RELEASE LuaJIT-2.0.0-beta9
[luajit-2.0.git] / doc / ext_ffi_semantics.html
blob661b0b4c641f6618164d45b5fdb50100bca5eac0
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
2 <html>
3 <head>
4 <title>FFI Semantics</title>
5 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
6 <meta name="Author" content="Mike Pall">
7 <meta name="Copyright" content="Copyright (C) 2005-2011, Mike Pall">
8 <meta name="Language" content="en">
9 <link rel="stylesheet" type="text/css" href="bluequad.css" media="screen">
10 <link rel="stylesheet" type="text/css" href="bluequad-print.css" media="print">
11 <style type="text/css">
12 table.convtable { line-height: 1.2; }
13 tr.convhead td { font-weight: bold; }
14 td.convin { width: 11em; }
15 td.convop { font-style: italic; width: 16em; }
16 </style>
17 </head>
18 <body>
19 <div id="site">
20 <a href="http://luajit.org"><span>Lua<span id="logo">JIT</span></span></a>
21 </div>
22 <div id="head">
23 <h1>FFI Semantics</h1>
24 </div>
25 <div id="nav">
26 <ul><li>
27 <a href="luajit.html">LuaJIT</a>
28 <ul><li>
29 <a href="install.html">Installation</a>
30 </li><li>
31 <a href="running.html">Running</a>
32 </li></ul>
33 </li><li>
34 <a href="extensions.html">Extensions</a>
35 <ul><li>
36 <a href="ext_ffi.html">FFI Library</a>
37 <ul><li>
38 <a href="ext_ffi_tutorial.html">FFI Tutorial</a>
39 </li><li>
40 <a href="ext_ffi_api.html">ffi.* API</a>
41 </li><li>
42 <a class="current" href="ext_ffi_semantics.html">FFI Semantics</a>
43 </li></ul>
44 </li><li>
45 <a href="ext_jit.html">jit.* Library</a>
46 </li><li>
47 <a href="ext_c_api.html">Lua/C API</a>
48 </li></ul>
49 </li><li>
50 <a href="status.html">Status</a>
51 <ul><li>
52 <a href="changes.html">Changes</a>
53 </li></ul>
54 </li><li>
55 <a href="faq.html">FAQ</a>
56 </li><li>
57 <a href="http://luajit.org/performance.html">Performance <span class="ext">&raquo;</span></a>
58 </li><li>
59 <a href="http://luajit.org/download.html">Download <span class="ext">&raquo;</span></a>
60 </li></ul>
61 </div>
62 <div id="main">
63 <p>
64 This page describes the detailed semantics underlying the FFI library
65 and its interaction with both Lua and C&nbsp;code.
66 </p>
67 <p>
68 Given that the FFI library is designed to interface with C&nbsp;code
69 and that declarations can be written in plain C&nbsp;syntax, <b>it
70 closely follows the C&nbsp;language semantics</b>, wherever possible.
71 Some minor concessions are needed for smoother interoperation with Lua
72 language semantics.
73 </p>
74 <p>
75 Please don't be overwhelmed by the contents of this page &mdash; this
76 is a reference and you may need to consult it, if in doubt. It doesn't
77 hurt to skim this page, but most of the semantics "just work" as you'd
78 expect them to work. It should be straightforward to write
79 applications using the LuaJIT FFI for developers with a C or C++
80 background.
81 </p>
82 <p class="indent" style="color: #c00000;">
83 Please note: this doesn't comprise the final specification for the FFI
84 semantics, yet. Some semantics may need to be changed, based on your
85 feedback. Please <a href="contact.html">report</a> any problems you may
86 encounter or any improvements you'd like to see &mdash; thank you!
87 </p>
89 <h2 id="clang">C Language Support</h2>
90 <p>
91 The FFI library has a built-in C&nbsp;parser with a minimal memory
92 footprint. It's used by the <a href="ext_ffi_api.html">ffi.* library
93 functions</a> to declare C&nbsp;types or external symbols.
94 </p>
95 <p>
96 It's only purpose is to parse C&nbsp;declarations, as found e.g. in
97 C&nbsp;header files. Although it does evaluate constant expressions,
98 it's <em>not</em> a C&nbsp;compiler. The body of <tt>inline</tt>
99 C&nbsp;function definitions is simply ignored.
100 </p>
102 Also, this is <em>not</em> a validating C&nbsp;parser. It expects and
103 accepts correctly formed C&nbsp;declarations, but it may choose to
104 ignore bad declarations or show rather generic error messages. If in
105 doubt, please check the input against your favorite C&nbsp;compiler.
106 </p>
108 The C&nbsp;parser complies to the <b>C99 language standard</b> plus
109 the following extensions:
110 </p>
111 <ul>
113 <li>The <tt>'\e'</tt> escape in character and string literals.</li>
115 <li>The C99/C++ boolean type, declared with the keywords <tt>bool</tt>
116 or <tt>_Bool</tt>.</li>
118 <li>Complex numbers, declared with the keywords <tt>complex</tt> or
119 <tt>_Complex</tt>.</li>
121 <li>Two complex number types: <tt>complex</tt> (aka
122 <tt>complex&nbsp;double</tt>) and <tt>complex&nbsp;float</tt>.</li>
124 <li>Vector types, declared with the GCC <tt>mode</tt> or
125 <tt>vector_size</tt> attribute.</li>
127 <li>Unnamed ('transparent') <tt>struct</tt>/<tt>union</tt> fields
128 inside a <tt>struct</tt>/<tt>union</tt>.</li>
130 <li>Incomplete <tt>enum</tt> declarations, handled like incomplete
131 <tt>struct</tt> declarations.</li>
133 <li>Unnamed <tt>enum</tt> fields inside a
134 <tt>struct</tt>/<tt>union</tt>. This is similar to a scoped C++
135 <tt>enum</tt>, except that declared constants are visible in the
136 global namespace, too.</li>
138 <li>Scoped <tt>static&nbsp;const</tt> declarations inside a
139 <tt>struct</tt>/<tt>union</tt> (from C++).</li>
141 <li>Zero-length arrays (<tt>[0]</tt>), empty
142 <tt>struct</tt>/<tt>union</tt>, variable-length arrays (VLA,
143 <tt>[?]</tt>) and variable-length structs (VLS, with a trailing
144 VLA).</li>
146 <li>C++ reference types (<tt>int&nbsp;&amp;x</tt>).</li>
148 <li>Alternate GCC keywords with '<tt>__</tt>', e.g.
149 <tt>__const__</tt>.</li>
151 <li>GCC <tt>__attribute__</tt> with the following attributes:
152 <tt>aligned</tt>, <tt>packed</tt>, <tt>mode</tt>,
153 <tt>vector_size</tt>, <tt>cdecl</tt>, <tt>fastcall</tt>,
154 <tt>stdcall</tt>.</li>
156 <li>The GCC <tt>__extension__</tt> keyword and the GCC
157 <tt>__alignof__</tt> operator.</li>
159 <li>GCC <tt>__asm__("symname")</tt> symbol name redirection for
160 function declarations.</li>
162 <li>MSVC keywords for fixed-length types: <tt>__int8</tt>,
163 <tt>__int16</tt>, <tt>__int32</tt> and <tt>__int64</tt>.</li>
165 <li>MSVC <tt>__cdecl</tt>, <tt>__fastcall</tt>, <tt>__stdcall</tt>,
166 <tt>__ptr32</tt>, <tt>__ptr64</tt>, <tt>__declspec(align(n))</tt>
167 and <tt>#pragma&nbsp;pack</tt>.</li>
169 <li>All other GCC/MSVC-specific attributes are ignored.</li>
171 </ul>
173 The following C&nbsp;types are pre-defined by the C&nbsp;parser (like
174 a <tt>typedef</tt>, except re-declarations will be ignored):
175 </p>
176 <ul>
178 <li>Vararg handling: <tt>va_list</tt>, <tt>__builtin_va_list</tt>,
179 <tt>__gnuc_va_list</tt>.</li>
181 <li>From <tt>&lt;stddef.h&gt;</tt>: <tt>ptrdiff_t</tt>,
182 <tt>size_t</tt>, <tt>wchar_t</tt>.</li>
184 <li>From <tt>&lt;stdint.h&gt;</tt>: <tt>int8_t</tt>, <tt>int16_t</tt>,
185 <tt>int32_t</tt>, <tt>int64_t</tt>, <tt>uint8_t</tt>,
186 <tt>uint16_t</tt>, <tt>uint32_t</tt>, <tt>uint64_t</tt>,
187 <tt>intptr_t</tt>, <tt>uintptr_t</tt>.</li>
189 </ul>
191 You're encouraged to use these types in preference to the
192 compiler-specific extensions or the target-dependent standard types.
193 E.g. <tt>char</tt> differs in signedness and <tt>long</tt> differs in
194 size, depending on the target architecture and platform ABI.
195 </p>
197 The following C&nbsp;features are <b>not</b> supported:
198 </p>
199 <ul>
201 <li>A declaration must always have a type specifier; it doesn't
202 default to an <tt>int</tt> type.</li>
204 <li>Old-style empty function declarations (K&amp;R) are not allowed.
205 All C&nbsp;functions must have a proper prototype declaration. A
206 function declared without parameters (<tt>int&nbsp;foo();</tt>) is
207 treated as a function taking zero arguments, like in C++.</li>
209 <li>The <tt>long double</tt> C&nbsp;type is parsed correctly, but
210 there's no support for the related conversions, accesses or arithmetic
211 operations.</li>
213 <li>Wide character strings and character literals are not
214 supported.</li>
216 <li><a href="#status">See below</a> for features that are currently
217 not implemented.</li>
219 </ul>
221 <h2 id="convert">C Type Conversion Rules</h2>
223 <h3 id="convert_tolua">Conversions from C&nbsp;types to Lua objects</h3>
225 These conversion rules apply for <em>read accesses</em> to
226 C&nbsp;types: indexing pointers, arrays or
227 <tt>struct</tt>/<tt>union</tt> types; reading external variables or
228 constant values; retrieving return values from C&nbsp;calls:
229 </p>
230 <table class="convtable">
231 <tr class="convhead">
232 <td class="convin">Input</td>
233 <td class="convop">Conversion</td>
234 <td class="convout">Output</td>
235 </tr>
236 <tr class="odd separate">
237 <td class="convin"><tt>int8_t</tt>, <tt>int16_t</tt></td><td class="convop">&rarr;<sup>sign-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
238 <tr class="even">
239 <td class="convin"><tt>uint8_t</tt>, <tt>uint16_t</tt></td><td class="convop">&rarr;<sup>zero-ext</sup> <tt>int32_t</tt> &rarr; <tt>double</tt></td><td class="convout">number</td></tr>
240 <tr class="odd">
241 <td class="convin"><tt>int32_t</tt>, <tt>uint32_t</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
242 <tr class="even">
243 <td class="convin"><tt>int64_t</tt>, <tt>uint64_t</tt></td><td class="convop">boxed value</td><td class="convout">64 bit int cdata</td></tr>
244 <tr class="odd separate">
245 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr; <tt>double</tt></td><td class="convout">number</td></tr>
246 <tr class="even separate">
247 <td class="convin"><tt>bool</tt></td><td class="convop">0 &rarr; <tt>false</tt>, otherwise <tt>true</tt></td><td class="convout">boolean</td></tr>
248 <tr class="odd separate">
249 <td class="convin">Complex number</td><td class="convop">boxed value</td><td class="convout">complex cdata</td></tr>
250 <tr class="even">
251 <td class="convin">Vector</td><td class="convop">boxed value</td><td class="convout">vector cdata</td></tr>
252 <tr class="odd">
253 <td class="convin">Pointer</td><td class="convop">boxed value</td><td class="convout">pointer cdata</td></tr>
254 <tr class="even separate">
255 <td class="convin">Array</td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
256 <tr class="odd">
257 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">boxed reference</td><td class="convout">reference cdata</td></tr>
258 </table>
260 Bitfields or <tt>enum</tt> types are treated like their underlying
261 type.
262 </p>
264 Reference types are dereferenced <em>before</em> a conversion can take
265 place &mdash; the conversion is applied to the C&nbsp;type pointed to
266 by the reference.
267 </p>
269 <h3 id="convert_fromlua">Conversions from Lua objects to C&nbsp;types</h3>
271 These conversion rules apply for <em>write accesses</em> to
272 C&nbsp;types: indexing pointers, arrays or
273 <tt>struct</tt>/<tt>union</tt> types; initializing cdata objects;
274 casts to C&nbsp;types; writing to external variables; passing
275 arguments to C&nbsp;calls:
276 </p>
277 <table class="convtable">
278 <tr class="convhead">
279 <td class="convin">Input</td>
280 <td class="convop">Conversion</td>
281 <td class="convout">Output</td>
282 </tr>
283 <tr class="odd separate">
284 <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
285 <tr class="even">
286 <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
287 <tr class="odd separate">
288 <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
289 <tr class="even">
290 <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
291 <tr class="odd">
292 <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
293 <tr class="even separate">
294 <td class="convin">string</td><td class="convop">match against <tt>enum</tt> constant</td><td class="convout"><tt>enum</tt></td></tr>
295 <tr class="odd">
296 <td class="convin">string</td><td class="convop">copy string data + zero-byte</td><td class="convout"><tt>int8_t[]</tt>, <tt>uint8_t[]</tt></td></tr>
297 <tr class="even">
298 <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char[]</tt></td></tr>
299 <tr class="odd separate">
300 <td class="convin">function</td><td class="convop"><a href="#callback">create callback</a> &rarr;</td><td class="convout">C function type</td></tr>
301 <tr class="even separate">
302 <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout">Array</td></tr>
303 <tr class="odd">
304 <td class="convin">table</td><td class="convop"><a href="#init_table">table initializer</a></td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
305 <tr class="even separate">
306 <td class="convin">cdata</td><td class="convop">cdata payload &rarr;</td><td class="convout">C type</td></tr>
307 </table>
309 If the result type of this conversion doesn't match the
310 C&nbsp;type of the destination, the
311 <a href="#convert_between">conversion rules between C&nbsp;types</a>
312 are applied.
313 </p>
315 Reference types are immutable after initialization ("no re-seating of
316 references"). For initialization purposes or when passing values to
317 reference parameters, they are treated like pointers. Note that unlike
318 in C++, there's no way to implement automatic reference generation of
319 variables under the Lua language semantics. If you want to call a
320 function with a reference parameter, you need to explicitly pass a
321 one-element array.
322 </p>
324 <h3 id="convert_between">Conversions between C&nbsp;types</h3>
326 These conversion rules are more or less the same as the standard
327 C&nbsp;conversion rules. Some rules only apply to casts, or require
328 pointer or type compatibility:
329 </p>
330 <table class="convtable">
331 <tr class="convhead">
332 <td class="convin">Input</td>
333 <td class="convop">Conversion</td>
334 <td class="convout">Output</td>
335 </tr>
336 <tr class="odd separate">
337 <td class="convin">Signed integer</td><td class="convop">&rarr;<sup>narrow or sign-extend</sup></td><td class="convout">Integer</td></tr>
338 <tr class="even">
339 <td class="convin">Unsigned integer</td><td class="convop">&rarr;<sup>narrow or zero-extend</sup></td><td class="convout">Integer</td></tr>
340 <tr class="odd">
341 <td class="convin">Integer</td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>double</tt>, <tt>float</tt></td></tr>
342 <tr class="even">
343 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup> <tt>int32_t</tt> &rarr;<sup>narrow</sup></td><td class="convout"><tt>(u)int8_t</tt>, <tt>(u)int16_t</tt></td></tr>
344 <tr class="odd">
345 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>trunc</sup></td><td class="convout"><tt>(u)int32_t</tt>, <tt>(u)int64_t</tt></td></tr>
346 <tr class="even">
347 <td class="convin"><tt>double</tt>, <tt>float</tt></td><td class="convop">&rarr;<sup>round</sup></td><td class="convout"><tt>float</tt>, <tt>double</tt></td></tr>
348 <tr class="odd separate">
349 <td class="convin">Number</td><td class="convop">n == 0 &rarr; 0, otherwise 1</td><td class="convout"><tt>bool</tt></td></tr>
350 <tr class="even">
351 <td class="convin"><tt>bool</tt></td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout">Number</td></tr>
352 <tr class="odd separate">
353 <td class="convin">Complex number</td><td class="convop">convert real part</td><td class="convout">Number</td></tr>
354 <tr class="even">
355 <td class="convin">Number</td><td class="convop">convert real part, imag = 0</td><td class="convout">Complex number</td></tr>
356 <tr class="odd">
357 <td class="convin">Complex number</td><td class="convop">convert real and imag part</td><td class="convout">Complex number</td></tr>
358 <tr class="even separate">
359 <td class="convin">Number</td><td class="convop">convert scalar and replicate</td><td class="convout">Vector</td></tr>
360 <tr class="odd">
361 <td class="convin">Vector</td><td class="convop">copy (same size)</td><td class="convout">Vector</td></tr>
362 <tr class="even separate">
363 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
364 <tr class="odd">
365 <td class="convin">Array</td><td class="convop">take base address (compat)</td><td class="convout">Pointer</td></tr>
366 <tr class="even">
367 <td class="convin">Function</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
368 <tr class="odd separate">
369 <td class="convin">Number</td><td class="convop">convert via <tt>uintptr_t</tt> (cast)</td><td class="convout">Pointer</td></tr>
370 <tr class="even">
371 <td class="convin">Pointer</td><td class="convop">convert address (compat/cast)</td><td class="convout">Pointer</td></tr>
372 <tr class="odd">
373 <td class="convin">Pointer</td><td class="convop">convert address (cast)</td><td class="convout">Integer</td></tr>
374 <tr class="even">
375 <td class="convin">Array</td><td class="convop">convert base address (cast)</td><td class="convout">Integer</td></tr>
376 <tr class="odd separate">
377 <td class="convin">Array</td><td class="convop">copy (compat)</td><td class="convout">Array</td></tr>
378 <tr class="even">
379 <td class="convin"><tt>struct</tt>/<tt>union</tt></td><td class="convop">copy (identical type)</td><td class="convout"><tt>struct</tt>/<tt>union</tt></td></tr>
380 </table>
382 Bitfields or <tt>enum</tt> types are treated like their underlying
383 type.
384 </p>
386 Conversions not listed above will raise an error. E.g. it's not
387 possible to convert a pointer to a complex number or vice versa.
388 </p>
390 <h3 id="convert_vararg">Conversions for vararg C&nbsp;function arguments</h3>
392 The following default conversion rules apply when passing Lua objects
393 to the variable argument part of vararg C&nbsp;functions:
394 </p>
395 <table class="convtable">
396 <tr class="convhead">
397 <td class="convin">Input</td>
398 <td class="convop">Conversion</td>
399 <td class="convout">Output</td>
400 </tr>
401 <tr class="odd separate">
402 <td class="convin">number</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
403 <tr class="even">
404 <td class="convin">boolean</td><td class="convop"><tt>false</tt> &rarr; 0, <tt>true</tt> &rarr; 1</td><td class="convout"><tt>bool</tt></td></tr>
405 <tr class="odd separate">
406 <td class="convin">nil</td><td class="convop"><tt>NULL</tt> &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
407 <tr class="even">
408 <td class="convin">userdata</td><td class="convop">userdata payload &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
409 <tr class="odd">
410 <td class="convin">lightuserdata</td><td class="convop">lightuserdata address &rarr;</td><td class="convout"><tt>(void *)</tt></td></tr>
411 <tr class="even separate">
412 <td class="convin">string</td><td class="convop">string data &rarr;</td><td class="convout"><tt>const char *</tt></td></tr>
413 <tr class="odd separate">
414 <td class="convin"><tt>float</tt> cdata</td><td class="convop">&rarr;</td><td class="convout"><tt>double</tt></td></tr>
415 <tr class="even">
416 <td class="convin">Array cdata</td><td class="convop">take base address</td><td class="convout">Element pointer</td></tr>
417 <tr class="odd">
418 <td class="convin"><tt>struct</tt>/<tt>union</tt> cdata</td><td class="convop">take base address</td><td class="convout"><tt>struct</tt>/<tt>union</tt> pointer</td></tr>
419 <tr class="even">
420 <td class="convin">Function cdata</td><td class="convop">take function address</td><td class="convout">Function pointer</td></tr>
421 <tr class="odd">
422 <td class="convin">Any other cdata</td><td class="convop">no conversion</td><td class="convout">C type</td></tr>
423 </table>
425 To pass a Lua object, other than a cdata object, as a specific type,
426 you need to override the conversion rules: create a temporary cdata
427 object with a constructor or a cast and initialize it with the value
428 to pass:
429 </p>
431 Assuming <tt>x</tt> is a Lua number, here's how to pass it as an
432 integer to a vararg function:
433 </p>
434 <pre class="code">
435 ffi.cdef[[
436 int printf(const char *fmt, ...);
438 ffi.C.printf("integer value: %d\n", ffi.new("int", x))
439 </pre>
441 If you don't do this, the default Lua number &rarr; <tt>double</tt>
442 conversion rule applies. A vararg C&nbsp;function expecting an integer
443 will see a garbled or uninitialized value.
444 </p>
446 <h2 id="init">Initializers</h2>
448 Creating a cdata object with
449 <a href="ext_ffi_api.html#ffi_new"><tt>ffi.new()</tt></a> or the
450 equivalent constructor syntax always initializes its contents, too.
451 Different rules apply, depending on the number of optional
452 initializers and the C&nbsp;types involved:
453 </p>
454 <ul>
455 <li>If no initializers are given, the object is filled with zero bytes.</li>
457 <li>Scalar types (numbers and pointers) accept a single initializer.
458 The Lua object is <a href="#convert_fromlua">converted to the scalar
459 C&nbsp;type</a>.</li>
461 <li>Valarrays (complex numbers and vectors) are treated like scalars
462 when a single initializer is given. Otherwise they are treated like
463 regular arrays.</li>
465 <li>Aggregate types (arrays and structs) accept either a single
466 <a href="#init_table">table initializer</a> or a flat list of
467 initializers.</li>
469 <li>The elements of an array are initialized, starting at index zero.
470 If a single initializer is given for an array, it's repeated for all
471 remaining elements. This doesn't happen if two or more initializers
472 are given: all remaining uninitialized elements are filled with zero
473 bytes.</li>
475 <li>Byte arrays may also be initialized with a Lua string. This copies
476 the whole string plus a terminating zero-byte. The copy stops early only
477 if the array has a known, fixed size.</li>
479 <li>The fields of a <tt>struct</tt> are initialized in the order of
480 their declaration. Uninitialized fields are filled with zero
481 bytes.</li>
483 <li>Only the first field of a <tt>union</tt> can be initialized with a
484 flat initializer.</li>
486 <li>Elements or fields which are aggregates themselves are initialized
487 with a <em>single</em> initializer, but this may be a table
488 initializer or a compatible aggregate.</li>
490 <li>Excess initializers cause an error.</li>
492 </ul>
494 <h2 id="init_table">Table Initializers</h2>
496 The following rules apply if a Lua table is used to initialize an
497 Array or a <tt>struct</tt>/<tt>union</tt>:
498 </p>
499 <ul>
501 <li>If the table index <tt>[0]</tt> is non-<tt>nil</tt>, then the
502 table is assumed to be zero-based. Otherwise it's assumed to be
503 one-based.</li>
505 <li>Array elements, starting at index zero, are initialized one-by-one
506 with the consecutive table elements, starting at either index
507 <tt>[0]</tt> or <tt>[1]</tt>. This process stops at the first
508 <tt>nil</tt> table element.</li>
510 <li>If exactly one array element was initialized, it's repeated for
511 all the remaining elements. Otherwise all remaining uninitialized
512 elements are filled with zero bytes.</li>
514 <li>The above logic only applies to arrays with a known fixed size.
515 A VLA is only initialized with the element(s) given in the table.
516 Depending on the use case, you may need to explicitly add a
517 <tt>NULL</tt> or <tt>0</tt> terminator to a VLA.</li>
519 <li>If the table has a non-empty hash part, a
520 <tt>struct</tt>/<tt>union</tt> is initialized by looking up each field
521 name (as a string key) in the table. Each non-<tt>nil</tt> value is
522 used to initialize the corresponding field.</li>
524 <li>Otherwise a <tt>struct</tt>/<tt>union</tt> is initialized in the
525 order of the declaration of its fields. Each field is initialized with
526 the consecutive table elements, starting at either index <tt>[0]</tt>
527 or <tt>[1]</tt>. This process stops at the first <tt>nil</tt> table
528 element.</li>
530 <li>Uninitialized fields of a <tt>struct</tt> are filled with zero
531 bytes, except for the trailing VLA of a VLS.</li>
533 <li>Initialization of a <tt>union</tt> stops after one field has been
534 initialized. If no field has been initialized, the <tt>union</tt> is
535 filled with zero bytes.</li>
537 <li>Elements or fields which are aggregates themselves are initialized
538 with a <em>single</em> initializer, but this may be a nested table
539 initializer (or a compatible aggregate).</li>
541 <li>Excess initializers for an array cause an error. Excess
542 initializers for a <tt>struct</tt>/<tt>union</tt> are ignored.
543 Unrelated table entries are ignored, too.</li>
545 </ul>
547 Example:
548 </p>
549 <pre class="code">
550 local ffi = require("ffi")
552 ffi.cdef[[
553 struct foo { int a, b; };
554 union bar { int i; double d; };
555 struct nested { int x; struct foo y; };
558 ffi.new("int[3]", {}) --> 0, 0, 0
559 ffi.new("int[3]", {1}) --> 1, 1, 1
560 ffi.new("int[3]", {1,2}) --> 1, 2, 0
561 ffi.new("int[3]", {1,2,3}) --> 1, 2, 3
562 ffi.new("int[3]", {[0]=1}) --> 1, 1, 1
563 ffi.new("int[3]", {[0]=1,2}) --> 1, 2, 0
564 ffi.new("int[3]", {[0]=1,2,3}) --> 1, 2, 3
565 ffi.new("int[3]", {[0]=1,2,3,4}) --> error: too many initializers
567 ffi.new("struct foo", {}) --> a = 0, b = 0
568 ffi.new("struct foo", {1}) --> a = 1, b = 0
569 ffi.new("struct foo", {1,2}) --> a = 1, b = 2
570 ffi.new("struct foo", {[0]=1,2}) --> a = 1, b = 2
571 ffi.new("struct foo", {b=2}) --> a = 0, b = 2
572 ffi.new("struct foo", {a=1,b=2,c=3}) --> a = 1, b = 2 'c' is ignored
574 ffi.new("union bar", {}) --> i = 0, d = 0.0
575 ffi.new("union bar", {1}) --> i = 1, d = ?
576 ffi.new("union bar", {[0]=1,2}) --> i = 1, d = ? '2' is ignored
577 ffi.new("union bar", {d=2}) --> i = ?, d = 2.0
579 ffi.new("struct nested", {1,{2,3}}) --> x = 1, y.a = 2, y.b = 3
580 ffi.new("struct nested", {x=1,y={2,3}}) --> x = 1, y.a = 2, y.b = 3
581 </pre>
583 <h2 id="cdata_ops">Operations on cdata Objects</h2>
585 All of the standard Lua operators can be applied to cdata objects or a
586 mix of a cdata object and another Lua object. The following list shows
587 the valid combinations. All other combinations currently raise an
588 error.
589 </p>
591 Reference types are dereferenced <em>before</em> performing each of
592 the operations below &mdash; the operation is applied to the
593 C&nbsp;type pointed to by the reference.
594 </p>
596 The pre-defined operations are always tried first before deferring to a
597 metamethod for a ctype (if defined).
598 </p>
600 <h3 id="cdata_array">Indexing a cdata object</h3>
601 <ul>
603 <li><b>Indexing a pointer/array</b>: a cdata pointer/array can be
604 indexed by a cdata number or a Lua number. The element address is
605 computed as the base address plus the number value multiplied by the
606 element size in bytes. A read access loads the element value and
607 <a href="#convert_tolua">converts it to a Lua object</a>. A write
608 access <a href="#convert_fromlua">converts a Lua object to the element
609 type</a> and stores the converted value to the element. An error is
610 raised if the element size is undefined or a write access to a
611 constant element is attempted.</li>
613 <li><b>Dereferencing a <tt>struct</tt>/<tt>union</tt> field</b>: a
614 cdata <tt>struct</tt>/<tt>union</tt> or a pointer to a
615 <tt>struct</tt>/<tt>union</tt> can be dereferenced by a string key,
616 giving the field name. The field address is computed as the base
617 address plus the relative offset of the field. A read access loads the
618 field value and <a href="#convert_tolua">converts it to a Lua
619 object</a>. A write access <a href="#convert_fromlua">converts a Lua
620 object to the field type</a> and stores the converted value to the
621 field. An error is raised if a write access to a constant
622 <tt>struct</tt>/<tt>union</tt> or a constant field is attempted.</li>
624 <li><b>Indexing a complex number</b>: a complex number can be indexed
625 either by a cdata number or a Lua number with the values 0 or 1, or by
626 the strings <tt>"re"</tt> or <tt>"im"</tt>. A read access loads the
627 real part (<tt>[0]</tt>, <tt>.re</tt>) or the imaginary part
628 (<tt>[1]</tt>, <tt>.im</tt>) part of a complex number and
629 <a href="#convert_tolua">converts it to a Lua number</a>. The
630 sub-parts of a complex number are immutable &mdash; assigning to an
631 index of a complex number raises an error. Accessing out-of-bound
632 indexes returns unspecified results, but is guaranteed not to trigger
633 memory access violations.</li>
635 <li><b>Indexing a vector</b>: a vector is treated like an array for
636 indexing purposes, except the vector elements are immutable &mdash;
637 assigning to an index of a vector raises an error.</li>
639 </ul>
641 Note: since there's (deliberately) no address-of operator, a cdata
642 object holding a value type is effectively immutable after
643 initialization. The JIT compiler benefits from this fact when applying
644 certain optimizations.
645 </p>
647 As a consequence of this, the <em>elements</em> of complex numbers and
648 vectors are immutable. But the elements of an aggregate holding these
649 types <em>may</em> be modified of course. I.e. you cannot assign to
650 <tt>foo.c.im</tt>, but you can assign a (newly created) complex number
651 to <tt>foo.c</tt>.
652 </p>
654 <h3 id="cdata_call">Calling a cdata object</h3>
655 <ul>
657 <li><b>Constructor</b>: a ctype object can be called and used as a
658 <a href="ext_ffi_api.html#ffi_new">constructor</a>.</li>
660 <li><b>C&nbsp;function call</b>: a cdata function or cdata function
661 pointer can be called. The passed arguments are
662 <a href="#convert_fromlua">converted to the C&nbsp;types</a> of the
663 parameters given by the function declaration. Arguments passed to the
664 variable argument part of vararg C&nbsp;function use
665 <a href="#convert_vararg">special conversion rules</a>. This
666 C&nbsp;function is called and the return value (if any) is
667 <a href="#convert_tolua">converted to a Lua object</a>.<br>
668 On Windows/x86 systems, <tt>__stdcall</tt> functions are automatically
669 detected and a function declared as <tt>__cdecl</tt> (the default) is
670 silently fixed up after the first call.</li>
672 </ul>
674 <h3 id="cdata_arith">Arithmetic on cdata objects</h3>
675 <ul>
677 <li><b>Pointer arithmetic</b>: a cdata pointer/array and a cdata
678 number or a Lua number can be added or subtracted. The number must be
679 on the right hand side for a subtraction. The result is a pointer of
680 the same type with an address plus or minus the number value
681 multiplied by the element size in bytes. An error is raised if the
682 element size is undefined.</li>
684 <li><b>Pointer difference</b>: two compatible cdata pointers/arrays
685 can be subtracted. The result is the difference between their
686 addresses, divided by the element size in bytes. An error is raised if
687 the element size is undefined or zero.</li>
689 <li><b>64&nbsp;bit integer arithmetic</b>: the standard arithmetic
690 operators (<tt>+&nbsp;-&nbsp;*&nbsp;/&nbsp;%&nbsp;^</tt> and unary
691 minus) can be applied to two cdata numbers, or a cdata number and a
692 Lua number. If one of them is an <tt>uint64_t</tt>, the other side is
693 converted to an <tt>uint64_t</tt> and an unsigned arithmetic operation
694 is performed. Otherwise both sides are converted to an
695 <tt>int64_t</tt> and a signed arithmetic operation is performed. The
696 result is a boxed 64&nbsp;bit cdata object.<br>
698 These rules ensure that 64&nbsp;bit integers are "sticky". Any
699 expression involving at least one 64&nbsp;bit integer operand results
700 in another one. The undefined cases for the division, modulo and power
701 operators return <tt>2LL&nbsp;^&nbsp;63</tt> or
702 <tt>2ULL&nbsp;^&nbsp;63</tt>.<br>
704 You'll have to explicitly convert a 64&nbsp;bit integer to a Lua
705 number (e.g. for regular floating-point calculations) with
706 <tt>tonumber()</tt>. But note this may incur a precision loss.</li>
708 </ul>
710 <h3 id="cdata_comp">Comparisons of cdata objects</h3>
711 <ul>
713 <li><b>Pointer comparison</b>: two compatible cdata pointers/arrays
714 can be compared. The result is the same as an unsigned comparison of
715 their addresses. <tt>nil</tt> is treated like a <tt>NULL</tt> pointer,
716 which is compatible with any other pointer type.</li>
718 <li><b>64&nbsp;bit integer comparison</b>: two cdata numbers, or a
719 cdata number and a Lua number can be compared with each other. If one
720 of them is an <tt>uint64_t</tt>, the other side is converted to an
721 <tt>uint64_t</tt> and an unsigned comparison is performed. Otherwise
722 both sides are converted to an <tt>int64_t</tt> and a signed
723 comparison is performed.</li>
725 </ul>
727 <h3 id="cdata_key">cdata objects as table keys</h3>
729 Lua tables may be indexed by cdata objects, but this doesn't provide
730 any useful semantics &mdash; <b>cdata objects are unsuitable as table
731 keys!</b>
732 </p>
734 A cdata object is treated like any other garbage-collected object and
735 is hashed and compared by its address for table indexing. Since
736 there's no interning for cdata value types, the same value may be
737 boxed in different cdata objects with different addresses. Thus
738 <tt>t[1LL+1LL]</tt> and <tt>t[2LL]</tt> usually <b>do not</b> point to
739 the same hash slot and they certainly <b>do not</b> point to the same
740 hash slot as <tt>t[2]</tt>.
741 </p>
743 It would seriously drive up implementation complexity and slow down
744 the common case, if one were to add extra handling for by-value
745 hashing and comparisons to Lua tables. Given the ubiquity of their use
746 inside the VM, this is not acceptable.
747 </p>
749 There are three viable alternatives, if you really need to use cdata
750 objects as keys:
751 </p>
752 <ul>
754 <li>If you can get by with the precision of Lua numbers
755 (52&nbsp;bits), then use <tt>tonumber()</tt> on a cdata number or
756 combine multiple fields of a cdata aggregate to a Lua number. Then use
757 the resulting Lua number as a key when indexing tables.<br>
758 One obvious benefit: <tt>t[tonumber(2LL)]</tt> <b>does</b> point to
759 the same slot as <tt>t[2]</tt>.</li>
761 <li>Otherwise use either <tt>tostring()</tt> on 64&nbsp;bit integers
762 or complex numbers or combine multiple fields of a cdata aggregate to
763 a Lua string (e.g. with
764 <a href="ext_ffi_api.html#ffi_string"><tt>ffi.string()</tt></a>). Then
765 use the resulting Lua string as a key when indexing tables.</li>
767 <li>Create your own specialized hash table implementation using the
768 C&nbsp;types provided by the FFI library, just like you would in
769 C&nbsp;code. Ultimately this may give much better performance than the
770 other alternatives or what a generic by-value hash table could
771 possibly provide.</li>
773 </ul>
775 <h2 id="gc">Garbage Collection of cdata Objects</h2>
777 All explicitly (<tt>ffi.new()</tt>, <tt>ffi.cast()</tt> etc.) or
778 implicitly (accessors) created cdata objects are garbage collected.
779 You need to ensure to retain valid references to cdata objects
780 somewhere on a Lua stack, an upvalue or in a Lua table while they are
781 still in use. Once the last reference to a cdata object is gone, the
782 garbage collector will automatically free the memory used by it (at
783 the end of the next GC cycle).
784 </p>
786 Please note that pointers themselves are cdata objects, however they
787 are <b>not</b> followed by the garbage collector. So e.g. if you
788 assign a cdata array to a pointer, you must keep the cdata object
789 holding the array alive as long as the pointer is still in use:
790 </p>
791 <pre class="code">
792 ffi.cdef[[
793 typedef struct { int *a; } foo_t;
796 local s = ffi.new("foo_t", ffi.new("int[10]")) -- <span style="color:#c00000;">WRONG!</span>
798 local a = ffi.new("int[10]") -- <span style="color:#00a000;">OK</span>
799 local s = ffi.new("foo_t", a)
800 -- Now do something with 's', but keep 'a' alive until you're done.
801 </pre>
803 Similar rules apply for Lua strings which are implicitly converted to
804 <tt>"const&nbsp;char&nbsp;*"</tt>: the string object itself must be
805 referenced somewhere or it'll be garbage collected eventually. The
806 pointer will then point to stale data, which may have already been
807 overwritten. Note that <em>string literals</em> are automatically kept
808 alive as long as the function containing it (actually its prototype)
809 is not garbage collected.
810 </p>
812 Objects which are passed as an argument to an external C&nbsp;function
813 are kept alive until the call returns. So it's generally safe to
814 create temporary cdata objects in argument lists. This is a common
815 idiom for <a href="#convert_vararg">passing specific C&nbsp;types to
816 vararg functions</a>.
817 </p>
819 Memory areas returned by C functions (e.g. from <tt>malloc()</tt>)
820 must be manually managed, of course (or use
821 <a href="ext_ffi_api.html#ffi_gc"><tt>ffi.gc()</tt></a>). Pointers to
822 cdata objects are indistinguishable from pointers returned by C
823 functions (which is one of the reasons why the GC cannot follow them).
824 </p>
826 <h2 id="callback">Callbacks</h2>
828 The LuaJIT FFI automatically generates special callback functions
829 whenever a Lua function is converted to a C&nbsp;function pointer. This
830 associates the generated callback function pointer with the C&nbsp;type
831 of the function pointer and the Lua function object (closure).
832 </p>
834 This can happen implicitly due to the usual conversions, e.g. when
835 passing a Lua function to a function pointer argument. Or you can use
836 <tt>ffi.cast()</tt> to explicitly cast a Lua function to a
837 C&nbsp;function pointer.
838 </p>
840 Currently only certain C&nbsp;function types can be used as callback
841 functions. Neither C&nbsp;vararg functions nor functions with
842 pass-by-value aggregate argument or result types are supported. There
843 are no restrictions for the kind of Lua functions that can be called
844 from the callback &mdash; no checks for the proper number of arguments
845 are made. The return value of the Lua function will be converted to the
846 result type and an error will be thrown for invalid conversions.
847 </p>
849 It's allowed to throw errors across a callback invocation, but it's not
850 advisable in general. Do this only if you know the C&nbsp;function, that
851 called the callback, copes with the forced stack unwinding and doesn't
852 leak resources.
853 </p>
855 <h3 id="callback_resources">Callback resource handling</h3>
857 Callbacks take up resources &mdash; you can only have a limited number
858 of them at the same time (500&nbsp;-&nbsp;1000, depending on the
859 architecture). The associated Lua functions are anchored to prevent
860 garbage collection, too.
861 </p>
863 <b>Callbacks due to implicit conversions are permanent!</b> There is no
864 way to guess their lifetime, since the C&nbsp;side might store the
865 function pointer for later use (typical for GUI toolkits). The associated
866 resources cannot be reclaimed until termination:
867 </p>
868 <pre class="code">
869 ffi.cdef[[
870 typedef int (__stdcall *WNDENUMPROC)(void *hwnd, intptr_t l);
871 int EnumWindows(WNDENUMPROC func, intptr_t l);
874 -- Implicit conversion to a callback via function pointer argument.
875 local count = 0
876 ffi.C.EnumWindows(function(hwnd, l)
877 count = count + 1
878 return true
879 end, 0)
880 -- The callback is permanent and its resources cannot be reclaimed!
881 -- Ok, so this may not be a problem, if you do this only once.
882 </pre>
884 Note: this example shows that you <em>must</em> properly declare
885 <tt>__stdcall</tt> callbacks on Windows/x86 systems. The calling
886 convention cannot be automatically detected, unlike for
887 <tt>__stdcall</tt> calls <em>to</em> Windows functions.
888 </p>
890 For some use cases it's necessary to free up the resources or to
891 dynamically redirect callbacks. Use an explicit cast to a
892 C&nbsp;function pointer and keep the resulting cdata object. Then use
893 the <a href="ext_ffi_api.html#callback_free"><tt>cb:free()</tt></a>
894 or <a href="ext_ffi_api.html#callback_set"><tt>cb:set()</tt></a> methods
895 on the cdata object:
896 </p>
897 <pre class="code">
898 -- Explicitly convert to a callback via cast.
899 local count = 0
900 local cb = ffi.cast("WNDENUMPROC", function(hwnd, l)
901 count = count + 1
902 return true
903 end)
905 -- Pass it to a C function.
906 ffi.C.EnumWindows(cb, 0)
907 -- EnumWindows doesn't need the callback after it returns, so free it.
909 cb:free()
910 -- The callback function pointer is no longer valid and its resources
911 -- will be reclaimed. The created Lua closure will be garbage collected.
912 </pre>
914 <h3 id="callback_performance">Callback performance</h3>
916 <b>Callbacks are slow!</b> First, the C&nbsp;to Lua transition itself
917 has an unavoidable cost, similar to a <tt>lua_call()</tt> or
918 <tt>lua_pcall()</tt>. Argument and result marshalling add to that cost.
919 And finally, neither the C&nbsp;compiler nor LuaJIT can inline or
920 optimize across the language barrier and hoist repeated computations out
921 of a callback function.
922 </p>
924 Do not use callbacks for performance-sensitive work: e.g. consider a
925 numerical integration routine which takes a user-defined function to
926 integrate over. It's a bad idea to call a user-defined Lua function from
927 C&nbsp;code millions of times. The callback overhead will be absolutely
928 detrimental for performance.
929 </p>
931 It's considerably faster to write the numerical integration routine
932 itself in Lua &mdash; the JIT compiler will be able to inline the
933 user-defined function and optimize it together with its calling context,
934 with very competitive performance.
935 </p>
937 As a general guideline: <b>use callbacks only when you must</b>, because
938 of existing C&nbsp;APIs. E.g. callback performance is irrelevant for a
939 GUI application, which waits for user input most of the time, anyway.
940 </p>
942 For new designs <b>avoid push-style APIs</b> (C&nbsp;function repeatedly
943 calling a callback for each result). Instead <b>use pull-style APIs</b>
944 (call a C&nbsp;function repeatedly to get a new result). Calls from Lua
945 to C via the FFI are much faster than the other way round. Most well-designed
946 libraries already use pull-style APIs (read/write, get/put).
947 </p>
949 <h2 id="clib">C Library Namespaces</h2>
951 A C&nbsp;library namespace is a special kind of object which allows
952 access to the symbols contained in shared libraries or the default
953 symbol namespace. The default
954 <a href="ext_ffi_api.html#ffi_C"><tt>ffi.C</tt></a> namespace is
955 automatically created when the FFI library is loaded. C&nbsp;library
956 namespaces for specific shared libraries may be created with the
957 <a href="ext_ffi_api.html#ffi_load"><tt>ffi.load()</tt></a> API
958 function.
959 </p>
961 Indexing a C&nbsp;library namespace object with a symbol name (a Lua
962 string) automatically binds it to the library. First the symbol type
963 is resolved &mdash; it must have been declared with
964 <a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a>. Then the
965 symbol address is resolved by searching for the symbol name in the
966 associated shared libraries or the default symbol namespace. Finally,
967 the resulting binding between the symbol name, the symbol type and its
968 address is cached. Missing symbol declarations or nonexistent symbol
969 names cause an error.
970 </p>
972 This is what happens on a <b>read access</b> for the different kinds of
973 symbols:
974 </p>
975 <ul>
977 <li>External functions: a cdata object with the type of the function
978 and its address is returned.</li>
980 <li>External variables: the symbol address is dereferenced and the
981 loaded value is <a href="#convert_tolua">converted to a Lua object</a>
982 and returned.</li>
984 <li>Constant values (<tt>static&nbsp;const</tt> or <tt>enum</tt>
985 constants): the constant is <a href="#convert_tolua">converted to a
986 Lua object</a> and returned.</li>
988 </ul>
990 This is what happens on a <b>write access</b>:
991 </p>
992 <ul>
994 <li>External variables: the value to be written is
995 <a href="#convert_fromlua">converted to the C&nbsp;type</a> of the
996 variable and then stored at the symbol address.</li>
998 <li>Writing to constant variables or to any other symbol type causes
999 an error, like any other attempted write to a constant location.</li>
1001 </ul>
1003 C&nbsp;library namespaces themselves are garbage collected objects. If
1004 the last reference to the namespace object is gone, the garbage
1005 collector will eventually release the shared library reference and
1006 remove all memory associated with the namespace. Since this may
1007 trigger the removal of the shared library from the memory of the
1008 running process, it's generally <em>not safe</em> to use function
1009 cdata objects obtained from a library if the namespace object may be
1010 unreferenced.
1011 </p>
1013 Performance notice: the JIT compiler specializes to the identity of
1014 namespace objects and to the strings used to index it. This
1015 effectively turns function cdata objects into constants. It's not
1016 useful and actually counter-productive to explicitly cache these
1017 function objects, e.g. <tt>local strlen = ffi.C.strlen</tt>. OTOH it
1018 <em>is</em> useful to cache the namespace itself, e.g. <tt>local C =
1019 ffi.C</tt>.
1020 </p>
1022 <h2 id="policy">No Hand-holding!</h2>
1024 The FFI library has been designed as <b>a low-level library</b>. The
1025 goal is to interface with C&nbsp;code and C&nbsp;data types with a
1026 minimum of overhead. This means <b>you can do anything you can do
1027 from&nbsp;C</b>: access all memory, overwrite anything in memory, call
1028 machine code at any memory address and so on.
1029 </p>
1031 The FFI library provides <b>no memory safety</b>, unlike regular Lua
1032 code. It will happily allow you to dereference a <tt>NULL</tt>
1033 pointer, to access arrays out of bounds or to misdeclare
1034 C&nbsp;functions. If you make a mistake, your application might crash,
1035 just like equivalent C&nbsp;code would.
1036 </p>
1038 This behavior is inevitable, since the goal is to provide full
1039 interoperability with C&nbsp;code. Adding extra safety measures, like
1040 bounds checks, would be futile. There's no way to detect
1041 misdeclarations of C&nbsp;functions, since shared libraries only
1042 provide symbol names, but no type information. Likewise there's no way
1043 to infer the valid range of indexes for a returned pointer.
1044 </p>
1046 Again: the FFI library is a low-level library. This implies it needs
1047 to be used with care, but it's flexibility and performance often
1048 outweigh this concern. If you're a C or C++ developer, it'll be easy
1049 to apply your existing knowledge. OTOH writing code for the FFI
1050 library is not for the faint of heart and probably shouldn't be the
1051 first exercise for someone with little experience in Lua, C or C++.
1052 </p>
1054 As a corollary of the above, the FFI library is <b>not safe for use by
1055 untrusted Lua code</b>. If you're sandboxing untrusted Lua code, you
1056 definitely don't want to give this code access to the FFI library or
1057 to <em>any</em> cdata object (except 64&nbsp;bit integers or complex
1058 numbers). Any properly engineered Lua sandbox needs to provide safety
1059 wrappers for many of the standard Lua library functions &mdash;
1060 similar wrappers need to be written for high-level operations on FFI
1061 data types, too.
1062 </p>
1064 <h2 id="status">Current Status</h2>
1066 The initial release of the FFI library has some limitations and is
1067 missing some features. Most of these will be fixed in future releases.
1068 </p>
1070 <a href="#clang">C language support</a> is
1071 currently incomplete:
1072 </p>
1073 <ul>
1074 <li>C&nbsp;declarations are not passed through a C&nbsp;pre-processor,
1075 yet.</li>
1076 <li>The C&nbsp;parser is able to evaluate most constant expressions
1077 commonly found in C&nbsp;header files. However it doesn't handle the
1078 full range of C&nbsp;expression semantics and may fail for some
1079 obscure constructs.</li>
1080 <li><tt>static const</tt> declarations only work for integer types
1081 up to 32&nbsp;bits. Neither declaring string constants nor
1082 floating-point constants is supported.</li>
1083 <li>Packed <tt>struct</tt> bitfields that cross container boundaries
1084 are not implemented.</li>
1085 <li>Native vector types may be defined with the GCC <tt>mode</tt> or
1086 <tt>vector_size</tt> attribute. But no operations other than loading,
1087 storing and initializing them are supported, yet.</li>
1088 <li>The <tt>volatile</tt> type qualifier is currently ignored by
1089 compiled code.</li>
1090 <li><a href="ext_ffi_api.html#ffi_cdef"><tt>ffi.cdef</tt></a> silently
1091 ignores all re-declarations.</li>
1092 </ul>
1094 The JIT compiler already handles a large subset of all FFI operations.
1095 It automatically falls back to the interpreter for unimplemented
1096 operations (you can check for this with the
1097 <a href="running.html#opt_j"><tt>-jv</tt></a> command line option).
1098 The following operations are currently not compiled and may exhibit
1099 suboptimal performance, especially when used in inner loops:
1100 </p>
1101 <ul>
1102 <li>Array/<tt>struct</tt> copies and bulk initializations.</li>
1103 <li>Bitfield accesses and initializations.</li>
1104 <li>Vector operations.</li>
1105 <li>Table initializers.</li>
1106 <li>Initialization of nested <tt>struct</tt>/<tt>union</tt> types.</li>
1107 <li>Allocations of variable-length arrays or structs.</li>
1108 <li>Allocations of C&nbsp;types with a size &gt; 64&nbsp;bytes or an
1109 alignment &gt; 8&nbsp;bytes.</li>
1110 <li>Conversions from lightuserdata to <tt>void&nbsp;*</tt>.</li>
1111 <li>Pointer differences for element sizes that are not a power of
1112 two.</li>
1113 <li>Calls to C&nbsp;functions with aggregates passed or returned by
1114 value.</li>
1115 <li>Calls to ctype metamethods which are not plain functions.</li>
1116 <li>ctype <tt>__newindex</tt> tables and non-string lookups in ctype
1117 <tt>__index</tt> tables.</li>
1118 <li><tt>tostring()</tt> for cdata types.</li>
1119 <li>Calls to the following <a href="ext_ffi_api.html">ffi.* API</a>
1120 functions: <tt>cdef</tt>, <tt>load</tt>, <tt>typeof</tt>,
1121 <tt>metatype</tt>, <tt>gc</tt>, <tt>sizeof</tt>, <tt>alignof</tt>,
1122 <tt>offsetof</tt>.</li>
1123 </ul>
1125 Other missing features:
1126 </p>
1127 <ul>
1128 <li>Bit operations for 64&nbsp;bit types.</li>
1129 <li>Arithmetic for <tt>complex</tt> numbers.</li>
1130 <li>Passing structs by value to vararg C&nbsp;functions.</li>
1131 <li><a href="extensions.html#exceptions">C++ exception interoperability</a>
1132 does not extend to C&nbsp;functions called via the FFI, if the call is
1133 compiled.</li>
1134 </ul>
1135 <br class="flush">
1136 </div>
1137 <div id="foot">
1138 <hr class="hide">
1139 Copyright &copy; 2005-2011 Mike Pall
1140 <span class="noprint">
1141 &middot;
1142 <a href="contact.html">Contact</a>
1143 </span>
1144 </div>
1145 </body>
1146 </html>