From Lua 5.2: Add luaL_traceback().
[luajit-2.0.git] / src / lj_asm_x86.h
blob7288d72af20d180711c6660566724ca6e08a1bf0
1 /*
2 ** x86/x64 IR assembler (SSA IR -> machine code).
3 ** Copyright (C) 2005-2012 Mike Pall. See Copyright Notice in luajit.h
4 */
6 /* -- Guard handling ------------------------------------------------------ */
8 /* Generate an exit stub group at the bottom of the reserved MCode memory. */
9 static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
11 ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff;
12 MCode *mxp = as->mcbot;
13 MCode *mxpstart = mxp;
14 if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop)
15 asm_mclimit(as);
16 /* Push low byte of exitno for each exit stub. */
17 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs;
18 for (i = 1; i < EXITSTUBS_PER_GROUP; i++) {
19 *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2);
20 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i);
22 /* Push the high byte of the exitno for each exit stub group. */
23 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8);
24 /* Store DISPATCH at original stack slot 0. Account for the two push ops. */
25 *mxp++ = XI_MOVmi;
26 *mxp++ = MODRM(XM_OFS8, 0, RID_ESP);
27 *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
28 *mxp++ = 2*sizeof(void *);
29 *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4;
30 /* Jump to exit handler which fills in the ExitState. */
31 *mxp++ = XI_JMP; mxp += 4;
32 *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler);
33 /* Commit the code for this group (even if assembly fails later on). */
34 lj_mcode_commitbot(as->J, mxp);
35 as->mcbot = mxp;
36 as->mclim = as->mcbot + MCLIM_REDZONE;
37 return mxpstart;
40 /* Setup all needed exit stubs. */
41 static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
43 ExitNo i;
44 if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
45 lj_trace_err(as->J, LJ_TRERR_SNAPOV);
46 for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
47 if (as->J->exitstubgroup[i] == NULL)
48 as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
51 /* Emit conditional branch to exit for guard.
52 ** It's important to emit this *after* all registers have been allocated,
53 ** because rematerializations may invalidate the flags.
55 static void asm_guardcc(ASMState *as, int cc)
57 MCode *target = exitstub_addr(as->J, as->snapno);
58 MCode *p = as->mcp;
59 if (LJ_UNLIKELY(p == as->invmcp)) {
60 as->loopinv = 1;
61 *(int32_t *)(p+1) = jmprel(p+5, target);
62 target = p;
63 cc ^= 1;
64 if (as->realign) {
65 emit_sjcc(as, cc, target);
66 return;
69 emit_jcc(as, cc, target);
72 /* -- Memory operand fusion ----------------------------------------------- */
74 /* Limit linear search to this distance. Avoids O(n^2) behavior. */
75 #define CONFLICT_SEARCH_LIM 31
77 /* Check if a reference is a signed 32 bit constant. */
78 static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
80 if (irref_isk(ref)) {
81 IRIns *ir = IR(ref);
82 if (ir->o != IR_KINT64) {
83 *k = ir->i;
84 return 1;
85 } else if (checki32((int64_t)ir_kint64(ir)->u64)) {
86 *k = (int32_t)ir_kint64(ir)->u64;
87 return 1;
90 return 0;
93 /* Check if there's no conflicting instruction between curins and ref.
94 ** Also avoid fusing loads if there are multiple references.
96 static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload)
98 IRIns *ir = as->ir;
99 IRRef i = as->curins;
100 if (i > ref + CONFLICT_SEARCH_LIM)
101 return 0; /* Give up, ref is too far away. */
102 while (--i > ref) {
103 if (ir[i].o == conflict)
104 return 0; /* Conflict found. */
105 else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref))
106 return 0;
108 return 1; /* Ok, no conflict. */
111 /* Fuse array base into memory operand. */
112 static IRRef asm_fuseabase(ASMState *as, IRRef ref)
114 IRIns *irb = IR(ref);
115 as->mrm.ofs = 0;
116 if (irb->o == IR_FLOAD) {
117 IRIns *ira = IR(irb->op1);
118 lua_assert(irb->op2 == IRFL_TAB_ARRAY);
119 /* We can avoid the FLOAD of t->array for colocated arrays. */
120 if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE &&
121 !neverfuse(as) && noconflict(as, irb->op1, IR_NEWREF, 1)) {
122 as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */
123 return irb->op1; /* Table obj. */
125 } else if (irb->o == IR_ADD && irref_isk(irb->op2)) {
126 /* Fuse base offset (vararg load). */
127 as->mrm.ofs = IR(irb->op2)->i;
128 return irb->op1;
130 return ref; /* Otherwise use the given array base. */
133 /* Fuse array reference into memory operand. */
134 static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow)
136 IRIns *irx;
137 lua_assert(ir->o == IR_AREF);
138 as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow);
139 irx = IR(ir->op2);
140 if (irref_isk(ir->op2)) {
141 as->mrm.ofs += 8*irx->i;
142 as->mrm.idx = RID_NONE;
143 } else {
144 rset_clear(allow, as->mrm.base);
145 as->mrm.scale = XM_SCALE8;
146 /* Fuse a constant ADD (e.g. t[i+1]) into the offset.
147 ** Doesn't help much without ABCelim, but reduces register pressure.
149 if (!LJ_64 && /* Has bad effects with negative index on x64. */
150 mayfuse(as, ir->op2) && ra_noreg(irx->r) &&
151 irx->o == IR_ADD && irref_isk(irx->op2)) {
152 as->mrm.ofs += 8*IR(irx->op2)->i;
153 as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow);
154 } else {
155 as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow);
160 /* Fuse array/hash/upvalue reference into memory operand.
161 ** Caveat: this may allocate GPRs for the base/idx registers. Be sure to
162 ** pass the final allow mask, excluding any GPRs used for other inputs.
163 ** In particular: 2-operand GPR instructions need to call ra_dest() first!
165 static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow)
167 IRIns *ir = IR(ref);
168 if (ra_noreg(ir->r)) {
169 switch ((IROp)ir->o) {
170 case IR_AREF:
171 if (mayfuse(as, ref)) {
172 asm_fusearef(as, ir, allow);
173 return;
175 break;
176 case IR_HREFK:
177 if (mayfuse(as, ref)) {
178 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
179 as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
180 as->mrm.idx = RID_NONE;
181 return;
183 break;
184 case IR_UREFC:
185 if (irref_isk(ir->op1)) {
186 GCfunc *fn = ir_kfunc(IR(ir->op1));
187 GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
188 as->mrm.ofs = ptr2addr(&uv->tv);
189 as->mrm.base = as->mrm.idx = RID_NONE;
190 return;
192 break;
193 default:
194 lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO ||
195 ir->o == IR_KKPTR);
196 break;
199 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
200 as->mrm.ofs = 0;
201 as->mrm.idx = RID_NONE;
204 /* Fuse FLOAD/FREF reference into memory operand. */
205 static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow)
207 lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF);
208 as->mrm.ofs = field_ofs[ir->op2];
209 as->mrm.idx = RID_NONE;
210 if (irref_isk(ir->op1)) {
211 as->mrm.ofs += IR(ir->op1)->i;
212 as->mrm.base = RID_NONE;
213 } else {
214 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
218 /* Fuse string reference into memory operand. */
219 static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow)
221 IRIns *irr;
222 lua_assert(ir->o == IR_STRREF);
223 as->mrm.base = as->mrm.idx = RID_NONE;
224 as->mrm.scale = XM_SCALE1;
225 as->mrm.ofs = sizeof(GCstr);
226 if (irref_isk(ir->op1)) {
227 as->mrm.ofs += IR(ir->op1)->i;
228 } else {
229 Reg r = ra_alloc1(as, ir->op1, allow);
230 rset_clear(allow, r);
231 as->mrm.base = (uint8_t)r;
233 irr = IR(ir->op2);
234 if (irref_isk(ir->op2)) {
235 as->mrm.ofs += irr->i;
236 } else {
237 Reg r;
238 /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */
239 if (!LJ_64 && /* Has bad effects with negative index on x64. */
240 mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) {
241 as->mrm.ofs += IR(irr->op2)->i;
242 r = ra_alloc1(as, irr->op1, allow);
243 } else {
244 r = ra_alloc1(as, ir->op2, allow);
246 if (as->mrm.base == RID_NONE)
247 as->mrm.base = (uint8_t)r;
248 else
249 as->mrm.idx = (uint8_t)r;
253 static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow)
255 IRIns *ir = IR(ref);
256 as->mrm.idx = RID_NONE;
257 if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
258 as->mrm.ofs = ir->i;
259 as->mrm.base = RID_NONE;
260 } else if (ir->o == IR_STRREF) {
261 asm_fusestrref(as, ir, allow);
262 } else {
263 as->mrm.ofs = 0;
264 if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) {
265 /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */
266 IRIns *irx;
267 IRRef idx;
268 Reg r;
269 if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */
270 ref = ir->op1;
271 ir = IR(ref);
272 if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r)))
273 goto noadd;
275 as->mrm.scale = XM_SCALE1;
276 idx = ir->op1;
277 ref = ir->op2;
278 irx = IR(idx);
279 if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */
280 idx = ir->op2;
281 ref = ir->op1;
282 irx = IR(idx);
284 if (canfuse(as, irx) && ra_noreg(irx->r)) {
285 if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) {
286 /* Recognize idx<<b with b = 0-3, corresponding to sz = (1),2,4,8. */
287 idx = irx->op1;
288 as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6);
289 } else if (irx->o == IR_ADD && irx->op1 == irx->op2) {
290 /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */
291 idx = irx->op1;
292 as->mrm.scale = XM_SCALE2;
295 r = ra_alloc1(as, idx, allow);
296 rset_clear(allow, r);
297 as->mrm.idx = (uint8_t)r;
299 noadd:
300 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
304 /* Fuse load into memory operand. */
305 static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow)
307 IRIns *ir = IR(ref);
308 if (ra_hasreg(ir->r)) {
309 if (allow != RSET_EMPTY) { /* Fast path. */
310 ra_noweak(as, ir->r);
311 return ir->r;
313 fusespill:
314 /* Force a spill if only memory operands are allowed (asm_x87load). */
315 as->mrm.base = RID_ESP;
316 as->mrm.ofs = ra_spill(as, ir);
317 as->mrm.idx = RID_NONE;
318 return RID_MRM;
320 if (ir->o == IR_KNUM) {
321 RegSet avail = as->freeset & ~as->modset & RSET_FPR;
322 lua_assert(allow != RSET_EMPTY);
323 if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */
324 as->mrm.ofs = ptr2addr(ir_knum(ir));
325 as->mrm.base = as->mrm.idx = RID_NONE;
326 return RID_MRM;
328 } else if (mayfuse(as, ref)) {
329 RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR;
330 if (ir->o == IR_SLOAD) {
331 if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) &&
332 noconflict(as, ref, IR_RETF, 0)) {
333 as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow);
334 as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0);
335 as->mrm.idx = RID_NONE;
336 return RID_MRM;
338 } else if (ir->o == IR_FLOAD) {
339 /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */
340 if ((irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)) &&
341 noconflict(as, ref, IR_FSTORE, 0)) {
342 asm_fusefref(as, ir, xallow);
343 return RID_MRM;
345 } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) {
346 if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) {
347 asm_fuseahuref(as, ir->op1, xallow);
348 return RID_MRM;
350 } else if (ir->o == IR_XLOAD) {
351 /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp).
352 ** Fusing unaligned memory operands is ok on x86 (except for SIMD types).
354 if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) &&
355 noconflict(as, ref, IR_XSTORE, 0)) {
356 asm_fusexref(as, ir->op1, xallow);
357 return RID_MRM;
359 } else if (ir->o == IR_VLOAD) {
360 asm_fuseahuref(as, ir->op1, xallow);
361 return RID_MRM;
364 if (!(as->freeset & allow) &&
365 (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref)))
366 goto fusespill;
367 return ra_allocref(as, ref, allow);
370 /* -- Calls --------------------------------------------------------------- */
372 /* Count the required number of stack slots for a call. */
373 static int asm_count_call_slots(ASMState *as, const CCallInfo *ci, IRRef *args)
375 uint32_t i, nargs = CCI_NARGS(ci);
376 int nslots = 0;
377 #if LJ_64
378 if (LJ_ABI_WIN) {
379 nslots = (int)(nargs*2); /* Only matters for more than four args. */
380 } else {
381 int ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR;
382 for (i = 0; i < nargs; i++)
383 if (args[i] && irt_isfp(IR(args[i])->t)) {
384 if (nfpr > 0) nfpr--; else nslots += 2;
385 } else {
386 if (ngpr > 0) ngpr--; else nslots += 2;
389 #else
390 int ngpr = 0;
391 if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL)
392 ngpr = 2;
393 else if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL)
394 ngpr = 1;
395 for (i = 0; i < nargs; i++)
396 if (args[i] && irt_isfp(IR(args[i])->t)) {
397 nslots += irt_isnum(IR(args[i])->t) ? 2 : 1;
398 } else {
399 if (ngpr > 0) ngpr--; else nslots++;
401 #endif
402 return nslots;
405 /* Generate a call to a C function. */
406 static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
408 uint32_t n, nargs = CCI_NARGS(ci);
409 int32_t ofs = STACKARG_OFS;
410 #if LJ_64
411 uint32_t gprs = REGARG_GPRS;
412 Reg fpr = REGARG_FIRSTFPR;
413 #if !LJ_ABI_WIN
414 MCode *patchnfpr = NULL;
415 #endif
416 #else
417 uint32_t gprs = 0;
418 if ((ci->flags & CCI_CC_MASK) != CCI_CC_CDECL) {
419 if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL)
420 gprs = (REGARG_GPRS & 31);
421 else if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL)
422 gprs = REGARG_GPRS;
424 #endif
425 if ((void *)ci->func)
426 emit_call(as, ci->func);
427 #if LJ_64
428 if ((ci->flags & CCI_VARARG)) { /* Special handling for vararg calls. */
429 #if LJ_ABI_WIN
430 for (n = 0; n < 4 && n < nargs; n++) {
431 IRIns *ir = IR(args[n]);
432 if (irt_isfp(ir->t)) /* Duplicate FPRs in GPRs. */
433 emit_rr(as, XO_MOVDto, (irt_isnum(ir->t) ? REX_64 : 0) | (fpr+n),
434 ((gprs >> (n*5)) & 31)); /* Either MOVD or MOVQ. */
436 #else
437 patchnfpr = --as->mcp; /* Indicate number of used FPRs in register al. */
438 *--as->mcp = XI_MOVrib | RID_EAX;
439 #endif
441 #endif
442 for (n = 0; n < nargs; n++) { /* Setup args. */
443 IRRef ref = args[n];
444 IRIns *ir = IR(ref);
445 Reg r;
446 #if LJ_64 && LJ_ABI_WIN
447 /* Windows/x64 argument registers are strictly positional. */
448 r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31);
449 fpr++; gprs >>= 5;
450 #elif LJ_64
451 /* POSIX/x64 argument registers are used in order of appearance. */
452 if (irt_isfp(ir->t)) {
453 r = fpr <= REGARG_LASTFPR ? fpr++ : 0;
454 } else {
455 r = gprs & 31; gprs >>= 5;
457 #else
458 if (ref && irt_isfp(ir->t)) {
459 r = 0;
460 } else {
461 r = gprs & 31; gprs >>= 5;
462 if (!ref) continue;
464 #endif
465 if (r) { /* Argument is in a register. */
466 if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
467 #if LJ_64
468 if (ir->o == IR_KINT64)
469 emit_loadu64(as, r, ir_kint64(ir)->u64);
470 else
471 #endif
472 emit_loadi(as, r, ir->i);
473 } else {
474 lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
475 if (ra_hasreg(ir->r)) {
476 ra_noweak(as, ir->r);
477 emit_movrr(as, ir, r, ir->r);
478 } else {
479 ra_allocref(as, ref, RID2RSET(r));
482 } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */
483 lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */
484 if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
485 /* Split stores for unaligned FP consts. */
486 emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
487 emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
488 } else {
489 r = ra_alloc1(as, ref, RSET_FPR);
490 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
491 r, RID_ESP, ofs);
493 ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8;
494 } else { /* Non-FP argument is on stack. */
495 if (LJ_32 && ref < ASMREF_TMP1) {
496 emit_movmroi(as, RID_ESP, ofs, ir->i);
497 } else {
498 r = ra_alloc1(as, ref, RSET_GPR);
499 emit_movtomro(as, REX_64 + r, RID_ESP, ofs);
501 ofs += sizeof(intptr_t);
504 #if LJ_64 && !LJ_ABI_WIN
505 if (patchnfpr) *patchnfpr = fpr - REGARG_FIRSTFPR;
506 #endif
509 /* Setup result reg/sp for call. Evict scratch regs. */
510 static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
512 RegSet drop = RSET_SCRATCH;
513 int hiop = (LJ_32 && (ir+1)->o == IR_HIOP);
514 if ((ci->flags & CCI_NOFPRCLOBBER))
515 drop &= ~RSET_FPR;
516 if (ra_hasreg(ir->r))
517 rset_clear(drop, ir->r); /* Dest reg handled below. */
518 if (hiop && ra_hasreg((ir+1)->r))
519 rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */
520 ra_evictset(as, drop); /* Evictions must be performed first. */
521 if (ra_used(ir)) {
522 if (irt_isfp(ir->t)) {
523 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
524 #if LJ_64
525 if ((ci->flags & CCI_CASTU64)) {
526 Reg dest = ir->r;
527 if (ra_hasreg(dest)) {
528 ra_free(as, dest);
529 ra_modified(as, dest);
530 emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */
532 if (ofs) emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs);
533 } else {
534 ra_destreg(as, ir, RID_FPRET);
536 #else
537 /* Number result is in x87 st0 for x86 calling convention. */
538 Reg dest = ir->r;
539 if (ra_hasreg(dest)) {
540 ra_free(as, dest);
541 ra_modified(as, dest);
542 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
543 dest, RID_ESP, ofs);
545 if ((ci->flags & CCI_CASTU64)) {
546 emit_movtomro(as, RID_RETLO, RID_ESP, ofs);
547 emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4);
548 } else {
549 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
550 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
552 #endif
553 } else if (hiop) {
554 ra_destpair(as, ir);
555 } else {
556 lua_assert(!irt_ispri(ir->t));
557 ra_destreg(as, ir, RID_RET);
559 } else if (LJ_32 && irt_isfp(ir->t)) {
560 emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */
564 static void asm_call(ASMState *as, IRIns *ir)
566 IRRef args[CCI_NARGS_MAX];
567 const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
568 asm_collectargs(as, ir, ci, args);
569 asm_setupresult(as, ir, ci);
570 asm_gencall(as, ci, args);
573 /* Return a constant function pointer or NULL for indirect calls. */
574 static void *asm_callx_func(ASMState *as, IRIns *irf, IRRef func)
576 #if LJ_32
577 UNUSED(as);
578 if (irref_isk(func))
579 return (void *)irf->i;
580 #else
581 if (irref_isk(func)) {
582 MCode *p;
583 if (irf->o == IR_KINT64)
584 p = (MCode *)(void *)ir_k64(irf)->u64;
585 else
586 p = (MCode *)(void *)(uintptr_t)(uint32_t)irf->i;
587 if (p - as->mcp == (int32_t)(p - as->mcp))
588 return p; /* Call target is still in +-2GB range. */
589 /* Avoid the indirect case of emit_call(). Try to hoist func addr. */
591 #endif
592 return NULL;
595 static void asm_callx(ASMState *as, IRIns *ir)
597 IRRef args[CCI_NARGS_MAX];
598 CCallInfo ci;
599 IRRef func;
600 IRIns *irf;
601 int32_t spadj = 0;
602 ci.flags = asm_callx_flags(as, ir);
603 asm_collectargs(as, ir, &ci, args);
604 asm_setupresult(as, ir, &ci);
605 #if LJ_32
606 /* Have to readjust stack after non-cdecl calls due to callee cleanup. */
607 if ((ci.flags & CCI_CC_MASK) != CCI_CC_CDECL)
608 spadj = 4 * asm_count_call_slots(as, &ci, args);
609 #endif
610 func = ir->op2; irf = IR(func);
611 if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); }
612 ci.func = (ASMFunction)asm_callx_func(as, irf, func);
613 if (!(void *)ci.func) {
614 /* Use a (hoistable) non-scratch register for indirect calls. */
615 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
616 Reg r = ra_alloc1(as, func, allow);
617 if (LJ_32) emit_spsub(as, spadj); /* Above code may cause restores! */
618 emit_rr(as, XO_GROUP5, XOg_CALL, r);
619 } else if (LJ_32) {
620 emit_spsub(as, spadj);
622 asm_gencall(as, &ci, args);
625 /* -- Returns ------------------------------------------------------------- */
627 /* Return to lower frame. Guard that it goes to the right spot. */
628 static void asm_retf(ASMState *as, IRIns *ir)
630 Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
631 void *pc = ir_kptr(IR(ir->op2));
632 int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
633 as->topslot -= (BCReg)delta;
634 if ((int32_t)as->topslot < 0) as->topslot = 0;
635 emit_setgl(as, base, jit_base);
636 emit_addptr(as, base, -8*delta);
637 asm_guardcc(as, CC_NE);
638 emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc));
641 /* -- Type conversions ---------------------------------------------------- */
643 static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
645 Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
646 Reg dest = ra_dest(as, ir, RSET_GPR);
647 asm_guardcc(as, CC_P);
648 asm_guardcc(as, CC_NE);
649 emit_rr(as, XO_UCOMISD, left, tmp);
650 emit_rr(as, XO_CVTSI2SD, tmp, dest);
651 if (!(as->flags & JIT_F_SPLIT_XMM))
652 emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */
653 emit_rr(as, XO_CVTTSD2SI, dest, left);
654 /* Can't fuse since left is needed twice. */
657 static void asm_tobit(ASMState *as, IRIns *ir)
659 Reg dest = ra_dest(as, ir, RSET_GPR);
660 Reg tmp = ra_noreg(IR(ir->op1)->r) ?
661 ra_alloc1(as, ir->op1, RSET_FPR) :
662 ra_scratch(as, RSET_FPR);
663 Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp));
664 emit_rr(as, XO_MOVDto, tmp, dest);
665 emit_mrm(as, XO_ADDSD, tmp, right);
666 ra_left(as, tmp, ir->op1);
669 static void asm_conv(ASMState *as, IRIns *ir)
671 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
672 int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64));
673 int stfp = (st == IRT_NUM || st == IRT_FLOAT);
674 IRRef lref = ir->op1;
675 lua_assert(irt_type(ir->t) != st);
676 lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */
677 if (irt_isfp(ir->t)) {
678 Reg dest = ra_dest(as, ir, RSET_FPR);
679 if (stfp) { /* FP to FP conversion. */
680 Reg left = asm_fuseload(as, lref, RSET_FPR);
681 emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left);
682 if (left == dest) return; /* Avoid the XO_XORPS. */
683 } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */
684 /* number = (2^52+2^51 .. u32) - (2^52+2^51) */
685 cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000));
686 Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
687 if (irt_isfloat(ir->t))
688 emit_rr(as, XO_CVTSD2SS, dest, dest);
689 emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */
690 emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */
691 emit_loadn(as, bias, k);
692 emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR));
693 return;
694 } else { /* Integer to FP conversion. */
695 Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ?
696 ra_alloc1(as, lref, RSET_GPR) :
697 asm_fuseload(as, lref, RSET_GPR);
698 if (LJ_64 && st == IRT_U64) {
699 MCLabel l_end = emit_label(as);
700 const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000));
701 emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */
702 emit_sjcc(as, CC_NS, l_end);
703 emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */
705 emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS,
706 dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left);
708 if (!(as->flags & JIT_F_SPLIT_XMM))
709 emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */
710 } else if (stfp) { /* FP to integer conversion. */
711 if (irt_isguard(ir->t)) {
712 /* Checked conversions are only supported from number to int. */
713 lua_assert(irt_isint(ir->t) && st == IRT_NUM);
714 asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
715 } else {
716 Reg dest = ra_dest(as, ir, RSET_GPR);
717 x86Op op = st == IRT_NUM ?
718 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) :
719 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI);
720 if (LJ_64 ? irt_isu64(ir->t) : irt_isu32(ir->t)) {
721 /* LJ_64: For inputs >= 2^63 add -2^64, convert again. */
722 /* LJ_32: For inputs >= 2^31 add -2^31, convert again and add 2^31. */
723 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
724 ra_scratch(as, RSET_FPR);
725 MCLabel l_end = emit_label(as);
726 if (LJ_32)
727 emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000);
728 emit_rr(as, op, dest|REX_64, tmp);
729 if (st == IRT_NUM)
730 emit_rma(as, XO_ADDSD, tmp, lj_ir_k64_find(as->J,
731 LJ_64 ? U64x(c3f00000,00000000) : U64x(c1e00000,00000000)));
732 else
733 emit_rma(as, XO_ADDSS, tmp, lj_ir_k64_find(as->J,
734 LJ_64 ? U64x(00000000,df800000) : U64x(00000000,cf000000)));
735 emit_sjcc(as, CC_NS, l_end);
736 emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest negative. */
737 emit_rr(as, op, dest|REX_64, tmp);
738 ra_left(as, tmp, lref);
739 } else {
740 Reg left = asm_fuseload(as, lref, RSET_FPR);
741 if (LJ_64 && irt_isu32(ir->t))
742 emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */
743 emit_mrm(as, op,
744 dest|((LJ_64 &&
745 (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0),
746 left);
749 } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
750 Reg left, dest = ra_dest(as, ir, RSET_GPR);
751 RegSet allow = RSET_GPR;
752 x86Op op;
753 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
754 if (st == IRT_I8) {
755 op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX;
756 } else if (st == IRT_U8) {
757 op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX;
758 } else if (st == IRT_I16) {
759 op = XO_MOVSXw;
760 } else {
761 op = XO_MOVZXw;
763 left = asm_fuseload(as, lref, allow);
764 /* Add extra MOV if source is already in wrong register. */
765 if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) {
766 Reg tmp = ra_scratch(as, allow);
767 emit_rr(as, op, dest, tmp);
768 emit_rr(as, XO_MOV, tmp, left);
769 } else {
770 emit_mrm(as, op, dest, left);
772 } else { /* 32/64 bit integer conversions. */
773 if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */
774 Reg dest = ra_dest(as, ir, RSET_GPR);
775 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
776 } else if (irt_is64(ir->t)) {
777 Reg dest = ra_dest(as, ir, RSET_GPR);
778 if (st64 || !(ir->op2 & IRCONV_SEXT)) {
779 /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
780 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
781 } else { /* 32 to 64 bit sign extension. */
782 Reg left = asm_fuseload(as, lref, RSET_GPR);
783 emit_mrm(as, XO_MOVSXd, dest|REX_64, left);
785 } else {
786 Reg dest = ra_dest(as, ir, RSET_GPR);
787 if (st64) {
788 Reg left = asm_fuseload(as, lref, RSET_GPR);
789 /* This is either a 32 bit reg/reg mov which zeroes the hiword
790 ** or a load of the loword from a 64 bit address.
792 emit_mrm(as, XO_MOV, dest, left);
793 } else { /* 32/32 bit no-op (cast). */
794 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
800 #if LJ_32 && LJ_HASFFI
801 /* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */
803 /* 64 bit integer to FP conversion in 32 bit mode. */
804 static void asm_conv_fp_int64(ASMState *as, IRIns *ir)
806 Reg hi = ra_alloc1(as, ir->op1, RSET_GPR);
807 Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi));
808 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
809 Reg dest = ir->r;
810 if (ra_hasreg(dest)) {
811 ra_free(as, dest);
812 ra_modified(as, dest);
813 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
814 dest, RID_ESP, ofs);
816 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
817 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
818 if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) {
819 /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */
820 MCLabel l_end = emit_label(as);
821 emit_rma(as, XO_FADDq, XOg_FADDq,
822 lj_ir_k64_find(as->J, U64x(43f00000,00000000)));
823 emit_sjcc(as, CC_NS, l_end);
824 emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */
825 } else {
826 lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64);
828 emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0);
829 /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */
830 emit_rmro(as, XO_MOVto, hi, RID_ESP, 4);
831 emit_rmro(as, XO_MOVto, lo, RID_ESP, 0);
834 /* FP to 64 bit integer conversion in 32 bit mode. */
835 static void asm_conv_int64_fp(ASMState *as, IRIns *ir)
837 IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
838 IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
839 Reg lo, hi;
840 lua_assert(st == IRT_NUM || st == IRT_FLOAT);
841 lua_assert(dt == IRT_I64 || dt == IRT_U64);
842 lua_assert(((ir-1)->op2 & IRCONV_TRUNC));
843 hi = ra_dest(as, ir, RSET_GPR);
844 lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi));
845 if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0);
846 /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */
847 if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */
848 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4);
849 emit_rmro(as, XO_MOVto, lo, RID_ESP, 4);
850 emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff);
852 if (dt == IRT_U64) {
853 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
854 MCLabel l_pop, l_end = emit_label(as);
855 emit_x87op(as, XI_FPOP);
856 l_pop = emit_label(as);
857 emit_sjmp(as, l_end);
858 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
859 if ((as->flags & JIT_F_SSE3))
860 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
861 else
862 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
863 emit_rma(as, XO_FADDq, XOg_FADDq,
864 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
865 emit_sjcc(as, CC_NS, l_pop);
866 emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */
868 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
869 if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */
870 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
871 } else { /* Otherwise set FPU rounding mode to truncate before the store. */
872 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
873 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0);
874 emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0);
875 emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0);
876 emit_loadi(as, lo, 0xc00);
877 emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0);
879 if (dt == IRT_U64)
880 emit_x87op(as, XI_FDUP);
881 emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd,
882 st == IRT_NUM ? XOg_FLDq: XOg_FLDd,
883 asm_fuseload(as, ir->op1, RSET_EMPTY));
885 #endif
887 static void asm_strto(ASMState *as, IRIns *ir)
889 /* Force a spill slot for the destination register (if any). */
890 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num];
891 IRRef args[2];
892 RegSet drop = RSET_SCRATCH;
893 if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r))
894 rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */
895 ra_evictset(as, drop);
896 asm_guardcc(as, CC_E);
897 emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */
898 args[0] = ir->op1; /* GCstr *str */
899 args[1] = ASMREF_TMP1; /* TValue *n */
900 asm_gencall(as, ci, args);
901 /* Store the result to the spill slot or temp slots. */
902 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
903 RID_ESP, sps_scale(ir->s));
906 static void asm_tostr(ASMState *as, IRIns *ir)
908 IRIns *irl = IR(ir->op1);
909 IRRef args[2];
910 args[0] = ASMREF_L;
911 as->gcsteps++;
912 if (irt_isnum(irl->t)) {
913 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
914 args[1] = ASMREF_TMP1; /* const lua_Number * */
915 asm_setupresult(as, ir, ci); /* GCstr * */
916 asm_gencall(as, ci, args);
917 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
918 RID_ESP, ra_spill(as, irl));
919 } else {
920 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
921 args[1] = ir->op1; /* int32_t k */
922 asm_setupresult(as, ir, ci); /* GCstr * */
923 asm_gencall(as, ci, args);
927 /* -- Memory references --------------------------------------------------- */
929 static void asm_aref(ASMState *as, IRIns *ir)
931 Reg dest = ra_dest(as, ir, RSET_GPR);
932 asm_fusearef(as, ir, RSET_GPR);
933 if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0))
934 emit_mrm(as, XO_LEA, dest, RID_MRM);
935 else if (as->mrm.base != dest)
936 emit_rr(as, XO_MOV, dest, as->mrm.base);
939 /* Merge NE(HREF, niltv) check. */
940 static MCode *merge_href_niltv(ASMState *as, IRIns *ir)
942 /* Assumes nothing else generates NE of HREF. */
943 if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins &&
944 ra_hasreg(ir->r)) {
945 MCode *p = as->mcp;
946 p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6;
947 /* Ensure no loop branch inversion happened. */
948 if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) {
949 as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */
950 return p + *(int32_t *)(p-4); /* Return exit address. */
953 return NULL;
956 /* Inlined hash lookup. Specialized for key type and for const keys.
957 ** The equivalent C code is:
958 ** Node *n = hashkey(t, key);
959 ** do {
960 ** if (lj_obj_equal(&n->key, key)) return &n->val;
961 ** } while ((n = nextnode(n)));
962 ** return niltv(L);
964 static void asm_href(ASMState *as, IRIns *ir)
966 MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */
967 RegSet allow = RSET_GPR;
968 Reg dest = ra_dest(as, ir, allow);
969 Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
970 Reg key = RID_NONE, tmp = RID_NONE;
971 IRIns *irkey = IR(ir->op2);
972 int isk = irref_isk(ir->op2);
973 IRType1 kt = irkey->t;
974 uint32_t khash;
975 MCLabel l_end, l_loop, l_next;
977 if (!isk) {
978 rset_clear(allow, tab);
979 key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
980 if (!irt_isstr(kt))
981 tmp = ra_scratch(as, rset_exclude(allow, key));
984 /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */
985 l_end = emit_label(as);
986 if (nilexit && ir[1].o == IR_NE) {
987 emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */
988 nilexit = NULL;
989 } else {
990 emit_loada(as, dest, niltvg(J2G(as->J)));
993 /* Follow hash chain until the end. */
994 l_loop = emit_sjcc_label(as, CC_NZ);
995 emit_rr(as, XO_TEST, dest, dest);
996 emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next));
997 l_next = emit_label(as);
999 /* Type and value comparison. */
1000 if (nilexit)
1001 emit_jcc(as, CC_E, nilexit);
1002 else
1003 emit_sjcc(as, CC_E, l_end);
1004 if (irt_isnum(kt)) {
1005 if (isk) {
1006 /* Assumes -0.0 is already canonicalized to +0.0. */
1007 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo),
1008 (int32_t)ir_knum(irkey)->u32.lo);
1009 emit_sjcc(as, CC_NE, l_next);
1010 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi),
1011 (int32_t)ir_knum(irkey)->u32.hi);
1012 } else {
1013 emit_sjcc(as, CC_P, l_next);
1014 emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
1015 emit_sjcc(as, CC_AE, l_next);
1016 /* The type check avoids NaN penalties and complaints from Valgrind. */
1017 #if LJ_64
1018 emit_u32(as, LJ_TISNUM);
1019 emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it));
1020 #else
1021 emit_i8(as, LJ_TISNUM);
1022 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
1023 #endif
1025 #if LJ_64
1026 } else if (irt_islightud(kt)) {
1027 emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64));
1028 #endif
1029 } else {
1030 if (!irt_ispri(kt)) {
1031 lua_assert(irt_isaddr(kt));
1032 if (isk)
1033 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr),
1034 ptr2addr(ir_kgc(irkey)));
1035 else
1036 emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr));
1037 emit_sjcc(as, CC_NE, l_next);
1039 lua_assert(!irt_isnil(kt));
1040 emit_i8(as, irt_toitype(kt));
1041 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
1043 emit_sfixup(as, l_loop);
1044 checkmclim(as);
1046 /* Load main position relative to tab->node into dest. */
1047 khash = isk ? ir_khash(irkey) : 1;
1048 if (khash == 0) {
1049 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node));
1050 } else {
1051 emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node));
1052 if ((as->flags & JIT_F_PREFER_IMUL)) {
1053 emit_i8(as, sizeof(Node));
1054 emit_rr(as, XO_IMULi8, dest, dest);
1055 } else {
1056 emit_shifti(as, XOg_SHL, dest, 3);
1057 emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0);
1059 if (isk) {
1060 emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash);
1061 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
1062 } else if (irt_isstr(kt)) {
1063 emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash));
1064 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
1065 } else { /* Must match with hashrot() in lj_tab.c. */
1066 emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask));
1067 emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp);
1068 emit_shifti(as, XOg_ROL, tmp, HASH_ROT3);
1069 emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp);
1070 emit_shifti(as, XOg_ROL, dest, HASH_ROT2);
1071 emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest);
1072 emit_shifti(as, XOg_ROL, dest, HASH_ROT1);
1073 emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest);
1074 if (irt_isnum(kt)) {
1075 emit_rr(as, XO_ARITH(XOg_ADD), dest, dest);
1076 #if LJ_64
1077 emit_shifti(as, XOg_SHR|REX_64, dest, 32);
1078 emit_rr(as, XO_MOV, tmp, dest);
1079 emit_rr(as, XO_MOVDto, key|REX_64, dest);
1080 #else
1081 emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4);
1082 emit_rr(as, XO_MOVDto, key, tmp);
1083 #endif
1084 } else {
1085 emit_rr(as, XO_MOV, tmp, key);
1086 emit_rmro(as, XO_LEA, dest, key, HASH_BIAS);
1092 static void asm_hrefk(ASMState *as, IRIns *ir)
1094 IRIns *kslot = IR(ir->op2);
1095 IRIns *irkey = IR(kslot->op1);
1096 int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
1097 Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
1098 Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
1099 #if !LJ_64
1100 MCLabel l_exit;
1101 #endif
1102 lua_assert(ofs % sizeof(Node) == 0);
1103 if (ra_hasreg(dest)) {
1104 if (ofs != 0) {
1105 if (dest == node && !(as->flags & JIT_F_LEA_AGU))
1106 emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs);
1107 else
1108 emit_rmro(as, XO_LEA, dest, node, ofs);
1109 } else if (dest != node) {
1110 emit_rr(as, XO_MOV, dest, node);
1113 asm_guardcc(as, CC_NE);
1114 #if LJ_64
1115 if (!irt_ispri(irkey->t)) {
1116 Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node));
1117 emit_rmro(as, XO_CMP, key|REX_64, node,
1118 ofs + (int32_t)offsetof(Node, key.u64));
1119 lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t));
1120 /* Assumes -0.0 is already canonicalized to +0.0. */
1121 emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 :
1122 ((uint64_t)irt_toitype(irkey->t) << 32) |
1123 (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey)));
1124 } else {
1125 lua_assert(!irt_isnil(irkey->t));
1126 emit_i8(as, irt_toitype(irkey->t));
1127 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1128 ofs + (int32_t)offsetof(Node, key.it));
1130 #else
1131 l_exit = emit_label(as);
1132 if (irt_isnum(irkey->t)) {
1133 /* Assumes -0.0 is already canonicalized to +0.0. */
1134 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1135 ofs + (int32_t)offsetof(Node, key.u32.lo),
1136 (int32_t)ir_knum(irkey)->u32.lo);
1137 emit_sjcc(as, CC_NE, l_exit);
1138 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1139 ofs + (int32_t)offsetof(Node, key.u32.hi),
1140 (int32_t)ir_knum(irkey)->u32.hi);
1141 } else {
1142 if (!irt_ispri(irkey->t)) {
1143 lua_assert(irt_isgcv(irkey->t));
1144 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1145 ofs + (int32_t)offsetof(Node, key.gcr),
1146 ptr2addr(ir_kgc(irkey)));
1147 emit_sjcc(as, CC_NE, l_exit);
1149 lua_assert(!irt_isnil(irkey->t));
1150 emit_i8(as, irt_toitype(irkey->t));
1151 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1152 ofs + (int32_t)offsetof(Node, key.it));
1154 #endif
1157 static void asm_newref(ASMState *as, IRIns *ir)
1159 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
1160 IRRef args[3];
1161 IRIns *irkey;
1162 Reg tmp;
1163 if (ir->r == RID_SINK)
1164 return;
1165 args[0] = ASMREF_L; /* lua_State *L */
1166 args[1] = ir->op1; /* GCtab *t */
1167 args[2] = ASMREF_TMP1; /* cTValue *key */
1168 asm_setupresult(as, ir, ci); /* TValue * */
1169 asm_gencall(as, ci, args);
1170 tmp = ra_releasetmp(as, ASMREF_TMP1);
1171 irkey = IR(ir->op2);
1172 if (irt_isnum(irkey->t)) {
1173 /* For numbers use the constant itself or a spill slot as a TValue. */
1174 if (irref_isk(ir->op2))
1175 emit_loada(as, tmp, ir_knum(irkey));
1176 else
1177 emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey));
1178 } else {
1179 /* Otherwise use g->tmptv to hold the TValue. */
1180 if (!irref_isk(ir->op2)) {
1181 Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp));
1182 emit_movtomro(as, REX_64IR(irkey, src), tmp, 0);
1183 } else if (!irt_ispri(irkey->t)) {
1184 emit_movmroi(as, tmp, 0, irkey->i);
1186 if (!(LJ_64 && irt_islightud(irkey->t)))
1187 emit_movmroi(as, tmp, 4, irt_toitype(irkey->t));
1188 emit_loada(as, tmp, &J2G(as->J)->tmptv);
1192 static void asm_uref(ASMState *as, IRIns *ir)
1194 /* NYI: Check that UREFO is still open and not aliasing a slot. */
1195 Reg dest = ra_dest(as, ir, RSET_GPR);
1196 if (irref_isk(ir->op1)) {
1197 GCfunc *fn = ir_kfunc(IR(ir->op1));
1198 MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
1199 emit_rma(as, XO_MOV, dest, v);
1200 } else {
1201 Reg uv = ra_scratch(as, RSET_GPR);
1202 Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
1203 if (ir->o == IR_UREFC) {
1204 emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv));
1205 asm_guardcc(as, CC_NE);
1206 emit_i8(as, 1);
1207 emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed));
1208 } else {
1209 emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v));
1211 emit_rmro(as, XO_MOV, uv, func,
1212 (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
1216 static void asm_fref(ASMState *as, IRIns *ir)
1218 Reg dest = ra_dest(as, ir, RSET_GPR);
1219 asm_fusefref(as, ir, RSET_GPR);
1220 emit_mrm(as, XO_LEA, dest, RID_MRM);
1223 static void asm_strref(ASMState *as, IRIns *ir)
1225 Reg dest = ra_dest(as, ir, RSET_GPR);
1226 asm_fusestrref(as, ir, RSET_GPR);
1227 if (as->mrm.base == RID_NONE)
1228 emit_loadi(as, dest, as->mrm.ofs);
1229 else if (as->mrm.base == dest && as->mrm.idx == RID_NONE)
1230 emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs);
1231 else
1232 emit_mrm(as, XO_LEA, dest, RID_MRM);
1235 /* -- Loads and stores ---------------------------------------------------- */
1237 static void asm_fxload(ASMState *as, IRIns *ir)
1239 Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
1240 x86Op xo;
1241 if (ir->o == IR_FLOAD)
1242 asm_fusefref(as, ir, RSET_GPR);
1243 else
1244 asm_fusexref(as, ir->op1, RSET_GPR);
1245 /* ir->op2 is ignored -- unaligned loads are ok on x86. */
1246 switch (irt_type(ir->t)) {
1247 case IRT_I8: xo = XO_MOVSXb; break;
1248 case IRT_U8: xo = XO_MOVZXb; break;
1249 case IRT_I16: xo = XO_MOVSXw; break;
1250 case IRT_U16: xo = XO_MOVZXw; break;
1251 case IRT_NUM: xo = XMM_MOVRM(as); break;
1252 case IRT_FLOAT: xo = XO_MOVSS; break;
1253 default:
1254 if (LJ_64 && irt_is64(ir->t))
1255 dest |= REX_64;
1256 else
1257 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1258 xo = XO_MOV;
1259 break;
1261 emit_mrm(as, xo, dest, RID_MRM);
1264 static void asm_fxstore(ASMState *as, IRIns *ir)
1266 RegSet allow = RSET_GPR;
1267 Reg src = RID_NONE, osrc = RID_NONE;
1268 int32_t k = 0;
1269 if (ir->r == RID_SINK)
1270 return;
1271 /* The IRT_I16/IRT_U16 stores should never be simplified for constant
1272 ** values since mov word [mem], imm16 has a length-changing prefix.
1274 if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) ||
1275 !asm_isk32(as, ir->op2, &k)) {
1276 RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR :
1277 (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
1278 src = osrc = ra_alloc1(as, ir->op2, allow8);
1279 if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */
1280 rset_clear(allow, osrc);
1281 src = ra_scratch(as, allow8);
1283 rset_clear(allow, src);
1285 if (ir->o == IR_FSTORE) {
1286 asm_fusefref(as, IR(ir->op1), allow);
1287 } else {
1288 asm_fusexref(as, ir->op1, allow);
1289 if (LJ_32 && ir->o == IR_HIOP) as->mrm.ofs += 4;
1291 if (ra_hasreg(src)) {
1292 x86Op xo;
1293 switch (irt_type(ir->t)) {
1294 case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break;
1295 case IRT_I16: case IRT_U16: xo = XO_MOVtow; break;
1296 case IRT_NUM: xo = XO_MOVSDto; break;
1297 case IRT_FLOAT: xo = XO_MOVSSto; break;
1298 #if LJ_64
1299 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */
1300 #endif
1301 default:
1302 if (LJ_64 && irt_is64(ir->t))
1303 src |= REX_64;
1304 else
1305 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1306 xo = XO_MOVto;
1307 break;
1309 emit_mrm(as, xo, src, RID_MRM);
1310 if (!LJ_64 && src != osrc) {
1311 ra_noweak(as, osrc);
1312 emit_rr(as, XO_MOV, src, osrc);
1314 } else {
1315 if (irt_isi8(ir->t) || irt_isu8(ir->t)) {
1316 emit_i8(as, k);
1317 emit_mrm(as, XO_MOVmib, 0, RID_MRM);
1318 } else {
1319 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) ||
1320 irt_isaddr(ir->t));
1321 emit_i32(as, k);
1322 emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM);
1327 #if LJ_64
1328 static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck)
1330 if (ra_used(ir) || typecheck) {
1331 Reg dest = ra_dest(as, ir, RSET_GPR);
1332 if (typecheck) {
1333 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest));
1334 asm_guardcc(as, CC_NE);
1335 emit_i8(as, -2);
1336 emit_rr(as, XO_ARITHi8, XOg_CMP, tmp);
1337 emit_shifti(as, XOg_SAR|REX_64, tmp, 47);
1338 emit_rr(as, XO_MOV, tmp|REX_64, dest);
1340 return dest;
1341 } else {
1342 return RID_NONE;
1345 #endif
1347 static void asm_ahuvload(ASMState *as, IRIns *ir)
1349 lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
1350 (LJ_DUALNUM && irt_isint(ir->t)));
1351 #if LJ_64
1352 if (irt_islightud(ir->t)) {
1353 Reg dest = asm_load_lightud64(as, ir, 1);
1354 if (ra_hasreg(dest)) {
1355 asm_fuseahuref(as, ir->op1, RSET_GPR);
1356 emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM);
1358 return;
1359 } else
1360 #endif
1361 if (ra_used(ir)) {
1362 RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
1363 Reg dest = ra_dest(as, ir, allow);
1364 asm_fuseahuref(as, ir->op1, RSET_GPR);
1365 emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM);
1366 } else {
1367 asm_fuseahuref(as, ir->op1, RSET_GPR);
1369 /* Always do the type check, even if the load result is unused. */
1370 as->mrm.ofs += 4;
1371 asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
1372 if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
1373 lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
1374 emit_u32(as, LJ_TISNUM);
1375 emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
1376 } else {
1377 emit_i8(as, irt_toitype(ir->t));
1378 emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM);
1382 static void asm_ahustore(ASMState *as, IRIns *ir)
1384 if (ir->r == RID_SINK)
1385 return;
1386 if (irt_isnum(ir->t)) {
1387 Reg src = ra_alloc1(as, ir->op2, RSET_FPR);
1388 asm_fuseahuref(as, ir->op1, RSET_GPR);
1389 emit_mrm(as, XO_MOVSDto, src, RID_MRM);
1390 #if LJ_64
1391 } else if (irt_islightud(ir->t)) {
1392 Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
1393 asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src));
1394 emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM);
1395 #endif
1396 } else {
1397 IRIns *irr = IR(ir->op2);
1398 RegSet allow = RSET_GPR;
1399 Reg src = RID_NONE;
1400 if (!irref_isk(ir->op2)) {
1401 src = ra_alloc1(as, ir->op2, allow);
1402 rset_clear(allow, src);
1404 asm_fuseahuref(as, ir->op1, allow);
1405 if (ra_hasreg(src)) {
1406 emit_mrm(as, XO_MOVto, src, RID_MRM);
1407 } else if (!irt_ispri(irr->t)) {
1408 lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
1409 emit_i32(as, irr->i);
1410 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1412 as->mrm.ofs += 4;
1413 emit_i32(as, (int32_t)irt_toitype(ir->t));
1414 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1418 static void asm_sload(ASMState *as, IRIns *ir)
1420 int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
1421 IRType1 t = ir->t;
1422 Reg base;
1423 lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
1424 lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
1425 lua_assert(LJ_DUALNUM ||
1426 !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
1427 if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
1428 Reg left = ra_scratch(as, RSET_FPR);
1429 asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
1430 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1431 emit_rmro(as, XMM_MOVRM(as), left, base, ofs);
1432 t.irt = IRT_NUM; /* Continue with a regular number type check. */
1433 #if LJ_64
1434 } else if (irt_islightud(t)) {
1435 Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK));
1436 if (ra_hasreg(dest)) {
1437 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1438 emit_rmro(as, XO_MOV, dest|REX_64, base, ofs);
1440 return;
1441 #endif
1442 } else if (ra_used(ir)) {
1443 RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR;
1444 Reg dest = ra_dest(as, ir, allow);
1445 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1446 lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
1447 if ((ir->op2 & IRSLOAD_CONVERT)) {
1448 t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
1449 emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
1450 } else if (irt_isnum(t)) {
1451 emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
1452 } else {
1453 emit_rmro(as, XO_MOV, dest, base, ofs);
1455 } else {
1456 if (!(ir->op2 & IRSLOAD_TYPECHECK))
1457 return; /* No type check: avoid base alloc. */
1458 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1460 if ((ir->op2 & IRSLOAD_TYPECHECK)) {
1461 /* Need type check, even if the load result is unused. */
1462 asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
1463 if (LJ_64 && irt_type(t) >= IRT_NUM) {
1464 lua_assert(irt_isinteger(t) || irt_isnum(t));
1465 emit_u32(as, LJ_TISNUM);
1466 emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
1467 } else {
1468 emit_i8(as, irt_toitype(t));
1469 emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4);
1474 /* -- Allocations --------------------------------------------------------- */
1476 #if LJ_HASFFI
1477 static void asm_cnew(ASMState *as, IRIns *ir)
1479 CTState *cts = ctype_ctsG(J2G(as->J));
1480 CTypeID ctypeid = (CTypeID)IR(ir->op1)->i;
1481 CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
1482 lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i;
1483 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
1484 IRRef args[2];
1485 lua_assert(sz != CTSIZE_INVALID);
1487 args[0] = ASMREF_L; /* lua_State *L */
1488 args[1] = ASMREF_TMP1; /* MSize size */
1489 as->gcsteps++;
1490 asm_setupresult(as, ir, ci); /* GCcdata * */
1492 /* Initialize immutable cdata object. */
1493 if (ir->o == IR_CNEWI) {
1494 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
1495 #if LJ_64
1496 Reg r64 = sz == 8 ? REX_64 : 0;
1497 if (irref_isk(ir->op2)) {
1498 IRIns *irk = IR(ir->op2);
1499 uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 :
1500 (uint64_t)(uint32_t)irk->i;
1501 if (sz == 4 || checki32((int64_t)k)) {
1502 emit_i32(as, (int32_t)k);
1503 emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata));
1504 } else {
1505 emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata));
1506 emit_loadu64(as, RID_ECX, k);
1508 } else {
1509 Reg r = ra_alloc1(as, ir->op2, allow);
1510 emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata));
1512 #else
1513 int32_t ofs = sizeof(GCcdata);
1514 if (sz == 8) {
1515 ofs += 4; ir++;
1516 lua_assert(ir->o == IR_HIOP);
1518 do {
1519 if (irref_isk(ir->op2)) {
1520 emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i);
1521 } else {
1522 Reg r = ra_alloc1(as, ir->op2, allow);
1523 emit_movtomro(as, r, RID_RET, ofs);
1524 rset_clear(allow, r);
1526 if (ofs == sizeof(GCcdata)) break;
1527 ofs -= 4; ir--;
1528 } while (1);
1529 #endif
1530 lua_assert(sz == 4 || sz == 8);
1533 /* Combine initialization of marked, gct and ctypeid. */
1534 emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked));
1535 emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX,
1536 (int32_t)((~LJ_TCDATA<<8)+(ctypeid<<16)));
1537 emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES);
1538 emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite);
1540 asm_gencall(as, ci, args);
1541 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata)));
1543 #else
1544 #define asm_cnew(as, ir) ((void)0)
1545 #endif
1547 /* -- Write barriers ------------------------------------------------------ */
1549 static void asm_tbar(ASMState *as, IRIns *ir)
1551 Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
1552 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab));
1553 MCLabel l_end = emit_label(as);
1554 emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist));
1555 emit_setgl(as, tab, gc.grayagain);
1556 emit_getgl(as, tmp, gc.grayagain);
1557 emit_i8(as, ~LJ_GC_BLACK);
1558 emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked));
1559 emit_sjcc(as, CC_Z, l_end);
1560 emit_i8(as, LJ_GC_BLACK);
1561 emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked));
1564 static void asm_obar(ASMState *as, IRIns *ir)
1566 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
1567 IRRef args[2];
1568 MCLabel l_end;
1569 Reg obj;
1570 /* No need for other object barriers (yet). */
1571 lua_assert(IR(ir->op1)->o == IR_UREFC);
1572 ra_evictset(as, RSET_SCRATCH);
1573 l_end = emit_label(as);
1574 args[0] = ASMREF_TMP1; /* global_State *g */
1575 args[1] = ir->op1; /* TValue *tv */
1576 asm_gencall(as, ci, args);
1577 emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J));
1578 obj = IR(ir->op1)->r;
1579 emit_sjcc(as, CC_Z, l_end);
1580 emit_i8(as, LJ_GC_WHITES);
1581 if (irref_isk(ir->op2)) {
1582 GCobj *vp = ir_kgc(IR(ir->op2));
1583 emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked);
1584 } else {
1585 Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj));
1586 emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked));
1588 emit_sjcc(as, CC_Z, l_end);
1589 emit_i8(as, LJ_GC_BLACK);
1590 emit_rmro(as, XO_GROUP3b, XOg_TEST, obj,
1591 (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
1594 /* -- FP/int arithmetic and logic operations ------------------------------ */
1596 /* Load reference onto x87 stack. Force a spill to memory if needed. */
1597 static void asm_x87load(ASMState *as, IRRef ref)
1599 IRIns *ir = IR(ref);
1600 if (ir->o == IR_KNUM) {
1601 cTValue *tv = ir_knum(ir);
1602 if (tvispzero(tv)) /* Use fldz only for +0. */
1603 emit_x87op(as, XI_FLDZ);
1604 else if (tvispone(tv))
1605 emit_x87op(as, XI_FLD1);
1606 else
1607 emit_rma(as, XO_FLDq, XOg_FLDq, tv);
1608 } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) &&
1609 !irref_isk(ir->op1) && mayfuse(as, ir->op1)) {
1610 IRIns *iri = IR(ir->op1);
1611 emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri));
1612 } else {
1613 emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY));
1617 /* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */
1618 static int fpmjoin_pow(ASMState *as, IRIns *ir)
1620 IRIns *irp = IR(ir->op1);
1621 if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
1622 IRIns *irpp = IR(irp->op1);
1623 if (irpp == ir-2 && irpp->o == IR_FPMATH &&
1624 irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
1625 /* The modified regs must match with the *.dasc implementation. */
1626 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
1627 IRIns *irx;
1628 if (ra_hasreg(ir->r))
1629 rset_clear(drop, ir->r); /* Dest reg handled below. */
1630 ra_evictset(as, drop);
1631 ra_destreg(as, ir, RID_XMM0);
1632 emit_call(as, lj_vm_pow_sse);
1633 irx = IR(irpp->op1);
1634 if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1)
1635 irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */
1636 ra_left(as, RID_XMM0, irpp->op1);
1637 ra_left(as, RID_XMM1, irp->op2);
1638 return 1;
1641 return 0;
1644 static void asm_fpmath(ASMState *as, IRIns *ir)
1646 IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER;
1647 if (fpm == IRFPM_SQRT) {
1648 Reg dest = ra_dest(as, ir, RSET_FPR);
1649 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1650 emit_mrm(as, XO_SQRTSD, dest, left);
1651 } else if (fpm <= IRFPM_TRUNC) {
1652 if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */
1653 Reg dest = ra_dest(as, ir, RSET_FPR);
1654 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1655 /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op.
1656 ** Let's pretend it's a 3-byte opcode, and compensate afterwards.
1657 ** This is atrocious, but the alternatives are much worse.
1659 /* Round down/up/trunc == 1001/1010/1011. */
1660 emit_i8(as, 0x09 + fpm);
1661 emit_mrm(as, XO_ROUNDSD, dest, left);
1662 if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) {
1663 as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */
1665 *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */
1666 } else { /* Call helper functions for SSE2 variant. */
1667 /* The modified regs must match with the *.dasc implementation. */
1668 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
1669 if (ra_hasreg(ir->r))
1670 rset_clear(drop, ir->r); /* Dest reg handled below. */
1671 ra_evictset(as, drop);
1672 ra_destreg(as, ir, RID_XMM0);
1673 emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse :
1674 fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse);
1675 ra_left(as, RID_XMM0, ir->op1);
1677 } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) {
1678 /* Rejoined to pow(). */
1679 } else { /* Handle x87 ops. */
1680 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
1681 Reg dest = ir->r;
1682 if (ra_hasreg(dest)) {
1683 ra_free(as, dest);
1684 ra_modified(as, dest);
1685 emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs);
1687 emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs);
1688 switch (fpm) { /* st0 = lj_vm_*(st0) */
1689 case IRFPM_EXP: emit_call(as, lj_vm_exp_x87); break;
1690 case IRFPM_EXP2: emit_call(as, lj_vm_exp2_x87); break;
1691 case IRFPM_SIN: emit_x87op(as, XI_FSIN); break;
1692 case IRFPM_COS: emit_x87op(as, XI_FCOS); break;
1693 case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break;
1694 case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10:
1695 /* Note: the use of fyl2xp1 would be pointless here. When computing
1696 ** log(1.0+eps) the precision is already lost after 1.0 is added.
1697 ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense.
1699 emit_x87op(as, XI_FYL2X); break;
1700 case IRFPM_OTHER:
1701 switch (ir->o) {
1702 case IR_ATAN2:
1703 emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break;
1704 case IR_LDEXP:
1705 emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break;
1706 default: lua_assert(0); break;
1708 break;
1709 default: lua_assert(0); break;
1711 asm_x87load(as, ir->op1);
1712 switch (fpm) {
1713 case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break;
1714 case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break;
1715 case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break;
1716 case IRFPM_OTHER:
1717 if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2);
1718 break;
1719 default: break;
1724 static void asm_fppowi(ASMState *as, IRIns *ir)
1726 /* The modified regs must match with the *.dasc implementation. */
1727 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
1728 if (ra_hasreg(ir->r))
1729 rset_clear(drop, ir->r); /* Dest reg handled below. */
1730 ra_evictset(as, drop);
1731 ra_destreg(as, ir, RID_XMM0);
1732 emit_call(as, lj_vm_powi_sse);
1733 ra_left(as, RID_XMM0, ir->op1);
1734 ra_left(as, RID_EAX, ir->op2);
1737 #if LJ_64 && LJ_HASFFI
1738 static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id)
1740 const CCallInfo *ci = &lj_ir_callinfo[id];
1741 IRRef args[2];
1742 args[0] = ir->op1;
1743 args[1] = ir->op2;
1744 asm_setupresult(as, ir, ci);
1745 asm_gencall(as, ci, args);
1747 #endif
1749 static void asm_intmod(ASMState *as, IRIns *ir)
1751 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_vm_modi];
1752 IRRef args[2];
1753 args[0] = ir->op1;
1754 args[1] = ir->op2;
1755 asm_setupresult(as, ir, ci);
1756 asm_gencall(as, ci, args);
1759 static int asm_swapops(ASMState *as, IRIns *ir)
1761 IRIns *irl = IR(ir->op1);
1762 IRIns *irr = IR(ir->op2);
1763 lua_assert(ra_noreg(irr->r));
1764 if (!irm_iscomm(lj_ir_mode[ir->o]))
1765 return 0; /* Can't swap non-commutative operations. */
1766 if (irref_isk(ir->op2))
1767 return 0; /* Don't swap constants to the left. */
1768 if (ra_hasreg(irl->r))
1769 return 1; /* Swap if left already has a register. */
1770 if (ra_samehint(ir->r, irr->r))
1771 return 1; /* Swap if dest and right have matching hints. */
1772 if (as->curins > as->loopref) { /* In variant part? */
1773 if (ir->op2 < as->loopref && !irt_isphi(irr->t))
1774 return 0; /* Keep invariants on the right. */
1775 if (ir->op1 < as->loopref && !irt_isphi(irl->t))
1776 return 1; /* Swap invariants to the right. */
1778 if (opisfusableload(irl->o))
1779 return 1; /* Swap fusable loads to the right. */
1780 return 0; /* Otherwise don't swap. */
1783 static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo)
1785 IRRef lref = ir->op1;
1786 IRRef rref = ir->op2;
1787 RegSet allow = RSET_FPR;
1788 Reg dest;
1789 Reg right = IR(rref)->r;
1790 if (ra_hasreg(right)) {
1791 rset_clear(allow, right);
1792 ra_noweak(as, right);
1794 dest = ra_dest(as, ir, allow);
1795 if (lref == rref) {
1796 right = dest;
1797 } else if (ra_noreg(right)) {
1798 if (asm_swapops(as, ir)) {
1799 IRRef tmp = lref; lref = rref; rref = tmp;
1801 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1803 emit_mrm(as, xo, dest, right);
1804 ra_left(as, dest, lref);
1807 static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa)
1809 IRRef lref = ir->op1;
1810 IRRef rref = ir->op2;
1811 RegSet allow = RSET_GPR;
1812 Reg dest, right;
1813 int32_t k = 0;
1814 if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */
1815 as->flagmcp = NULL;
1816 as->mcp += (LJ_64 && *as->mcp != XI_TEST) ? 3 : 2;
1818 right = IR(rref)->r;
1819 if (ra_hasreg(right)) {
1820 rset_clear(allow, right);
1821 ra_noweak(as, right);
1823 dest = ra_dest(as, ir, allow);
1824 if (lref == rref) {
1825 right = dest;
1826 } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) {
1827 if (asm_swapops(as, ir)) {
1828 IRRef tmp = lref; lref = rref; rref = tmp;
1830 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1832 if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */
1833 asm_guardcc(as, CC_O);
1834 if (xa != XOg_X_IMUL) {
1835 if (ra_hasreg(right))
1836 emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right);
1837 else
1838 emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k);
1839 } else if (ra_hasreg(right)) { /* IMUL r, mrm. */
1840 emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right);
1841 } else { /* IMUL r, r, k. */
1842 /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */
1843 Reg left = asm_fuseload(as, lref, RSET_GPR);
1844 x86Op xo;
1845 if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8;
1846 } else { emit_i32(as, k); xo = XO_IMULi; }
1847 emit_mrm(as, xo, REX_64IR(ir, dest), left);
1848 return;
1850 ra_left(as, dest, lref);
1853 /* LEA is really a 4-operand ADD with an independent destination register,
1854 ** up to two source registers and an immediate. One register can be scaled
1855 ** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several
1856 ** instructions.
1858 ** Currently only a few common cases are supported:
1859 ** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated
1860 ** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b
1861 ** - Right ADD fusion: y = a+(b+k)
1862 ** The ommited variants have already been reduced by FOLD.
1864 ** There are more fusion opportunities, like gathering shifts or joining
1865 ** common references. But these are probably not worth the trouble, since
1866 ** array indexing is not decomposed and already makes use of all fields
1867 ** of the ModRM operand.
1869 static int asm_lea(ASMState *as, IRIns *ir)
1871 IRIns *irl = IR(ir->op1);
1872 IRIns *irr = IR(ir->op2);
1873 RegSet allow = RSET_GPR;
1874 Reg dest;
1875 as->mrm.base = as->mrm.idx = RID_NONE;
1876 as->mrm.scale = XM_SCALE1;
1877 as->mrm.ofs = 0;
1878 if (ra_hasreg(irl->r)) {
1879 rset_clear(allow, irl->r);
1880 ra_noweak(as, irl->r);
1881 as->mrm.base = irl->r;
1882 if (irref_isk(ir->op2) || ra_hasreg(irr->r)) {
1883 /* The PHI renaming logic does a better job in some cases. */
1884 if (ra_hasreg(ir->r) &&
1885 ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) ||
1886 (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2)))
1887 return 0;
1888 if (irref_isk(ir->op2)) {
1889 as->mrm.ofs = irr->i;
1890 } else {
1891 rset_clear(allow, irr->r);
1892 ra_noweak(as, irr->r);
1893 as->mrm.idx = irr->r;
1895 } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) &&
1896 irref_isk(irr->op2)) {
1897 Reg idx = ra_alloc1(as, irr->op1, allow);
1898 rset_clear(allow, idx);
1899 as->mrm.idx = (uint8_t)idx;
1900 as->mrm.ofs = IR(irr->op2)->i;
1901 } else {
1902 return 0;
1904 } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) &&
1905 (irref_isk(ir->op2) || irref_isk(irl->op2))) {
1906 Reg idx, base = ra_alloc1(as, irl->op1, allow);
1907 rset_clear(allow, base);
1908 as->mrm.base = (uint8_t)base;
1909 if (irref_isk(ir->op2)) {
1910 as->mrm.ofs = irr->i;
1911 idx = ra_alloc1(as, irl->op2, allow);
1912 } else {
1913 as->mrm.ofs = IR(irl->op2)->i;
1914 idx = ra_alloc1(as, ir->op2, allow);
1916 rset_clear(allow, idx);
1917 as->mrm.idx = (uint8_t)idx;
1918 } else {
1919 return 0;
1921 dest = ra_dest(as, ir, allow);
1922 emit_mrm(as, XO_LEA, dest, RID_MRM);
1923 return 1; /* Success. */
1926 static void asm_add(ASMState *as, IRIns *ir)
1928 if (irt_isnum(ir->t))
1929 asm_fparith(as, ir, XO_ADDSD);
1930 else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp ||
1931 irt_is64(ir->t) || !asm_lea(as, ir))
1932 asm_intarith(as, ir, XOg_ADD);
1935 static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg)
1937 Reg dest = ra_dest(as, ir, RSET_GPR);
1938 emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest);
1939 ra_left(as, dest, ir->op1);
1942 static void asm_min_max(ASMState *as, IRIns *ir, int cc)
1944 Reg right, dest = ra_dest(as, ir, RSET_GPR);
1945 IRRef lref = ir->op1, rref = ir->op2;
1946 if (irref_isk(rref)) { lref = rref; rref = ir->op1; }
1947 right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest));
1948 emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right);
1949 emit_rr(as, XO_CMP, REX_64IR(ir, dest), right);
1950 ra_left(as, dest, lref);
1953 static void asm_bitswap(ASMState *as, IRIns *ir)
1955 Reg dest = ra_dest(as, ir, RSET_GPR);
1956 as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24),
1957 REX_64IR(ir, 0), dest, 0, as->mcp, 1);
1958 ra_left(as, dest, ir->op1);
1961 static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs)
1963 IRRef rref = ir->op2;
1964 IRIns *irr = IR(rref);
1965 Reg dest;
1966 if (irref_isk(rref)) { /* Constant shifts. */
1967 int shift;
1968 dest = ra_dest(as, ir, RSET_GPR);
1969 shift = irr->i & (irt_is64(ir->t) ? 63 : 31);
1970 switch (shift) {
1971 case 0: break;
1972 case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break;
1973 default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break;
1975 } else { /* Variable shifts implicitly use register cl (i.e. ecx). */
1976 Reg right;
1977 dest = ra_dest(as, ir, rset_exclude(RSET_GPR, RID_ECX));
1978 if (dest == RID_ECX) {
1979 dest = ra_scratch(as, rset_exclude(RSET_GPR, RID_ECX));
1980 emit_rr(as, XO_MOV, RID_ECX, dest);
1982 right = irr->r;
1983 if (ra_noreg(right))
1984 right = ra_allocref(as, rref, RID2RSET(RID_ECX));
1985 else if (right != RID_ECX)
1986 ra_scratch(as, RID2RSET(RID_ECX));
1987 emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest);
1988 if (right != RID_ECX) {
1989 ra_noweak(as, right);
1990 emit_rr(as, XO_MOV, RID_ECX, right);
1993 ra_left(as, dest, ir->op1);
1995 ** Note: avoid using the flags resulting from a shift or rotate!
1996 ** All of them cause a partial flag stall, except for r,1 shifts
1997 ** (but not rotates). And a shift count of 0 leaves the flags unmodified.
2001 /* -- Comparisons --------------------------------------------------------- */
2003 /* Virtual flags for unordered FP comparisons. */
2004 #define VCC_U 0x1000 /* Unordered. */
2005 #define VCC_P 0x2000 /* Needs extra CC_P branch. */
2006 #define VCC_S 0x4000 /* Swap avoids CC_P branch. */
2007 #define VCC_PS (VCC_P|VCC_S)
2009 /* Map of comparisons to flags. ORDER IR. */
2010 #define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf))
2011 static const uint16_t asm_compmap[IR_ABC+1] = {
2012 /* signed non-eq unsigned flags */
2013 /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS),
2014 /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0),
2015 /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS),
2016 /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0),
2017 /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U),
2018 /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS),
2019 /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U),
2020 /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS),
2021 /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P),
2022 /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P),
2023 /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */
2026 /* FP and integer comparisons. */
2027 static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc)
2029 if (irt_isnum(ir->t)) {
2030 IRRef lref = ir->op1;
2031 IRRef rref = ir->op2;
2032 Reg left, right;
2033 MCLabel l_around;
2035 ** An extra CC_P branch is required to preserve ordered/unordered
2036 ** semantics for FP comparisons. This can be avoided by swapping
2037 ** the operands and inverting the condition (except for EQ and UNE).
2038 ** So always try to swap if possible.
2040 ** Another option would be to swap operands to achieve better memory
2041 ** operand fusion. But it's unlikely that this outweighs the cost
2042 ** of the extra branches.
2044 if (cc & VCC_S) { /* Swap? */
2045 IRRef tmp = lref; lref = rref; rref = tmp;
2046 cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */
2048 left = ra_alloc1(as, lref, RSET_FPR);
2049 right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left));
2050 l_around = emit_label(as);
2051 asm_guardcc(as, cc >> 4);
2052 if (cc & VCC_P) { /* Extra CC_P branch required? */
2053 if (!(cc & VCC_U)) {
2054 asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */
2055 } else if (l_around != as->invmcp) {
2056 emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */
2057 } else {
2058 /* Patched to mcloop by asm_loop_fixup. */
2059 as->loopinv = 2;
2060 if (as->realign)
2061 emit_sjcc(as, CC_P, as->mcp);
2062 else
2063 emit_jcc(as, CC_P, as->mcp);
2066 emit_mrm(as, XO_UCOMISD, left, right);
2067 } else {
2068 IRRef lref = ir->op1, rref = ir->op2;
2069 IROp leftop = (IROp)(IR(lref)->o);
2070 Reg r64 = REX_64IR(ir, 0);
2071 int32_t imm = 0;
2072 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) ||
2073 irt_isu32(ir->t) || irt_isaddr(ir->t));
2074 /* Swap constants (only for ABC) and fusable loads to the right. */
2075 if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) {
2076 if ((cc & 0xc) == 0xc) cc ^= 0x53; /* L <-> G, LE <-> GE */
2077 else if ((cc & 0xa) == 0x2) cc ^= 0x55; /* A <-> B, AE <-> BE */
2078 lref = ir->op2; rref = ir->op1;
2080 if (asm_isk32(as, rref, &imm)) {
2081 IRIns *irl = IR(lref);
2082 /* Check wether we can use test ins. Not for unsigned, since CF=0. */
2083 int usetest = (imm == 0 && (cc & 0xa) != 0x2);
2084 if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) {
2085 /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */
2086 Reg right, left = RID_NONE;
2087 RegSet allow = RSET_GPR;
2088 if (!asm_isk32(as, irl->op2, &imm)) {
2089 left = ra_alloc1(as, irl->op2, allow);
2090 rset_clear(allow, left);
2091 } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */
2092 IRIns *irll = IR(irl->op1);
2093 if (opisfusableload((IROp)irll->o) &&
2094 (irt_isi8(irll->t) || irt_isu8(irll->t))) {
2095 IRType1 origt = irll->t; /* Temporarily flip types. */
2096 irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT;
2097 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2098 right = asm_fuseload(as, irl->op1, RSET_GPR);
2099 as->curins++;
2100 irll->t = origt;
2101 if (right != RID_MRM) goto test_nofuse;
2102 /* Fusion succeeded, emit test byte mrm, imm8. */
2103 asm_guardcc(as, cc);
2104 emit_i8(as, (imm & 0xff));
2105 emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM);
2106 return;
2109 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2110 right = asm_fuseload(as, irl->op1, allow);
2111 as->curins++; /* Undo the above. */
2112 test_nofuse:
2113 asm_guardcc(as, cc);
2114 if (ra_noreg(left)) {
2115 emit_i32(as, imm);
2116 emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right);
2117 } else {
2118 emit_mrm(as, XO_TEST, r64 + left, right);
2120 } else {
2121 Reg left;
2122 if (opisfusableload((IROp)irl->o) &&
2123 ((irt_isu8(irl->t) && checku8(imm)) ||
2124 ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) ||
2125 (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) {
2126 /* Only the IRT_INT case is fused by asm_fuseload.
2127 ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads
2128 ** are handled here.
2129 ** Note that cmp word [mem], imm16 should not be generated,
2130 ** since it has a length-changing prefix. Compares of a word
2131 ** against a sign-extended imm8 are ok, however.
2133 IRType1 origt = irl->t; /* Temporarily flip types. */
2134 irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT;
2135 left = asm_fuseload(as, lref, RSET_GPR);
2136 irl->t = origt;
2137 if (left == RID_MRM) { /* Fusion succeeded? */
2138 if (irt_isu8(irl->t) || irt_isu16(irl->t))
2139 cc >>= 4; /* Need unsigned compare. */
2140 asm_guardcc(as, cc);
2141 emit_i8(as, imm);
2142 emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ?
2143 XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM);
2144 return;
2145 } /* Otherwise handle register case as usual. */
2146 } else {
2147 left = asm_fuseload(as, lref, RSET_GPR);
2149 asm_guardcc(as, cc);
2150 if (usetest && left != RID_MRM) {
2151 /* Use test r,r instead of cmp r,0. */
2152 emit_rr(as, XO_TEST, r64 + left, left);
2153 if (irl+1 == ir) /* Referencing previous ins? */
2154 as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */
2155 } else {
2156 emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm);
2159 } else {
2160 Reg left = ra_alloc1(as, lref, RSET_GPR);
2161 Reg right = asm_fuseload(as, rref, rset_exclude(RSET_GPR, left));
2162 asm_guardcc(as, cc);
2163 emit_mrm(as, XO_CMP, r64 + left, right);
2168 #if LJ_32 && LJ_HASFFI
2169 /* 64 bit integer comparisons in 32 bit mode. */
2170 static void asm_comp_int64(ASMState *as, IRIns *ir)
2172 uint32_t cc = asm_compmap[(ir-1)->o];
2173 RegSet allow = RSET_GPR;
2174 Reg lefthi = RID_NONE, leftlo = RID_NONE;
2175 Reg righthi = RID_NONE, rightlo = RID_NONE;
2176 MCLabel l_around;
2177 x86ModRM mrm;
2179 as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */
2181 /* Allocate/fuse hiword operands. */
2182 if (irref_isk(ir->op2)) {
2183 lefthi = asm_fuseload(as, ir->op1, allow);
2184 } else {
2185 lefthi = ra_alloc1(as, ir->op1, allow);
2186 righthi = asm_fuseload(as, ir->op2, allow);
2187 if (righthi == RID_MRM) {
2188 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2189 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2190 } else {
2191 rset_clear(allow, righthi);
2194 mrm = as->mrm; /* Save state for hiword instruction. */
2196 /* Allocate/fuse loword operands. */
2197 if (irref_isk((ir-1)->op2)) {
2198 leftlo = asm_fuseload(as, (ir-1)->op1, allow);
2199 } else {
2200 leftlo = ra_alloc1(as, (ir-1)->op1, allow);
2201 rightlo = asm_fuseload(as, (ir-1)->op2, allow);
2202 if (rightlo == RID_MRM) {
2203 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2204 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2205 } else {
2206 rset_clear(allow, rightlo);
2210 /* All register allocations must be performed _before_ this point. */
2211 l_around = emit_label(as);
2212 as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */
2214 /* Loword comparison and branch. */
2215 asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */
2216 if (ra_noreg(rightlo)) {
2217 int32_t imm = IR((ir-1)->op2)->i;
2218 if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM)
2219 emit_rr(as, XO_TEST, leftlo, leftlo);
2220 else
2221 emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm);
2222 } else {
2223 emit_mrm(as, XO_CMP, leftlo, rightlo);
2226 /* Hiword comparison and branches. */
2227 if ((cc & 15) != CC_NE)
2228 emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */
2229 if ((cc & 15) != CC_E)
2230 asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */
2231 as->mrm = mrm; /* Restore state. */
2232 if (ra_noreg(righthi)) {
2233 int32_t imm = IR(ir->op2)->i;
2234 if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM)
2235 emit_rr(as, XO_TEST, lefthi, lefthi);
2236 else
2237 emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm);
2238 } else {
2239 emit_mrm(as, XO_CMP, lefthi, righthi);
2242 #endif
2244 /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
2246 /* Hiword op of a split 64 bit op. Previous op must be the loword op. */
2247 static void asm_hiop(ASMState *as, IRIns *ir)
2249 #if LJ_32 && LJ_HASFFI
2250 /* HIOP is marked as a store because it needs its own DCE logic. */
2251 int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
2252 if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
2253 if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
2254 if (usehi || uselo) {
2255 if (irt_isfp(ir->t))
2256 asm_conv_fp_int64(as, ir);
2257 else
2258 asm_conv_int64_fp(as, ir);
2260 as->curins--; /* Always skip the CONV. */
2261 return;
2262 } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
2263 asm_comp_int64(as, ir);
2264 return;
2265 } else if ((ir-1)->o == IR_XSTORE) {
2266 if ((ir-1)->r != RID_SINK)
2267 asm_fxstore(as, ir);
2268 return;
2270 if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
2271 switch ((ir-1)->o) {
2272 case IR_ADD:
2273 as->flagmcp = NULL;
2274 as->curins--;
2275 asm_intarith(as, ir, XOg_ADC);
2276 asm_intarith(as, ir-1, XOg_ADD);
2277 break;
2278 case IR_SUB:
2279 as->flagmcp = NULL;
2280 as->curins--;
2281 asm_intarith(as, ir, XOg_SBB);
2282 asm_intarith(as, ir-1, XOg_SUB);
2283 break;
2284 case IR_NEG: {
2285 Reg dest = ra_dest(as, ir, RSET_GPR);
2286 emit_rr(as, XO_GROUP3, XOg_NEG, dest);
2287 emit_i8(as, 0);
2288 emit_rr(as, XO_ARITHi8, XOg_ADC, dest);
2289 ra_left(as, dest, ir->op1);
2290 as->curins--;
2291 asm_neg_not(as, ir-1, XOg_NEG);
2292 break;
2294 case IR_CALLN:
2295 case IR_CALLXS:
2296 if (!uselo)
2297 ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */
2298 break;
2299 case IR_CNEWI:
2300 /* Nothing to do here. Handled by CNEWI itself. */
2301 break;
2302 default: lua_assert(0); break;
2304 #else
2305 UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */
2306 #endif
2309 /* -- Stack handling ------------------------------------------------------ */
2311 /* Check Lua stack size for overflow. Use exit handler as fallback. */
2312 static void asm_stack_check(ASMState *as, BCReg topslot,
2313 IRIns *irp, RegSet allow, ExitNo exitno)
2315 /* Try to get an unused temp. register, otherwise spill/restore eax. */
2316 Reg pbase = irp ? irp->r : RID_BASE;
2317 Reg r = allow ? rset_pickbot(allow) : RID_EAX;
2318 emit_jcc(as, CC_B, exitstub_addr(as->J, exitno));
2319 if (allow == RSET_EMPTY) /* Restore temp. register. */
2320 emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0);
2321 else
2322 ra_modified(as, r);
2323 emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot));
2324 if (ra_hasreg(pbase) && pbase != r)
2325 emit_rr(as, XO_ARITH(XOg_SUB), r, pbase);
2326 else
2327 emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE,
2328 ptr2addr(&J2G(as->J)->jit_base));
2329 emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack));
2330 emit_getgl(as, r, jit_L);
2331 if (allow == RSET_EMPTY) /* Spill temp. register. */
2332 emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0);
2335 /* Restore Lua stack from on-trace state. */
2336 static void asm_stack_restore(ASMState *as, SnapShot *snap)
2338 SnapEntry *map = &as->T->snapmap[snap->mapofs];
2339 SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1];
2340 MSize n, nent = snap->nent;
2341 /* Store the value of all modified slots to the Lua stack. */
2342 for (n = 0; n < nent; n++) {
2343 SnapEntry sn = map[n];
2344 BCReg s = snap_slot(sn);
2345 int32_t ofs = 8*((int32_t)s-1);
2346 IRRef ref = snap_ref(sn);
2347 IRIns *ir = IR(ref);
2348 if ((sn & SNAP_NORESTORE))
2349 continue;
2350 if (irt_isnum(ir->t)) {
2351 Reg src = ra_alloc1(as, ref, RSET_FPR);
2352 emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
2353 } else {
2354 lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
2355 (LJ_DUALNUM && irt_isinteger(ir->t)));
2356 if (!irref_isk(ref)) {
2357 Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
2358 emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
2359 } else if (!irt_ispri(ir->t)) {
2360 emit_movmroi(as, RID_BASE, ofs, ir->i);
2362 if ((sn & (SNAP_CONT|SNAP_FRAME))) {
2363 if (s != 0) /* Do not overwrite link to previous frame. */
2364 emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--));
2365 } else {
2366 if (!(LJ_64 && irt_islightud(ir->t)))
2367 emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t));
2370 checkmclim(as);
2372 lua_assert(map + nent == flinks);
2375 /* -- GC handling --------------------------------------------------------- */
2377 /* Check GC threshold and do one or more GC steps. */
2378 static void asm_gc_check(ASMState *as)
2380 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
2381 IRRef args[2];
2382 MCLabel l_end;
2383 Reg tmp;
2384 ra_evictset(as, RSET_SCRATCH);
2385 l_end = emit_label(as);
2386 /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
2387 asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
2388 emit_rr(as, XO_TEST, RID_RET, RID_RET);
2389 args[0] = ASMREF_TMP1; /* global_State *g */
2390 args[1] = ASMREF_TMP2; /* MSize steps */
2391 asm_gencall(as, ci, args);
2392 tmp = ra_releasetmp(as, ASMREF_TMP1);
2393 emit_loada(as, tmp, J2G(as->J));
2394 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), as->gcsteps);
2395 /* Jump around GC step if GC total < GC threshold. */
2396 emit_sjcc(as, CC_B, l_end);
2397 emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold);
2398 emit_getgl(as, tmp, gc.total);
2399 as->gcsteps = 0;
2400 checkmclim(as);
2403 /* -- Loop handling ------------------------------------------------------- */
2405 /* Fixup the loop branch. */
2406 static void asm_loop_fixup(ASMState *as)
2408 MCode *p = as->mctop;
2409 MCode *target = as->mcp;
2410 if (as->realign) { /* Realigned loops use short jumps. */
2411 as->realign = NULL; /* Stop another retry. */
2412 lua_assert(((intptr_t)target & 15) == 0);
2413 if (as->loopinv) { /* Inverted loop branch? */
2414 p -= 5;
2415 p[0] = XI_JMP;
2416 lua_assert(target - p >= -128);
2417 p[-1] = (MCode)(target - p); /* Patch sjcc. */
2418 if (as->loopinv == 2)
2419 p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */
2420 } else {
2421 lua_assert(target - p >= -128);
2422 p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */
2423 p[-2] = XI_JMPs;
2425 } else {
2426 MCode *newloop;
2427 p[-5] = XI_JMP;
2428 if (as->loopinv) { /* Inverted loop branch? */
2429 /* asm_guardcc already inverted the jcc and patched the jmp. */
2430 p -= 5;
2431 newloop = target+4;
2432 *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */
2433 if (as->loopinv == 2) {
2434 *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */
2435 newloop = target+8;
2437 } else { /* Otherwise just patch jmp. */
2438 *(int32_t *)(p-4) = (int32_t)(target - p);
2439 newloop = target+3;
2441 /* Realign small loops and shorten the loop branch. */
2442 if (newloop >= p - 128) {
2443 as->realign = newloop; /* Force a retry and remember alignment. */
2444 as->curins = as->stopins; /* Abort asm_trace now. */
2445 as->T->nins = as->orignins; /* Remove any added renames. */
2450 /* -- Head of trace ------------------------------------------------------- */
2452 /* Coalesce BASE register for a root trace. */
2453 static void asm_head_root_base(ASMState *as)
2455 IRIns *ir = IR(REF_BASE);
2456 Reg r = ir->r;
2457 if (ra_hasreg(r)) {
2458 ra_free(as, r);
2459 if (rset_test(as->modset, r))
2460 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2461 if (r != RID_BASE)
2462 emit_rr(as, XO_MOV, r, RID_BASE);
2466 /* Coalesce or reload BASE register for a side trace. */
2467 static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
2469 IRIns *ir = IR(REF_BASE);
2470 Reg r = ir->r;
2471 if (ra_hasreg(r)) {
2472 ra_free(as, r);
2473 if (rset_test(as->modset, r))
2474 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2475 if (irp->r == r) {
2476 rset_clear(allow, r); /* Mark same BASE register as coalesced. */
2477 } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) {
2478 rset_clear(allow, irp->r);
2479 emit_rr(as, XO_MOV, r, irp->r); /* Move from coalesced parent reg. */
2480 } else {
2481 emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
2484 return allow;
2487 /* -- Tail of trace ------------------------------------------------------- */
2489 /* Fixup the tail code. */
2490 static void asm_tail_fixup(ASMState *as, TraceNo lnk)
2492 /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */
2493 MCode *p = as->mctop;
2494 MCode *target, *q;
2495 int32_t spadj = as->T->spadjust;
2496 if (spadj == 0) {
2497 p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
2498 } else {
2499 MCode *p1;
2500 /* Patch stack adjustment. */
2501 if (checki8(spadj)) {
2502 p -= 3;
2503 p1 = p-6;
2504 *p1 = (MCode)spadj;
2505 } else {
2506 p1 = p-9;
2507 *(int32_t *)p1 = spadj;
2509 if ((as->flags & JIT_F_LEA_AGU)) {
2510 #if LJ_64
2511 p1[-4] = 0x48;
2512 #endif
2513 p1[-3] = (MCode)XI_LEA;
2514 p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP);
2515 p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
2516 } else {
2517 #if LJ_64
2518 p1[-3] = 0x48;
2519 #endif
2520 p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi);
2521 p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP);
2524 /* Patch exit branch. */
2525 target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp;
2526 *(int32_t *)(p-4) = jmprel(p, target);
2527 p[-5] = XI_JMP;
2528 /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */
2529 for (q = as->mctop-1; q >= p; q--)
2530 *q = XI_NOP;
2531 as->mctop = p;
2534 /* Prepare tail of code. */
2535 static void asm_tail_prep(ASMState *as)
2537 MCode *p = as->mctop;
2538 /* Realign and leave room for backwards loop branch or exit branch. */
2539 if (as->realign) {
2540 int i = ((int)(intptr_t)as->realign) & 15;
2541 /* Fill unused mcode tail with NOPs to make the prefetcher happy. */
2542 while (i-- > 0)
2543 *--p = XI_NOP;
2544 as->mctop = p;
2545 p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */
2546 } else {
2547 p -= 5; /* Space for exit branch (near jmp). */
2549 if (as->loopref) {
2550 as->invmcp = as->mcp = p;
2551 } else {
2552 /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */
2553 as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0));
2554 as->invmcp = NULL;
2558 /* -- Instruction dispatch ------------------------------------------------ */
2560 /* Assemble a single instruction. */
2561 static void asm_ir(ASMState *as, IRIns *ir)
2563 switch ((IROp)ir->o) {
2564 /* Miscellaneous ops. */
2565 case IR_LOOP: asm_loop(as); break;
2566 case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
2567 case IR_USE:
2568 ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
2569 case IR_PHI: asm_phi(as, ir); break;
2570 case IR_HIOP: asm_hiop(as, ir); break;
2571 case IR_GCSTEP: asm_gcstep(as, ir); break;
2573 /* Guarded assertions. */
2574 case IR_LT: case IR_GE: case IR_LE: case IR_GT:
2575 case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
2576 case IR_EQ: case IR_NE: case IR_ABC:
2577 asm_comp(as, ir, asm_compmap[ir->o]);
2578 break;
2580 case IR_RETF: asm_retf(as, ir); break;
2582 /* Bit ops. */
2583 case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break;
2584 case IR_BSWAP: asm_bitswap(as, ir); break;
2586 case IR_BAND: asm_intarith(as, ir, XOg_AND); break;
2587 case IR_BOR: asm_intarith(as, ir, XOg_OR); break;
2588 case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break;
2590 case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break;
2591 case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break;
2592 case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break;
2593 case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break;
2594 case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break;
2596 /* Arithmetic ops. */
2597 case IR_ADD: asm_add(as, ir); break;
2598 case IR_SUB:
2599 if (irt_isnum(ir->t))
2600 asm_fparith(as, ir, XO_SUBSD);
2601 else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */
2602 asm_intarith(as, ir, XOg_SUB);
2603 break;
2604 case IR_MUL:
2605 if (irt_isnum(ir->t))
2606 asm_fparith(as, ir, XO_MULSD);
2607 else
2608 asm_intarith(as, ir, XOg_X_IMUL);
2609 break;
2610 case IR_DIV:
2611 #if LJ_64 && LJ_HASFFI
2612 if (!irt_isnum(ir->t))
2613 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
2614 IRCALL_lj_carith_divu64);
2615 else
2616 #endif
2617 asm_fparith(as, ir, XO_DIVSD);
2618 break;
2619 case IR_MOD:
2620 #if LJ_64 && LJ_HASFFI
2621 if (!irt_isint(ir->t))
2622 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
2623 IRCALL_lj_carith_modu64);
2624 else
2625 #endif
2626 asm_intmod(as, ir);
2627 break;
2629 case IR_NEG:
2630 if (irt_isnum(ir->t))
2631 asm_fparith(as, ir, XO_XORPS);
2632 else
2633 asm_neg_not(as, ir, XOg_NEG);
2634 break;
2635 case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break;
2637 case IR_MIN:
2638 if (irt_isnum(ir->t))
2639 asm_fparith(as, ir, XO_MINSD);
2640 else
2641 asm_min_max(as, ir, CC_G);
2642 break;
2643 case IR_MAX:
2644 if (irt_isnum(ir->t))
2645 asm_fparith(as, ir, XO_MAXSD);
2646 else
2647 asm_min_max(as, ir, CC_L);
2648 break;
2650 case IR_FPMATH: case IR_ATAN2: case IR_LDEXP:
2651 asm_fpmath(as, ir);
2652 break;
2653 case IR_POW:
2654 #if LJ_64 && LJ_HASFFI
2655 if (!irt_isnum(ir->t))
2656 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
2657 IRCALL_lj_carith_powu64);
2658 else
2659 #endif
2660 asm_fppowi(as, ir);
2661 break;
2663 /* Overflow-checking arithmetic ops. Note: don't use LEA here! */
2664 case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break;
2665 case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break;
2666 case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break;
2668 /* Memory references. */
2669 case IR_AREF: asm_aref(as, ir); break;
2670 case IR_HREF: asm_href(as, ir); break;
2671 case IR_HREFK: asm_hrefk(as, ir); break;
2672 case IR_NEWREF: asm_newref(as, ir); break;
2673 case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
2674 case IR_FREF: asm_fref(as, ir); break;
2675 case IR_STRREF: asm_strref(as, ir); break;
2677 /* Loads and stores. */
2678 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
2679 asm_ahuvload(as, ir);
2680 break;
2681 case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break;
2682 case IR_SLOAD: asm_sload(as, ir); break;
2684 case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
2685 case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break;
2687 /* Allocations. */
2688 case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
2689 case IR_TNEW: asm_tnew(as, ir); break;
2690 case IR_TDUP: asm_tdup(as, ir); break;
2691 case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
2693 /* Write barriers. */
2694 case IR_TBAR: asm_tbar(as, ir); break;
2695 case IR_OBAR: asm_obar(as, ir); break;
2697 /* Type conversions. */
2698 case IR_TOBIT: asm_tobit(as, ir); break;
2699 case IR_CONV: asm_conv(as, ir); break;
2700 case IR_TOSTR: asm_tostr(as, ir); break;
2701 case IR_STRTO: asm_strto(as, ir); break;
2703 /* Calls. */
2704 case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
2705 case IR_CALLXS: asm_callx(as, ir); break;
2706 case IR_CARG: break;
2708 default:
2709 setintV(&as->J->errinfo, ir->o);
2710 lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
2711 break;
2715 /* -- Trace setup --------------------------------------------------------- */
2717 /* Ensure there are enough stack slots for call arguments. */
2718 static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
2720 IRRef args[CCI_NARGS_MAX];
2721 int nslots;
2722 asm_collectargs(as, ir, ci, args);
2723 nslots = asm_count_call_slots(as, ci, args);
2724 if (nslots > as->evenspill) /* Leave room for args in stack slots. */
2725 as->evenspill = nslots;
2726 #if LJ_64
2727 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
2728 #else
2729 return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET);
2730 #endif
2733 /* Target-specific setup. */
2734 static void asm_setup_target(ASMState *as)
2736 asm_exitstub_setup(as, as->T->nsnap);
2739 /* -- Trace patching ------------------------------------------------------ */
2741 /* Patch exit jumps of existing machine code to a new target. */
2742 void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
2744 MCode *p = T->mcode;
2745 MCode *mcarea = lj_mcode_patch(J, p, 0);
2746 MSize len = T->szmcode;
2747 MCode *px = exitstub_addr(J, exitno) - 6;
2748 MCode *pe = p+len-6;
2749 uint32_t stateaddr = u32ptr(&J2G(J)->vmstate);
2750 if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px)
2751 *(int32_t *)(p+len-4) = jmprel(p+len, target);
2752 /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */
2753 for (; p < pe; p++)
2754 if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) {
2755 p += LJ_64 ? 11 : 10;
2756 break;
2758 lua_assert(p < pe);
2759 for (; p < pe; p++) {
2760 if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) {
2761 *(int32_t *)(p+2) = jmprel(p+6, target);
2762 p += 5;
2765 lj_mcode_sync(T->mcode, T->mcode + T->szmcode);
2766 lj_mcode_patch(J, mcarea, 1);