Fix FOLD rule for CONV.flt.num(CONV.num.flt(x)) => x.
[luajit-2.0.git] / src / lj_asm_x86.h
blob21ab7c25c6d338e3130e10dabbaa19676f1a9b2b
1 /*
2 ** x86/x64 IR assembler (SSA IR -> machine code).
3 ** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
4 */
6 /* -- Guard handling ------------------------------------------------------ */
8 /* Generate an exit stub group at the bottom of the reserved MCode memory. */
9 static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
11 ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff;
12 MCode *mxp = as->mcbot;
13 MCode *mxpstart = mxp;
14 if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop)
15 asm_mclimit(as);
16 /* Push low byte of exitno for each exit stub. */
17 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs;
18 for (i = 1; i < EXITSTUBS_PER_GROUP; i++) {
19 *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2);
20 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i);
22 /* Push the high byte of the exitno for each exit stub group. */
23 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8);
24 /* Store DISPATCH at original stack slot 0. Account for the two push ops. */
25 *mxp++ = XI_MOVmi;
26 *mxp++ = MODRM(XM_OFS8, 0, RID_ESP);
27 *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
28 *mxp++ = 2*sizeof(void *);
29 *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4;
30 /* Jump to exit handler which fills in the ExitState. */
31 *mxp++ = XI_JMP; mxp += 4;
32 *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler);
33 /* Commit the code for this group (even if assembly fails later on). */
34 lj_mcode_commitbot(as->J, mxp);
35 as->mcbot = mxp;
36 as->mclim = as->mcbot + MCLIM_REDZONE;
37 return mxpstart;
40 /* Setup all needed exit stubs. */
41 static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
43 ExitNo i;
44 if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
45 lj_trace_err(as->J, LJ_TRERR_SNAPOV);
46 for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
47 if (as->J->exitstubgroup[i] == NULL)
48 as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
51 /* Emit conditional branch to exit for guard.
52 ** It's important to emit this *after* all registers have been allocated,
53 ** because rematerializations may invalidate the flags.
55 static void asm_guardcc(ASMState *as, int cc)
57 MCode *target = exitstub_addr(as->J, as->snapno);
58 MCode *p = as->mcp;
59 if (LJ_UNLIKELY(p == as->invmcp)) {
60 as->loopinv = 1;
61 *(int32_t *)(p+1) = jmprel(p+5, target);
62 target = p;
63 cc ^= 1;
64 if (as->realign) {
65 emit_sjcc(as, cc, target);
66 return;
69 emit_jcc(as, cc, target);
72 /* -- Memory operand fusion ----------------------------------------------- */
74 /* Limit linear search to this distance. Avoids O(n^2) behavior. */
75 #define CONFLICT_SEARCH_LIM 31
77 /* Check if a reference is a signed 32 bit constant. */
78 static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
80 if (irref_isk(ref)) {
81 IRIns *ir = IR(ref);
82 if (ir->o != IR_KINT64) {
83 *k = ir->i;
84 return 1;
85 } else if (checki32((int64_t)ir_kint64(ir)->u64)) {
86 *k = (int32_t)ir_kint64(ir)->u64;
87 return 1;
90 return 0;
93 /* Check if there's no conflicting instruction between curins and ref.
94 ** Also avoid fusing loads if there are multiple references.
96 static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload)
98 IRIns *ir = as->ir;
99 IRRef i = as->curins;
100 if (i > ref + CONFLICT_SEARCH_LIM)
101 return 0; /* Give up, ref is too far away. */
102 while (--i > ref) {
103 if (ir[i].o == conflict)
104 return 0; /* Conflict found. */
105 else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref))
106 return 0;
108 return 1; /* Ok, no conflict. */
111 /* Fuse array base into memory operand. */
112 static IRRef asm_fuseabase(ASMState *as, IRRef ref)
114 IRIns *irb = IR(ref);
115 as->mrm.ofs = 0;
116 if (irb->o == IR_FLOAD) {
117 IRIns *ira = IR(irb->op1);
118 lua_assert(irb->op2 == IRFL_TAB_ARRAY);
119 /* We can avoid the FLOAD of t->array for colocated arrays. */
120 if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE &&
121 !neverfuse(as) && noconflict(as, irb->op1, IR_NEWREF, 1)) {
122 as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */
123 return irb->op1; /* Table obj. */
125 } else if (irb->o == IR_ADD && irref_isk(irb->op2)) {
126 /* Fuse base offset (vararg load). */
127 as->mrm.ofs = IR(irb->op2)->i;
128 return irb->op1;
130 return ref; /* Otherwise use the given array base. */
133 /* Fuse array reference into memory operand. */
134 static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow)
136 IRIns *irx;
137 lua_assert(ir->o == IR_AREF);
138 as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow);
139 irx = IR(ir->op2);
140 if (irref_isk(ir->op2)) {
141 as->mrm.ofs += 8*irx->i;
142 as->mrm.idx = RID_NONE;
143 } else {
144 rset_clear(allow, as->mrm.base);
145 as->mrm.scale = XM_SCALE8;
146 /* Fuse a constant ADD (e.g. t[i+1]) into the offset.
147 ** Doesn't help much without ABCelim, but reduces register pressure.
149 if (!LJ_64 && /* Has bad effects with negative index on x64. */
150 mayfuse(as, ir->op2) && ra_noreg(irx->r) &&
151 irx->o == IR_ADD && irref_isk(irx->op2)) {
152 as->mrm.ofs += 8*IR(irx->op2)->i;
153 as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow);
154 } else {
155 as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow);
160 /* Fuse array/hash/upvalue reference into memory operand.
161 ** Caveat: this may allocate GPRs for the base/idx registers. Be sure to
162 ** pass the final allow mask, excluding any GPRs used for other inputs.
163 ** In particular: 2-operand GPR instructions need to call ra_dest() first!
165 static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow)
167 IRIns *ir = IR(ref);
168 if (ra_noreg(ir->r)) {
169 switch ((IROp)ir->o) {
170 case IR_AREF:
171 if (mayfuse(as, ref)) {
172 asm_fusearef(as, ir, allow);
173 return;
175 break;
176 case IR_HREFK:
177 if (mayfuse(as, ref)) {
178 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
179 as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
180 as->mrm.idx = RID_NONE;
181 return;
183 break;
184 case IR_UREFC:
185 if (irref_isk(ir->op1)) {
186 GCfunc *fn = ir_kfunc(IR(ir->op1));
187 GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
188 as->mrm.ofs = ptr2addr(&uv->tv);
189 as->mrm.base = as->mrm.idx = RID_NONE;
190 return;
192 break;
193 default:
194 lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO ||
195 ir->o == IR_KKPTR);
196 break;
199 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
200 as->mrm.ofs = 0;
201 as->mrm.idx = RID_NONE;
204 /* Fuse FLOAD/FREF reference into memory operand. */
205 static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow)
207 lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF);
208 as->mrm.ofs = field_ofs[ir->op2];
209 as->mrm.idx = RID_NONE;
210 if (irref_isk(ir->op1)) {
211 as->mrm.ofs += IR(ir->op1)->i;
212 as->mrm.base = RID_NONE;
213 } else {
214 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
218 /* Fuse string reference into memory operand. */
219 static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow)
221 IRIns *irr;
222 lua_assert(ir->o == IR_STRREF);
223 as->mrm.base = as->mrm.idx = RID_NONE;
224 as->mrm.scale = XM_SCALE1;
225 as->mrm.ofs = sizeof(GCstr);
226 if (irref_isk(ir->op1)) {
227 as->mrm.ofs += IR(ir->op1)->i;
228 } else {
229 Reg r = ra_alloc1(as, ir->op1, allow);
230 rset_clear(allow, r);
231 as->mrm.base = (uint8_t)r;
233 irr = IR(ir->op2);
234 if (irref_isk(ir->op2)) {
235 as->mrm.ofs += irr->i;
236 } else {
237 Reg r;
238 /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */
239 if (!LJ_64 && /* Has bad effects with negative index on x64. */
240 mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) {
241 as->mrm.ofs += IR(irr->op2)->i;
242 r = ra_alloc1(as, irr->op1, allow);
243 } else {
244 r = ra_alloc1(as, ir->op2, allow);
246 if (as->mrm.base == RID_NONE)
247 as->mrm.base = (uint8_t)r;
248 else
249 as->mrm.idx = (uint8_t)r;
253 static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow)
255 IRIns *ir = IR(ref);
256 as->mrm.idx = RID_NONE;
257 if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
258 as->mrm.ofs = ir->i;
259 as->mrm.base = RID_NONE;
260 } else if (ir->o == IR_STRREF) {
261 asm_fusestrref(as, ir, allow);
262 } else {
263 as->mrm.ofs = 0;
264 if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) {
265 /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */
266 IRIns *irx;
267 IRRef idx;
268 Reg r;
269 if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */
270 ref = ir->op1;
271 ir = IR(ref);
272 if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r)))
273 goto noadd;
275 as->mrm.scale = XM_SCALE1;
276 idx = ir->op1;
277 ref = ir->op2;
278 irx = IR(idx);
279 if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */
280 idx = ir->op2;
281 ref = ir->op1;
282 irx = IR(idx);
284 if (canfuse(as, irx) && ra_noreg(irx->r)) {
285 if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) {
286 /* Recognize idx<<b with b = 0-3, corresponding to sz = (1),2,4,8. */
287 idx = irx->op1;
288 as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6);
289 } else if (irx->o == IR_ADD && irx->op1 == irx->op2) {
290 /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */
291 idx = irx->op1;
292 as->mrm.scale = XM_SCALE2;
295 r = ra_alloc1(as, idx, allow);
296 rset_clear(allow, r);
297 as->mrm.idx = (uint8_t)r;
299 noadd:
300 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
304 /* Fuse load into memory operand. */
305 static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow)
307 IRIns *ir = IR(ref);
308 if (ra_hasreg(ir->r)) {
309 if (allow != RSET_EMPTY) { /* Fast path. */
310 ra_noweak(as, ir->r);
311 return ir->r;
313 fusespill:
314 /* Force a spill if only memory operands are allowed (asm_x87load). */
315 as->mrm.base = RID_ESP;
316 as->mrm.ofs = ra_spill(as, ir);
317 as->mrm.idx = RID_NONE;
318 return RID_MRM;
320 if (ir->o == IR_KNUM) {
321 RegSet avail = as->freeset & ~as->modset & RSET_FPR;
322 lua_assert(allow != RSET_EMPTY);
323 if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */
324 as->mrm.ofs = ptr2addr(ir_knum(ir));
325 as->mrm.base = as->mrm.idx = RID_NONE;
326 return RID_MRM;
328 } else if (mayfuse(as, ref)) {
329 RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR;
330 if (ir->o == IR_SLOAD) {
331 if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) &&
332 noconflict(as, ref, IR_RETF, 0)) {
333 as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow);
334 as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0);
335 as->mrm.idx = RID_NONE;
336 return RID_MRM;
338 } else if (ir->o == IR_FLOAD) {
339 /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */
340 if ((irt_isint(ir->t) || irt_isaddr(ir->t)) &&
341 noconflict(as, ref, IR_FSTORE, 0)) {
342 asm_fusefref(as, ir, xallow);
343 return RID_MRM;
345 } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) {
346 if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) {
347 asm_fuseahuref(as, ir->op1, xallow);
348 return RID_MRM;
350 } else if (ir->o == IR_XLOAD) {
351 /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp).
352 ** Fusing unaligned memory operands is ok on x86 (except for SIMD types).
354 if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) &&
355 noconflict(as, ref, IR_XSTORE, 0)) {
356 asm_fusexref(as, ir->op1, xallow);
357 return RID_MRM;
359 } else if (ir->o == IR_VLOAD) {
360 asm_fuseahuref(as, ir->op1, xallow);
361 return RID_MRM;
364 if (!(as->freeset & allow) &&
365 (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref)))
366 goto fusespill;
367 return ra_allocref(as, ref, allow);
370 /* -- Calls --------------------------------------------------------------- */
372 /* Generate a call to a C function. */
373 static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
375 uint32_t n, nargs = CCI_NARGS(ci);
376 int32_t ofs = STACKARG_OFS;
377 uint32_t gprs = REGARG_GPRS;
378 #if LJ_64
379 Reg fpr = REGARG_FIRSTFPR;
380 #endif
381 lua_assert(!(nargs > 2 && (ci->flags&CCI_FASTCALL))); /* Avoid stack adj. */
382 if ((void *)ci->func)
383 emit_call(as, ci->func);
384 for (n = 0; n < nargs; n++) { /* Setup args. */
385 IRRef ref = args[n];
386 IRIns *ir = IR(ref);
387 Reg r;
388 #if LJ_64 && LJ_ABI_WIN
389 /* Windows/x64 argument registers are strictly positional. */
390 r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31);
391 fpr++; gprs >>= 5;
392 #elif LJ_64
393 /* POSIX/x64 argument registers are used in order of appearance. */
394 if (irt_isfp(ir->t)) {
395 r = fpr <= REGARG_LASTFPR ? fpr : 0; fpr++;
396 } else {
397 r = gprs & 31; gprs >>= 5;
399 #else
400 if (irt_isfp(ir->t) || !(ci->flags & CCI_FASTCALL)) {
401 r = 0;
402 } else {
403 r = gprs & 31; gprs >>= 5;
405 #endif
406 if (r) { /* Argument is in a register. */
407 if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
408 #if LJ_64
409 if (ir->o == IR_KINT64)
410 emit_loadu64(as, r, ir_kint64(ir)->u64);
411 else
412 #endif
413 emit_loadi(as, r, ir->i);
414 } else {
415 lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
416 if (ra_hasreg(ir->r)) {
417 ra_noweak(as, ir->r);
418 emit_movrr(as, ir, r, ir->r);
419 } else {
420 ra_allocref(as, ref, RID2RSET(r));
423 } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */
424 lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */
425 if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
426 /* Split stores for unaligned FP consts. */
427 emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
428 emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
429 } else {
430 r = ra_alloc1(as, ref, RSET_FPR);
431 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
432 r, RID_ESP, ofs);
434 ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8;
435 } else { /* Non-FP argument is on stack. */
436 if (LJ_32 && ref < ASMREF_TMP1) {
437 emit_movmroi(as, RID_ESP, ofs, ir->i);
438 } else {
439 r = ra_alloc1(as, ref, RSET_GPR);
440 emit_movtomro(as, REX_64IR(ir, r), RID_ESP, ofs);
442 ofs += sizeof(intptr_t);
447 /* Setup result reg/sp for call. Evict scratch regs. */
448 static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
450 RegSet drop = RSET_SCRATCH;
451 if ((ci->flags & CCI_NOFPRCLOBBER))
452 drop &= ~RSET_FPR;
453 if (ra_hasreg(ir->r))
454 rset_clear(drop, ir->r); /* Dest reg handled below. */
455 ra_evictset(as, drop); /* Evictions must be performed first. */
456 if (ra_used(ir)) {
457 if (irt_isfp(ir->t)) {
458 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
459 #if LJ_64
460 if ((ci->flags & CCI_CASTU64)) {
461 Reg dest = ir->r;
462 if (ra_hasreg(dest)) {
463 ra_free(as, dest);
464 ra_modified(as, dest);
465 emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */
466 } else {
467 emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs);
469 } else {
470 ra_destreg(as, ir, RID_FPRET);
472 #else
473 /* Number result is in x87 st0 for x86 calling convention. */
474 Reg dest = ir->r;
475 if (ra_hasreg(dest)) {
476 ra_free(as, dest);
477 ra_modified(as, dest);
478 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
479 dest, RID_ESP, ofs);
481 if ((ci->flags & CCI_CASTU64)) {
482 emit_movtomro(as, RID_RET, RID_ESP, ofs);
483 emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4);
484 } else {
485 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
486 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
488 #endif
489 } else {
490 lua_assert(!irt_ispri(ir->t));
491 ra_destreg(as, ir, RID_RET);
493 } else if (LJ_32 && irt_isfp(ir->t)) {
494 emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */
498 static void asm_call(ASMState *as, IRIns *ir)
500 IRRef args[CCI_NARGS_MAX];
501 const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
502 asm_collectargs(as, ir, ci, args);
503 asm_setupresult(as, ir, ci);
504 asm_gencall(as, ci, args);
507 static void asm_callx(ASMState *as, IRIns *ir)
509 IRRef args[CCI_NARGS_MAX];
510 CCallInfo ci;
511 IRIns *irf;
512 ci.flags = asm_callx_flags(as, ir);
513 asm_collectargs(as, ir, &ci, args);
514 asm_setupresult(as, ir, &ci);
515 irf = IR(ir->op2);
516 if (LJ_32 && irref_isk(ir->op2)) { /* Call to constant address on x86. */
517 ci.func = (ASMFunction)(void *)(uintptr_t)(uint32_t)irf->i;
518 } else {
519 /* Prefer a non-argument register or RID_RET for indirect calls. */
520 RegSet allow = (RSET_GPR & ~RSET_SCRATCH)|RID2RSET(RID_RET);
521 Reg r = ra_alloc1(as, ir->op2, allow);
522 emit_rr(as, XO_GROUP5, XOg_CALL, r);
523 ci.func = (ASMFunction)(void *)0;
525 asm_gencall(as, &ci, args);
528 /* -- Returns ------------------------------------------------------------- */
530 /* Return to lower frame. Guard that it goes to the right spot. */
531 static void asm_retf(ASMState *as, IRIns *ir)
533 Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
534 void *pc = ir_kptr(IR(ir->op2));
535 int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
536 as->topslot -= (BCReg)delta;
537 if ((int32_t)as->topslot < 0) as->topslot = 0;
538 emit_setgl(as, base, jit_base);
539 emit_addptr(as, base, -8*delta);
540 asm_guardcc(as, CC_NE);
541 emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc));
544 /* -- Type conversions ---------------------------------------------------- */
546 static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
548 Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
549 Reg dest = ra_dest(as, ir, RSET_GPR);
550 asm_guardcc(as, CC_P);
551 asm_guardcc(as, CC_NE);
552 emit_rr(as, XO_UCOMISD, left, tmp);
553 emit_rr(as, XO_CVTSI2SD, tmp, dest);
554 if (!(as->flags & JIT_F_SPLIT_XMM))
555 emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */
556 emit_rr(as, XO_CVTTSD2SI, dest, left);
557 /* Can't fuse since left is needed twice. */
560 static void asm_tobit(ASMState *as, IRIns *ir)
562 Reg dest = ra_dest(as, ir, RSET_GPR);
563 Reg tmp = ra_noreg(IR(ir->op1)->r) ?
564 ra_alloc1(as, ir->op1, RSET_FPR) :
565 ra_scratch(as, RSET_FPR);
566 Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp));
567 emit_rr(as, XO_MOVDto, tmp, dest);
568 emit_mrm(as, XO_ADDSD, tmp, right);
569 ra_left(as, tmp, ir->op1);
572 static void asm_conv(ASMState *as, IRIns *ir)
574 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
575 int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64));
576 int stfp = (st == IRT_NUM || st == IRT_FLOAT);
577 IRRef lref = ir->op1;
578 lua_assert(irt_type(ir->t) != st);
579 lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */
580 if (irt_isfp(ir->t)) {
581 Reg dest = ra_dest(as, ir, RSET_FPR);
582 if (stfp) { /* FP to FP conversion. */
583 Reg left = asm_fuseload(as, lref, RSET_FPR);
584 emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left);
585 if (left == dest) return; /* Avoid the XO_XORPS. */
586 } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */
587 /* number = (2^52+2^51 .. u32) - (2^52+2^51) */
588 cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000));
589 Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
590 if (irt_isfloat(ir->t))
591 emit_rr(as, XO_CVTSD2SS, dest, dest);
592 emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */
593 emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */
594 emit_loadn(as, bias, k);
595 emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR));
596 return;
597 } else { /* Integer to FP conversion. */
598 Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ?
599 ra_alloc1(as, lref, RSET_GPR) :
600 asm_fuseload(as, lref, RSET_GPR);
601 if (LJ_64 && st == IRT_U64) {
602 MCLabel l_end = emit_label(as);
603 const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000));
604 emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */
605 emit_sjcc(as, CC_NS, l_end);
606 emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */
608 emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS,
609 dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left);
611 if (!(as->flags & JIT_F_SPLIT_XMM))
612 emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */
613 } else if (stfp) { /* FP to integer conversion. */
614 if (irt_isguard(ir->t)) {
615 /* Checked conversions are only supported from number to int. */
616 lua_assert(irt_isint(ir->t) && st == IRT_NUM);
617 asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
618 } else {
619 Reg dest = ra_dest(as, ir, RSET_GPR);
620 x86Op op = st == IRT_NUM ?
621 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) :
622 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI);
623 if (LJ_64 ? irt_isu64(ir->t) : irt_isu32(ir->t)) {
624 /* LJ_64: For inputs >= 2^63 add -2^64, convert again. */
625 /* LJ_32: For inputs >= 2^31 add -2^31, convert again and add 2^31. */
626 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
627 ra_scratch(as, RSET_FPR);
628 MCLabel l_end = emit_label(as);
629 if (LJ_32)
630 emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000);
631 emit_rr(as, op, dest|REX_64, tmp);
632 if (st == IRT_NUM)
633 emit_rma(as, XO_ADDSD, tmp, lj_ir_k64_find(as->J,
634 LJ_64 ? U64x(c3f00000,00000000) : U64x(c1e00000,00000000)));
635 else
636 emit_rma(as, XO_ADDSS, tmp, lj_ir_k64_find(as->J,
637 LJ_64 ? U64x(00000000,df800000) : U64x(00000000,cf000000)));
638 emit_sjcc(as, CC_NS, l_end);
639 emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest negative. */
640 emit_rr(as, op, dest|REX_64, tmp);
641 ra_left(as, tmp, lref);
642 } else {
643 Reg left = asm_fuseload(as, lref, RSET_FPR);
644 if (LJ_64 && irt_isu32(ir->t))
645 emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */
646 emit_mrm(as, op,
647 dest|((LJ_64 &&
648 (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0),
649 left);
652 } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
653 Reg left, dest = ra_dest(as, ir, RSET_GPR);
654 RegSet allow = RSET_GPR;
655 x86Op op;
656 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
657 if (st == IRT_I8) {
658 op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX;
659 } else if (st == IRT_U8) {
660 op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX;
661 } else if (st == IRT_I16) {
662 op = XO_MOVSXw;
663 } else {
664 op = XO_MOVZXw;
666 left = asm_fuseload(as, lref, allow);
667 /* Add extra MOV if source is already in wrong register. */
668 if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) {
669 Reg tmp = ra_scratch(as, allow);
670 emit_rr(as, op, dest, tmp);
671 emit_rr(as, XO_MOV, tmp, left);
672 } else {
673 emit_mrm(as, op, dest, left);
675 } else { /* 32/64 bit integer conversions. */
676 if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */
677 Reg dest = ra_dest(as, ir, RSET_GPR);
678 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
679 } else if (irt_is64(ir->t)) {
680 Reg dest = ra_dest(as, ir, RSET_GPR);
681 if (st64 || !(ir->op2 & IRCONV_SEXT)) {
682 /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
683 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
684 } else { /* 32 to 64 bit sign extension. */
685 Reg left = asm_fuseload(as, lref, RSET_GPR);
686 emit_mrm(as, XO_MOVSXd, dest|REX_64, left);
688 } else {
689 Reg dest = ra_dest(as, ir, RSET_GPR);
690 if (st64) {
691 Reg left = asm_fuseload(as, lref, RSET_GPR);
692 /* This is either a 32 bit reg/reg mov which zeroes the hiword
693 ** or a load of the loword from a 64 bit address.
695 emit_mrm(as, XO_MOV, dest, left);
696 } else { /* 32/32 bit no-op (cast). */
697 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
703 #if LJ_32 && LJ_HASFFI
704 /* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */
706 /* 64 bit integer to FP conversion in 32 bit mode. */
707 static void asm_conv_fp_int64(ASMState *as, IRIns *ir)
709 Reg hi = ra_alloc1(as, ir->op1, RSET_GPR);
710 Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi));
711 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
712 Reg dest = ir->r;
713 if (ra_hasreg(dest)) {
714 ra_free(as, dest);
715 ra_modified(as, dest);
716 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
717 dest, RID_ESP, ofs);
719 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
720 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
721 if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) {
722 /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */
723 MCLabel l_end = emit_label(as);
724 emit_rma(as, XO_FADDq, XOg_FADDq,
725 lj_ir_k64_find(as->J, U64x(43f00000,00000000)));
726 emit_sjcc(as, CC_NS, l_end);
727 emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */
728 } else {
729 lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64);
731 emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0);
732 /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */
733 emit_rmro(as, XO_MOVto, hi, RID_ESP, 4);
734 emit_rmro(as, XO_MOVto, lo, RID_ESP, 0);
737 /* FP to 64 bit integer conversion in 32 bit mode. */
738 static void asm_conv_int64_fp(ASMState *as, IRIns *ir)
740 IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
741 IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
742 Reg lo, hi;
743 lua_assert(st == IRT_NUM || st == IRT_FLOAT);
744 lua_assert(dt == IRT_I64 || dt == IRT_U64);
745 lua_assert(((ir-1)->op2 & IRCONV_TRUNC));
746 hi = ra_dest(as, ir, RSET_GPR);
747 lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi));
748 if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0);
749 /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */
750 if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */
751 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4);
752 emit_rmro(as, XO_MOVto, lo, RID_ESP, 4);
753 emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff);
755 if (dt == IRT_U64) {
756 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
757 MCLabel l_pop, l_end = emit_label(as);
758 emit_x87op(as, XI_FPOP);
759 l_pop = emit_label(as);
760 emit_sjmp(as, l_end);
761 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
762 if ((as->flags & JIT_F_SSE3))
763 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
764 else
765 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
766 emit_rma(as, XO_FADDq, XOg_FADDq,
767 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
768 emit_sjcc(as, CC_NS, l_pop);
769 emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */
771 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
772 if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */
773 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
774 } else { /* Otherwise set FPU rounding mode to truncate before the store. */
775 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
776 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0);
777 emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0);
778 emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0);
779 emit_loadi(as, lo, 0xc00);
780 emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0);
782 if (dt == IRT_U64)
783 emit_x87op(as, XI_FDUP);
784 emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd,
785 st == IRT_NUM ? XOg_FLDq: XOg_FLDd,
786 asm_fuseload(as, ir->op1, RSET_EMPTY));
788 #endif
790 static void asm_strto(ASMState *as, IRIns *ir)
792 /* Force a spill slot for the destination register (if any). */
793 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_tonum];
794 IRRef args[2];
795 RegSet drop = RSET_SCRATCH;
796 if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r))
797 rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */
798 ra_evictset(as, drop);
799 asm_guardcc(as, CC_E);
800 emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */
801 args[0] = ir->op1; /* GCstr *str */
802 args[1] = ASMREF_TMP1; /* TValue *n */
803 asm_gencall(as, ci, args);
804 /* Store the result to the spill slot or temp slots. */
805 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
806 RID_ESP, sps_scale(ir->s));
809 static void asm_tostr(ASMState *as, IRIns *ir)
811 IRIns *irl = IR(ir->op1);
812 IRRef args[2];
813 args[0] = ASMREF_L;
814 as->gcsteps++;
815 if (irt_isnum(irl->t)) {
816 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
817 args[1] = ASMREF_TMP1; /* const lua_Number * */
818 asm_setupresult(as, ir, ci); /* GCstr * */
819 asm_gencall(as, ci, args);
820 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
821 RID_ESP, ra_spill(as, irl));
822 } else {
823 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
824 args[1] = ir->op1; /* int32_t k */
825 asm_setupresult(as, ir, ci); /* GCstr * */
826 asm_gencall(as, ci, args);
830 /* -- Memory references --------------------------------------------------- */
832 static void asm_aref(ASMState *as, IRIns *ir)
834 Reg dest = ra_dest(as, ir, RSET_GPR);
835 asm_fusearef(as, ir, RSET_GPR);
836 if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0))
837 emit_mrm(as, XO_LEA, dest, RID_MRM);
838 else if (as->mrm.base != dest)
839 emit_rr(as, XO_MOV, dest, as->mrm.base);
842 /* Merge NE(HREF, niltv) check. */
843 static MCode *merge_href_niltv(ASMState *as, IRIns *ir)
845 /* Assumes nothing else generates NE of HREF. */
846 if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins &&
847 ra_hasreg(ir->r)) {
848 MCode *p = as->mcp;
849 p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6;
850 /* Ensure no loop branch inversion happened. */
851 if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) {
852 as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */
853 return p + *(int32_t *)(p-4); /* Return exit address. */
856 return NULL;
859 /* Inlined hash lookup. Specialized for key type and for const keys.
860 ** The equivalent C code is:
861 ** Node *n = hashkey(t, key);
862 ** do {
863 ** if (lj_obj_equal(&n->key, key)) return &n->val;
864 ** } while ((n = nextnode(n)));
865 ** return niltv(L);
867 static void asm_href(ASMState *as, IRIns *ir)
869 MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */
870 RegSet allow = RSET_GPR;
871 Reg dest = ra_dest(as, ir, allow);
872 Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
873 Reg key = RID_NONE, tmp = RID_NONE;
874 IRIns *irkey = IR(ir->op2);
875 int isk = irref_isk(ir->op2);
876 IRType1 kt = irkey->t;
877 uint32_t khash;
878 MCLabel l_end, l_loop, l_next;
880 if (!isk) {
881 rset_clear(allow, tab);
882 key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
883 if (!irt_isstr(kt))
884 tmp = ra_scratch(as, rset_exclude(allow, key));
887 /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */
888 l_end = emit_label(as);
889 if (nilexit && ir[1].o == IR_NE) {
890 emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */
891 nilexit = NULL;
892 } else {
893 emit_loada(as, dest, niltvg(J2G(as->J)));
896 /* Follow hash chain until the end. */
897 l_loop = emit_sjcc_label(as, CC_NZ);
898 emit_rr(as, XO_TEST, dest, dest);
899 emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next));
900 l_next = emit_label(as);
902 /* Type and value comparison. */
903 if (nilexit)
904 emit_jcc(as, CC_E, nilexit);
905 else
906 emit_sjcc(as, CC_E, l_end);
907 if (irt_isnum(kt)) {
908 if (isk) {
909 /* Assumes -0.0 is already canonicalized to +0.0. */
910 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo),
911 (int32_t)ir_knum(irkey)->u32.lo);
912 emit_sjcc(as, CC_NE, l_next);
913 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi),
914 (int32_t)ir_knum(irkey)->u32.hi);
915 } else {
916 emit_sjcc(as, CC_P, l_next);
917 emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
918 emit_sjcc(as, CC_AE, l_next);
919 /* The type check avoids NaN penalties and complaints from Valgrind. */
920 #if LJ_64
921 emit_u32(as, LJ_TISNUM);
922 emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it));
923 #else
924 emit_i8(as, LJ_TISNUM);
925 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
926 #endif
928 #if LJ_64
929 } else if (irt_islightud(kt)) {
930 emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64));
931 #endif
932 } else {
933 if (!irt_ispri(kt)) {
934 lua_assert(irt_isaddr(kt));
935 if (isk)
936 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr),
937 ptr2addr(ir_kgc(irkey)));
938 else
939 emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr));
940 emit_sjcc(as, CC_NE, l_next);
942 lua_assert(!irt_isnil(kt));
943 emit_i8(as, irt_toitype(kt));
944 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
946 emit_sfixup(as, l_loop);
947 checkmclim(as);
949 /* Load main position relative to tab->node into dest. */
950 khash = isk ? ir_khash(irkey) : 1;
951 if (khash == 0) {
952 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node));
953 } else {
954 emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node));
955 if ((as->flags & JIT_F_PREFER_IMUL)) {
956 emit_i8(as, sizeof(Node));
957 emit_rr(as, XO_IMULi8, dest, dest);
958 } else {
959 emit_shifti(as, XOg_SHL, dest, 3);
960 emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0);
962 if (isk) {
963 emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash);
964 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
965 } else if (irt_isstr(kt)) {
966 emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash));
967 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
968 } else { /* Must match with hashrot() in lj_tab.c. */
969 emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask));
970 emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp);
971 emit_shifti(as, XOg_ROL, tmp, HASH_ROT3);
972 emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp);
973 emit_shifti(as, XOg_ROL, dest, HASH_ROT2);
974 emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest);
975 emit_shifti(as, XOg_ROL, dest, HASH_ROT1);
976 emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest);
977 if (irt_isnum(kt)) {
978 emit_rr(as, XO_ARITH(XOg_ADD), dest, dest);
979 #if LJ_64
980 emit_shifti(as, XOg_SHR|REX_64, dest, 32);
981 emit_rr(as, XO_MOV, tmp, dest);
982 emit_rr(as, XO_MOVDto, key|REX_64, dest);
983 #else
984 emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4);
985 emit_rr(as, XO_MOVDto, key, tmp);
986 #endif
987 } else {
988 emit_rr(as, XO_MOV, tmp, key);
989 emit_rmro(as, XO_LEA, dest, key, HASH_BIAS);
995 static void asm_hrefk(ASMState *as, IRIns *ir)
997 IRIns *kslot = IR(ir->op2);
998 IRIns *irkey = IR(kslot->op1);
999 int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
1000 Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
1001 Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
1002 #if !LJ_64
1003 MCLabel l_exit;
1004 #endif
1005 lua_assert(ofs % sizeof(Node) == 0);
1006 if (ra_hasreg(dest)) {
1007 if (ofs != 0) {
1008 if (dest == node && !(as->flags & JIT_F_LEA_AGU))
1009 emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs);
1010 else
1011 emit_rmro(as, XO_LEA, dest, node, ofs);
1012 } else if (dest != node) {
1013 emit_rr(as, XO_MOV, dest, node);
1016 asm_guardcc(as, CC_NE);
1017 #if LJ_64
1018 if (!irt_ispri(irkey->t)) {
1019 Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node));
1020 emit_rmro(as, XO_CMP, key|REX_64, node,
1021 ofs + (int32_t)offsetof(Node, key.u64));
1022 lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t));
1023 /* Assumes -0.0 is already canonicalized to +0.0. */
1024 emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 :
1025 ((uint64_t)irt_toitype(irkey->t) << 32) |
1026 (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey)));
1027 } else {
1028 lua_assert(!irt_isnil(irkey->t));
1029 emit_i8(as, irt_toitype(irkey->t));
1030 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1031 ofs + (int32_t)offsetof(Node, key.it));
1033 #else
1034 l_exit = emit_label(as);
1035 if (irt_isnum(irkey->t)) {
1036 /* Assumes -0.0 is already canonicalized to +0.0. */
1037 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1038 ofs + (int32_t)offsetof(Node, key.u32.lo),
1039 (int32_t)ir_knum(irkey)->u32.lo);
1040 emit_sjcc(as, CC_NE, l_exit);
1041 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1042 ofs + (int32_t)offsetof(Node, key.u32.hi),
1043 (int32_t)ir_knum(irkey)->u32.hi);
1044 } else {
1045 if (!irt_ispri(irkey->t)) {
1046 lua_assert(irt_isgcv(irkey->t));
1047 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1048 ofs + (int32_t)offsetof(Node, key.gcr),
1049 ptr2addr(ir_kgc(irkey)));
1050 emit_sjcc(as, CC_NE, l_exit);
1052 lua_assert(!irt_isnil(irkey->t));
1053 emit_i8(as, irt_toitype(irkey->t));
1054 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1055 ofs + (int32_t)offsetof(Node, key.it));
1057 #endif
1060 static void asm_newref(ASMState *as, IRIns *ir)
1062 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
1063 IRRef args[3];
1064 IRIns *irkey;
1065 Reg tmp;
1066 args[0] = ASMREF_L; /* lua_State *L */
1067 args[1] = ir->op1; /* GCtab *t */
1068 args[2] = ASMREF_TMP1; /* cTValue *key */
1069 asm_setupresult(as, ir, ci); /* TValue * */
1070 asm_gencall(as, ci, args);
1071 tmp = ra_releasetmp(as, ASMREF_TMP1);
1072 irkey = IR(ir->op2);
1073 if (irt_isnum(irkey->t)) {
1074 /* For numbers use the constant itself or a spill slot as a TValue. */
1075 if (irref_isk(ir->op2))
1076 emit_loada(as, tmp, ir_knum(irkey));
1077 else
1078 emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey));
1079 } else {
1080 /* Otherwise use g->tmptv to hold the TValue. */
1081 if (!irref_isk(ir->op2)) {
1082 Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp));
1083 emit_movtomro(as, REX_64IR(irkey, src), tmp, 0);
1084 } else if (!irt_ispri(irkey->t)) {
1085 emit_movmroi(as, tmp, 0, irkey->i);
1087 if (!(LJ_64 && irt_islightud(irkey->t)))
1088 emit_movmroi(as, tmp, 4, irt_toitype(irkey->t));
1089 emit_loada(as, tmp, &J2G(as->J)->tmptv);
1093 static void asm_uref(ASMState *as, IRIns *ir)
1095 /* NYI: Check that UREFO is still open and not aliasing a slot. */
1096 Reg dest = ra_dest(as, ir, RSET_GPR);
1097 if (irref_isk(ir->op1)) {
1098 GCfunc *fn = ir_kfunc(IR(ir->op1));
1099 MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
1100 emit_rma(as, XO_MOV, dest, v);
1101 } else {
1102 Reg uv = ra_scratch(as, RSET_GPR);
1103 Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
1104 if (ir->o == IR_UREFC) {
1105 emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv));
1106 asm_guardcc(as, CC_NE);
1107 emit_i8(as, 1);
1108 emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed));
1109 } else {
1110 emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v));
1112 emit_rmro(as, XO_MOV, uv, func,
1113 (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
1117 static void asm_fref(ASMState *as, IRIns *ir)
1119 Reg dest = ra_dest(as, ir, RSET_GPR);
1120 asm_fusefref(as, ir, RSET_GPR);
1121 emit_mrm(as, XO_LEA, dest, RID_MRM);
1124 static void asm_strref(ASMState *as, IRIns *ir)
1126 Reg dest = ra_dest(as, ir, RSET_GPR);
1127 asm_fusestrref(as, ir, RSET_GPR);
1128 if (as->mrm.base == RID_NONE)
1129 emit_loadi(as, dest, as->mrm.ofs);
1130 else if (as->mrm.base == dest && as->mrm.idx == RID_NONE)
1131 emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs);
1132 else
1133 emit_mrm(as, XO_LEA, dest, RID_MRM);
1136 /* -- Loads and stores ---------------------------------------------------- */
1138 static void asm_fxload(ASMState *as, IRIns *ir)
1140 Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
1141 x86Op xo;
1142 if (ir->o == IR_FLOAD)
1143 asm_fusefref(as, ir, RSET_GPR);
1144 else
1145 asm_fusexref(as, ir->op1, RSET_GPR);
1146 /* ir->op2 is ignored -- unaligned loads are ok on x86. */
1147 switch (irt_type(ir->t)) {
1148 case IRT_I8: xo = XO_MOVSXb; break;
1149 case IRT_U8: xo = XO_MOVZXb; break;
1150 case IRT_I16: xo = XO_MOVSXw; break;
1151 case IRT_U16: xo = XO_MOVZXw; break;
1152 case IRT_NUM: xo = XMM_MOVRM(as); break;
1153 case IRT_FLOAT: xo = XO_MOVSS; break;
1154 default:
1155 if (LJ_64 && irt_is64(ir->t))
1156 dest |= REX_64;
1157 else
1158 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1159 xo = XO_MOV;
1160 break;
1162 emit_mrm(as, xo, dest, RID_MRM);
1165 static void asm_fxstore(ASMState *as, IRIns *ir)
1167 RegSet allow = RSET_GPR;
1168 Reg src = RID_NONE, osrc = RID_NONE;
1169 int32_t k = 0;
1170 /* The IRT_I16/IRT_U16 stores should never be simplified for constant
1171 ** values since mov word [mem], imm16 has a length-changing prefix.
1173 if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) ||
1174 !asm_isk32(as, ir->op2, &k)) {
1175 RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR :
1176 (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
1177 src = osrc = ra_alloc1(as, ir->op2, allow8);
1178 if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */
1179 rset_clear(allow, osrc);
1180 src = ra_scratch(as, allow8);
1182 rset_clear(allow, src);
1184 if (ir->o == IR_FSTORE)
1185 asm_fusefref(as, IR(ir->op1), allow);
1186 else
1187 asm_fusexref(as, ir->op1, allow);
1188 /* ir->op2 is ignored -- unaligned stores are ok on x86. */
1189 if (ra_hasreg(src)) {
1190 x86Op xo;
1191 switch (irt_type(ir->t)) {
1192 case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break;
1193 case IRT_I16: case IRT_U16: xo = XO_MOVtow; break;
1194 case IRT_NUM: xo = XO_MOVSDto; break;
1195 case IRT_FLOAT: xo = XO_MOVSSto; break;
1196 #if LJ_64
1197 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */
1198 #endif
1199 default:
1200 if (LJ_64 && irt_is64(ir->t))
1201 src |= REX_64;
1202 else
1203 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1204 xo = XO_MOVto;
1205 break;
1207 emit_mrm(as, xo, src, RID_MRM);
1208 if (!LJ_64 && src != osrc) {
1209 ra_noweak(as, osrc);
1210 emit_rr(as, XO_MOV, src, osrc);
1212 } else {
1213 if (irt_isi8(ir->t) || irt_isu8(ir->t)) {
1214 emit_i8(as, k);
1215 emit_mrm(as, XO_MOVmib, 0, RID_MRM);
1216 } else {
1217 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) ||
1218 irt_isaddr(ir->t));
1219 emit_i32(as, k);
1220 emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM);
1225 #if LJ_64
1226 static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck)
1228 if (ra_used(ir) || typecheck) {
1229 Reg dest = ra_dest(as, ir, RSET_GPR);
1230 if (typecheck) {
1231 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest));
1232 asm_guardcc(as, CC_NE);
1233 emit_i8(as, -2);
1234 emit_rr(as, XO_ARITHi8, XOg_CMP, tmp);
1235 emit_shifti(as, XOg_SAR|REX_64, tmp, 47);
1236 emit_rr(as, XO_MOV, tmp|REX_64, dest);
1238 return dest;
1239 } else {
1240 return RID_NONE;
1243 #endif
1245 static void asm_ahuvload(ASMState *as, IRIns *ir)
1247 lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
1248 (LJ_DUALNUM && irt_isint(ir->t)));
1249 #if LJ_64
1250 if (irt_islightud(ir->t)) {
1251 Reg dest = asm_load_lightud64(as, ir, 1);
1252 if (ra_hasreg(dest)) {
1253 asm_fuseahuref(as, ir->op1, RSET_GPR);
1254 emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM);
1256 return;
1257 } else
1258 #endif
1259 if (ra_used(ir)) {
1260 RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
1261 Reg dest = ra_dest(as, ir, allow);
1262 asm_fuseahuref(as, ir->op1, RSET_GPR);
1263 emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM);
1264 } else {
1265 asm_fuseahuref(as, ir->op1, RSET_GPR);
1267 /* Always do the type check, even if the load result is unused. */
1268 as->mrm.ofs += 4;
1269 asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
1270 if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
1271 lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
1272 emit_u32(as, LJ_TISNUM);
1273 emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
1274 } else {
1275 emit_i8(as, irt_toitype(ir->t));
1276 emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM);
1280 static void asm_ahustore(ASMState *as, IRIns *ir)
1282 if (irt_isnum(ir->t)) {
1283 Reg src = ra_alloc1(as, ir->op2, RSET_FPR);
1284 asm_fuseahuref(as, ir->op1, RSET_GPR);
1285 emit_mrm(as, XO_MOVSDto, src, RID_MRM);
1286 #if LJ_64
1287 } else if (irt_islightud(ir->t)) {
1288 Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
1289 asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src));
1290 emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM);
1291 #endif
1292 } else {
1293 IRIns *irr = IR(ir->op2);
1294 RegSet allow = RSET_GPR;
1295 Reg src = RID_NONE;
1296 if (!irref_isk(ir->op2)) {
1297 src = ra_alloc1(as, ir->op2, allow);
1298 rset_clear(allow, src);
1300 asm_fuseahuref(as, ir->op1, allow);
1301 if (ra_hasreg(src)) {
1302 emit_mrm(as, XO_MOVto, src, RID_MRM);
1303 } else if (!irt_ispri(irr->t)) {
1304 lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
1305 emit_i32(as, irr->i);
1306 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1308 as->mrm.ofs += 4;
1309 emit_i32(as, (int32_t)irt_toitype(ir->t));
1310 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1314 static void asm_sload(ASMState *as, IRIns *ir)
1316 int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
1317 IRType1 t = ir->t;
1318 Reg base;
1319 lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
1320 lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
1321 lua_assert(LJ_DUALNUM ||
1322 !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
1323 if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
1324 Reg left = ra_scratch(as, RSET_FPR);
1325 asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
1326 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1327 emit_rmro(as, XMM_MOVRM(as), left, base, ofs);
1328 t.irt = IRT_NUM; /* Continue with a regular number type check. */
1329 #if LJ_64
1330 } else if (irt_islightud(t)) {
1331 Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK));
1332 if (ra_hasreg(dest)) {
1333 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1334 emit_rmro(as, XO_MOV, dest|REX_64, base, ofs);
1336 return;
1337 #endif
1338 } else if (ra_used(ir)) {
1339 RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR;
1340 Reg dest = ra_dest(as, ir, allow);
1341 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1342 lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
1343 if ((ir->op2 & IRSLOAD_CONVERT)) {
1344 t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
1345 emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
1346 } else if (irt_isnum(t)) {
1347 emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
1348 } else {
1349 emit_rmro(as, XO_MOV, dest, base, ofs);
1351 } else {
1352 if (!(ir->op2 & IRSLOAD_TYPECHECK))
1353 return; /* No type check: avoid base alloc. */
1354 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1356 if ((ir->op2 & IRSLOAD_TYPECHECK)) {
1357 /* Need type check, even if the load result is unused. */
1358 asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
1359 if (LJ_64 && irt_type(t) >= IRT_NUM) {
1360 lua_assert(irt_isinteger(t) || irt_isnum(t));
1361 emit_u32(as, LJ_TISNUM);
1362 emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
1363 } else {
1364 emit_i8(as, irt_toitype(t));
1365 emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4);
1370 /* -- Allocations --------------------------------------------------------- */
1372 #if LJ_HASFFI
1373 static void asm_cnew(ASMState *as, IRIns *ir)
1375 CTState *cts = ctype_ctsG(J2G(as->J));
1376 CTypeID typeid = (CTypeID)IR(ir->op1)->i;
1377 CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
1378 lj_ctype_size(cts, typeid) : (CTSize)IR(ir->op2)->i;
1379 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
1380 IRRef args[2];
1381 lua_assert(sz != CTSIZE_INVALID);
1383 args[0] = ASMREF_L; /* lua_State *L */
1384 args[1] = ASMREF_TMP1; /* MSize size */
1385 as->gcsteps++;
1386 asm_setupresult(as, ir, ci); /* GCcdata * */
1388 /* Initialize immutable cdata object. */
1389 if (ir->o == IR_CNEWI) {
1390 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
1391 #if LJ_64
1392 Reg r64 = sz == 8 ? REX_64 : 0;
1393 if (irref_isk(ir->op2)) {
1394 IRIns *irk = IR(ir->op2);
1395 uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 :
1396 (uint64_t)(uint32_t)irk->i;
1397 if (sz == 4 || checki32((int64_t)k)) {
1398 emit_i32(as, (int32_t)k);
1399 emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata));
1400 } else {
1401 emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata));
1402 emit_loadu64(as, RID_ECX, k);
1404 } else {
1405 Reg r = ra_alloc1(as, ir->op2, allow);
1406 emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata));
1408 #else
1409 int32_t ofs = sizeof(GCcdata);
1410 if (sz == 8) {
1411 ofs += 4; ir++;
1412 lua_assert(ir->o == IR_HIOP);
1414 do {
1415 if (irref_isk(ir->op2)) {
1416 emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i);
1417 } else {
1418 Reg r = ra_alloc1(as, ir->op2, allow);
1419 emit_movtomro(as, r, RID_RET, ofs);
1420 rset_clear(allow, r);
1422 if (ofs == sizeof(GCcdata)) break;
1423 ofs -= 4; ir--;
1424 } while (1);
1425 #endif
1426 lua_assert(sz == 4 || sz == 8);
1429 /* Combine initialization of marked, gct and typeid. */
1430 emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked));
1431 emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX,
1432 (int32_t)((~LJ_TCDATA<<8)+(typeid<<16)));
1433 emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES);
1434 emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite);
1436 asm_gencall(as, ci, args);
1437 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata)));
1439 #else
1440 #define asm_cnew(as, ir) ((void)0)
1441 #endif
1443 /* -- Write barriers ------------------------------------------------------ */
1445 static void asm_tbar(ASMState *as, IRIns *ir)
1447 Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
1448 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab));
1449 MCLabel l_end = emit_label(as);
1450 emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist));
1451 emit_setgl(as, tab, gc.grayagain);
1452 emit_getgl(as, tmp, gc.grayagain);
1453 emit_i8(as, ~LJ_GC_BLACK);
1454 emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked));
1455 emit_sjcc(as, CC_Z, l_end);
1456 emit_i8(as, LJ_GC_BLACK);
1457 emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked));
1460 static void asm_obar(ASMState *as, IRIns *ir)
1462 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
1463 IRRef args[2];
1464 MCLabel l_end;
1465 Reg obj;
1466 /* No need for other object barriers (yet). */
1467 lua_assert(IR(ir->op1)->o == IR_UREFC);
1468 ra_evictset(as, RSET_SCRATCH);
1469 l_end = emit_label(as);
1470 args[0] = ASMREF_TMP1; /* global_State *g */
1471 args[1] = ir->op1; /* TValue *tv */
1472 asm_gencall(as, ci, args);
1473 emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J));
1474 obj = IR(ir->op1)->r;
1475 emit_sjcc(as, CC_Z, l_end);
1476 emit_i8(as, LJ_GC_WHITES);
1477 if (irref_isk(ir->op2)) {
1478 GCobj *vp = ir_kgc(IR(ir->op2));
1479 emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked);
1480 } else {
1481 Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj));
1482 emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked));
1484 emit_sjcc(as, CC_Z, l_end);
1485 emit_i8(as, LJ_GC_BLACK);
1486 emit_rmro(as, XO_GROUP3b, XOg_TEST, obj,
1487 (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
1490 /* -- FP/int arithmetic and logic operations ------------------------------ */
1492 /* Load reference onto x87 stack. Force a spill to memory if needed. */
1493 static void asm_x87load(ASMState *as, IRRef ref)
1495 IRIns *ir = IR(ref);
1496 if (ir->o == IR_KNUM) {
1497 cTValue *tv = ir_knum(ir);
1498 if (tvispzero(tv)) /* Use fldz only for +0. */
1499 emit_x87op(as, XI_FLDZ);
1500 else if (tvispone(tv))
1501 emit_x87op(as, XI_FLD1);
1502 else
1503 emit_rma(as, XO_FLDq, XOg_FLDq, tv);
1504 } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) &&
1505 !irref_isk(ir->op1) && mayfuse(as, ir->op1)) {
1506 IRIns *iri = IR(ir->op1);
1507 emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri));
1508 } else {
1509 emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY));
1513 /* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */
1514 static int fpmjoin_pow(ASMState *as, IRIns *ir)
1516 IRIns *irp = IR(ir->op1);
1517 if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
1518 IRIns *irpp = IR(irp->op1);
1519 if (irpp == ir-2 && irpp->o == IR_FPMATH &&
1520 irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
1521 /* The modified regs must match with the *.dasc implementation. */
1522 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
1523 IRIns *irx;
1524 if (ra_hasreg(ir->r))
1525 rset_clear(drop, ir->r); /* Dest reg handled below. */
1526 ra_evictset(as, drop);
1527 ra_destreg(as, ir, RID_XMM0);
1528 emit_call(as, lj_vm_pow_sse);
1529 irx = IR(irpp->op1);
1530 if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1)
1531 irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */
1532 ra_left(as, RID_XMM0, irpp->op1);
1533 ra_left(as, RID_XMM1, irp->op2);
1534 return 1;
1537 return 0;
1540 static void asm_fpmath(ASMState *as, IRIns *ir)
1542 IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER;
1543 if (fpm == IRFPM_SQRT) {
1544 Reg dest = ra_dest(as, ir, RSET_FPR);
1545 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1546 emit_mrm(as, XO_SQRTSD, dest, left);
1547 } else if (fpm <= IRFPM_TRUNC) {
1548 if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */
1549 Reg dest = ra_dest(as, ir, RSET_FPR);
1550 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1551 /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op.
1552 ** Let's pretend it's a 3-byte opcode, and compensate afterwards.
1553 ** This is atrocious, but the alternatives are much worse.
1555 /* Round down/up/trunc == 1001/1010/1011. */
1556 emit_i8(as, 0x09 + fpm);
1557 emit_mrm(as, XO_ROUNDSD, dest, left);
1558 if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) {
1559 as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */
1561 *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */
1562 } else { /* Call helper functions for SSE2 variant. */
1563 /* The modified regs must match with the *.dasc implementation. */
1564 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
1565 if (ra_hasreg(ir->r))
1566 rset_clear(drop, ir->r); /* Dest reg handled below. */
1567 ra_evictset(as, drop);
1568 ra_destreg(as, ir, RID_XMM0);
1569 emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse :
1570 fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse);
1571 ra_left(as, RID_XMM0, ir->op1);
1573 } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) {
1574 /* Rejoined to pow(). */
1575 } else { /* Handle x87 ops. */
1576 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
1577 Reg dest = ir->r;
1578 if (ra_hasreg(dest)) {
1579 ra_free(as, dest);
1580 ra_modified(as, dest);
1581 emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs);
1583 emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs);
1584 switch (fpm) { /* st0 = lj_vm_*(st0) */
1585 case IRFPM_EXP: emit_call(as, lj_vm_exp_x87); break;
1586 case IRFPM_EXP2: emit_call(as, lj_vm_exp2_x87); break;
1587 case IRFPM_SIN: emit_x87op(as, XI_FSIN); break;
1588 case IRFPM_COS: emit_x87op(as, XI_FCOS); break;
1589 case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break;
1590 case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10:
1591 /* Note: the use of fyl2xp1 would be pointless here. When computing
1592 ** log(1.0+eps) the precision is already lost after 1.0 is added.
1593 ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense.
1595 emit_x87op(as, XI_FYL2X); break;
1596 case IRFPM_OTHER:
1597 switch (ir->o) {
1598 case IR_ATAN2:
1599 emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break;
1600 case IR_LDEXP:
1601 emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break;
1602 default: lua_assert(0); break;
1604 break;
1605 default: lua_assert(0); break;
1607 asm_x87load(as, ir->op1);
1608 switch (fpm) {
1609 case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break;
1610 case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break;
1611 case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break;
1612 case IRFPM_OTHER:
1613 if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2);
1614 break;
1615 default: break;
1620 static void asm_fppowi(ASMState *as, IRIns *ir)
1622 /* The modified regs must match with the *.dasc implementation. */
1623 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
1624 if (ra_hasreg(ir->r))
1625 rset_clear(drop, ir->r); /* Dest reg handled below. */
1626 ra_evictset(as, drop);
1627 ra_destreg(as, ir, RID_XMM0);
1628 emit_call(as, lj_vm_powi_sse);
1629 ra_left(as, RID_XMM0, ir->op1);
1630 ra_left(as, RID_EAX, ir->op2);
1633 #if LJ_64 && LJ_HASFFI
1634 static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id)
1636 const CCallInfo *ci = &lj_ir_callinfo[id];
1637 IRRef args[2];
1638 args[0] = ir->op1;
1639 args[1] = ir->op2;
1640 asm_setupresult(as, ir, ci);
1641 asm_gencall(as, ci, args);
1643 #endif
1645 static void asm_intmod(ASMState *as, IRIns *ir)
1647 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_vm_modi];
1648 IRRef args[2];
1649 args[0] = ir->op1;
1650 args[1] = ir->op2;
1651 asm_setupresult(as, ir, ci);
1652 asm_gencall(as, ci, args);
1655 static int asm_swapops(ASMState *as, IRIns *ir)
1657 IRIns *irl = IR(ir->op1);
1658 IRIns *irr = IR(ir->op2);
1659 lua_assert(ra_noreg(irr->r));
1660 if (!irm_iscomm(lj_ir_mode[ir->o]))
1661 return 0; /* Can't swap non-commutative operations. */
1662 if (irref_isk(ir->op2))
1663 return 0; /* Don't swap constants to the left. */
1664 if (ra_hasreg(irl->r))
1665 return 1; /* Swap if left already has a register. */
1666 if (ra_samehint(ir->r, irr->r))
1667 return 1; /* Swap if dest and right have matching hints. */
1668 if (as->curins > as->loopref) { /* In variant part? */
1669 if (ir->op2 < as->loopref && !irt_isphi(irr->t))
1670 return 0; /* Keep invariants on the right. */
1671 if (ir->op1 < as->loopref && !irt_isphi(irl->t))
1672 return 1; /* Swap invariants to the right. */
1674 if (opisfusableload(irl->o))
1675 return 1; /* Swap fusable loads to the right. */
1676 return 0; /* Otherwise don't swap. */
1679 static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo)
1681 IRRef lref = ir->op1;
1682 IRRef rref = ir->op2;
1683 RegSet allow = RSET_FPR;
1684 Reg dest;
1685 Reg right = IR(rref)->r;
1686 if (ra_hasreg(right)) {
1687 rset_clear(allow, right);
1688 ra_noweak(as, right);
1690 dest = ra_dest(as, ir, allow);
1691 if (lref == rref) {
1692 right = dest;
1693 } else if (ra_noreg(right)) {
1694 if (asm_swapops(as, ir)) {
1695 IRRef tmp = lref; lref = rref; rref = tmp;
1697 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1699 emit_mrm(as, xo, dest, right);
1700 ra_left(as, dest, lref);
1703 static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa)
1705 IRRef lref = ir->op1;
1706 IRRef rref = ir->op2;
1707 RegSet allow = RSET_GPR;
1708 Reg dest, right;
1709 int32_t k = 0;
1710 if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */
1711 as->flagmcp = NULL;
1712 as->mcp += (LJ_64 && *as->mcp != XI_TEST) ? 3 : 2;
1714 right = IR(rref)->r;
1715 if (ra_hasreg(right)) {
1716 rset_clear(allow, right);
1717 ra_noweak(as, right);
1719 dest = ra_dest(as, ir, allow);
1720 if (lref == rref) {
1721 right = dest;
1722 } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) {
1723 if (asm_swapops(as, ir)) {
1724 IRRef tmp = lref; lref = rref; rref = tmp;
1726 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1728 if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */
1729 asm_guardcc(as, CC_O);
1730 if (xa != XOg_X_IMUL) {
1731 if (ra_hasreg(right))
1732 emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right);
1733 else
1734 emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k);
1735 } else if (ra_hasreg(right)) { /* IMUL r, mrm. */
1736 emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right);
1737 } else { /* IMUL r, r, k. */
1738 /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */
1739 Reg left = asm_fuseload(as, lref, RSET_GPR);
1740 x86Op xo;
1741 if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8;
1742 } else { emit_i32(as, k); xo = XO_IMULi; }
1743 emit_mrm(as, xo, REX_64IR(ir, dest), left);
1744 return;
1746 ra_left(as, dest, lref);
1749 /* LEA is really a 4-operand ADD with an independent destination register,
1750 ** up to two source registers and an immediate. One register can be scaled
1751 ** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several
1752 ** instructions.
1754 ** Currently only a few common cases are supported:
1755 ** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated
1756 ** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b
1757 ** - Right ADD fusion: y = a+(b+k)
1758 ** The ommited variants have already been reduced by FOLD.
1760 ** There are more fusion opportunities, like gathering shifts or joining
1761 ** common references. But these are probably not worth the trouble, since
1762 ** array indexing is not decomposed and already makes use of all fields
1763 ** of the ModRM operand.
1765 static int asm_lea(ASMState *as, IRIns *ir)
1767 IRIns *irl = IR(ir->op1);
1768 IRIns *irr = IR(ir->op2);
1769 RegSet allow = RSET_GPR;
1770 Reg dest;
1771 as->mrm.base = as->mrm.idx = RID_NONE;
1772 as->mrm.scale = XM_SCALE1;
1773 as->mrm.ofs = 0;
1774 if (ra_hasreg(irl->r)) {
1775 rset_clear(allow, irl->r);
1776 ra_noweak(as, irl->r);
1777 as->mrm.base = irl->r;
1778 if (irref_isk(ir->op2) || ra_hasreg(irr->r)) {
1779 /* The PHI renaming logic does a better job in some cases. */
1780 if (ra_hasreg(ir->r) &&
1781 ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) ||
1782 (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2)))
1783 return 0;
1784 if (irref_isk(ir->op2)) {
1785 as->mrm.ofs = irr->i;
1786 } else {
1787 rset_clear(allow, irr->r);
1788 ra_noweak(as, irr->r);
1789 as->mrm.idx = irr->r;
1791 } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) &&
1792 irref_isk(irr->op2)) {
1793 Reg idx = ra_alloc1(as, irr->op1, allow);
1794 rset_clear(allow, idx);
1795 as->mrm.idx = (uint8_t)idx;
1796 as->mrm.ofs = IR(irr->op2)->i;
1797 } else {
1798 return 0;
1800 } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) &&
1801 (irref_isk(ir->op2) || irref_isk(irl->op2))) {
1802 Reg idx, base = ra_alloc1(as, irl->op1, allow);
1803 rset_clear(allow, base);
1804 as->mrm.base = (uint8_t)base;
1805 if (irref_isk(ir->op2)) {
1806 as->mrm.ofs = irr->i;
1807 idx = ra_alloc1(as, irl->op2, allow);
1808 } else {
1809 as->mrm.ofs = IR(irl->op2)->i;
1810 idx = ra_alloc1(as, ir->op2, allow);
1812 rset_clear(allow, idx);
1813 as->mrm.idx = (uint8_t)idx;
1814 } else {
1815 return 0;
1817 dest = ra_dest(as, ir, allow);
1818 emit_mrm(as, XO_LEA, dest, RID_MRM);
1819 return 1; /* Success. */
1822 static void asm_add(ASMState *as, IRIns *ir)
1824 if (irt_isnum(ir->t))
1825 asm_fparith(as, ir, XO_ADDSD);
1826 else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp ||
1827 irt_is64(ir->t) || !asm_lea(as, ir))
1828 asm_intarith(as, ir, XOg_ADD);
1831 static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg)
1833 Reg dest = ra_dest(as, ir, RSET_GPR);
1834 emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest);
1835 ra_left(as, dest, ir->op1);
1838 static void asm_min_max(ASMState *as, IRIns *ir, int cc)
1840 Reg right, dest = ra_dest(as, ir, RSET_GPR);
1841 IRRef lref = ir->op1, rref = ir->op2;
1842 if (irref_isk(rref)) { lref = rref; rref = ir->op1; }
1843 right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest));
1844 emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right);
1845 emit_rr(as, XO_CMP, REX_64IR(ir, dest), right);
1846 ra_left(as, dest, lref);
1849 static void asm_bitswap(ASMState *as, IRIns *ir)
1851 Reg dest = ra_dest(as, ir, RSET_GPR);
1852 as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24),
1853 REX_64IR(ir, dest), 0, 0, as->mcp, 1);
1854 ra_left(as, dest, ir->op1);
1857 static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs)
1859 IRRef rref = ir->op2;
1860 IRIns *irr = IR(rref);
1861 Reg dest;
1862 if (irref_isk(rref)) { /* Constant shifts. */
1863 int shift;
1864 dest = ra_dest(as, ir, RSET_GPR);
1865 shift = irr->i & (irt_is64(ir->t) ? 63 : 31);
1866 switch (shift) {
1867 case 0: break;
1868 case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break;
1869 default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break;
1871 } else { /* Variable shifts implicitly use register cl (i.e. ecx). */
1872 Reg right;
1873 dest = ra_dest(as, ir, rset_exclude(RSET_GPR, RID_ECX));
1874 if (dest == RID_ECX) {
1875 dest = ra_scratch(as, rset_exclude(RSET_GPR, RID_ECX));
1876 emit_rr(as, XO_MOV, RID_ECX, dest);
1878 right = irr->r;
1879 if (ra_noreg(right))
1880 right = ra_allocref(as, rref, RID2RSET(RID_ECX));
1881 else if (right != RID_ECX)
1882 ra_scratch(as, RID2RSET(RID_ECX));
1883 emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest);
1884 if (right != RID_ECX) {
1885 ra_noweak(as, right);
1886 emit_rr(as, XO_MOV, RID_ECX, right);
1889 ra_left(as, dest, ir->op1);
1891 ** Note: avoid using the flags resulting from a shift or rotate!
1892 ** All of them cause a partial flag stall, except for r,1 shifts
1893 ** (but not rotates). And a shift count of 0 leaves the flags unmodified.
1897 /* -- Comparisons --------------------------------------------------------- */
1899 /* Virtual flags for unordered FP comparisons. */
1900 #define VCC_U 0x1000 /* Unordered. */
1901 #define VCC_P 0x2000 /* Needs extra CC_P branch. */
1902 #define VCC_S 0x4000 /* Swap avoids CC_P branch. */
1903 #define VCC_PS (VCC_P|VCC_S)
1905 /* Map of comparisons to flags. ORDER IR. */
1906 #define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf))
1907 static const uint16_t asm_compmap[IR_ABC+1] = {
1908 /* signed non-eq unsigned flags */
1909 /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS),
1910 /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0),
1911 /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS),
1912 /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0),
1913 /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U),
1914 /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS),
1915 /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U),
1916 /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS),
1917 /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P),
1918 /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P),
1919 /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */
1922 /* FP and integer comparisons. */
1923 static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc)
1925 if (irt_isnum(ir->t)) {
1926 IRRef lref = ir->op1;
1927 IRRef rref = ir->op2;
1928 Reg left, right;
1929 MCLabel l_around;
1931 ** An extra CC_P branch is required to preserve ordered/unordered
1932 ** semantics for FP comparisons. This can be avoided by swapping
1933 ** the operands and inverting the condition (except for EQ and UNE).
1934 ** So always try to swap if possible.
1936 ** Another option would be to swap operands to achieve better memory
1937 ** operand fusion. But it's unlikely that this outweighs the cost
1938 ** of the extra branches.
1940 if (cc & VCC_S) { /* Swap? */
1941 IRRef tmp = lref; lref = rref; rref = tmp;
1942 cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */
1944 left = ra_alloc1(as, lref, RSET_FPR);
1945 right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left));
1946 l_around = emit_label(as);
1947 asm_guardcc(as, cc >> 4);
1948 if (cc & VCC_P) { /* Extra CC_P branch required? */
1949 if (!(cc & VCC_U)) {
1950 asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */
1951 } else if (l_around != as->invmcp) {
1952 emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */
1953 } else {
1954 /* Patched to mcloop by asm_loop_fixup. */
1955 as->loopinv = 2;
1956 if (as->realign)
1957 emit_sjcc(as, CC_P, as->mcp);
1958 else
1959 emit_jcc(as, CC_P, as->mcp);
1962 emit_mrm(as, XO_UCOMISD, left, right);
1963 } else {
1964 IRRef lref = ir->op1, rref = ir->op2;
1965 IROp leftop = (IROp)(IR(lref)->o);
1966 Reg r64 = REX_64IR(ir, 0);
1967 int32_t imm = 0;
1968 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isaddr(ir->t));
1969 /* Swap constants (only for ABC) and fusable loads to the right. */
1970 if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) {
1971 if ((cc & 0xc) == 0xc) cc ^= 3; /* L <-> G, LE <-> GE */
1972 else if ((cc & 0xa) == 0x2) cc ^= 5; /* A <-> B, AE <-> BE */
1973 lref = ir->op2; rref = ir->op1;
1975 if (asm_isk32(as, rref, &imm)) {
1976 IRIns *irl = IR(lref);
1977 /* Check wether we can use test ins. Not for unsigned, since CF=0. */
1978 int usetest = (imm == 0 && (cc & 0xa) != 0x2);
1979 if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) {
1980 /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */
1981 Reg right, left = RID_NONE;
1982 RegSet allow = RSET_GPR;
1983 if (!asm_isk32(as, irl->op2, &imm)) {
1984 left = ra_alloc1(as, irl->op2, allow);
1985 rset_clear(allow, left);
1986 } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */
1987 IRIns *irll = IR(irl->op1);
1988 if (opisfusableload((IROp)irll->o) &&
1989 (irt_isi8(irll->t) || irt_isu8(irll->t))) {
1990 IRType1 origt = irll->t; /* Temporarily flip types. */
1991 irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT;
1992 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
1993 right = asm_fuseload(as, irl->op1, RSET_GPR);
1994 as->curins++;
1995 irll->t = origt;
1996 if (right != RID_MRM) goto test_nofuse;
1997 /* Fusion succeeded, emit test byte mrm, imm8. */
1998 asm_guardcc(as, cc);
1999 emit_i8(as, (imm & 0xff));
2000 emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM);
2001 return;
2004 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2005 right = asm_fuseload(as, irl->op1, allow);
2006 as->curins++; /* Undo the above. */
2007 test_nofuse:
2008 asm_guardcc(as, cc);
2009 if (ra_noreg(left)) {
2010 emit_i32(as, imm);
2011 emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right);
2012 } else {
2013 emit_mrm(as, XO_TEST, r64 + left, right);
2015 } else {
2016 Reg left;
2017 if (opisfusableload((IROp)irl->o) &&
2018 ((irt_isu8(irl->t) && checku8(imm)) ||
2019 ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) ||
2020 (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) {
2021 /* Only the IRT_INT case is fused by asm_fuseload.
2022 ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads
2023 ** are handled here.
2024 ** Note that cmp word [mem], imm16 should not be generated,
2025 ** since it has a length-changing prefix. Compares of a word
2026 ** against a sign-extended imm8 are ok, however.
2028 IRType1 origt = irl->t; /* Temporarily flip types. */
2029 irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT;
2030 left = asm_fuseload(as, lref, RSET_GPR);
2031 irl->t = origt;
2032 if (left == RID_MRM) { /* Fusion succeeded? */
2033 if (irt_isu8(irl->t) || irt_isu16(irl->t))
2034 cc >>= 4; /* Need unsigned compare. */
2035 asm_guardcc(as, cc);
2036 emit_i8(as, imm);
2037 emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ?
2038 XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM);
2039 return;
2040 } /* Otherwise handle register case as usual. */
2041 } else {
2042 left = asm_fuseload(as, lref, RSET_GPR);
2044 asm_guardcc(as, cc);
2045 if (usetest && left != RID_MRM) {
2046 /* Use test r,r instead of cmp r,0. */
2047 emit_rr(as, XO_TEST, r64 + left, left);
2048 if (irl+1 == ir) /* Referencing previous ins? */
2049 as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */
2050 } else {
2051 emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm);
2054 } else {
2055 Reg left = ra_alloc1(as, lref, RSET_GPR);
2056 Reg right = asm_fuseload(as, rref, rset_exclude(RSET_GPR, left));
2057 asm_guardcc(as, cc);
2058 emit_mrm(as, XO_CMP, r64 + left, right);
2063 #if LJ_32 && LJ_HASFFI
2064 /* 64 bit integer comparisons in 32 bit mode. */
2065 static void asm_comp_int64(ASMState *as, IRIns *ir)
2067 uint32_t cc = asm_compmap[(ir-1)->o];
2068 RegSet allow = RSET_GPR;
2069 Reg lefthi = RID_NONE, leftlo = RID_NONE;
2070 Reg righthi = RID_NONE, rightlo = RID_NONE;
2071 MCLabel l_around;
2072 x86ModRM mrm;
2074 as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */
2076 /* Allocate/fuse hiword operands. */
2077 if (irref_isk(ir->op2)) {
2078 lefthi = asm_fuseload(as, ir->op1, allow);
2079 } else {
2080 lefthi = ra_alloc1(as, ir->op1, allow);
2081 righthi = asm_fuseload(as, ir->op2, allow);
2082 if (righthi == RID_MRM) {
2083 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2084 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2085 } else {
2086 rset_clear(allow, righthi);
2089 mrm = as->mrm; /* Save state for hiword instruction. */
2091 /* Allocate/fuse loword operands. */
2092 if (irref_isk((ir-1)->op2)) {
2093 leftlo = asm_fuseload(as, (ir-1)->op1, allow);
2094 } else {
2095 leftlo = ra_alloc1(as, (ir-1)->op1, allow);
2096 rightlo = asm_fuseload(as, (ir-1)->op2, allow);
2097 if (rightlo == RID_MRM) {
2098 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2099 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2100 } else {
2101 rset_clear(allow, rightlo);
2105 /* All register allocations must be performed _before_ this point. */
2106 l_around = emit_label(as);
2107 as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */
2109 /* Loword comparison and branch. */
2110 asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */
2111 if (ra_noreg(rightlo)) {
2112 int32_t imm = IR((ir-1)->op2)->i;
2113 if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM)
2114 emit_rr(as, XO_TEST, leftlo, leftlo);
2115 else
2116 emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm);
2117 } else {
2118 emit_mrm(as, XO_CMP, leftlo, rightlo);
2121 /* Hiword comparison and branches. */
2122 if ((cc & 15) != CC_NE)
2123 emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */
2124 if ((cc & 15) != CC_E)
2125 asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */
2126 as->mrm = mrm; /* Restore state. */
2127 if (ra_noreg(righthi)) {
2128 int32_t imm = IR(ir->op2)->i;
2129 if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM)
2130 emit_rr(as, XO_TEST, lefthi, lefthi);
2131 else
2132 emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm);
2133 } else {
2134 emit_mrm(as, XO_CMP, lefthi, righthi);
2137 #endif
2139 /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
2141 /* Hiword op of a split 64 bit op. Previous op must be the loword op. */
2142 static void asm_hiop(ASMState *as, IRIns *ir)
2144 #if LJ_32 && LJ_HASFFI
2145 /* HIOP is marked as a store because it needs its own DCE logic. */
2146 int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
2147 if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
2148 if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
2149 if (usehi || uselo) {
2150 if (irt_isfp(ir->t))
2151 asm_conv_fp_int64(as, ir);
2152 else
2153 asm_conv_int64_fp(as, ir);
2155 as->curins--; /* Always skip the CONV. */
2156 return;
2157 } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
2158 asm_comp_int64(as, ir);
2159 return;
2161 if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
2162 switch ((ir-1)->o) {
2163 case IR_ADD:
2164 asm_intarith(as, ir, uselo ? XOg_ADC : XOg_ADD);
2165 break;
2166 case IR_SUB:
2167 asm_intarith(as, ir, uselo ? XOg_SBB : XOg_SUB);
2168 break;
2169 case IR_NEG: {
2170 Reg dest = ra_dest(as, ir, RSET_GPR);
2171 emit_rr(as, XO_GROUP3, XOg_NEG, dest);
2172 if (uselo) {
2173 emit_i8(as, 0);
2174 emit_rr(as, XO_ARITHi8, XOg_ADC, dest);
2176 ra_left(as, dest, ir->op1);
2177 break;
2179 case IR_CALLN:
2180 case IR_CALLXS:
2181 ra_destreg(as, ir, RID_RETHI);
2182 if (!uselo)
2183 ra_allocref(as, ir->op1, RID2RSET(RID_RET)); /* Mark call as used. */
2184 break;
2185 case IR_CNEWI:
2186 /* Nothing to do here. Handled by CNEWI itself. */
2187 break;
2188 default: lua_assert(0); break;
2190 #else
2191 UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */
2192 #endif
2195 /* -- Stack handling ------------------------------------------------------ */
2197 /* Check Lua stack size for overflow. Use exit handler as fallback. */
2198 static void asm_stack_check(ASMState *as, BCReg topslot,
2199 IRIns *irp, RegSet allow, ExitNo exitno)
2201 /* Try to get an unused temp. register, otherwise spill/restore eax. */
2202 Reg pbase = irp ? irp->r : RID_BASE;
2203 Reg r = allow ? rset_pickbot(allow) : RID_EAX;
2204 emit_jcc(as, CC_B, exitstub_addr(as->J, exitno));
2205 if (allow == RSET_EMPTY) /* Restore temp. register. */
2206 emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0);
2207 else
2208 ra_modified(as, r);
2209 emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot));
2210 if (ra_hasreg(pbase) && pbase != r)
2211 emit_rr(as, XO_ARITH(XOg_SUB), r, pbase);
2212 else
2213 emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE,
2214 ptr2addr(&J2G(as->J)->jit_base));
2215 emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack));
2216 emit_getgl(as, r, jit_L);
2217 if (allow == RSET_EMPTY) /* Spill temp. register. */
2218 emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0);
2221 /* Restore Lua stack from on-trace state. */
2222 static void asm_stack_restore(ASMState *as, SnapShot *snap)
2224 SnapEntry *map = &as->T->snapmap[snap->mapofs];
2225 MSize n, nent = snap->nent;
2226 SnapEntry *flinks = map + nent + snap->depth;
2227 /* Store the value of all modified slots to the Lua stack. */
2228 for (n = 0; n < nent; n++) {
2229 SnapEntry sn = map[n];
2230 BCReg s = snap_slot(sn);
2231 int32_t ofs = 8*((int32_t)s-1);
2232 IRRef ref = snap_ref(sn);
2233 IRIns *ir = IR(ref);
2234 if ((sn & SNAP_NORESTORE))
2235 continue;
2236 if (irt_isnum(ir->t)) {
2237 Reg src = ra_alloc1(as, ref, RSET_FPR);
2238 emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
2239 } else {
2240 lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
2241 (LJ_DUALNUM && irt_isinteger(ir->t)));
2242 if (!irref_isk(ref)) {
2243 Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
2244 emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
2245 } else if (!irt_ispri(ir->t)) {
2246 emit_movmroi(as, RID_BASE, ofs, ir->i);
2248 if ((sn & (SNAP_CONT|SNAP_FRAME))) {
2249 if (s != 0) /* Do not overwrite link to previous frame. */
2250 emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--));
2251 } else {
2252 if (!(LJ_64 && irt_islightud(ir->t)))
2253 emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t));
2256 checkmclim(as);
2258 lua_assert(map + nent == flinks);
2261 /* -- GC handling --------------------------------------------------------- */
2263 /* Check GC threshold and do one or more GC steps. */
2264 static void asm_gc_check(ASMState *as)
2266 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
2267 IRRef args[2];
2268 MCLabel l_end;
2269 Reg tmp;
2270 ra_evictset(as, RSET_SCRATCH);
2271 l_end = emit_label(as);
2272 /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
2273 asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
2274 emit_rr(as, XO_TEST, RID_RET, RID_RET);
2275 args[0] = ASMREF_TMP1; /* global_State *g */
2276 args[1] = ASMREF_TMP2; /* MSize steps */
2277 asm_gencall(as, ci, args);
2278 tmp = ra_releasetmp(as, ASMREF_TMP1);
2279 emit_loada(as, tmp, J2G(as->J));
2280 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), (int32_t)as->gcsteps);
2281 /* Jump around GC step if GC total < GC threshold. */
2282 emit_sjcc(as, CC_B, l_end);
2283 emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold);
2284 emit_getgl(as, tmp, gc.total);
2285 as->gcsteps = 0;
2286 checkmclim(as);
2289 /* -- Loop handling ------------------------------------------------------- */
2291 /* Fixup the loop branch. */
2292 static void asm_loop_fixup(ASMState *as)
2294 MCode *p = as->mctop;
2295 MCode *target = as->mcp;
2296 if (as->realign) { /* Realigned loops use short jumps. */
2297 as->realign = NULL; /* Stop another retry. */
2298 lua_assert(((intptr_t)target & 15) == 0);
2299 if (as->loopinv) { /* Inverted loop branch? */
2300 p -= 5;
2301 p[0] = XI_JMP;
2302 lua_assert(target - p >= -128);
2303 p[-1] = (MCode)(target - p); /* Patch sjcc. */
2304 if (as->loopinv == 2)
2305 p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */
2306 } else {
2307 lua_assert(target - p >= -128);
2308 p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */
2309 p[-2] = XI_JMPs;
2311 } else {
2312 MCode *newloop;
2313 p[-5] = XI_JMP;
2314 if (as->loopinv) { /* Inverted loop branch? */
2315 /* asm_guardcc already inverted the jcc and patched the jmp. */
2316 p -= 5;
2317 newloop = target+4;
2318 *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */
2319 if (as->loopinv == 2) {
2320 *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */
2321 newloop = target+8;
2323 } else { /* Otherwise just patch jmp. */
2324 *(int32_t *)(p-4) = (int32_t)(target - p);
2325 newloop = target+3;
2327 /* Realign small loops and shorten the loop branch. */
2328 if (newloop >= p - 128) {
2329 as->realign = newloop; /* Force a retry and remember alignment. */
2330 as->curins = as->stopins; /* Abort asm_trace now. */
2331 as->T->nins = as->orignins; /* Remove any added renames. */
2336 /* -- Head of trace ------------------------------------------------------- */
2338 /* Coalesce BASE register for a root trace. */
2339 static void asm_head_root_base(ASMState *as)
2341 IRIns *ir = IR(REF_BASE);
2342 Reg r = ir->r;
2343 if (ra_hasreg(r)) {
2344 ra_free(as, r);
2345 if (rset_test(as->modset, r))
2346 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2347 if (r != RID_BASE)
2348 emit_rr(as, XO_MOV, r, RID_BASE);
2352 /* Coalesce or reload BASE register for a side trace. */
2353 static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
2355 IRIns *ir = IR(REF_BASE);
2356 Reg r = ir->r;
2357 if (ra_hasreg(r)) {
2358 ra_free(as, r);
2359 if (rset_test(as->modset, r))
2360 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2361 if (irp->r == r) {
2362 rset_clear(allow, r); /* Mark same BASE register as coalesced. */
2363 } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) {
2364 rset_clear(allow, irp->r);
2365 emit_rr(as, XO_MOV, r, irp->r); /* Move from coalesced parent reg. */
2366 } else {
2367 emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
2370 return allow;
2373 /* -- Tail of trace ------------------------------------------------------- */
2375 /* Fixup the tail code. */
2376 static void asm_tail_fixup(ASMState *as, TraceNo lnk)
2378 /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */
2379 MCode *p = as->mctop;
2380 MCode *target, *q;
2381 int32_t spadj = as->T->spadjust;
2382 if (spadj == 0) {
2383 p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
2384 } else {
2385 MCode *p1;
2386 /* Patch stack adjustment. */
2387 if (checki8(spadj)) {
2388 p -= 3;
2389 p1 = p-6;
2390 *p1 = (MCode)spadj;
2391 } else {
2392 p1 = p-9;
2393 *(int32_t *)p1 = spadj;
2395 if ((as->flags & JIT_F_LEA_AGU)) {
2396 #if LJ_64
2397 p1[-4] = 0x48;
2398 #endif
2399 p1[-3] = (MCode)XI_LEA;
2400 p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP);
2401 p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
2402 } else {
2403 #if LJ_64
2404 p1[-3] = 0x48;
2405 #endif
2406 p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi);
2407 p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP);
2410 /* Patch exit branch. */
2411 target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp;
2412 *(int32_t *)(p-4) = jmprel(p, target);
2413 p[-5] = XI_JMP;
2414 /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */
2415 for (q = as->mctop-1; q >= p; q--)
2416 *q = XI_NOP;
2417 as->mctop = p;
2420 /* Prepare tail of code. */
2421 static void asm_tail_prep(ASMState *as)
2423 MCode *p = as->mctop;
2424 /* Realign and leave room for backwards loop branch or exit branch. */
2425 if (as->realign) {
2426 int i = ((int)(intptr_t)as->realign) & 15;
2427 /* Fill unused mcode tail with NOPs to make the prefetcher happy. */
2428 while (i-- > 0)
2429 *--p = XI_NOP;
2430 as->mctop = p;
2431 p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */
2432 } else {
2433 p -= 5; /* Space for exit branch (near jmp). */
2435 if (as->loopref) {
2436 as->invmcp = as->mcp = p;
2437 } else {
2438 /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */
2439 as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0));
2440 as->invmcp = NULL;
2444 /* -- Instruction dispatch ------------------------------------------------ */
2446 /* Assemble a single instruction. */
2447 static void asm_ir(ASMState *as, IRIns *ir)
2449 switch ((IROp)ir->o) {
2450 /* Miscellaneous ops. */
2451 case IR_LOOP: asm_loop(as); break;
2452 case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
2453 case IR_USE:
2454 ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
2455 case IR_PHI: asm_phi(as, ir); break;
2456 case IR_HIOP: asm_hiop(as, ir); break;
2458 /* Guarded assertions. */
2459 case IR_LT: case IR_GE: case IR_LE: case IR_GT:
2460 case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
2461 case IR_EQ: case IR_NE: case IR_ABC:
2462 asm_comp(as, ir, asm_compmap[ir->o]);
2463 break;
2465 case IR_RETF: asm_retf(as, ir); break;
2467 /* Bit ops. */
2468 case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break;
2469 case IR_BSWAP: asm_bitswap(as, ir); break;
2471 case IR_BAND: asm_intarith(as, ir, XOg_AND); break;
2472 case IR_BOR: asm_intarith(as, ir, XOg_OR); break;
2473 case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break;
2475 case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break;
2476 case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break;
2477 case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break;
2478 case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break;
2479 case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break;
2481 /* Arithmetic ops. */
2482 case IR_ADD: asm_add(as, ir); break;
2483 case IR_SUB:
2484 if (irt_isnum(ir->t))
2485 asm_fparith(as, ir, XO_SUBSD);
2486 else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */
2487 asm_intarith(as, ir, XOg_SUB);
2488 break;
2489 case IR_MUL:
2490 if (irt_isnum(ir->t))
2491 asm_fparith(as, ir, XO_MULSD);
2492 else
2493 asm_intarith(as, ir, XOg_X_IMUL);
2494 break;
2495 case IR_DIV:
2496 #if LJ_64 && LJ_HASFFI
2497 if (!irt_isnum(ir->t))
2498 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
2499 IRCALL_lj_carith_divu64);
2500 else
2501 #endif
2502 asm_fparith(as, ir, XO_DIVSD);
2503 break;
2504 case IR_MOD:
2505 #if LJ_64 && LJ_HASFFI
2506 if (!irt_isint(ir->t))
2507 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
2508 IRCALL_lj_carith_modu64);
2509 else
2510 #endif
2511 asm_intmod(as, ir);
2512 break;
2514 case IR_NEG:
2515 if (irt_isnum(ir->t))
2516 asm_fparith(as, ir, XO_XORPS);
2517 else
2518 asm_neg_not(as, ir, XOg_NEG);
2519 break;
2520 case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break;
2522 case IR_MIN:
2523 if (irt_isnum(ir->t))
2524 asm_fparith(as, ir, XO_MINSD);
2525 else
2526 asm_min_max(as, ir, CC_G);
2527 break;
2528 case IR_MAX:
2529 if (irt_isnum(ir->t))
2530 asm_fparith(as, ir, XO_MAXSD);
2531 else
2532 asm_min_max(as, ir, CC_L);
2533 break;
2535 case IR_FPMATH: case IR_ATAN2: case IR_LDEXP:
2536 asm_fpmath(as, ir);
2537 break;
2538 case IR_POW:
2539 #if LJ_64 && LJ_HASFFI
2540 if (!irt_isnum(ir->t))
2541 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
2542 IRCALL_lj_carith_powu64);
2543 else
2544 #endif
2545 asm_fppowi(as, ir);
2546 break;
2548 /* Overflow-checking arithmetic ops. Note: don't use LEA here! */
2549 case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break;
2550 case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break;
2551 case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break;
2553 /* Memory references. */
2554 case IR_AREF: asm_aref(as, ir); break;
2555 case IR_HREF: asm_href(as, ir); break;
2556 case IR_HREFK: asm_hrefk(as, ir); break;
2557 case IR_NEWREF: asm_newref(as, ir); break;
2558 case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
2559 case IR_FREF: asm_fref(as, ir); break;
2560 case IR_STRREF: asm_strref(as, ir); break;
2562 /* Loads and stores. */
2563 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
2564 asm_ahuvload(as, ir);
2565 break;
2566 case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break;
2567 case IR_SLOAD: asm_sload(as, ir); break;
2569 case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
2570 case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break;
2572 /* Allocations. */
2573 case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
2574 case IR_TNEW: asm_tnew(as, ir); break;
2575 case IR_TDUP: asm_tdup(as, ir); break;
2576 case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
2578 /* Write barriers. */
2579 case IR_TBAR: asm_tbar(as, ir); break;
2580 case IR_OBAR: asm_obar(as, ir); break;
2582 /* Type conversions. */
2583 case IR_TOBIT: asm_tobit(as, ir); break;
2584 case IR_CONV: asm_conv(as, ir); break;
2585 case IR_TOSTR: asm_tostr(as, ir); break;
2586 case IR_STRTO: asm_strto(as, ir); break;
2588 /* Calls. */
2589 case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
2590 case IR_CALLXS: asm_callx(as, ir); break;
2591 case IR_CARG: break;
2593 default:
2594 setintV(&as->J->errinfo, ir->o);
2595 lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
2596 break;
2600 /* -- Trace setup --------------------------------------------------------- */
2602 /* Ensure there are enough stack slots for call arguments. */
2603 static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
2605 IRRef args[CCI_NARGS_MAX];
2606 uint32_t nargs = (int)CCI_NARGS(ci);
2607 int nslots = 0;
2608 asm_collectargs(as, ir, ci, args);
2609 #if LJ_64
2610 if (LJ_ABI_WIN) {
2611 nslots = (int)(nargs*2); /* Only matters for more than four args. */
2612 } else {
2613 uint32_t i;
2614 int ngpr = 6, nfpr = 8;
2615 for (i = 0; i < nargs; i++)
2616 if (irt_isfp(IR(args[i])->t)) {
2617 if (nfpr > 0) nfpr--; else nslots += 2;
2618 } else {
2619 if (ngpr > 0) ngpr--; else nslots += 2;
2622 if (nslots > as->evenspill) /* Leave room for args in stack slots. */
2623 as->evenspill = nslots;
2624 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
2625 #else
2626 if ((ci->flags & CCI_FASTCALL)) {
2627 lua_assert(nargs <= 2);
2628 } else {
2629 uint32_t i;
2630 for (i = 0; i < nargs; i++)
2631 nslots += irt_isnum(IR(args[i])->t) ? 2 : 1;
2632 if (nslots > as->evenspill) /* Leave room for args. */
2633 as->evenspill = nslots;
2635 return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET);
2636 #endif
2639 /* Target-specific setup. */
2640 static void asm_setup_target(ASMState *as)
2642 asm_exitstub_setup(as, as->T->nsnap);
2645 /* -- Trace patching ------------------------------------------------------ */
2647 /* Patch exit jumps of existing machine code to a new target. */
2648 void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
2650 MCode *p = T->mcode;
2651 MCode *mcarea = lj_mcode_patch(J, p, 0);
2652 MSize len = T->szmcode;
2653 MCode *px = exitstub_addr(J, exitno) - 6;
2654 MCode *pe = p+len-6;
2655 uint32_t stateaddr = u32ptr(&J2G(J)->vmstate);
2656 if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px)
2657 *(int32_t *)(p+len-4) = jmprel(p+len, target);
2658 /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */
2659 for (; p < pe; p++)
2660 if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) {
2661 p += LJ_64 ? 11 : 10;
2662 break;
2664 lua_assert(p < pe);
2665 for (; p < pe; p++) {
2666 if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) {
2667 *(int32_t *)(p+2) = jmprel(p+6, target);
2668 p += 5;
2671 lj_mcode_patch(J, mcarea, 1);
2672 VG_INVALIDATE(T->mcode, T->szmcode);