Use https for freelists.org links.
[luajit-2.0.git] / doc / ext_ffi_semantics.html
blobae3c037964bc4b3b5cddde2dbec95518cbd9b49f
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
2 <html>
3 <head>
4 <title>FFI Semantics</title>
5 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6 <meta name="Author" content="Mike Pall">
7 <meta name="Copyright" content="Copyright (C) 2005-2017, Mike Pall">
8 <meta name="Language" content="en">
9 <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
10 <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
11 <style type="text/css">
12 table.convtable { line-height: 1.2; }
13 tr.convhead td { font-weight: bold; }
14 td.convop { font-style: italic; width: 40%; }
15 </style>
16 </head>
17 <body>
18 <div id="site">
19 <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
20 </div>
21 <div id="head">
22 <h1>FFI Semantics</h1>
23 </div>
24 <div id="nav">
25 <ul><li>
26 <a href="luajit.html">LuaJIT</a>
27 <ul><li>
28 <a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
29 </li><li>
30 <a href="install.html">Installation</a>
31 </li><li>
32 <a href="running.html">Running</a>
33 </li></ul>
34 </li><li>
35 <a href="extensions.html">Extensions</a>
36 <ul><li>
37 <a href="ext_ffi.html">FFI Library</a>
38 <ul><li>
39 <a href="ext_ffi_tutorial.html">FFI Tutorial</a>
40 </li><li>
41 <a href="ext_ffi_api.html">ffi.* API</a>
42 </li><li>
43 <a class="current" href="ext_ffi_semantics.html">FFI Semantics</a>
44 </li></ul>
45 </li><li>
46 <a href="ext_jit.html">jit.* Library</a>
47 </li><li>
48 <a href="ext_c_api.html">Lua/C API</a>
49 </li></ul>
50 </li><li>
51 <a href="status.html">Status</a>
52 <ul><li>
53 <a href="changes.html">Changes</a>
54 </li></ul>
55 </li><li>
56 <a href="faq.html">FAQ</a>
57 </li><li>
58 <a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
59 </li><li>
60 <a href="http://wiki.luajit.org/">Wiki <span class="ext">&raquo;</span></a>
61 </li><li>
62 <a href="http://luajit.org/list.html">Mailing List <span class="ext">&raquo;</span></a>
63 </li></ul>
64 </div>
65 <div id="main">
66 <p>
67 This page describes the detailed semantics underlying the FFI library
68 and its interaction with both Lua and C&nbsp;code.
69 </p>
70 <p>
71 Given that the FFI library is designed to interface with C&nbsp;code
72 and that declarations can be written in plain C&nbsp;syntax, <b>it
73 closely follows the C&nbsp;language semantics</b>, wherever possible.
74 Some minor concessions are needed for smoother interoperation with Lua
75 language semantics.
76 </p>
77 <p>
78 Please don't be overwhelmed by the contents of this page &mdash; this
79 is a reference and you may need to consult it, if in doubt. It doesn't
80 hurt to skim this page, but most of the semantics "just work" as you'd
81 expect them to work. It should be straightforward to write
82 applications using the LuaJIT FFI for developers with a C or C++
83 background.
84 </p>
86 <h2 id="clang">C Language Support</h2>
87 <p>
88 The FFI library has a built-in C&nbsp;parser with a minimal memory
89 footprint. It's used by the <a href="ext_ffi_api.html">ffi.* library
90 functions</a> to declare C&nbsp;types or external symbols.
91 </p>
92 <p>
93 It's only purpose is to parse C&nbsp;declarations, as found e.g. in
94 C&nbsp;header files. Although it does evaluate constant expressions,
95 it's <em>not</em> a C&nbsp;compiler. The body of <tt>inline</tt>
96 C&nbsp;function definitions is simply ignored.
97 </p>
98 <p>
99 Also, this is <em>not</em> a validating C&nbsp;parser. It expects and
100 accepts correctly formed C&nbsp;declarations, but it may choose to
101 ignore bad declarations or show rather generic error messages. If in
102 doubt, please check the input against your favorite C&nbsp;compiler.
103 </p>
105 The C&nbsp;parser complies to the <b>C99 language standard</b> plus
106 the following extensions:
107 </p>
108 <ul>
110 <li>The <tt>'\e'</tt> escape in character and string literals.</li>
112 <li>The C99/C++ boolean type, declared with the keywords <tt>bool</tt>
113 or <tt>_Bool</tt>.</li>
115 <li>Complex numbers, declared with the keywords <tt>complex</tt> or
116 <tt>_Complex</tt>.</li>
118 <li>Two complex number types: <tt>complex</tt> (aka
119 <tt>complex&nbsp;double</tt>) and <tt>complex&nbsp;float</tt>.</li>
121 <li>Vector types, declared with the GCC <tt>mode</tt> or
122 <tt>vector_size</tt> attribute.</li>
124 <li>Unnamed ('transparent') <tt>struct</tt>/<tt>union</tt> fields
125 inside a <tt>struct</tt>/<tt>union</tt>.</li>
127 <li>Incomplete <tt>enum</tt> declarations, handled like incomplete
128 <tt>struct</tt> declarations.</li>
130 <li>Unnamed <tt>enum</tt> fields inside a
131 <tt>struct</tt>/<tt>union</tt>. This is similar to a scoped C++
132 <tt>enum</tt>, except that declared constants are visible in the
133 global namespace, too.</li>
135 <li>Scoped <tt>static&nbsp;const</tt> declarations inside a
136 <tt>struct</tt>/<tt>union</tt> (from C++).</li>
138 <li>Zero-length arrays (<tt>[0]</tt>), empty
139 <tt>struct</tt>/<tt>union</tt>, variable-length arrays (VLA,
140 <tt>[?]</tt>) and variable-length structs (VLS, with a trailing
141 VLA).</li>
143 <li>C++ reference types (<tt>int&nbsp;&amp;x</tt>).</li>
145 <li>Alternate GCC keywords with '<tt>__</tt>', e.g.
146 <tt>__const__</tt>.</li>
148 <li>GCC <tt>__attribute__</tt> with the following attributes:
149 <tt>aligned</tt>, <tt>packed</tt>, <tt>mode</tt>,
150 <tt>vector_size</tt>, <tt>cdecl</tt>, <tt>fastcall</tt>,
151 <tt>stdcall</tt>, <tt>thiscall</tt>.</li>
153 <li>The GCC <tt>__extension__</tt> keyword and the GCC
154 <tt>__alignof__</tt> operator.</li>
156 <li>GCC <tt>__asm__("symname")</tt> symbol name redirection for
157 function declarations.</li>
159 <li>MSVC keywords for fixed-length types: <tt>__int8</tt>,
160 <tt>__int16</tt>, <tt>__int32</tt> and <tt>__int64</tt>.</li>
162 <li>MSVC <tt>__cdecl</tt>, <tt>__fastcall</tt>, <tt>__stdcall</tt>,
163 <tt>__thiscall</tt>, <tt>__ptr32</tt>, <tt>__ptr64</tt>,
164 <tt>__declspec(align(n))</tt> and <tt>#pragma&nbsp;pack</tt>.</li>
166 <li>All other GCC/MSVC-specific attributes are ignored.</li>
168 </ul>
170 The following C&nbsp;types are pre-defined by the C&nbsp;parser (like
171 a <tt>typedef</tt>, except re-declarations will be ignored):
172 </p>
173 <ul>
175 <li>Vararg handling: <tt>va_list</tt>, <tt>__builtin_va_list</tt>,
176 <tt>__gnuc_va_list</tt>.</li>
178 <li>From <tt>&lt;stddef.h&gt;</tt>: <tt>ptrdiff_t</tt>,
179 <tt>size_t</tt>, <tt>wchar_t</tt>.</li>
181 <li>From <tt>&lt;stdint.h&gt;</tt>: <tt>int8_t</tt>, <tt>int16_t</tt>,
182 <tt>int32_t</tt>, <tt>int64_t</tt>, <tt>uint8_t</tt>,
183 <tt>uint16_t</tt>, <tt>uint32_t</tt>, <tt>uint64_t</tt>,
184 <tt>intptr_t</tt>, <tt>uintptr_t</tt>.</li>
186 </ul>
188 You're encouraged to use these types in preference to
189 compiler-specific extensions or target-dependent standard types.
190 E.g. <tt>char</tt> differs in signedness and <tt>long</tt> differs in
191 size, depending on the target architecture and platform ABI.
192 </p>
194 The following C&nbsp;features are <b>not</b> supported:
195 </p>
196 <ul>
198 <li>A declaration must always have a type specifier; it doesn't
199 default to an <tt>int</tt> type.</li>
201 <li>Old-style empty function declarations (K&amp;R) are not allowed.
202 All C&nbsp;functions must have a proper prototype declaration. A
203 function declared without parameters (<tt>int&nbsp;foo();</tt>) is
204 treated as a function taking zero arguments, like in C++.</li>
206 <li>The <tt>long double</tt> C&nbsp;type is parsed correctly, but
207 there's no support for the related conversions, accesses or arithmetic
208 operations.</li>
210 <li>Wide character strings and character literals are not
211 supported.</li>
213 <li><a href="#status">See below</a> for features that are currently
214 not implemented.</li>
216 </ul>
218 <h2 id="convert">C Type Conversion Rules</h2>
220 <h3 id="convert_tolua">Conversions from C&nbsp;types to Lua objects</h3>
222 These conversion rules apply for <em>read accesses</em> to
223 C&nbsp;types: indexing pointers, arrays or
224 <tt>struct</tt>/<tt>union</tt> types; reading external variables or
225 constant values; retrieving return values from C&nbsp;calls:
226 </p>
227 <table class="convtable">
228 <tr class="convhead">
229 <td class="convin">Input</td>
230 <td class="convop">Conversion</td>
231 <td class="convout">Output</td>
232 </tr>
233 <tr class="odd separate">
234 <td class="convin"><tt>int8_t</tt>, <tt>int16_t</tt></td><td class="convop">&rarr;<sup>sign-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
235 <tr class="even">
236 <td class="convin"><tt>uint8_t</tt>, <tt>uint16_t</tt></td><td class="convop">&rarr;<sup>zero-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
237 <tr class="odd">
238 <td class="convin"><tt>int32_t</tt>, <tt>uint32_t</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
239 <tr class="even">
240 <td class="convin"><tt>int64_t</tt>, <tt>uint64_t</tt></td><td class="convop">boxed value</td><td class="convout">64 bit int cdata</td></tr>
241 <tr class="odd separate">
242 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
243 <tr class="even separate">
244 <td class="convin"><tt>bool</tt></td><td class="convop">0 &rarr; <tt>false</tt>, otherwise <tt>true</tt></td><td class="convout">boolean</td></tr>
245 <tr class="odd separate">
246 <td class="convin"><tt>enum</tt></td><td class="convop">boxed value</td><td class="convout">enum cdata</td></tr>
247 <tr class="even">
248 <td class="convin">Complex number</td><td class="convop">boxed value</td><td class="convout">complex cdata</td></tr>
249 <tr class="odd">
250 <td class="convin">Vector</td><td class="convop">boxed value</td><td class="convout">vector cdata</td></tr>
251 <tr class="even">
252 <td class="convin">Pointer</td><td class="convop">boxed value</td><td class="convout">pointer cdata</td></tr>
253 <tr class="odd separate">
254 <td class="convin">Array</td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
255 <tr class="even">
256 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
257 </table>
259 Bitfields are treated like their underlying type.
260 </p>
262 Reference types are dereferenced <em>before</em> a conversion can take
263 place &mdash; the conversion is applied to the C&nbsp;type pointed to
264 by the reference.
265 </p>
267 <h3 id="convert_fromlua">Conversions from Lua objects to C&nbsp;types</h3>
269 These conversion rules apply for <em>write accesses</em> to
270 C&nbsp;types: indexing pointers, arrays or
271 <tt>struct</tt>/<tt>union</tt> types; initializing cdata objects;
272 casts to C&nbsp;types; writing to external variables; passing
273 arguments to C&nbsp;calls:
274 </p>
275 <table class="convtable">
276 <tr class="convhead">
277 <td class="convin">Input</td>
278 <td class="convop">Conversion</td>
279 <td class="convout">Output</td>
280 </tr>
281 <tr class="odd separate">
282 <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
283 <tr class="even">
284 <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
285 <tr class="odd separate">
286 <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
287 <tr class="even">
288 <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
289 <tr class="odd">
290 <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
291 <tr class="even">
292 <td class="convin">io.* file</td><td class="convop">get FILE * handle &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
293 <tr class="odd separate">
294 <td class="convin">string</td><td class="convop">match against <tt>enum</tt> constant</td><td class="convout"><tt>enum</tt></td></tr>
295 <tr class="even">
296 <td class="convin">string</td><td class="convop">copy string data + zero-byte</td><td class="convout"><tt>int8_t[]</tt>, <tt>uint8_t[]</tt></td></tr>
297 <tr class="odd">
298 <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char[]</tt></td></tr>
299 <tr class="even separate">
300 <td class="convin">function</td><td class="convop"><a href="#callback">create callback</a> &rarr;</td><td class="convout">C function type</td></tr>
301 <tr class="odd separate">
302 <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout">Array</td></tr>
303 <tr class="even">
304 <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
305 <tr class="odd separate">
306 <td class="convin">cdata</td><td class="convop">cdata payload &rarr;</td><td class="convout">C type</td></tr>
307 </table>
309 If the result type of this conversion doesn't match the
310 C&nbsp;type of the destination, the
311 <a href="#convert_between">conversion rules between C&nbsp;types</a>
312 are applied.
313 </p>
315 Reference types are immutable after initialization ("no re-seating of
316 references"). For initialization purposes or when passing values to
317 reference parameters, they are treated like pointers. Note that unlike
318 in C++, there's no way to implement automatic reference generation of
319 variables under the Lua language semantics. If you want to call a
320 function with a reference parameter, you need to explicitly pass a
321 one-element array.
322 </p>
324 <h3 id="convert_between">Conversions between C&nbsp;types</h3>
326 These conversion rules are more or less the same as the standard
327 C&nbsp;conversion rules. Some rules only apply to casts, or require
328 pointer or type compatibility:
329 </p>
330 <table class="convtable">
331 <tr class="convhead">
332 <td class="convin">Input</td>
333 <td class="convop">Conversion</td>
334 <td class="convout">Output</td>
335 </tr>
336 <tr class="odd separate">
337 <td class="convin">Signed integer</td><td class="convop">&rarr;<sup>narrow or sign-extend</sup></td><td class="convout">Integer</td></tr>
338 <tr class="even">
339 <td class="convin">Unsigned integer</td><td class="convop">&rarr;<sup>narrow or zero-extend</sup></td><td class="convout">Integer</td></tr>
340 <tr class="odd">
341 <td class="convin">Integer</td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>double</tt>, <tt>float</tt></td></tr>
342 <tr class="even">
343 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup> <tt>int32_t</tt> &rarr;<sup>narrow</sup></td><td class="convout"><tt>(u)int8_t</tt>, <tt>(u)int16_t</tt></td></tr>
344 <tr class="odd">
345 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup></td><td class="convout"><tt>(u)int32_t</tt>, <tt>(u)int64_t</tt></td></tr>
346 <tr class="even">
347 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>float</tt>, <tt>double</tt></td></tr>
348 <tr class="odd separate">
349 <td class="convin">Number</td><td class="convop">n == 0 &rarr; 0, otherwise 1</td><td class="convout"><tt>bool</tt></td></tr>
350 <tr class="even">
351 <td class="convin"><tt>bool</tt></td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout">Number</td></tr>
352 <tr class="odd separate">
353 <td class="convin">Complex number</td><td class="convop">convert real part</td><td class="convout">Number</td></tr>
354 <tr class="even">
355 <td class="convin">Number</td><td class="convop">convert real part, imag = 0</td><td class="convout">Complex number</td></tr>
356 <tr class="odd">
357 <td class="convin">Complex number</td><td class="convop">convert real and imag part</td><td class="convout">Complex number</td></tr>
358 <tr class="even separate">
359 <td class="convin">Number</td><td class="convop">convert scalar and replicate</td><td class="convout">Vector</td></tr>
360 <tr class="odd">
361 <td class="convin">Vector</td><td class="convop">copy (same size)</td><td class="convout">Vector</td></tr>
362 <tr class="even separate">
363 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
364 <tr class="odd">
365 <td class="convin">Array</td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
366 <tr class="even">
367 <td class="convin">Function</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
368 <tr class="odd separate">
369 <td class="convin">Number</td><td class="convop">convert via <tt>uintptr_t</tt> (cast)</td><td class="convout">Pointer</td></tr>
370 <tr class="even">
371 <td class="convin">Pointer</td><td class="convop">convert address (compat/cast)</td><td class="convout">Pointer</td></tr>
372 <tr class="odd">
373 <td class="convin">Pointer</td><td class="convop">convert address (cast)</td><td class="convout">Integer</td></tr>
374 <tr class="even">
375 <td class="convin">Array</td><td class="convop">convert base address (cast)</td><td class="convout">Integer</td></tr>
376 <tr class="odd separate">
377 <td class="convin">Array</td><td class="convop">copy (compat)</td><td class="convout">Array</td></tr>
378 <tr class="even">
379 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">copy (identical type)</td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
380 </table>
382 Bitfields or <tt>enum</tt> types are treated like their underlying
383 type.
384 </p>
386 Conversions not listed above will raise an error. E.g. it's not
387 possible to convert a pointer to a complex number or vice versa.
388 </p>
390 <h3 id="convert_vararg">Conversions for vararg C&nbsp;function arguments</h3>
392 The following default conversion rules apply when passing Lua objects
393 to the variable argument part of vararg C&nbsp;functions:
394 </p>
395 <table class="convtable">
396 <tr class="convhead">
397 <td class="convin">Input</td>
398 <td class="convop">Conversion</td>
399 <td class="convout">Output</td>
400 </tr>
401 <tr class="odd separate">
402 <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
403 <tr class="even">
404 <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
405 <tr class="odd separate">
406 <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
407 <tr class="even">
408 <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
409 <tr class="odd">
410 <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
411 <tr class="even separate">
412 <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char *</tt></td></tr>
413 <tr class="odd separate">
414 <td class="convin"><tt>float</tt> cdata</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
415 <tr class="even">
416 <td class="convin">Array cdata</td><td class="convop">take base address</td><td class="convout">Element pointer</td></tr>
417 <tr class="odd">
418 <td class="convin"><tt>struct</tt>/<tt>union</tt> cdata</td><td class="convop">take base address</td><td class="convout"><tt>struct</tt>/<tt>union</tt> pointer</td></tr>
419 <tr class="even">
420 <td class="convin">Function cdata</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
421 <tr class="odd">
422 <td class="convin">Any other cdata</td><td class="convop">no conversion</td><td class="convout">C type</td></tr>
423 </table>
425 To pass a Lua object, other than a cdata object, as a specific type,
426 you need to override the conversion rules: create a temporary cdata
427 object with a constructor or a cast and initialize it with the value
428 to pass:
429 </p>
431 Assuming <tt>x</tt> is a Lua number, here's how to pass it as an
432 integer to a vararg function:
433 </p>
434 <pre class="code">
435 ffi.cdef[[
436 int printf(const char *fmt, ...);
438 ffi.C.printf("integer value: %d\n", ffi.new("int", x))
439 </pre>
441 If you don't do this, the default Lua number &rarr; <tt>double</tt>
442 conversion rule applies. A vararg C&nbsp;function expecting an integer
443 will see a garbled or uninitialized value.
444 </p>
446 <h2 id="init">Initializers</h2>
448 Creating a cdata object with
449 <a href="ext_ffi_api.html#ffi_new"><tt>ffi.new()</tt></a> or the
450 equivalent constructor syntax always initializes its contents, too.
451 Different rules apply, depending on the number of optional
452 initializers and the C&nbsp;types involved:
453 </p>
454 <ul>
455 <li>If no initializers are given, the object is filled with zero bytes.</li>
457 <li>Scalar types (numbers and pointers) accept a single initializer.
458 The Lua object is <a href="#convert_fromlua">converted to the scalar
459 C&nbsp;type</a>.</li>
461 <li>Valarrays (complex numbers and vectors) are treated like scalars
462 when a single initializer is given. Otherwise they are treated like
463 regular arrays.</li>
465 <li>Aggregate types (arrays and structs) accept either a single cdata
466 initializer of the same type (copy constructor), a single
467 <a href="#init_table">table initializer</a>, or a flat list of
468 initializers.</li>
470 <li>The elements of an array are initialized, starting at index zero.
471 If a single initializer is given for an array, it's repeated for all
472 remaining elements. This doesn't happen if two or more initializers
473 are given: all remaining uninitialized elements are filled with zero
474 bytes.</li>
476 <li>Byte arrays may also be initialized with a Lua string. This copies
477 the whole string plus a terminating zero-byte. The copy stops early only
478 if the array has a known, fixed size.</li>
480 <li>The fields of a <tt>struct</tt> are initialized in the order of
481 their declaration. Uninitialized fields are filled with zero
482 bytes.</li>
484 <li>Only the first field of a <tt>union</tt> can be initialized with a
485 flat initializer.</li>
487 <li>Elements or fields which are aggregates themselves are initialized
488 with a <em>single</em> initializer, but this may be a table
489 initializer or a compatible aggregate.</li>
491 <li>Excess initializers cause an error.</li>
493 </ul>
495 <h2 id="init_table">Table Initializers</h2>
497 The following rules apply if a Lua table is used to initialize an
498 Array or a <tt>struct</tt>/<tt>union</tt>:
499 </p>
500 <ul>
502 <li>If the table index <tt>[0]</tt> is non-<tt>nil</tt>, then the
503 table is assumed to be zero-based. Otherwise it's assumed to be
504 one-based.</li>
506 <li>Array elements, starting at index zero, are initialized one-by-one
507 with the consecutive table elements, starting at either index
508 <tt>[0]</tt> or <tt>[1]</tt>. This process stops at the first
509 <tt>nil</tt> table element.</li>
511 <li>If exactly one array element was initialized, it's repeated for
512 all the remaining elements. Otherwise all remaining uninitialized
513 elements are filled with zero bytes.</li>
515 <li>The above logic only applies to arrays with a known fixed size.
516 A VLA is only initialized with the element(s) given in the table.
517 Depending on the use case, you may need to explicitly add a
518 <tt>NULL</tt> or <tt>0</tt> terminator to a VLA.</li>
520 <li>A <tt>struct</tt>/<tt>union</tt> can be initialized in the
521 order of the declaration of its fields. Each field is initialized with
522 consecutive table elements, starting at either index <tt>[0]</tt>
523 or <tt>[1]</tt>. This process stops at the first <tt>nil</tt> table
524 element.</li>
526 <li>Otherwise, if neither index <tt>[0]</tt> nor <tt>[1]</tt> is present,
527 a <tt>struct</tt>/<tt>union</tt> is initialized by looking up each field
528 name (as a string key) in the table. Each non-<tt>nil</tt> value is
529 used to initialize the corresponding field.</li>
531 <li>Uninitialized fields of a <tt>struct</tt> are filled with zero
532 bytes, except for the trailing VLA of a VLS.</li>
534 <li>Initialization of a <tt>union</tt> stops after one field has been
535 initialized. If no field has been initialized, the <tt>union</tt> is
536 filled with zero bytes.</li>
538 <li>Elements or fields which are aggregates themselves are initialized
539 with a <em>single</em> initializer, but this may be a nested table
540 initializer (or a compatible aggregate).</li>
542 <li>Excess initializers for an array cause an error. Excess
543 initializers for a <tt>struct</tt>/<tt>union</tt> are ignored.
544 Unrelated table entries are ignored, too.</li>
546 </ul>
548 Example:
549 </p>
550 <pre class="code">
551 local ffi = require("ffi")
553 ffi.cdef[[
554 struct foo { int a, b; };
555 union bar { int i; double d; };
556 struct nested { int x; struct foo y; };
559 ffi.new("int[3]", {}) --> 0, 0, 0
560 ffi.new("int[3]", {1}) --> 1, 1, 1
561 ffi.new("int[3]", {1,2}) --> 1, 2, 0
562 ffi.new("int[3]", {1,2,3}) --> 1, 2, 3
563 ffi.new("int[3]", {[0]=1}) --> 1, 1, 1
564 ffi.new("int[3]", {[0]=1,2}) --> 1, 2, 0
565 ffi.new("int[3]", {[0]=1,2,3}) --> 1, 2, 3
566 ffi.new("int[3]", {[0]=1,2,3,4}) --> error: too many initializers
568 ffi.new("struct foo", {}) --> a = 0, b = 0
569 ffi.new("struct foo", {1}) --> a = 1, b = 0
570 ffi.new("struct foo", {1,2}) --> a = 1, b = 2
571 ffi.new("struct foo", {[0]=1,2}) --> a = 1, b = 2
572 ffi.new("struct foo", {b=2}) --> a = 0, b = 2
573 ffi.new("struct foo", {a=1,b=2,c=3}) --> a = 1, b = 2 'c' is ignored
575 ffi.new("union bar", {}) --> i = 0, d = 0.0
576 ffi.new("union bar", {1}) --> i = 1, d = ?
577 ffi.new("union bar", {[0]=1,2}) --> i = 1, d = ? '2' is ignored
578 ffi.new("union bar", {d=2}) --> i = ?, d = 2.0
580 ffi.new("struct nested", {1,{2,3}}) --> x = 1, y.a = 2, y.b = 3
581 ffi.new("struct nested", {x=1,y={2,3}}) --> x = 1, y.a = 2, y.b = 3
582 </pre>
584 <h2 id="cdata_ops">Operations on cdata Objects</h2>
586 All of the standard Lua operators can be applied to cdata objects or a
587 mix of a cdata object and another Lua object. The following list shows
588 the pre-defined operations.
589 </p>
591 Reference types are dereferenced <em>before</em> performing each of
592 the operations below &mdash; the operation is applied to the
593 C&nbsp;type pointed to by the reference.
594 </p>
596 The pre-defined operations are always tried first before deferring to a
597 metamethod or index table (if any) for the corresponding ctype (except
598 for <tt>__new</tt>). An error is raised if the metamethod lookup or
599 index table lookup fails.
600 </p>
602 <h3 id="cdata_array">Indexing a cdata object</h3>
603 <ul>
605 <li><b>Indexing a pointer/array</b>: a cdata pointer/array can be
606 indexed by a cdata number or a Lua number. The element address is
607 computed as the base address plus the number value multiplied by the
608 element size in bytes. A read access loads the element value and
609 <a href="#convert_tolua">converts it to a Lua object</a>. A write
610 access <a href="#convert_fromlua">converts a Lua object to the element
611 type</a> and stores the converted value to the element. An error is
612 raised if the element size is undefined or a write access to a
613 constant element is attempted.</li>
615 <li><b>Dereferencing a <tt>struct</tt>/<tt>union</tt> field</b>: a
616 cdata <tt>struct</tt>/<tt>union</tt> or a pointer to a
617 <tt>struct</tt>/<tt>union</tt> can be dereferenced by a string key,
618 giving the field name. The field address is computed as the base
619 address plus the relative offset of the field. A read access loads the
620 field value and <a href="#convert_tolua">converts it to a Lua
621 object</a>. A write access <a href="#convert_fromlua">converts a Lua
622 object to the field type</a> and stores the converted value to the
623 field. An error is raised if a write access to a constant
624 <tt>struct</tt>/<tt>union</tt> or a constant field is attempted.
625 Scoped enum constants or static constants are treated like a constant
626 field.</li>
628 <li><b>Indexing a complex number</b>: a complex number can be indexed
629 either by a cdata number or a Lua number with the values 0 or 1, or by
630 the strings <tt>"re"</tt> or <tt>"im"</tt>. A read access loads the
631 real part (<tt>[0]</tt>, <tt>.re</tt>) or the imaginary part
632 (<tt>[1]</tt>, <tt>.im</tt>) part of a complex number and
633 <a href="#convert_tolua">converts it to a Lua number</a>. The
634 sub-parts of a complex number are immutable &mdash; assigning to an
635 index of a complex number raises an error. Accessing out-of-bound
636 indexes returns unspecified results, but is guaranteed not to trigger
637 memory access violations.</li>
639 <li><b>Indexing a vector</b>: a vector is treated like an array for
640 indexing purposes, except the vector elements are immutable &mdash;
641 assigning to an index of a vector raises an error.</li>
643 </ul>
645 A ctype object can be indexed with a string key, too. The only
646 pre-defined operation is reading scoped constants of
647 <tt>struct</tt>/<tt>union</tt> types. All other accesses defer
648 to the corresponding metamethods or index tables (if any).
649 </p>
651 Note: since there's (deliberately) no address-of operator, a cdata
652 object holding a value type is effectively immutable after
653 initialization. The JIT compiler benefits from this fact when applying
654 certain optimizations.
655 </p>
657 As a consequence, the <em>elements</em> of complex numbers and
658 vectors are immutable. But the elements of an aggregate holding these
659 types <em>may</em> be modified of course. I.e. you cannot assign to
660 <tt>foo.c.im</tt>, but you can assign a (newly created) complex number
661 to <tt>foo.c</tt>.
662 </p>
664 The JIT compiler implements strict aliasing rules: accesses to different
665 types do <b>not</b> alias, except for differences in signedness (this
666 applies even to <tt>char</tt> pointers, unlike C99). Type punning
667 through unions is explicitly detected and allowed.
668 </p>
670 <h3 id="cdata_call">Calling a cdata object</h3>
671 <ul>
673 <li><b>Constructor</b>: a ctype object can be called and used as a
674 <a href="ext_ffi_api.html#ffi_new">constructor</a>. This is equivalent
675 to <tt>ffi.new(ct, ...)</tt>, unless a <tt>__new</tt> metamethod is
676 defined. The <tt>__new</tt> metamethod is called with the ctype object
677 plus any other arguments passed to the contructor. Note that you have to
678 use <tt>ffi.new</tt> inside of it, since calling <tt>ct(...)</tt> would
679 cause infinite recursion.</li>
681 <li><b>C&nbsp;function call</b>: a cdata function or cdata function
682 pointer can be called. The passed arguments are
683 <a href="#convert_fromlua">converted to the C&nbsp;types</a> of the
684 parameters given by the function declaration. Arguments passed to the
685 variable argument part of vararg C&nbsp;function use
686 <a href="#convert_vararg">special conversion rules</a>. This
687 C&nbsp;function is called and the return value (if any) is
688 <a href="#convert_tolua">converted to a Lua object</a>.<br>
689 On Windows/x86 systems, <tt>__stdcall</tt> functions are automatically
690 detected and a function declared as <tt>__cdecl</tt> (the default) is
691 silently fixed up after the first call.</li>
693 </ul>
695 <h3 id="cdata_arith">Arithmetic on cdata objects</h3>
696 <ul>
698 <li><b>Pointer arithmetic</b>: a cdata pointer/array and a cdata
699 number or a Lua number can be added or subtracted. The number must be
700 on the right hand side for a subtraction. The result is a pointer of
701 the same type with an address plus or minus the number value
702 multiplied by the element size in bytes. An error is raised if the
703 element size is undefined.</li>
705 <li><b>Pointer difference</b>: two compatible cdata pointers/arrays
706 can be subtracted. The result is the difference between their
707 addresses, divided by the element size in bytes. An error is raised if
708 the element size is undefined or zero.</li>
710 <li><b>64&nbsp;bit integer arithmetic</b>: the standard arithmetic
711 operators (<tt>+&nbsp;-&nbsp;*&nbsp;/&nbsp;%&nbsp;^</tt> and unary
712 minus) can be applied to two cdata numbers, or a cdata number and a
713 Lua number. If one of them is an <tt>uint64_t</tt>, the other side is
714 converted to an <tt>uint64_t</tt> and an unsigned arithmetic operation
715 is performed. Otherwise both sides are converted to an
716 <tt>int64_t</tt> and a signed arithmetic operation is performed. The
717 result is a boxed 64&nbsp;bit cdata object.<br>
719 If one of the operands is an <tt>enum</tt> and the other operand is a
720 string, the string is converted to the value of a matching <tt>enum</tt>
721 constant before the above conversion.<br>
723 These rules ensure that 64&nbsp;bit integers are "sticky". Any
724 expression involving at least one 64&nbsp;bit integer operand results
725 in another one. The undefined cases for the division, modulo and power
726 operators return <tt>2LL&nbsp;^&nbsp;63</tt> or
727 <tt>2ULL&nbsp;^&nbsp;63</tt>.<br>
729 You'll have to explicitly convert a 64&nbsp;bit integer to a Lua
730 number (e.g. for regular floating-point calculations) with
731 <tt>tonumber()</tt>. But note this may incur a precision loss.</li>
733 </ul>
735 <h3 id="cdata_comp">Comparisons of cdata objects</h3>
736 <ul>
738 <li><b>Pointer comparison</b>: two compatible cdata pointers/arrays
739 can be compared. The result is the same as an unsigned comparison of
740 their addresses. <tt>nil</tt> is treated like a <tt>NULL</tt> pointer,
741 which is compatible with any other pointer type.</li>
743 <li><b>64&nbsp;bit integer comparison</b>: two cdata numbers, or a
744 cdata number and a Lua number can be compared with each other. If one
745 of them is an <tt>uint64_t</tt>, the other side is converted to an
746 <tt>uint64_t</tt> and an unsigned comparison is performed. Otherwise
747 both sides are converted to an <tt>int64_t</tt> and a signed
748 comparison is performed.<br>
750 If one of the operands is an <tt>enum</tt> and the other operand is a
751 string, the string is converted to the value of a matching <tt>enum</tt>
752 constant before the above conversion.<br>
754 <li><b>Comparisons for equality/inequality</b> never raise an error.
755 Even incompatible pointers can be compared for equality by address. Any
756 other incompatible comparison (also with non-cdata objects) treats the
757 two sides as unequal.</li>
759 </ul>
761 <h3 id="cdata_key">cdata objects as table keys</h3>
763 Lua tables may be indexed by cdata objects, but this doesn't provide
764 any useful semantics &mdash; <b>cdata objects are unsuitable as table
765 keys!</b>
766 </p>
768 A cdata object is treated like any other garbage-collected object and
769 is hashed and compared by its address for table indexing. Since
770 there's no interning for cdata value types, the same value may be
771 boxed in different cdata objects with different addresses. Thus
772 <tt>t[1LL+1LL]</tt> and <tt>t[2LL]</tt> usually <b>do not</b> point to
773 the same hash slot and they certainly <b>do not</b> point to the same
774 hash slot as <tt>t[2]</tt>.
775 </p>
777 It would seriously drive up implementation complexity and slow down
778 the common case, if one were to add extra handling for by-value
779 hashing and comparisons to Lua tables. Given the ubiquity of their use
780 inside the VM, this is not acceptable.
781 </p>
783 There are three viable alternatives, if you really need to use cdata
784 objects as keys:
785 </p>
786 <ul>
788 <li>If you can get by with the precision of Lua numbers
789 (52&nbsp;bits), then use <tt>tonumber()</tt> on a cdata number or
790 combine multiple fields of a cdata aggregate to a Lua number. Then use
791 the resulting Lua number as a key when indexing tables.<br>
792 One obvious benefit: <tt>t[tonumber(2LL)]</tt> <b>does</b> point to
793 the same slot as <tt>t[2]</tt>.</li>
795 <li>Otherwise use either <tt>tostring()</tt> on 64&nbsp;bit integers
796 or complex numbers or combine multiple fields of a cdata aggregate to
797 a Lua string (e.g. with
798 <a href="ext_ffi_api.html#ffi_string"><tt>ffi.string()</tt></a>). Then
799 use the resulting Lua string as a key when indexing tables.</li>
801 <li>Create your own specialized hash table implementation using the
802 C&nbsp;types provided by the FFI library, just like you would in
803 C&nbsp;code. Ultimately this may give much better performance than the
804 other alternatives or what a generic by-value hash table could
805 possibly provide.</li>
807 </ul>
809 <h2 id="param">Parameterized Types</h2>
811 To facilitate some abstractions, the two functions
812 <a href="ext_ffi_api.html#ffi_typeof"><tt>ffi.typeof</tt></a> and
813 <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> support
814 parameterized types in C&nbsp;declarations. Note: none of the other API
815 functions taking a cdecl allow this.
816 </p>
818 Any place you can write a <b><tt>typedef</tt> name</b>, an
819 <b>identifier</b> or a <b>number</b> in a declaration, you can write
820 <tt>$</tt> (the dollar sign) instead. These placeholders are replaced in
821 order of appearance with the arguments following the cdecl string:
822 </p>
823 <pre class="code">
824 -- Declare a struct with a parameterized field type and name:
825 ffi.cdef([[
826 typedef struct { $ $; } foo_t;
827 ]], type1, name1)
829 -- Anonymous struct with dynamic names:
830 local bar_t = ffi.typeof("struct { int $, $; }", name1, name2)
831 -- Derived pointer type:
832 local bar_ptr_t = ffi.typeof("$ *", bar_t)
834 -- Parameterized dimensions work even where a VLA won't work:
835 local matrix_t = ffi.typeof("uint8_t[$][$]", width, height)
836 </pre>
838 Caveat: this is <em>not</em> simple text substitution! A passed ctype or
839 cdata object is treated like the underlying type, a passed string is
840 considered an identifier and a number is considered a number. You must
841 not mix this up: e.g. passing <tt>"int"</tt> as a string doesn't work in
842 place of a type, you'd need to use <tt>ffi.typeof("int")</tt> instead.
843 </p>
845 The main use for parameterized types are libraries implementing abstract
846 data types
847 (<a href="https://www.freelists.org/post/luajit/ffi-type-of-pointer-to,8">example</a>),
848 similar to what can be achieved with C++ template metaprogramming.
849 Another use case are derived types of anonymous structs, which avoids
850 pollution of the global struct namespace.
851 </p>
853 Please note that parameterized types are a nice tool and indispensable
854 for certain use cases. But you'll want to use them sparingly in regular
855 code, e.g. when all types are actually fixed.
856 </p>
858 <h2 id="gc">Garbage Collection of cdata Objects</h2>
860 All explicitly (<tt>ffi.new()</tt>, <tt>ffi.cast()</tt> etc.) or
861 implicitly (accessors) created cdata objects are garbage collected.
862 You need to ensure to retain valid references to cdata objects
863 somewhere on a Lua stack, an upvalue or in a Lua table while they are
864 still in use. Once the last reference to a cdata object is gone, the
865 garbage collector will automatically free the memory used by it (at
866 the end of the next GC cycle).
867 </p>
869 Please note that pointers themselves are cdata objects, however they
870 are <b>not</b> followed by the garbage collector. So e.g. if you
871 assign a cdata array to a pointer, you must keep the cdata object
872 holding the array alive as long as the pointer is still in use:
873 </p>
874 <pre class="code">
875 ffi.cdef[[
876 typedef struct { int *a; } foo_t;
879 local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span>
881 local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span>
882 local s = ffi.new("foo_t", a)
883 -- Now do something with 's', but keep 'a' alive until you're done.
884 </pre>
886 Similar rules apply for Lua strings which are implicitly converted to
887 <tt>"const&nbsp;char&nbsp;*"</tt>: the string object itself must be
888 referenced somewhere or it'll be garbage collected eventually. The
889 pointer will then point to stale data, which may have already been
890 overwritten. Note that <em>string literals</em> are automatically kept
891 alive as long as the function containing it (actually its prototype)
892 is not garbage collected.
893 </p>
895 Objects which are passed as an argument to an external C&nbsp;function
896 are kept alive until the call returns. So it's generally safe to
897 create temporary cdata objects in argument lists. This is a common
898 idiom for <a href="#convert_vararg">passing specific C&nbsp;types to
899 vararg functions</a>.
900 </p>
902 Memory areas returned by C functions (e.g. from <tt>malloc()</tt>)
903 must be manually managed, of course (or use
904 <a href="ext_ffi_api.html#ffi_gc"><tt>ffi.gc()</tt></a>). Pointers to
905 cdata objects are indistinguishable from pointers returned by C
906 functions (which is one of the reasons why the GC cannot follow them).
907 </p>
909 <h2 id="callback">Callbacks</h2>
911 The LuaJIT FFI automatically generates special callback functions
912 whenever a Lua function is converted to a C&nbsp;function pointer. This
913 associates the generated callback function pointer with the C&nbsp;type
914 of the function pointer and the Lua function object (closure).
915 </p>
917 This can happen implicitly due to the usual conversions, e.g. when
918 passing a Lua function to a function pointer argument. Or you can use
919 <tt>ffi.cast()</tt> to explicitly cast a Lua function to a
920 C&nbsp;function pointer.
921 </p>
923 Currently only certain C&nbsp;function types can be used as callback
924 functions. Neither C&nbsp;vararg functions nor functions with
925 pass-by-value aggregate argument or result types are supported. There
926 are no restrictions for the kind of Lua functions that can be called
927 from the callback &mdash; no checks for the proper number of arguments
928 are made. The return value of the Lua function will be converted to the
929 result type and an error will be thrown for invalid conversions.
930 </p>
932 It's allowed to throw errors across a callback invocation, but it's not
933 advisable in general. Do this only if you know the C&nbsp;function, that
934 called the callback, copes with the forced stack unwinding and doesn't
935 leak resources.
936 </p>
938 One thing that's not allowed, is to let an FFI call into a C&nbsp;function
939 get JIT-compiled, which in turn calls a callback, calling into Lua again.
940 Usually this attempt is caught by the interpreter first and the
941 C&nbsp;function is blacklisted for compilation.
942 </p>
944 However, this heuristic may fail under specific circumstances: e.g. a
945 message polling function might not run Lua callbacks right away and the call
946 gets JIT-compiled. If it later happens to call back into Lua (e.g. a rarely
947 invoked error callback), you'll get a VM PANIC with the message
948 <tt>"bad callback"</tt>. Then you'll need to manually turn off
949 JIT-compilation with
950 <a href="ext_jit.html#jit_onoff_func"><tt>jit.off()</tt></a> for the
951 surrounding Lua function that invokes such a message polling function (or
952 similar).
953 </p>
955 <h3 id="callback_resources">Callback resource handling</h3>
957 Callbacks take up resources &mdash; you can only have a limited number
958 of them at the same time (500&nbsp;-&nbsp;1000, depending on the
959 architecture). The associated Lua functions are anchored to prevent
960 garbage collection, too.
961 </p>
963 <b>Callbacks due to implicit conversions are permanent!</b> There is no
964 way to guess their lifetime, since the C&nbsp;side might store the
965 function pointer for later use (typical for GUI toolkits). The associated
966 resources cannot be reclaimed until termination:
967 </p>
968 <pre class="code">
969 ffi.cdef[[
970 typedef int (__stdcall *WNDENUMPROC)(void *hwnd, intptr_t l);
971 int EnumWindows(WNDENUMPROC func, intptr_t l);
974 -- Implicit conversion to a callback via function pointer argument.
975 local count = 0
976 ffi.C.EnumWindows(function(hwnd, l)
977 count = count + 1
978 return true
979 end, 0)
980 -- The callback is permanent and its resources cannot be reclaimed!
981 -- Ok, so this may not be a problem, if you do this only once.
982 </pre>
984 Note: this example shows that you <em>must</em> properly declare
985 <tt>__stdcall</tt> callbacks on Windows/x86 systems. The calling
986 convention cannot be automatically detected, unlike for
987 <tt>__stdcall</tt> calls <em>to</em> Windows functions.
988 </p>
990 For some use cases it's necessary to free up the resources or to
991 dynamically redirect callbacks. Use an explicit cast to a
992 C&nbsp;function pointer and keep the resulting cdata object. Then use
993 the <a href="ext_ffi_api.html#callback_free"><tt>cb:free()</tt></a>
994 or <a href="ext_ffi_api.html#callback_set"><tt>cb:set()</tt></a> methods
995 on the cdata object:
996 </p>
997 <pre class="code">
998 -- Explicitly convert to a callback via cast.
999 local count = 0
1000 local cb = ffi.cast("WNDENUMPROC", function(hwnd, l)
1001 count = count + 1
1002 return true
1003 end)
1005 -- Pass it to a C function.
1006 ffi.C.EnumWindows(cb, 0)
1007 -- EnumWindows doesn't need the callback after it returns, so free it.
1009 cb:free()
1010 -- The callback function pointer is no longer valid and its resources
1011 -- will be reclaimed. The created Lua closure will be garbage collected.
1012 </pre>
1014 <h3 id="callback_performance">Callback performance</h3>
1016 <b>Callbacks are slow!</b> First, the C&nbsp;to Lua transition itself
1017 has an unavoidable cost, similar to a <tt>lua_call()</tt> or
1018 <tt>lua_pcall()</tt>. Argument and result marshalling add to that cost.
1019 And finally, neither the C&nbsp;compiler nor LuaJIT can inline or
1020 optimize across the language barrier and hoist repeated computations out
1021 of a callback function.
1022 </p>
1024 Do not use callbacks for performance-sensitive work: e.g. consider a
1025 numerical integration routine which takes a user-defined function to
1026 integrate over. It's a bad idea to call a user-defined Lua function from
1027 C&nbsp;code millions of times. The callback overhead will be absolutely
1028 detrimental for performance.
1029 </p>
1031 It's considerably faster to write the numerical integration routine
1032 itself in Lua &mdash; the JIT compiler will be able to inline the
1033 user-defined function and optimize it together with its calling context,
1034 with very competitive performance.
1035 </p>
1037 As a general guideline: <b>use callbacks only when you must</b>, because
1038 of existing C&nbsp;APIs. E.g. callback performance is irrelevant for a
1039 GUI application, which waits for user input most of the time, anyway.
1040 </p>
1042 For new designs <b>avoid push-style APIs</b>: a C&nbsp;function repeatedly
1043 calling a callback for each result. Instead <b>use pull-style APIs</b>:
1044 call a C&nbsp;function repeatedly to get a new result. Calls from Lua
1045 to C via the FFI are much faster than the other way round. Most well-designed
1046 libraries already use pull-style APIs (read/write, get/put).
1047 </p>
1049 <h2 id="clib">C Library Namespaces</h2>
1051 A C&nbsp;library namespace is a special kind of object which allows
1052 access to the symbols contained in shared libraries or the default
1053 symbol namespace. The default
1054 <a href="ext_ffi_api.html#ffi_C"><tt>ffi.C</tt></a> namespace is
1055 automatically created when the FFI library is loaded. C&nbsp;library
1056 namespaces for specific shared libraries may be created with the
1057 <a href="ext_ffi_api.html#ffi_load"><tt>ffi.load()</tt></a> API
1058 function.
1059 </p>
1061 Indexing a C&nbsp;library namespace object with a symbol name (a Lua
1062 string) automatically binds it to the library. First the symbol type
1063 is resolved &mdash; it must have been declared with
1064 <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a>. Then the
1065 symbol address is resolved by searching for the symbol name in the
1066 associated shared libraries or the default symbol namespace. Finally,
1067 the resulting binding between the symbol name, the symbol type and its
1068 address is cached. Missing symbol declarations or nonexistent symbol
1069 names cause an error.
1070 </p>
1072 This is what happens on a <b>read access</b> for the different kinds of
1073 symbols:
1074 </p>
1075 <ul>
1077 <li>External functions: a cdata object with the type of the function
1078 and its address is returned.</li>
1080 <li>External variables: the symbol address is dereferenced and the
1081 loaded value is <a href="#convert_tolua">converted to a Lua object</a>
1082 and returned.</li>
1084 <li>Constant values (<tt>static&nbsp;const</tt> or <tt>enum</tt>
1085 constants): the constant is <a href="#convert_tolua">converted to a
1086 Lua object</a> and returned.</li>
1088 </ul>
1090 This is what happens on a <b>write access</b>:
1091 </p>
1092 <ul>
1094 <li>External variables: the value to be written is
1095 <a href="#convert_fromlua">converted to the C&nbsp;type</a> of the
1096 variable and then stored at the symbol address.</li>
1098 <li>Writing to constant variables or to any other symbol type causes
1099 an error, like any other attempted write to a constant location.</li>
1101 </ul>
1103 C&nbsp;library namespaces themselves are garbage collected objects. If
1104 the last reference to the namespace object is gone, the garbage
1105 collector will eventually release the shared library reference and
1106 remove all memory associated with the namespace. Since this may
1107 trigger the removal of the shared library from the memory of the
1108 running process, it's generally <em>not safe</em> to use function
1109 cdata objects obtained from a library if the namespace object may be
1110 unreferenced.
1111 </p>
1113 Performance notice: the JIT compiler specializes to the identity of
1114 namespace objects and to the strings used to index it. This
1115 effectively turns function cdata objects into constants. It's not
1116 useful and actually counter-productive to explicitly cache these
1117 function objects, e.g. <tt>local strlen = ffi.C.strlen</tt>. OTOH it
1118 <em>is</em> useful to cache the namespace itself, e.g. <tt>local C =
1119 ffi.C</tt>.
1120 </p>
1122 <h2 id="policy">No Hand-holding!</h2>
1124 The FFI library has been designed as <b>a low-level library</b>. The
1125 goal is to interface with C&nbsp;code and C&nbsp;data types with a
1126 minimum of overhead. This means <b>you can do anything you can do
1127 from&nbsp;C</b>: access all memory, overwrite anything in memory, call
1128 machine code at any memory address and so on.
1129 </p>
1131 The FFI library provides <b>no memory safety</b>, unlike regular Lua
1132 code. It will happily allow you to dereference a <tt>NULL</tt>
1133 pointer, to access arrays out of bounds or to misdeclare
1134 C&nbsp;functions. If you make a mistake, your application might crash,
1135 just like equivalent C&nbsp;code would.
1136 </p>
1138 This behavior is inevitable, since the goal is to provide full
1139 interoperability with C&nbsp;code. Adding extra safety measures, like
1140 bounds checks, would be futile. There's no way to detect
1141 misdeclarations of C&nbsp;functions, since shared libraries only
1142 provide symbol names, but no type information. Likewise there's no way
1143 to infer the valid range of indexes for a returned pointer.
1144 </p>
1146 Again: the FFI library is a low-level library. This implies it needs
1147 to be used with care, but it's flexibility and performance often
1148 outweigh this concern. If you're a C or C++ developer, it'll be easy
1149 to apply your existing knowledge. OTOH writing code for the FFI
1150 library is not for the faint of heart and probably shouldn't be the
1151 first exercise for someone with little experience in Lua, C or C++.
1152 </p>
1154 As a corollary of the above, the FFI library is <b>not safe for use by
1155 untrusted Lua code</b>. If you're sandboxing untrusted Lua code, you
1156 definitely don't want to give this code access to the FFI library or
1157 to <em>any</em> cdata object (except 64&nbsp;bit integers or complex
1158 numbers). Any properly engineered Lua sandbox needs to provide safety
1159 wrappers for many of the standard Lua library functions &mdash;
1160 similar wrappers need to be written for high-level operations on FFI
1161 data types, too.
1162 </p>
1164 <h2 id="status">Current Status</h2>
1166 The initial release of the FFI library has some limitations and is
1167 missing some features. Most of these will be fixed in future releases.
1168 </p>
1170 <a href="#clang">C language support</a> is
1171 currently incomplete:
1172 </p>
1173 <ul>
1174 <li>C&nbsp;declarations are not passed through a C&nbsp;pre-processor,
1175 yet.</li>
1176 <li>The C&nbsp;parser is able to evaluate most constant expressions
1177 commonly found in C&nbsp;header files. However it doesn't handle the
1178 full range of C&nbsp;expression semantics and may fail for some
1179 obscure constructs.</li>
1180 <li><tt>static const</tt> declarations only work for integer types
1181 up to 32&nbsp;bits. Neither declaring string constants nor
1182 floating-point constants is supported.</li>
1183 <li>Packed <tt>struct</tt> bitfields that cross container boundaries
1184 are not implemented.</li>
1185 <li>Native vector types may be defined with the GCC <tt>mode</tt> or
1186 <tt>vector_size</tt> attribute. But no operations other than loading,
1187 storing and initializing them are supported, yet.</li>
1188 <li>The <tt>volatile</tt> type qualifier is currently ignored by
1189 compiled code.</li>
1190 <li><a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> silently
1191 ignores most re-declarations. Note: avoid re-declarations which do not
1192 conform to C99. The implementation will eventually be changed to
1193 perform strict checks.</li>
1194 </ul>
1196 The JIT compiler already handles a large subset of all FFI operations.
1197 It automatically falls back to the interpreter for unimplemented
1198 operations (you can check for this with the
1199 <a href="running.html#opt_j"><tt>-jv</tt></a> command line option).
1200 The following operations are currently not compiled and may exhibit
1201 suboptimal performance, especially when used in inner loops:
1202 </p>
1203 <ul>
1204 <li>Bitfield accesses and initializations.</li>
1205 <li>Vector operations.</li>
1206 <li>Table initializers.</li>
1207 <li>Initialization of nested <tt>struct</tt>/<tt>union</tt> types.</li>
1208 <li>Allocations of variable-length arrays or structs.</li>
1209 <li>Allocations of C&nbsp;types with a size &gt; 128&nbsp;bytes or an
1210 alignment &gt; 8&nbsp;bytes.</li>
1211 <li>Conversions from lightuserdata to <tt>void&nbsp;*</tt>.</li>
1212 <li>Pointer differences for element sizes that are not a power of
1213 two.</li>
1214 <li>Calls to C&nbsp;functions with aggregates passed or returned by
1215 value.</li>
1216 <li>Calls to ctype metamethods which are not plain functions.</li>
1217 <li>ctype <tt>__newindex</tt> tables and non-string lookups in ctype
1218 <tt>__index</tt> tables.</li>
1219 <li><tt>tostring()</tt> for cdata types.</li>
1220 <li>Calls to <tt>ffi.cdef()</tt>, <tt>ffi.load()</tt> and
1221 <tt>ffi.metatype()</tt>.</li>
1222 </ul>
1224 Other missing features:
1225 </p>
1226 <ul>
1227 <li>Bit operations for 64&nbsp;bit types.</li>
1228 <li>Arithmetic for <tt>complex</tt> numbers.</li>
1229 <li>Passing structs by value to vararg C&nbsp;functions.</li>
1230 <li><a href="extensions.html#exceptions">C++ exception interoperability</a>
1231 does not extend to C&nbsp;functions called via the FFI, if the call is
1232 compiled.</li>
1233 </ul>
1234 <br class="flush">
1235 </div>
1236 <div id="foot">
1237 <hr class="hide">
1238 Copyright &copy; 2005-2017 Mike Pall
1239 <span class="noprint">
1240 &middot;
1241 <a href="contact.html">Contact</a>
1242 </span>
1243 </div>
1244 </body>
1245 </html>