] = 0;\
538 if (!treemap_is_marked(M, I)) {\
539 mark_treemap(M, I);\
540 *H = X;\
541 X->parent = (tchunkptr)H;\
542 X->fd = X->bk = X;\
543 } else {\
544 tchunkptr T = *H;\
545 size_t K = S << leftshift_for_tree_index(I);\
546 for (;;) {\
547 if (chunksize(T) != S) {\
548 tchunkptr *C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
549 K <<= 1;\
550 if (*C != 0) {\
551 T = *C;\
552 } else {\
553 *C = X;\
554 X->parent = T;\
555 X->fd = X->bk = X;\
556 break;\
558 } else {\
559 tchunkptr F = T->fd;\
560 T->fd = F->bk = X;\
561 X->fd = F;\
562 X->bk = T;\
563 X->parent = 0;\
564 break;\
570 #define unlink_large_chunk(M, X) {\
571 tchunkptr XP = X->parent;\
572 tchunkptr R;\
573 if (X->bk != X) {\
574 tchunkptr F = X->fd;\
575 R = X->bk;\
576 F->bk = R;\
577 R->fd = F;\
578 } else {\
579 tchunkptr *RP;\
580 if (((R = *(RP = &(X->child[1]))) != 0) ||\
581 ((R = *(RP = &(X->child[0]))) != 0)) {\
582 tchunkptr *CP;\
583 while ((*(CP = &(R->child[1])) != 0) ||\
584 (*(CP = &(R->child[0])) != 0)) {\
585 R = *(RP = CP);\
587 *RP = 0;\
590 if (XP != 0) {\
591 tbinptr *H = treebin_at(M, X->index);\
592 if (X == *H) {\
593 if ((*H = R) == 0) \
594 clear_treemap(M, X->index);\
595 } else {\
596 if (XP->child[0] == X) \
597 XP->child[0] = R;\
598 else \
599 XP->child[1] = R;\
601 if (R != 0) {\
602 tchunkptr C0, C1;\
603 R->parent = XP;\
604 if ((C0 = X->child[0]) != 0) {\
605 R->child[0] = C0;\
606 C0->parent = R;\
608 if ((C1 = X->child[1]) != 0) {\
609 R->child[1] = C1;\
610 C1->parent = R;\
616 /* Relays to large vs small bin operations */
618 #define insert_chunk(M, P, S)\
619 if (is_small(S)) { insert_small_chunk(M, P, S)\
620 } else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
622 #define unlink_chunk(M, P, S)\
623 if (is_small(S)) { unlink_small_chunk(M, P, S)\
624 } else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
626 /* ----------------------- Direct-mmapping chunks ----------------------- */
628 static void *direct_alloc(size_t nb)
630 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
631 if (LJ_LIKELY(mmsize > nb)) { /* Check for wrap around 0 */
632 char *mm = (char *)(DIRECT_MMAP(mmsize));
633 if (mm != CMFAIL) {
634 size_t offset = align_offset(chunk2mem(mm));
635 size_t psize = mmsize - offset - DIRECT_FOOT_PAD;
636 mchunkptr p = (mchunkptr)(mm + offset);
637 p->prev_foot = offset | IS_DIRECT_BIT;
638 p->head = psize|CINUSE_BIT;
639 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
640 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
641 return chunk2mem(p);
644 return NULL;
647 static mchunkptr direct_resize(mchunkptr oldp, size_t nb)
649 size_t oldsize = chunksize(oldp);
650 if (is_small(nb)) /* Can't shrink direct regions below small size */
651 return NULL;
652 /* Keep old chunk if big enough but not too big */
653 if (oldsize >= nb + SIZE_T_SIZE &&
654 (oldsize - nb) <= (DEFAULT_GRANULARITY << 1)) {
655 return oldp;
656 } else {
657 size_t offset = oldp->prev_foot & ~IS_DIRECT_BIT;
658 size_t oldmmsize = oldsize + offset + DIRECT_FOOT_PAD;
659 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
660 char *cp = (char *)CALL_MREMAP((char *)oldp - offset,
661 oldmmsize, newmmsize, CALL_MREMAP_MV);
662 if (cp != CMFAIL) {
663 mchunkptr newp = (mchunkptr)(cp + offset);
664 size_t psize = newmmsize - offset - DIRECT_FOOT_PAD;
665 newp->head = psize|CINUSE_BIT;
666 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
667 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
668 return newp;
671 return NULL;
674 /* -------------------------- mspace management -------------------------- */
676 /* Initialize top chunk and its size */
677 static void init_top(mstate m, mchunkptr p, size_t psize)
679 /* Ensure alignment */
680 size_t offset = align_offset(chunk2mem(p));
681 p = (mchunkptr)((char *)p + offset);
682 psize -= offset;
684 m->top = p;
685 m->topsize = psize;
686 p->head = psize | PINUSE_BIT;
687 /* set size of fake trailing chunk holding overhead space only once */
688 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
689 m->trim_check = DEFAULT_TRIM_THRESHOLD; /* reset on each update */
692 /* Initialize bins for a new mstate that is otherwise zeroed out */
693 static void init_bins(mstate m)
695 /* Establish circular links for smallbins */
696 bindex_t i;
697 for (i = 0; i < NSMALLBINS; i++) {
698 sbinptr bin = smallbin_at(m,i);
699 bin->fd = bin->bk = bin;
703 /* Allocate chunk and prepend remainder with chunk in successor base. */
704 static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
706 mchunkptr p = align_as_chunk(newbase);
707 mchunkptr oldfirst = align_as_chunk(oldbase);
708 size_t psize = (size_t)((char *)oldfirst - (char *)p);
709 mchunkptr q = chunk_plus_offset(p, nb);
710 size_t qsize = psize - nb;
711 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
713 /* consolidate remainder with first chunk of old base */
714 if (oldfirst == m->top) {
715 size_t tsize = m->topsize += qsize;
716 m->top = q;
717 q->head = tsize | PINUSE_BIT;
718 } else if (oldfirst == m->dv) {
719 size_t dsize = m->dvsize += qsize;
720 m->dv = q;
721 set_size_and_pinuse_of_free_chunk(q, dsize);
722 } else {
723 if (!cinuse(oldfirst)) {
724 size_t nsize = chunksize(oldfirst);
725 unlink_chunk(m, oldfirst, nsize);
726 oldfirst = chunk_plus_offset(oldfirst, nsize);
727 qsize += nsize;
729 set_free_with_pinuse(q, qsize, oldfirst);
730 insert_chunk(m, q, qsize);
733 return chunk2mem(p);
736 /* Add a segment to hold a new noncontiguous region */
737 static void add_segment(mstate m, char *tbase, size_t tsize)
739 /* Determine locations and sizes of segment, fenceposts, old top */
740 char *old_top = (char *)m->top;
741 msegmentptr oldsp = segment_holding(m, old_top);
742 char *old_end = oldsp->base + oldsp->size;
743 size_t ssize = pad_request(sizeof(struct malloc_segment));
744 char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
745 size_t offset = align_offset(chunk2mem(rawsp));
746 char *asp = rawsp + offset;
747 char *csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
748 mchunkptr sp = (mchunkptr)csp;
749 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
750 mchunkptr tnext = chunk_plus_offset(sp, ssize);
751 mchunkptr p = tnext;
753 /* reset top to new space */
754 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
756 /* Set up segment record */
757 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
758 *ss = m->seg; /* Push current record */
759 m->seg.base = tbase;
760 m->seg.size = tsize;
761 m->seg.next = ss;
763 /* Insert trailing fenceposts */
764 for (;;) {
765 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
766 p->head = FENCEPOST_HEAD;
767 if ((char *)(&(nextp->head)) < old_end)
768 p = nextp;
769 else
770 break;
773 /* Insert the rest of old top into a bin as an ordinary free chunk */
774 if (csp != old_top) {
775 mchunkptr q = (mchunkptr)old_top;
776 size_t psize = (size_t)(csp - old_top);
777 mchunkptr tn = chunk_plus_offset(q, psize);
778 set_free_with_pinuse(q, psize, tn);
779 insert_chunk(m, q, psize);
783 /* -------------------------- System allocation -------------------------- */
785 static void *alloc_sys(mstate m, size_t nb)
787 char *tbase = CMFAIL;
788 size_t tsize = 0;
790 /* Directly map large chunks */
791 if (LJ_UNLIKELY(nb >= DEFAULT_MMAP_THRESHOLD)) {
792 void *mem = direct_alloc(nb);
793 if (mem != 0)
794 return mem;
798 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
799 size_t rsize = granularity_align(req);
800 if (LJ_LIKELY(rsize > nb)) { /* Fail if wraps around zero */
801 char *mp = (char *)(CALL_MMAP(rsize));
802 if (mp != CMFAIL) {
803 tbase = mp;
804 tsize = rsize;
809 if (tbase != CMFAIL) {
810 msegmentptr sp = &m->seg;
811 /* Try to merge with an existing segment */
812 while (sp != 0 && tbase != sp->base + sp->size)
813 sp = sp->next;
814 if (sp != 0 && segment_holds(sp, m->top)) { /* append */
815 sp->size += tsize;
816 init_top(m, m->top, m->topsize + tsize);
817 } else {
818 sp = &m->seg;
819 while (sp != 0 && sp->base != tbase + tsize)
820 sp = sp->next;
821 if (sp != 0) {
822 char *oldbase = sp->base;
823 sp->base = tbase;
824 sp->size += tsize;
825 return prepend_alloc(m, tbase, oldbase, nb);
826 } else {
827 add_segment(m, tbase, tsize);
831 if (nb < m->topsize) { /* Allocate from new or extended top space */
832 size_t rsize = m->topsize -= nb;
833 mchunkptr p = m->top;
834 mchunkptr r = m->top = chunk_plus_offset(p, nb);
835 r->head = rsize | PINUSE_BIT;
836 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
837 return chunk2mem(p);
841 return NULL;
844 /* ----------------------- system deallocation -------------------------- */
846 /* Unmap and unlink any mmapped segments that don't contain used chunks */
847 static size_t release_unused_segments(mstate m)
849 size_t released = 0;
850 size_t nsegs = 0;
851 msegmentptr pred = &m->seg;
852 msegmentptr sp = pred->next;
853 while (sp != 0) {
854 char *base = sp->base;
855 size_t size = sp->size;
856 msegmentptr next = sp->next;
857 nsegs++;
859 mchunkptr p = align_as_chunk(base);
860 size_t psize = chunksize(p);
861 /* Can unmap if first chunk holds entire segment and not pinned */
862 if (!cinuse(p) && (char *)p + psize >= base + size - TOP_FOOT_SIZE) {
863 tchunkptr tp = (tchunkptr)p;
864 if (p == m->dv) {
865 m->dv = 0;
866 m->dvsize = 0;
867 } else {
868 unlink_large_chunk(m, tp);
870 if (CALL_MUNMAP(base, size) == 0) {
871 released += size;
872 /* unlink obsoleted record */
873 sp = pred;
874 sp->next = next;
875 } else { /* back out if cannot unmap */
876 insert_large_chunk(m, tp, psize);
880 pred = sp;
881 sp = next;
883 /* Reset check counter */
884 m->release_checks = nsegs > MAX_RELEASE_CHECK_RATE ?
885 nsegs : MAX_RELEASE_CHECK_RATE;
886 return released;
889 static int alloc_trim(mstate m, size_t pad)
891 size_t released = 0;
892 if (pad < MAX_REQUEST && is_initialized(m)) {
893 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
895 if (m->topsize > pad) {
896 /* Shrink top space in granularity-size units, keeping at least one */
897 size_t unit = DEFAULT_GRANULARITY;
898 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
899 SIZE_T_ONE) * unit;
900 msegmentptr sp = segment_holding(m, (char *)m->top);
902 if (sp->size >= extra &&
903 !has_segment_link(m, sp)) { /* can't shrink if pinned */
904 size_t newsize = sp->size - extra;
905 /* Prefer mremap, fall back to munmap */
906 if ((CALL_MREMAP(sp->base, sp->size, newsize, CALL_MREMAP_NOMOVE) != MFAIL) ||
907 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
908 released = extra;
912 if (released != 0) {
913 sp->size -= released;
914 init_top(m, m->top, m->topsize - released);
918 /* Unmap any unused mmapped segments */
919 released += release_unused_segments(m);
921 /* On failure, disable autotrim to avoid repeated failed future calls */
922 if (released == 0 && m->topsize > m->trim_check)
923 m->trim_check = MAX_SIZE_T;
926 return (released != 0)? 1 : 0;
929 /* ---------------------------- malloc support --------------------------- */
931 /* allocate a large request from the best fitting chunk in a treebin */
932 static void *tmalloc_large(mstate m, size_t nb)
934 tchunkptr v = 0;
935 size_t rsize = ~nb+1; /* Unsigned negation */
936 tchunkptr t;
937 bindex_t idx;
938 compute_tree_index(nb, idx);
940 if ((t = *treebin_at(m, idx)) != 0) {
941 /* Traverse tree for this bin looking for node with size == nb */
942 size_t sizebits = nb << leftshift_for_tree_index(idx);
943 tchunkptr rst = 0; /* The deepest untaken right subtree */
944 for (;;) {
945 tchunkptr rt;
946 size_t trem = chunksize(t) - nb;
947 if (trem < rsize) {
948 v = t;
949 if ((rsize = trem) == 0)
950 break;
952 rt = t->child[1];
953 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
954 if (rt != 0 && rt != t)
955 rst = rt;
956 if (t == 0) {
957 t = rst; /* set t to least subtree holding sizes > nb */
958 break;
960 sizebits <<= 1;
964 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
965 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
966 if (leftbits != 0)
967 t = *treebin_at(m, lj_ffs(leftbits));
970 while (t != 0) { /* find smallest of tree or subtree */
971 size_t trem = chunksize(t) - nb;
972 if (trem < rsize) {
973 rsize = trem;
974 v = t;
976 t = leftmost_child(t);
979 /* If dv is a better fit, return NULL so malloc will use it */
980 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
981 mchunkptr r = chunk_plus_offset(v, nb);
982 unlink_large_chunk(m, v);
983 if (rsize < MIN_CHUNK_SIZE) {
984 set_inuse_and_pinuse(m, v, (rsize + nb));
985 } else {
986 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
987 set_size_and_pinuse_of_free_chunk(r, rsize);
988 insert_chunk(m, r, rsize);
990 return chunk2mem(v);
992 return NULL;
995 /* allocate a small request from the best fitting chunk in a treebin */
996 static void *tmalloc_small(mstate m, size_t nb)
998 tchunkptr t, v;
999 mchunkptr r;
1000 size_t rsize;
1001 bindex_t i = lj_ffs(m->treemap);
1003 v = t = *treebin_at(m, i);
1004 rsize = chunksize(t) - nb;
1006 while ((t = leftmost_child(t)) != 0) {
1007 size_t trem = chunksize(t) - nb;
1008 if (trem < rsize) {
1009 rsize = trem;
1010 v = t;
1014 r = chunk_plus_offset(v, nb);
1015 unlink_large_chunk(m, v);
1016 if (rsize < MIN_CHUNK_SIZE) {
1017 set_inuse_and_pinuse(m, v, (rsize + nb));
1018 } else {
1019 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1020 set_size_and_pinuse_of_free_chunk(r, rsize);
1021 replace_dv(m, r, rsize);
1023 return chunk2mem(v);
1026 /* ----------------------------------------------------------------------- */
1028 void *lj_alloc_create(void)
1030 size_t tsize = DEFAULT_GRANULARITY;
1031 char *tbase;
1032 INIT_MMAP();
1033 tbase = (char *)(CALL_MMAP(tsize));
1034 if (tbase != CMFAIL) {
1035 size_t msize = pad_request(sizeof(struct malloc_state));
1036 mchunkptr mn;
1037 mchunkptr msp = align_as_chunk(tbase);
1038 mstate m = (mstate)(chunk2mem(msp));
1039 memset(m, 0, msize);
1040 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
1041 m->seg.base = tbase;
1042 m->seg.size = tsize;
1043 m->release_checks = MAX_RELEASE_CHECK_RATE;
1044 init_bins(m);
1045 mn = next_chunk(mem2chunk(m));
1046 init_top(m, mn, (size_t)((tbase + tsize) - (char *)mn) - TOP_FOOT_SIZE);
1047 return m;
1049 return NULL;
1052 void lj_alloc_destroy(void *msp)
1054 mstate ms = (mstate)msp;
1055 msegmentptr sp = &ms->seg;
1056 while (sp != 0) {
1057 char *base = sp->base;
1058 size_t size = sp->size;
1059 sp = sp->next;
1060 CALL_MUNMAP(base, size);
1064 static LJ_NOINLINE void *lj_alloc_malloc(void *msp, size_t nsize)
1066 mstate ms = (mstate)msp;
1067 void *mem;
1068 size_t nb;
1069 if (nsize <= MAX_SMALL_REQUEST) {
1070 bindex_t idx;
1071 binmap_t smallbits;
1072 nb = (nsize < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(nsize);
1073 idx = small_index(nb);
1074 smallbits = ms->smallmap >> idx;
1076 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
1077 mchunkptr b, p;
1078 idx += ~smallbits & 1; /* Uses next bin if idx empty */
1079 b = smallbin_at(ms, idx);
1080 p = b->fd;
1081 unlink_first_small_chunk(ms, b, p, idx);
1082 set_inuse_and_pinuse(ms, p, small_index2size(idx));
1083 mem = chunk2mem(p);
1084 return mem;
1085 } else if (nb > ms->dvsize) {
1086 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
1087 mchunkptr b, p, r;
1088 size_t rsize;
1089 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
1090 bindex_t i = lj_ffs(leftbits);
1091 b = smallbin_at(ms, i);
1092 p = b->fd;
1093 unlink_first_small_chunk(ms, b, p, i);
1094 rsize = small_index2size(i) - nb;
1095 /* Fit here cannot be remainderless if 4byte sizes */
1096 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) {
1097 set_inuse_and_pinuse(ms, p, small_index2size(i));
1098 } else {
1099 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1100 r = chunk_plus_offset(p, nb);
1101 set_size_and_pinuse_of_free_chunk(r, rsize);
1102 replace_dv(ms, r, rsize);
1104 mem = chunk2mem(p);
1105 return mem;
1106 } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
1107 return mem;
1110 } else if (nsize >= MAX_REQUEST) {
1111 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
1112 } else {
1113 nb = pad_request(nsize);
1114 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
1115 return mem;
1119 if (nb <= ms->dvsize) {
1120 size_t rsize = ms->dvsize - nb;
1121 mchunkptr p = ms->dv;
1122 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
1123 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
1124 ms->dvsize = rsize;
1125 set_size_and_pinuse_of_free_chunk(r, rsize);
1126 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1127 } else { /* exhaust dv */
1128 size_t dvs = ms->dvsize;
1129 ms->dvsize = 0;
1130 ms->dv = 0;
1131 set_inuse_and_pinuse(ms, p, dvs);
1133 mem = chunk2mem(p);
1134 return mem;
1135 } else if (nb < ms->topsize) { /* Split top */
1136 size_t rsize = ms->topsize -= nb;
1137 mchunkptr p = ms->top;
1138 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
1139 r->head = rsize | PINUSE_BIT;
1140 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1141 mem = chunk2mem(p);
1142 return mem;
1144 return alloc_sys(ms, nb);
1147 static LJ_NOINLINE void *lj_alloc_free(void *msp, void *ptr)
1149 if (ptr != 0) {
1150 mchunkptr p = mem2chunk(ptr);
1151 mstate fm = (mstate)msp;
1152 size_t psize = chunksize(p);
1153 mchunkptr next = chunk_plus_offset(p, psize);
1154 if (!pinuse(p)) {
1155 size_t prevsize = p->prev_foot;
1156 if ((prevsize & IS_DIRECT_BIT) != 0) {
1157 prevsize &= ~IS_DIRECT_BIT;
1158 psize += prevsize + DIRECT_FOOT_PAD;
1159 CALL_MUNMAP((char *)p - prevsize, psize);
1160 return NULL;
1161 } else {
1162 mchunkptr prev = chunk_minus_offset(p, prevsize);
1163 psize += prevsize;
1164 p = prev;
1165 /* consolidate backward */
1166 if (p != fm->dv) {
1167 unlink_chunk(fm, p, prevsize);
1168 } else if ((next->head & INUSE_BITS) == INUSE_BITS) {
1169 fm->dvsize = psize;
1170 set_free_with_pinuse(p, psize, next);
1171 return NULL;
1175 if (!cinuse(next)) { /* consolidate forward */
1176 if (next == fm->top) {
1177 size_t tsize = fm->topsize += psize;
1178 fm->top = p;
1179 p->head = tsize | PINUSE_BIT;
1180 if (p == fm->dv) {
1181 fm->dv = 0;
1182 fm->dvsize = 0;
1184 if (tsize > fm->trim_check)
1185 alloc_trim(fm, 0);
1186 return NULL;
1187 } else if (next == fm->dv) {
1188 size_t dsize = fm->dvsize += psize;
1189 fm->dv = p;
1190 set_size_and_pinuse_of_free_chunk(p, dsize);
1191 return NULL;
1192 } else {
1193 size_t nsize = chunksize(next);
1194 psize += nsize;
1195 unlink_chunk(fm, next, nsize);
1196 set_size_and_pinuse_of_free_chunk(p, psize);
1197 if (p == fm->dv) {
1198 fm->dvsize = psize;
1199 return NULL;
1202 } else {
1203 set_free_with_pinuse(p, psize, next);
1206 if (is_small(psize)) {
1207 insert_small_chunk(fm, p, psize);
1208 } else {
1209 tchunkptr tp = (tchunkptr)p;
1210 insert_large_chunk(fm, tp, psize);
1211 if (--fm->release_checks == 0)
1212 release_unused_segments(fm);
1215 return NULL;
1218 static LJ_NOINLINE void *lj_alloc_realloc(void *msp, void *ptr, size_t nsize)
1220 if (nsize >= MAX_REQUEST) {
1221 return NULL;
1222 } else {
1223 mstate m = (mstate)msp;
1224 mchunkptr oldp = mem2chunk(ptr);
1225 size_t oldsize = chunksize(oldp);
1226 mchunkptr next = chunk_plus_offset(oldp, oldsize);
1227 mchunkptr newp = 0;
1228 size_t nb = request2size(nsize);
1230 /* Try to either shrink or extend into top. Else malloc-copy-free */
1231 if (is_direct(oldp)) {
1232 newp = direct_resize(oldp, nb); /* this may return NULL. */
1233 } else if (oldsize >= nb) { /* already big enough */
1234 size_t rsize = oldsize - nb;
1235 newp = oldp;
1236 if (rsize >= MIN_CHUNK_SIZE) {
1237 mchunkptr rem = chunk_plus_offset(newp, nb);
1238 set_inuse(m, newp, nb);
1239 set_inuse(m, rem, rsize);
1240 lj_alloc_free(m, chunk2mem(rem));
1242 } else if (next == m->top && oldsize + m->topsize > nb) {
1243 /* Expand into top */
1244 size_t newsize = oldsize + m->topsize;
1245 size_t newtopsize = newsize - nb;
1246 mchunkptr newtop = chunk_plus_offset(oldp, nb);
1247 set_inuse(m, oldp, nb);
1248 newtop->head = newtopsize |PINUSE_BIT;
1249 m->top = newtop;
1250 m->topsize = newtopsize;
1251 newp = oldp;
1254 if (newp != 0) {
1255 return chunk2mem(newp);
1256 } else {
1257 void *newmem = lj_alloc_malloc(m, nsize);
1258 if (newmem != 0) {
1259 size_t oc = oldsize - overhead_for(oldp);
1260 memcpy(newmem, ptr, oc < nsize ? oc : nsize);
1261 lj_alloc_free(m, ptr);
1263 return newmem;
1268 void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize)
1270 (void)osize;
1271 if (nsize == 0) {
1272 return lj_alloc_free(msp, ptr);
1273 } else if (ptr == NULL) {
1274 return lj_alloc_malloc(msp, nsize);
1275 } else {
1276 return lj_alloc_realloc(msp, ptr, nsize);
1280 #endif