Merge branch 'master' into v2.1
[luajit-2.0.git] / src / lj_alloc.c
blob7c7ec678726c11384afee9029010ab7a7f5207e3
1 /*
2 ** Bundled memory allocator.
3 **
4 ** Beware: this is a HEAVILY CUSTOMIZED version of dlmalloc.
5 ** The original bears the following remark:
6 **
7 ** This is a version (aka dlmalloc) of malloc/free/realloc written by
8 ** Doug Lea and released to the public domain, as explained at
9 ** http://creativecommons.org/licenses/publicdomain.
11 ** * Version pre-2.8.4 Wed Mar 29 19:46:29 2006 (dl at gee)
13 ** No additional copyright is claimed over the customizations.
14 ** Please do NOT bother the original author about this version here!
16 ** If you want to use dlmalloc in another project, you should get
17 ** the original from: ftp://gee.cs.oswego.edu/pub/misc/
18 ** For thread-safe derivatives, take a look at:
19 ** - ptmalloc: http://www.malloc.de/
20 ** - nedmalloc: http://www.nedprod.com/programs/portable/nedmalloc/
23 #define lj_alloc_c
24 #define LUA_CORE
26 /* To get the mremap prototype. Must be defined before any system includes. */
27 #if defined(__linux__) && !defined(_GNU_SOURCE)
28 #define _GNU_SOURCE
29 #endif
31 #include "lj_def.h"
32 #include "lj_arch.h"
33 #include "lj_alloc.h"
35 #ifndef LUAJIT_USE_SYSMALLOC
37 #define MAX_SIZE_T (~(size_t)0)
38 #define MALLOC_ALIGNMENT ((size_t)8U)
40 #define DEFAULT_GRANULARITY ((size_t)128U * (size_t)1024U)
41 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
42 #define DEFAULT_MMAP_THRESHOLD ((size_t)128U * (size_t)1024U)
43 #define MAX_RELEASE_CHECK_RATE 255
45 /* ------------------- size_t and alignment properties -------------------- */
47 /* The byte and bit size of a size_t */
48 #define SIZE_T_SIZE (sizeof(size_t))
49 #define SIZE_T_BITSIZE (sizeof(size_t) << 3)
51 /* Some constants coerced to size_t */
52 /* Annoying but necessary to avoid errors on some platforms */
53 #define SIZE_T_ZERO ((size_t)0)
54 #define SIZE_T_ONE ((size_t)1)
55 #define SIZE_T_TWO ((size_t)2)
56 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
57 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
58 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
60 /* The bit mask value corresponding to MALLOC_ALIGNMENT */
61 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
63 /* the number of bytes to offset an address to align it */
64 #define align_offset(A)\
65 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
66 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
68 /* -------------------------- MMAP support ------------------------------- */
70 #define MFAIL ((void *)(MAX_SIZE_T))
71 #define CMFAIL ((char *)(MFAIL)) /* defined for convenience */
73 #define IS_DIRECT_BIT (SIZE_T_ONE)
75 #if LJ_TARGET_WINDOWS
77 #define WIN32_LEAN_AND_MEAN
78 #include <windows.h>
80 #if LJ_64
82 /* Undocumented, but hey, that's what we all love so much about Windows. */
83 typedef long (*PNTAVM)(HANDLE handle, void **addr, ULONG zbits,
84 size_t *size, ULONG alloctype, ULONG prot);
85 static PNTAVM ntavm;
87 /* Number of top bits of the lower 32 bits of an address that must be zero.
88 ** Apparently 0 gives us full 64 bit addresses and 1 gives us the lower 2GB.
90 #define NTAVM_ZEROBITS 1
92 static void INIT_MMAP(void)
94 ntavm = (PNTAVM)GetProcAddress(GetModuleHandleA("ntdll.dll"),
95 "NtAllocateVirtualMemory");
98 /* Win64 32 bit MMAP via NtAllocateVirtualMemory. */
99 static LJ_AINLINE void *CALL_MMAP(size_t size)
101 DWORD olderr = GetLastError();
102 void *ptr = NULL;
103 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
104 MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
105 SetLastError(olderr);
106 return st == 0 ? ptr : MFAIL;
109 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
110 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
112 DWORD olderr = GetLastError();
113 void *ptr = NULL;
114 long st = ntavm(INVALID_HANDLE_VALUE, &ptr, NTAVM_ZEROBITS, &size,
115 MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, PAGE_READWRITE);
116 SetLastError(olderr);
117 return st == 0 ? ptr : MFAIL;
120 #else
122 #define INIT_MMAP() ((void)0)
124 /* Win32 MMAP via VirtualAlloc */
125 static LJ_AINLINE void *CALL_MMAP(size_t size)
127 DWORD olderr = GetLastError();
128 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
129 SetLastError(olderr);
130 return ptr ? ptr : MFAIL;
133 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
134 static LJ_AINLINE void *DIRECT_MMAP(size_t size)
136 DWORD olderr = GetLastError();
137 void *ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
138 PAGE_READWRITE);
139 SetLastError(olderr);
140 return ptr ? ptr : MFAIL;
143 #endif
145 /* This function supports releasing coalesed segments */
146 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
148 DWORD olderr = GetLastError();
149 MEMORY_BASIC_INFORMATION minfo;
150 char *cptr = (char *)ptr;
151 while (size) {
152 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
153 return -1;
154 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
155 minfo.State != MEM_COMMIT || minfo.RegionSize > size)
156 return -1;
157 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
158 return -1;
159 cptr += minfo.RegionSize;
160 size -= minfo.RegionSize;
162 SetLastError(olderr);
163 return 0;
166 #else
168 #include <errno.h>
169 #include <sys/mman.h>
171 #define MMAP_PROT (PROT_READ|PROT_WRITE)
172 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
173 #define MAP_ANONYMOUS MAP_ANON
174 #endif
175 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
177 #if LJ_64
178 /* 64 bit mode needs special support for allocating memory in the lower 2GB. */
180 #if defined(MAP_32BIT)
182 #if defined(__sun__)
183 #define MMAP_REGION_START ((uintptr_t)0x1000)
184 #else
185 /* Actually this only gives us max. 1GB in current Linux kernels. */
186 #define MMAP_REGION_START ((uintptr_t)0)
187 #endif
189 static LJ_AINLINE void *CALL_MMAP(size_t size)
191 int olderr = errno;
192 void *ptr = mmap((void *)MMAP_REGION_START, size, MMAP_PROT, MAP_32BIT|MMAP_FLAGS, -1, 0);
193 errno = olderr;
194 return ptr;
197 #elif LJ_TARGET_OSX || LJ_TARGET_PS4 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) || defined(__sun__)
199 /* OSX and FreeBSD mmap() use a naive first-fit linear search.
200 ** That's perfect for us. Except that -pagezero_size must be set for OSX,
201 ** otherwise the lower 4GB are blocked. And the 32GB RLIMIT_DATA needs
202 ** to be reduced to 250MB on FreeBSD.
204 #if LJ_TARGET_OSX || defined(__DragonFly__)
205 #define MMAP_REGION_START ((uintptr_t)0x10000)
206 #elif LJ_TARGET_PS4
207 #define MMAP_REGION_START ((uintptr_t)0x4000)
208 #else
209 #define MMAP_REGION_START ((uintptr_t)0x10000000)
210 #endif
211 #define MMAP_REGION_END ((uintptr_t)0x80000000)
213 #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4
214 #include <sys/resource.h>
215 #endif
217 static LJ_AINLINE void *CALL_MMAP(size_t size)
219 int olderr = errno;
220 /* Hint for next allocation. Doesn't need to be thread-safe. */
221 static uintptr_t alloc_hint = MMAP_REGION_START;
222 int retry = 0;
223 #if (defined(__FreeBSD__) || defined(__FreeBSD_kernel__)) && !LJ_TARGET_PS4
224 static int rlimit_modified = 0;
225 if (LJ_UNLIKELY(rlimit_modified == 0)) {
226 struct rlimit rlim;
227 rlim.rlim_cur = rlim.rlim_max = MMAP_REGION_START;
228 setrlimit(RLIMIT_DATA, &rlim); /* Ignore result. May fail below. */
229 rlimit_modified = 1;
231 #endif
232 for (;;) {
233 void *p = mmap((void *)alloc_hint, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
234 if ((uintptr_t)p >= MMAP_REGION_START &&
235 (uintptr_t)p + size < MMAP_REGION_END) {
236 alloc_hint = (uintptr_t)p + size;
237 errno = olderr;
238 return p;
240 if (p != CMFAIL) munmap(p, size);
241 #if defined(__sun__) || defined(__DragonFly__)
242 alloc_hint += 0x1000000; /* Need near-exhaustive linear scan. */
243 if (alloc_hint + size < MMAP_REGION_END) continue;
244 #endif
245 if (retry) break;
246 retry = 1;
247 alloc_hint = MMAP_REGION_START;
249 errno = olderr;
250 return CMFAIL;
253 #else
255 #error "NYI: need an equivalent of MAP_32BIT for this 64 bit OS"
257 #endif
259 #else
261 /* 32 bit mode is easy. */
262 static LJ_AINLINE void *CALL_MMAP(size_t size)
264 int olderr = errno;
265 void *ptr = mmap(NULL, size, MMAP_PROT, MMAP_FLAGS, -1, 0);
266 errno = olderr;
267 return ptr;
270 #endif
272 #define INIT_MMAP() ((void)0)
273 #define DIRECT_MMAP(s) CALL_MMAP(s)
275 static LJ_AINLINE int CALL_MUNMAP(void *ptr, size_t size)
277 int olderr = errno;
278 int ret = munmap(ptr, size);
279 errno = olderr;
280 return ret;
283 #if LJ_TARGET_LINUX
284 /* Need to define _GNU_SOURCE to get the mremap prototype. */
285 static LJ_AINLINE void *CALL_MREMAP_(void *ptr, size_t osz, size_t nsz,
286 int flags)
288 int olderr = errno;
289 ptr = mremap(ptr, osz, nsz, flags);
290 errno = olderr;
291 return ptr;
294 #define CALL_MREMAP(addr, osz, nsz, mv) CALL_MREMAP_((addr), (osz), (nsz), (mv))
295 #define CALL_MREMAP_NOMOVE 0
296 #define CALL_MREMAP_MAYMOVE 1
297 #if LJ_64
298 #define CALL_MREMAP_MV CALL_MREMAP_NOMOVE
299 #else
300 #define CALL_MREMAP_MV CALL_MREMAP_MAYMOVE
301 #endif
302 #endif
304 #endif
306 #ifndef CALL_MREMAP
307 #define CALL_MREMAP(addr, osz, nsz, mv) ((void)osz, MFAIL)
308 #endif
310 /* ----------------------- Chunk representations ------------------------ */
312 struct malloc_chunk {
313 size_t prev_foot; /* Size of previous chunk (if free). */
314 size_t head; /* Size and inuse bits. */
315 struct malloc_chunk *fd; /* double links -- used only if free. */
316 struct malloc_chunk *bk;
319 typedef struct malloc_chunk mchunk;
320 typedef struct malloc_chunk *mchunkptr;
321 typedef struct malloc_chunk *sbinptr; /* The type of bins of chunks */
322 typedef size_t bindex_t; /* Described below */
323 typedef unsigned int binmap_t; /* Described below */
324 typedef unsigned int flag_t; /* The type of various bit flag sets */
326 /* ------------------- Chunks sizes and alignments ----------------------- */
328 #define MCHUNK_SIZE (sizeof(mchunk))
330 #define CHUNK_OVERHEAD (SIZE_T_SIZE)
332 /* Direct chunks need a second word of overhead ... */
333 #define DIRECT_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
334 /* ... and additional padding for fake next-chunk at foot */
335 #define DIRECT_FOOT_PAD (FOUR_SIZE_T_SIZES)
337 /* The smallest size we can malloc is an aligned minimal chunk */
338 #define MIN_CHUNK_SIZE\
339 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
341 /* conversion from malloc headers to user pointers, and back */
342 #define chunk2mem(p) ((void *)((char *)(p) + TWO_SIZE_T_SIZES))
343 #define mem2chunk(mem) ((mchunkptr)((char *)(mem) - TWO_SIZE_T_SIZES))
344 /* chunk associated with aligned address A */
345 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
347 /* Bounds on request (not chunk) sizes. */
348 #define MAX_REQUEST ((~MIN_CHUNK_SIZE+1) << 2)
349 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
351 /* pad request bytes into a usable size */
352 #define pad_request(req) \
353 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
355 /* pad request, checking for minimum (but not maximum) */
356 #define request2size(req) \
357 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
359 /* ------------------ Operations on head and foot fields ----------------- */
361 #define PINUSE_BIT (SIZE_T_ONE)
362 #define CINUSE_BIT (SIZE_T_TWO)
363 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
365 /* Head value for fenceposts */
366 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
368 /* extraction of fields from head words */
369 #define cinuse(p) ((p)->head & CINUSE_BIT)
370 #define pinuse(p) ((p)->head & PINUSE_BIT)
371 #define chunksize(p) ((p)->head & ~(INUSE_BITS))
373 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
374 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
376 /* Treat space at ptr +/- offset as a chunk */
377 #define chunk_plus_offset(p, s) ((mchunkptr)(((char *)(p)) + (s)))
378 #define chunk_minus_offset(p, s) ((mchunkptr)(((char *)(p)) - (s)))
380 /* Ptr to next or previous physical malloc_chunk. */
381 #define next_chunk(p) ((mchunkptr)(((char *)(p)) + ((p)->head & ~INUSE_BITS)))
382 #define prev_chunk(p) ((mchunkptr)(((char *)(p)) - ((p)->prev_foot) ))
384 /* extract next chunk's pinuse bit */
385 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
387 /* Get/set size at footer */
388 #define get_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot)
389 #define set_foot(p, s) (((mchunkptr)((char *)(p) + (s)))->prev_foot = (s))
391 /* Set size, pinuse bit, and foot */
392 #define set_size_and_pinuse_of_free_chunk(p, s)\
393 ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
395 /* Set size, pinuse bit, foot, and clear next pinuse */
396 #define set_free_with_pinuse(p, s, n)\
397 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
399 #define is_direct(p)\
400 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_DIRECT_BIT))
402 /* Get the internal overhead associated with chunk p */
403 #define overhead_for(p)\
404 (is_direct(p)? DIRECT_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
406 /* ---------------------- Overlaid data structures ----------------------- */
408 struct malloc_tree_chunk {
409 /* The first four fields must be compatible with malloc_chunk */
410 size_t prev_foot;
411 size_t head;
412 struct malloc_tree_chunk *fd;
413 struct malloc_tree_chunk *bk;
415 struct malloc_tree_chunk *child[2];
416 struct malloc_tree_chunk *parent;
417 bindex_t index;
420 typedef struct malloc_tree_chunk tchunk;
421 typedef struct malloc_tree_chunk *tchunkptr;
422 typedef struct malloc_tree_chunk *tbinptr; /* The type of bins of trees */
424 /* A little helper macro for trees */
425 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
427 /* ----------------------------- Segments -------------------------------- */
429 struct malloc_segment {
430 char *base; /* base address */
431 size_t size; /* allocated size */
432 struct malloc_segment *next; /* ptr to next segment */
435 typedef struct malloc_segment msegment;
436 typedef struct malloc_segment *msegmentptr;
438 /* ---------------------------- malloc_state ----------------------------- */
440 /* Bin types, widths and sizes */
441 #define NSMALLBINS (32U)
442 #define NTREEBINS (32U)
443 #define SMALLBIN_SHIFT (3U)
444 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
445 #define TREEBIN_SHIFT (8U)
446 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
447 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
448 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
450 struct malloc_state {
451 binmap_t smallmap;
452 binmap_t treemap;
453 size_t dvsize;
454 size_t topsize;
455 mchunkptr dv;
456 mchunkptr top;
457 size_t trim_check;
458 size_t release_checks;
459 mchunkptr smallbins[(NSMALLBINS+1)*2];
460 tbinptr treebins[NTREEBINS];
461 msegment seg;
464 typedef struct malloc_state *mstate;
466 #define is_initialized(M) ((M)->top != 0)
468 /* -------------------------- system alloc setup ------------------------- */
470 /* page-align a size */
471 #define page_align(S)\
472 (((S) + (LJ_PAGESIZE - SIZE_T_ONE)) & ~(LJ_PAGESIZE - SIZE_T_ONE))
474 /* granularity-align a size */
475 #define granularity_align(S)\
476 (((S) + (DEFAULT_GRANULARITY - SIZE_T_ONE))\
477 & ~(DEFAULT_GRANULARITY - SIZE_T_ONE))
479 #if LJ_TARGET_WINDOWS
480 #define mmap_align(S) granularity_align(S)
481 #else
482 #define mmap_align(S) page_align(S)
483 #endif
485 /* True if segment S holds address A */
486 #define segment_holds(S, A)\
487 ((char *)(A) >= S->base && (char *)(A) < S->base + S->size)
489 /* Return segment holding given address */
490 static msegmentptr segment_holding(mstate m, char *addr)
492 msegmentptr sp = &m->seg;
493 for (;;) {
494 if (addr >= sp->base && addr < sp->base + sp->size)
495 return sp;
496 if ((sp = sp->next) == 0)
497 return 0;
501 /* Return true if segment contains a segment link */
502 static int has_segment_link(mstate m, msegmentptr ss)
504 msegmentptr sp = &m->seg;
505 for (;;) {
506 if ((char *)sp >= ss->base && (char *)sp < ss->base + ss->size)
507 return 1;
508 if ((sp = sp->next) == 0)
509 return 0;
514 TOP_FOOT_SIZE is padding at the end of a segment, including space
515 that may be needed to place segment records and fenceposts when new
516 noncontiguous segments are added.
518 #define TOP_FOOT_SIZE\
519 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
521 /* ---------------------------- Indexing Bins ---------------------------- */
523 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
524 #define small_index(s) ((s) >> SMALLBIN_SHIFT)
525 #define small_index2size(i) ((i) << SMALLBIN_SHIFT)
526 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
528 /* addressing by index. See above about smallbin repositioning */
529 #define smallbin_at(M, i) ((sbinptr)((char *)&((M)->smallbins[(i)<<1])))
530 #define treebin_at(M,i) (&((M)->treebins[i]))
532 /* assign tree index for size S to variable I */
533 #define compute_tree_index(S, I)\
535 unsigned int X = (unsigned int)(S >> TREEBIN_SHIFT);\
536 if (X == 0) {\
537 I = 0;\
538 } else if (X > 0xFFFF) {\
539 I = NTREEBINS-1;\
540 } else {\
541 unsigned int K = lj_fls(X);\
542 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
546 /* Bit representing maximum resolved size in a treebin at i */
547 #define bit_for_tree_index(i) \
548 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
550 /* Shift placing maximum resolved bit in a treebin at i as sign bit */
551 #define leftshift_for_tree_index(i) \
552 ((i == NTREEBINS-1)? 0 : \
553 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
555 /* The size of the smallest chunk held in bin with index i */
556 #define minsize_for_tree_index(i) \
557 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
558 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
560 /* ------------------------ Operations on bin maps ----------------------- */
562 /* bit corresponding to given index */
563 #define idx2bit(i) ((binmap_t)(1) << (i))
565 /* Mark/Clear bits with given index */
566 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
567 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
568 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
570 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
571 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
572 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
574 /* mask with all bits to left of least bit of x on */
575 #define left_bits(x) ((x<<1) | (~(x<<1)+1))
577 /* Set cinuse bit and pinuse bit of next chunk */
578 #define set_inuse(M,p,s)\
579 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
580 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
582 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */
583 #define set_inuse_and_pinuse(M,p,s)\
584 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
585 ((mchunkptr)(((char *)(p)) + (s)))->head |= PINUSE_BIT)
587 /* Set size, cinuse and pinuse bit of this chunk */
588 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
589 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
591 /* ----------------------- Operations on smallbins ----------------------- */
593 /* Link a free chunk into a smallbin */
594 #define insert_small_chunk(M, P, S) {\
595 bindex_t I = small_index(S);\
596 mchunkptr B = smallbin_at(M, I);\
597 mchunkptr F = B;\
598 if (!smallmap_is_marked(M, I))\
599 mark_smallmap(M, I);\
600 else\
601 F = B->fd;\
602 B->fd = P;\
603 F->bk = P;\
604 P->fd = F;\
605 P->bk = B;\
608 /* Unlink a chunk from a smallbin */
609 #define unlink_small_chunk(M, P, S) {\
610 mchunkptr F = P->fd;\
611 mchunkptr B = P->bk;\
612 bindex_t I = small_index(S);\
613 if (F == B) {\
614 clear_smallmap(M, I);\
615 } else {\
616 F->bk = B;\
617 B->fd = F;\
621 /* Unlink the first chunk from a smallbin */
622 #define unlink_first_small_chunk(M, B, P, I) {\
623 mchunkptr F = P->fd;\
624 if (B == F) {\
625 clear_smallmap(M, I);\
626 } else {\
627 B->fd = F;\
628 F->bk = B;\
632 /* Replace dv node, binning the old one */
633 /* Used only when dvsize known to be small */
634 #define replace_dv(M, P, S) {\
635 size_t DVS = M->dvsize;\
636 if (DVS != 0) {\
637 mchunkptr DV = M->dv;\
638 insert_small_chunk(M, DV, DVS);\
640 M->dvsize = S;\
641 M->dv = P;\
644 /* ------------------------- Operations on trees ------------------------- */
646 /* Insert chunk into tree */
647 #define insert_large_chunk(M, X, S) {\
648 tbinptr *H;\
649 bindex_t I;\
650 compute_tree_index(S, I);\
651 H = treebin_at(M, I);\
652 X->index = I;\
653 X->child[0] = X->child[1] = 0;\
654 if (!treemap_is_marked(M, I)) {\
655 mark_treemap(M, I);\
656 *H = X;\
657 X->parent = (tchunkptr)H;\
658 X->fd = X->bk = X;\
659 } else {\
660 tchunkptr T = *H;\
661 size_t K = S << leftshift_for_tree_index(I);\
662 for (;;) {\
663 if (chunksize(T) != S) {\
664 tchunkptr *C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
665 K <<= 1;\
666 if (*C != 0) {\
667 T = *C;\
668 } else {\
669 *C = X;\
670 X->parent = T;\
671 X->fd = X->bk = X;\
672 break;\
674 } else {\
675 tchunkptr F = T->fd;\
676 T->fd = F->bk = X;\
677 X->fd = F;\
678 X->bk = T;\
679 X->parent = 0;\
680 break;\
686 #define unlink_large_chunk(M, X) {\
687 tchunkptr XP = X->parent;\
688 tchunkptr R;\
689 if (X->bk != X) {\
690 tchunkptr F = X->fd;\
691 R = X->bk;\
692 F->bk = R;\
693 R->fd = F;\
694 } else {\
695 tchunkptr *RP;\
696 if (((R = *(RP = &(X->child[1]))) != 0) ||\
697 ((R = *(RP = &(X->child[0]))) != 0)) {\
698 tchunkptr *CP;\
699 while ((*(CP = &(R->child[1])) != 0) ||\
700 (*(CP = &(R->child[0])) != 0)) {\
701 R = *(RP = CP);\
703 *RP = 0;\
706 if (XP != 0) {\
707 tbinptr *H = treebin_at(M, X->index);\
708 if (X == *H) {\
709 if ((*H = R) == 0) \
710 clear_treemap(M, X->index);\
711 } else {\
712 if (XP->child[0] == X) \
713 XP->child[0] = R;\
714 else \
715 XP->child[1] = R;\
717 if (R != 0) {\
718 tchunkptr C0, C1;\
719 R->parent = XP;\
720 if ((C0 = X->child[0]) != 0) {\
721 R->child[0] = C0;\
722 C0->parent = R;\
724 if ((C1 = X->child[1]) != 0) {\
725 R->child[1] = C1;\
726 C1->parent = R;\
732 /* Relays to large vs small bin operations */
734 #define insert_chunk(M, P, S)\
735 if (is_small(S)) { insert_small_chunk(M, P, S)\
736 } else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
738 #define unlink_chunk(M, P, S)\
739 if (is_small(S)) { unlink_small_chunk(M, P, S)\
740 } else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
742 /* ----------------------- Direct-mmapping chunks ----------------------- */
744 static void *direct_alloc(size_t nb)
746 size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
747 if (LJ_LIKELY(mmsize > nb)) { /* Check for wrap around 0 */
748 char *mm = (char *)(DIRECT_MMAP(mmsize));
749 if (mm != CMFAIL) {
750 size_t offset = align_offset(chunk2mem(mm));
751 size_t psize = mmsize - offset - DIRECT_FOOT_PAD;
752 mchunkptr p = (mchunkptr)(mm + offset);
753 p->prev_foot = offset | IS_DIRECT_BIT;
754 p->head = psize|CINUSE_BIT;
755 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
756 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
757 return chunk2mem(p);
760 return NULL;
763 static mchunkptr direct_resize(mchunkptr oldp, size_t nb)
765 size_t oldsize = chunksize(oldp);
766 if (is_small(nb)) /* Can't shrink direct regions below small size */
767 return NULL;
768 /* Keep old chunk if big enough but not too big */
769 if (oldsize >= nb + SIZE_T_SIZE &&
770 (oldsize - nb) <= (DEFAULT_GRANULARITY >> 1)) {
771 return oldp;
772 } else {
773 size_t offset = oldp->prev_foot & ~IS_DIRECT_BIT;
774 size_t oldmmsize = oldsize + offset + DIRECT_FOOT_PAD;
775 size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
776 char *cp = (char *)CALL_MREMAP((char *)oldp - offset,
777 oldmmsize, newmmsize, CALL_MREMAP_MV);
778 if (cp != CMFAIL) {
779 mchunkptr newp = (mchunkptr)(cp + offset);
780 size_t psize = newmmsize - offset - DIRECT_FOOT_PAD;
781 newp->head = psize|CINUSE_BIT;
782 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
783 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
784 return newp;
787 return NULL;
790 /* -------------------------- mspace management -------------------------- */
792 /* Initialize top chunk and its size */
793 static void init_top(mstate m, mchunkptr p, size_t psize)
795 /* Ensure alignment */
796 size_t offset = align_offset(chunk2mem(p));
797 p = (mchunkptr)((char *)p + offset);
798 psize -= offset;
800 m->top = p;
801 m->topsize = psize;
802 p->head = psize | PINUSE_BIT;
803 /* set size of fake trailing chunk holding overhead space only once */
804 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
805 m->trim_check = DEFAULT_TRIM_THRESHOLD; /* reset on each update */
808 /* Initialize bins for a new mstate that is otherwise zeroed out */
809 static void init_bins(mstate m)
811 /* Establish circular links for smallbins */
812 bindex_t i;
813 for (i = 0; i < NSMALLBINS; i++) {
814 sbinptr bin = smallbin_at(m,i);
815 bin->fd = bin->bk = bin;
819 /* Allocate chunk and prepend remainder with chunk in successor base. */
820 static void *prepend_alloc(mstate m, char *newbase, char *oldbase, size_t nb)
822 mchunkptr p = align_as_chunk(newbase);
823 mchunkptr oldfirst = align_as_chunk(oldbase);
824 size_t psize = (size_t)((char *)oldfirst - (char *)p);
825 mchunkptr q = chunk_plus_offset(p, nb);
826 size_t qsize = psize - nb;
827 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
829 /* consolidate remainder with first chunk of old base */
830 if (oldfirst == m->top) {
831 size_t tsize = m->topsize += qsize;
832 m->top = q;
833 q->head = tsize | PINUSE_BIT;
834 } else if (oldfirst == m->dv) {
835 size_t dsize = m->dvsize += qsize;
836 m->dv = q;
837 set_size_and_pinuse_of_free_chunk(q, dsize);
838 } else {
839 if (!cinuse(oldfirst)) {
840 size_t nsize = chunksize(oldfirst);
841 unlink_chunk(m, oldfirst, nsize);
842 oldfirst = chunk_plus_offset(oldfirst, nsize);
843 qsize += nsize;
845 set_free_with_pinuse(q, qsize, oldfirst);
846 insert_chunk(m, q, qsize);
849 return chunk2mem(p);
852 /* Add a segment to hold a new noncontiguous region */
853 static void add_segment(mstate m, char *tbase, size_t tsize)
855 /* Determine locations and sizes of segment, fenceposts, old top */
856 char *old_top = (char *)m->top;
857 msegmentptr oldsp = segment_holding(m, old_top);
858 char *old_end = oldsp->base + oldsp->size;
859 size_t ssize = pad_request(sizeof(struct malloc_segment));
860 char *rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
861 size_t offset = align_offset(chunk2mem(rawsp));
862 char *asp = rawsp + offset;
863 char *csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
864 mchunkptr sp = (mchunkptr)csp;
865 msegmentptr ss = (msegmentptr)(chunk2mem(sp));
866 mchunkptr tnext = chunk_plus_offset(sp, ssize);
867 mchunkptr p = tnext;
869 /* reset top to new space */
870 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
872 /* Set up segment record */
873 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
874 *ss = m->seg; /* Push current record */
875 m->seg.base = tbase;
876 m->seg.size = tsize;
877 m->seg.next = ss;
879 /* Insert trailing fenceposts */
880 for (;;) {
881 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
882 p->head = FENCEPOST_HEAD;
883 if ((char *)(&(nextp->head)) < old_end)
884 p = nextp;
885 else
886 break;
889 /* Insert the rest of old top into a bin as an ordinary free chunk */
890 if (csp != old_top) {
891 mchunkptr q = (mchunkptr)old_top;
892 size_t psize = (size_t)(csp - old_top);
893 mchunkptr tn = chunk_plus_offset(q, psize);
894 set_free_with_pinuse(q, psize, tn);
895 insert_chunk(m, q, psize);
899 /* -------------------------- System allocation -------------------------- */
901 static void *alloc_sys(mstate m, size_t nb)
903 char *tbase = CMFAIL;
904 size_t tsize = 0;
906 /* Directly map large chunks */
907 if (LJ_UNLIKELY(nb >= DEFAULT_MMAP_THRESHOLD)) {
908 void *mem = direct_alloc(nb);
909 if (mem != 0)
910 return mem;
914 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
915 size_t rsize = granularity_align(req);
916 if (LJ_LIKELY(rsize > nb)) { /* Fail if wraps around zero */
917 char *mp = (char *)(CALL_MMAP(rsize));
918 if (mp != CMFAIL) {
919 tbase = mp;
920 tsize = rsize;
925 if (tbase != CMFAIL) {
926 msegmentptr sp = &m->seg;
927 /* Try to merge with an existing segment */
928 while (sp != 0 && tbase != sp->base + sp->size)
929 sp = sp->next;
930 if (sp != 0 && segment_holds(sp, m->top)) { /* append */
931 sp->size += tsize;
932 init_top(m, m->top, m->topsize + tsize);
933 } else {
934 sp = &m->seg;
935 while (sp != 0 && sp->base != tbase + tsize)
936 sp = sp->next;
937 if (sp != 0) {
938 char *oldbase = sp->base;
939 sp->base = tbase;
940 sp->size += tsize;
941 return prepend_alloc(m, tbase, oldbase, nb);
942 } else {
943 add_segment(m, tbase, tsize);
947 if (nb < m->topsize) { /* Allocate from new or extended top space */
948 size_t rsize = m->topsize -= nb;
949 mchunkptr p = m->top;
950 mchunkptr r = m->top = chunk_plus_offset(p, nb);
951 r->head = rsize | PINUSE_BIT;
952 set_size_and_pinuse_of_inuse_chunk(m, p, nb);
953 return chunk2mem(p);
957 return NULL;
960 /* ----------------------- system deallocation -------------------------- */
962 /* Unmap and unlink any mmapped segments that don't contain used chunks */
963 static size_t release_unused_segments(mstate m)
965 size_t released = 0;
966 size_t nsegs = 0;
967 msegmentptr pred = &m->seg;
968 msegmentptr sp = pred->next;
969 while (sp != 0) {
970 char *base = sp->base;
971 size_t size = sp->size;
972 msegmentptr next = sp->next;
973 nsegs++;
975 mchunkptr p = align_as_chunk(base);
976 size_t psize = chunksize(p);
977 /* Can unmap if first chunk holds entire segment and not pinned */
978 if (!cinuse(p) && (char *)p + psize >= base + size - TOP_FOOT_SIZE) {
979 tchunkptr tp = (tchunkptr)p;
980 if (p == m->dv) {
981 m->dv = 0;
982 m->dvsize = 0;
983 } else {
984 unlink_large_chunk(m, tp);
986 if (CALL_MUNMAP(base, size) == 0) {
987 released += size;
988 /* unlink obsoleted record */
989 sp = pred;
990 sp->next = next;
991 } else { /* back out if cannot unmap */
992 insert_large_chunk(m, tp, psize);
996 pred = sp;
997 sp = next;
999 /* Reset check counter */
1000 m->release_checks = nsegs > MAX_RELEASE_CHECK_RATE ?
1001 nsegs : MAX_RELEASE_CHECK_RATE;
1002 return released;
1005 static int alloc_trim(mstate m, size_t pad)
1007 size_t released = 0;
1008 if (pad < MAX_REQUEST && is_initialized(m)) {
1009 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
1011 if (m->topsize > pad) {
1012 /* Shrink top space in granularity-size units, keeping at least one */
1013 size_t unit = DEFAULT_GRANULARITY;
1014 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
1015 SIZE_T_ONE) * unit;
1016 msegmentptr sp = segment_holding(m, (char *)m->top);
1018 if (sp->size >= extra &&
1019 !has_segment_link(m, sp)) { /* can't shrink if pinned */
1020 size_t newsize = sp->size - extra;
1021 /* Prefer mremap, fall back to munmap */
1022 if ((CALL_MREMAP(sp->base, sp->size, newsize, CALL_MREMAP_NOMOVE) != MFAIL) ||
1023 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
1024 released = extra;
1028 if (released != 0) {
1029 sp->size -= released;
1030 init_top(m, m->top, m->topsize - released);
1034 /* Unmap any unused mmapped segments */
1035 released += release_unused_segments(m);
1037 /* On failure, disable autotrim to avoid repeated failed future calls */
1038 if (released == 0 && m->topsize > m->trim_check)
1039 m->trim_check = MAX_SIZE_T;
1042 return (released != 0)? 1 : 0;
1045 /* ---------------------------- malloc support --------------------------- */
1047 /* allocate a large request from the best fitting chunk in a treebin */
1048 static void *tmalloc_large(mstate m, size_t nb)
1050 tchunkptr v = 0;
1051 size_t rsize = ~nb+1; /* Unsigned negation */
1052 tchunkptr t;
1053 bindex_t idx;
1054 compute_tree_index(nb, idx);
1056 if ((t = *treebin_at(m, idx)) != 0) {
1057 /* Traverse tree for this bin looking for node with size == nb */
1058 size_t sizebits = nb << leftshift_for_tree_index(idx);
1059 tchunkptr rst = 0; /* The deepest untaken right subtree */
1060 for (;;) {
1061 tchunkptr rt;
1062 size_t trem = chunksize(t) - nb;
1063 if (trem < rsize) {
1064 v = t;
1065 if ((rsize = trem) == 0)
1066 break;
1068 rt = t->child[1];
1069 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
1070 if (rt != 0 && rt != t)
1071 rst = rt;
1072 if (t == 0) {
1073 t = rst; /* set t to least subtree holding sizes > nb */
1074 break;
1076 sizebits <<= 1;
1080 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
1081 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
1082 if (leftbits != 0)
1083 t = *treebin_at(m, lj_ffs(leftbits));
1086 while (t != 0) { /* find smallest of tree or subtree */
1087 size_t trem = chunksize(t) - nb;
1088 if (trem < rsize) {
1089 rsize = trem;
1090 v = t;
1092 t = leftmost_child(t);
1095 /* If dv is a better fit, return NULL so malloc will use it */
1096 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
1097 mchunkptr r = chunk_plus_offset(v, nb);
1098 unlink_large_chunk(m, v);
1099 if (rsize < MIN_CHUNK_SIZE) {
1100 set_inuse_and_pinuse(m, v, (rsize + nb));
1101 } else {
1102 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1103 set_size_and_pinuse_of_free_chunk(r, rsize);
1104 insert_chunk(m, r, rsize);
1106 return chunk2mem(v);
1108 return NULL;
1111 /* allocate a small request from the best fitting chunk in a treebin */
1112 static void *tmalloc_small(mstate m, size_t nb)
1114 tchunkptr t, v;
1115 mchunkptr r;
1116 size_t rsize;
1117 bindex_t i = lj_ffs(m->treemap);
1119 v = t = *treebin_at(m, i);
1120 rsize = chunksize(t) - nb;
1122 while ((t = leftmost_child(t)) != 0) {
1123 size_t trem = chunksize(t) - nb;
1124 if (trem < rsize) {
1125 rsize = trem;
1126 v = t;
1130 r = chunk_plus_offset(v, nb);
1131 unlink_large_chunk(m, v);
1132 if (rsize < MIN_CHUNK_SIZE) {
1133 set_inuse_and_pinuse(m, v, (rsize + nb));
1134 } else {
1135 set_size_and_pinuse_of_inuse_chunk(m, v, nb);
1136 set_size_and_pinuse_of_free_chunk(r, rsize);
1137 replace_dv(m, r, rsize);
1139 return chunk2mem(v);
1142 /* ----------------------------------------------------------------------- */
1144 void *lj_alloc_create(void)
1146 size_t tsize = DEFAULT_GRANULARITY;
1147 char *tbase;
1148 INIT_MMAP();
1149 tbase = (char *)(CALL_MMAP(tsize));
1150 if (tbase != CMFAIL) {
1151 size_t msize = pad_request(sizeof(struct malloc_state));
1152 mchunkptr mn;
1153 mchunkptr msp = align_as_chunk(tbase);
1154 mstate m = (mstate)(chunk2mem(msp));
1155 memset(m, 0, msize);
1156 msp->head = (msize|PINUSE_BIT|CINUSE_BIT);
1157 m->seg.base = tbase;
1158 m->seg.size = tsize;
1159 m->release_checks = MAX_RELEASE_CHECK_RATE;
1160 init_bins(m);
1161 mn = next_chunk(mem2chunk(m));
1162 init_top(m, mn, (size_t)((tbase + tsize) - (char *)mn) - TOP_FOOT_SIZE);
1163 return m;
1165 return NULL;
1168 void lj_alloc_destroy(void *msp)
1170 mstate ms = (mstate)msp;
1171 msegmentptr sp = &ms->seg;
1172 while (sp != 0) {
1173 char *base = sp->base;
1174 size_t size = sp->size;
1175 sp = sp->next;
1176 CALL_MUNMAP(base, size);
1180 static LJ_NOINLINE void *lj_alloc_malloc(void *msp, size_t nsize)
1182 mstate ms = (mstate)msp;
1183 void *mem;
1184 size_t nb;
1185 if (nsize <= MAX_SMALL_REQUEST) {
1186 bindex_t idx;
1187 binmap_t smallbits;
1188 nb = (nsize < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(nsize);
1189 idx = small_index(nb);
1190 smallbits = ms->smallmap >> idx;
1192 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
1193 mchunkptr b, p;
1194 idx += ~smallbits & 1; /* Uses next bin if idx empty */
1195 b = smallbin_at(ms, idx);
1196 p = b->fd;
1197 unlink_first_small_chunk(ms, b, p, idx);
1198 set_inuse_and_pinuse(ms, p, small_index2size(idx));
1199 mem = chunk2mem(p);
1200 return mem;
1201 } else if (nb > ms->dvsize) {
1202 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
1203 mchunkptr b, p, r;
1204 size_t rsize;
1205 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
1206 bindex_t i = lj_ffs(leftbits);
1207 b = smallbin_at(ms, i);
1208 p = b->fd;
1209 unlink_first_small_chunk(ms, b, p, i);
1210 rsize = small_index2size(i) - nb;
1211 /* Fit here cannot be remainderless if 4byte sizes */
1212 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) {
1213 set_inuse_and_pinuse(ms, p, small_index2size(i));
1214 } else {
1215 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1216 r = chunk_plus_offset(p, nb);
1217 set_size_and_pinuse_of_free_chunk(r, rsize);
1218 replace_dv(ms, r, rsize);
1220 mem = chunk2mem(p);
1221 return mem;
1222 } else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
1223 return mem;
1226 } else if (nsize >= MAX_REQUEST) {
1227 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
1228 } else {
1229 nb = pad_request(nsize);
1230 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
1231 return mem;
1235 if (nb <= ms->dvsize) {
1236 size_t rsize = ms->dvsize - nb;
1237 mchunkptr p = ms->dv;
1238 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
1239 mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
1240 ms->dvsize = rsize;
1241 set_size_and_pinuse_of_free_chunk(r, rsize);
1242 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1243 } else { /* exhaust dv */
1244 size_t dvs = ms->dvsize;
1245 ms->dvsize = 0;
1246 ms->dv = 0;
1247 set_inuse_and_pinuse(ms, p, dvs);
1249 mem = chunk2mem(p);
1250 return mem;
1251 } else if (nb < ms->topsize) { /* Split top */
1252 size_t rsize = ms->topsize -= nb;
1253 mchunkptr p = ms->top;
1254 mchunkptr r = ms->top = chunk_plus_offset(p, nb);
1255 r->head = rsize | PINUSE_BIT;
1256 set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
1257 mem = chunk2mem(p);
1258 return mem;
1260 return alloc_sys(ms, nb);
1263 static LJ_NOINLINE void *lj_alloc_free(void *msp, void *ptr)
1265 if (ptr != 0) {
1266 mchunkptr p = mem2chunk(ptr);
1267 mstate fm = (mstate)msp;
1268 size_t psize = chunksize(p);
1269 mchunkptr next = chunk_plus_offset(p, psize);
1270 if (!pinuse(p)) {
1271 size_t prevsize = p->prev_foot;
1272 if ((prevsize & IS_DIRECT_BIT) != 0) {
1273 prevsize &= ~IS_DIRECT_BIT;
1274 psize += prevsize + DIRECT_FOOT_PAD;
1275 CALL_MUNMAP((char *)p - prevsize, psize);
1276 return NULL;
1277 } else {
1278 mchunkptr prev = chunk_minus_offset(p, prevsize);
1279 psize += prevsize;
1280 p = prev;
1281 /* consolidate backward */
1282 if (p != fm->dv) {
1283 unlink_chunk(fm, p, prevsize);
1284 } else if ((next->head & INUSE_BITS) == INUSE_BITS) {
1285 fm->dvsize = psize;
1286 set_free_with_pinuse(p, psize, next);
1287 return NULL;
1291 if (!cinuse(next)) { /* consolidate forward */
1292 if (next == fm->top) {
1293 size_t tsize = fm->topsize += psize;
1294 fm->top = p;
1295 p->head = tsize | PINUSE_BIT;
1296 if (p == fm->dv) {
1297 fm->dv = 0;
1298 fm->dvsize = 0;
1300 if (tsize > fm->trim_check)
1301 alloc_trim(fm, 0);
1302 return NULL;
1303 } else if (next == fm->dv) {
1304 size_t dsize = fm->dvsize += psize;
1305 fm->dv = p;
1306 set_size_and_pinuse_of_free_chunk(p, dsize);
1307 return NULL;
1308 } else {
1309 size_t nsize = chunksize(next);
1310 psize += nsize;
1311 unlink_chunk(fm, next, nsize);
1312 set_size_and_pinuse_of_free_chunk(p, psize);
1313 if (p == fm->dv) {
1314 fm->dvsize = psize;
1315 return NULL;
1318 } else {
1319 set_free_with_pinuse(p, psize, next);
1322 if (is_small(psize)) {
1323 insert_small_chunk(fm, p, psize);
1324 } else {
1325 tchunkptr tp = (tchunkptr)p;
1326 insert_large_chunk(fm, tp, psize);
1327 if (--fm->release_checks == 0)
1328 release_unused_segments(fm);
1331 return NULL;
1334 static LJ_NOINLINE void *lj_alloc_realloc(void *msp, void *ptr, size_t nsize)
1336 if (nsize >= MAX_REQUEST) {
1337 return NULL;
1338 } else {
1339 mstate m = (mstate)msp;
1340 mchunkptr oldp = mem2chunk(ptr);
1341 size_t oldsize = chunksize(oldp);
1342 mchunkptr next = chunk_plus_offset(oldp, oldsize);
1343 mchunkptr newp = 0;
1344 size_t nb = request2size(nsize);
1346 /* Try to either shrink or extend into top. Else malloc-copy-free */
1347 if (is_direct(oldp)) {
1348 newp = direct_resize(oldp, nb); /* this may return NULL. */
1349 } else if (oldsize >= nb) { /* already big enough */
1350 size_t rsize = oldsize - nb;
1351 newp = oldp;
1352 if (rsize >= MIN_CHUNK_SIZE) {
1353 mchunkptr rem = chunk_plus_offset(newp, nb);
1354 set_inuse(m, newp, nb);
1355 set_inuse(m, rem, rsize);
1356 lj_alloc_free(m, chunk2mem(rem));
1358 } else if (next == m->top && oldsize + m->topsize > nb) {
1359 /* Expand into top */
1360 size_t newsize = oldsize + m->topsize;
1361 size_t newtopsize = newsize - nb;
1362 mchunkptr newtop = chunk_plus_offset(oldp, nb);
1363 set_inuse(m, oldp, nb);
1364 newtop->head = newtopsize |PINUSE_BIT;
1365 m->top = newtop;
1366 m->topsize = newtopsize;
1367 newp = oldp;
1370 if (newp != 0) {
1371 return chunk2mem(newp);
1372 } else {
1373 void *newmem = lj_alloc_malloc(m, nsize);
1374 if (newmem != 0) {
1375 size_t oc = oldsize - overhead_for(oldp);
1376 memcpy(newmem, ptr, oc < nsize ? oc : nsize);
1377 lj_alloc_free(m, ptr);
1379 return newmem;
1384 void *lj_alloc_f(void *msp, void *ptr, size_t osize, size_t nsize)
1386 (void)osize;
1387 if (nsize == 0) {
1388 return lj_alloc_free(msp, ptr);
1389 } else if (ptr == NULL) {
1390 return lj_alloc_malloc(msp, nsize);
1391 } else {
1392 return lj_alloc_realloc(msp, ptr, nsize);
1396 #endif