Disable loading bytecode with an extra header (BOM or #!).
[luajit-2.0.git] / src / lj_opt_split.c
blob72720e86ecefd7bff8590ea5950c49ceed305dfc
1 /*
2 ** SPLIT: Split 64 bit IR instructions into 32 bit IR instructions.
3 ** Copyright (C) 2005-2012 Mike Pall. See Copyright Notice in luajit.h
4 */
6 #define lj_opt_split_c
7 #define LUA_CORE
9 #include "lj_obj.h"
11 #if LJ_HASJIT && (LJ_SOFTFP || (LJ_32 && LJ_HASFFI))
13 #include "lj_err.h"
14 #include "lj_str.h"
15 #include "lj_ir.h"
16 #include "lj_jit.h"
17 #include "lj_ircall.h"
18 #include "lj_iropt.h"
19 #include "lj_vm.h"
21 /* SPLIT pass:
23 ** This pass splits up 64 bit IR instructions into multiple 32 bit IR
24 ** instructions. It's only active for soft-float targets or for 32 bit CPUs
25 ** which lack native 64 bit integer operations (the FFI is currently the
26 ** only emitter for 64 bit integer instructions).
28 ** Splitting the IR in a separate pass keeps each 32 bit IR assembler
29 ** backend simple. Only a small amount of extra functionality needs to be
30 ** implemented. This is much easier than adding support for allocating
31 ** register pairs to each backend (believe me, I tried). A few simple, but
32 ** important optimizations can be performed by the SPLIT pass, which would
33 ** be tedious to do in the backend.
35 ** The basic idea is to replace each 64 bit IR instruction with its 32 bit
36 ** equivalent plus an extra HIOP instruction. The splitted IR is not passed
37 ** through FOLD or any other optimizations, so each HIOP is guaranteed to
38 ** immediately follow it's counterpart. The actual functionality of HIOP is
39 ** inferred from the previous instruction.
41 ** The operands of HIOP hold the hiword input references. The output of HIOP
42 ** is the hiword output reference, which is also used to hold the hiword
43 ** register or spill slot information. The register allocator treats this
44 ** instruction independently of any other instruction, which improves code
45 ** quality compared to using fixed register pairs.
47 ** It's easier to split up some instructions into two regular 32 bit
48 ** instructions. E.g. XLOAD is split up into two XLOADs with two different
49 ** addresses. Obviously 64 bit constants need to be split up into two 32 bit
50 ** constants, too. Some hiword instructions can be entirely omitted, e.g.
51 ** when zero-extending a 32 bit value to 64 bits. 64 bit arguments for calls
52 ** are split up into two 32 bit arguments each.
54 ** On soft-float targets, floating-point instructions are directly converted
55 ** to soft-float calls by the SPLIT pass (except for comparisons and MIN/MAX).
56 ** HIOP for number results has the type IRT_SOFTFP ("sfp" in -jdump).
58 ** Here's the IR and x64 machine code for 'x.b = x.a + 1' for a struct with
59 ** two int64_t fields:
61 ** 0100 p32 ADD base +8
62 ** 0101 i64 XLOAD 0100
63 ** 0102 i64 ADD 0101 +1
64 ** 0103 p32 ADD base +16
65 ** 0104 i64 XSTORE 0103 0102
67 ** mov rax, [esi+0x8]
68 ** add rax, +0x01
69 ** mov [esi+0x10], rax
71 ** Here's the transformed IR and the x86 machine code after the SPLIT pass:
73 ** 0100 p32 ADD base +8
74 ** 0101 int XLOAD 0100
75 ** 0102 p32 ADD base +12
76 ** 0103 int XLOAD 0102
77 ** 0104 int ADD 0101 +1
78 ** 0105 int HIOP 0103 +0
79 ** 0106 p32 ADD base +16
80 ** 0107 int XSTORE 0106 0104
81 ** 0108 p32 ADD base +20
82 ** 0109 int XSTORE 0108 0105
84 ** mov eax, [esi+0x8]
85 ** mov ecx, [esi+0xc]
86 ** add eax, +0x01
87 ** adc ecx, +0x00
88 ** mov [esi+0x10], eax
89 ** mov [esi+0x14], ecx
91 ** You may notice the reassociated hiword address computation, which is
92 ** later fused into the mov operands by the assembler.
95 /* Some local macros to save typing. Undef'd at the end. */
96 #define IR(ref) (&J->cur.ir[(ref)])
98 /* Directly emit the transformed IR without updating chains etc. */
99 static IRRef split_emit(jit_State *J, uint16_t ot, IRRef1 op1, IRRef1 op2)
101 IRRef nref = lj_ir_nextins(J);
102 IRIns *ir = IR(nref);
103 ir->ot = ot;
104 ir->op1 = op1;
105 ir->op2 = op2;
106 return nref;
109 #if LJ_SOFTFP
110 /* Emit a (checked) number to integer conversion. */
111 static IRRef split_num2int(jit_State *J, IRRef lo, IRRef hi, int check)
113 IRRef tmp, res;
114 #if LJ_LE
115 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), lo, hi);
116 #else
117 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hi, lo);
118 #endif
119 res = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_softfp_d2i);
120 if (check) {
121 tmp = split_emit(J, IRTI(IR_CALLN), res, IRCALL_softfp_i2d);
122 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
123 split_emit(J, IRTGI(IR_EQ), tmp, lo);
124 split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP), tmp+1, hi);
126 return res;
129 /* Emit a CALLN with one split 64 bit argument. */
130 static IRRef split_call_l(jit_State *J, IRRef1 *hisubst, IRIns *oir,
131 IRIns *ir, IRCallID id)
133 IRRef tmp, op1 = ir->op1;
134 J->cur.nins--;
135 #if LJ_LE
136 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
137 #else
138 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
139 #endif
140 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
141 return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
144 /* Emit a CALLN with one split 64 bit argument and a 32 bit argument. */
145 static IRRef split_call_li(jit_State *J, IRRef1 *hisubst, IRIns *oir,
146 IRIns *ir, IRCallID id)
148 IRRef tmp, op1 = ir->op1, op2 = ir->op2;
149 J->cur.nins--;
150 #if LJ_LE
151 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
152 #else
153 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
154 #endif
155 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
156 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
157 return split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
159 #endif
161 /* Emit a CALLN with two split 64 bit arguments. */
162 static IRRef split_call_ll(jit_State *J, IRRef1 *hisubst, IRIns *oir,
163 IRIns *ir, IRCallID id)
165 IRRef tmp, op1 = ir->op1, op2 = ir->op2;
166 J->cur.nins--;
167 #if LJ_LE
168 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
169 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
170 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
171 #else
172 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
173 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, hisubst[op2]);
174 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, oir[op2].prev);
175 #endif
176 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, id);
177 return split_emit(J,
178 IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
179 tmp, tmp);
182 /* Get a pointer to the other 32 bit word (LE: hiword, BE: loword). */
183 static IRRef split_ptr(jit_State *J, IRIns *oir, IRRef ref)
185 IRRef nref = oir[ref].prev;
186 IRIns *ir = IR(nref);
187 int32_t ofs = 4;
188 if (ir->o == IR_ADD && irref_isk(ir->op2) && !irt_isphi(oir[ref].t)) {
189 /* Reassociate address. */
190 ofs += IR(ir->op2)->i;
191 nref = ir->op1;
192 if (ofs == 0) return nref;
194 return split_emit(J, IRTI(IR_ADD), nref, lj_ir_kint(J, ofs));
197 /* Transform the old IR to the new IR. */
198 static void split_ir(jit_State *J)
200 IRRef nins = J->cur.nins, nk = J->cur.nk;
201 MSize irlen = nins - nk;
202 MSize need = (irlen+1)*(sizeof(IRIns) + sizeof(IRRef1));
203 IRIns *oir = (IRIns *)lj_str_needbuf(J->L, &G(J->L)->tmpbuf, need);
204 IRRef1 *hisubst;
205 IRRef ref;
207 /* Copy old IR to buffer. */
208 memcpy(oir, IR(nk), irlen*sizeof(IRIns));
209 /* Bias hiword substitution table and old IR. Loword kept in field prev. */
210 hisubst = (IRRef1 *)&oir[irlen] - nk;
211 oir -= nk;
213 /* Remove all IR instructions, but retain IR constants. */
214 J->cur.nins = REF_FIRST;
215 J->loopref = 0;
217 /* Process constants and fixed references. */
218 for (ref = nk; ref <= REF_BASE; ref++) {
219 IRIns *ir = &oir[ref];
220 if ((LJ_SOFTFP && ir->o == IR_KNUM) || ir->o == IR_KINT64) {
221 /* Split up 64 bit constant. */
222 TValue tv = *ir_k64(ir);
223 ir->prev = lj_ir_kint(J, (int32_t)tv.u32.lo);
224 hisubst[ref] = lj_ir_kint(J, (int32_t)tv.u32.hi);
225 } else {
226 ir->prev = ref; /* Identity substitution for loword. */
227 hisubst[ref] = 0;
231 /* Process old IR instructions. */
232 for (ref = REF_FIRST; ref < nins; ref++) {
233 IRIns *ir = &oir[ref];
234 IRRef nref = lj_ir_nextins(J);
235 IRIns *nir = IR(nref);
236 IRRef hi = 0;
238 /* Copy-substitute old instruction to new instruction. */
239 nir->op1 = ir->op1 < nk ? ir->op1 : oir[ir->op1].prev;
240 nir->op2 = ir->op2 < nk ? ir->op2 : oir[ir->op2].prev;
241 ir->prev = nref; /* Loword substitution. */
242 nir->o = ir->o;
243 nir->t.irt = ir->t.irt & ~(IRT_MARK|IRT_ISPHI);
244 hisubst[ref] = 0;
246 /* Split 64 bit instructions. */
247 #if LJ_SOFTFP
248 if (irt_isnum(ir->t)) {
249 nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
250 /* Note: hi ref = lo ref + 1! Required for SNAP_SOFTFPNUM logic. */
251 switch (ir->o) {
252 case IR_ADD:
253 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_add);
254 break;
255 case IR_SUB:
256 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_sub);
257 break;
258 case IR_MUL:
259 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_mul);
260 break;
261 case IR_DIV:
262 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_softfp_div);
263 break;
264 case IR_POW:
265 hi = split_call_li(J, hisubst, oir, ir, IRCALL_lj_vm_powi);
266 break;
267 case IR_FPMATH:
268 /* Try to rejoin pow from EXP2, MUL and LOG2. */
269 if (nir->op2 == IRFPM_EXP2 && nir->op1 > J->loopref) {
270 IRIns *irp = IR(nir->op1);
271 if (irp->o == IR_CALLN && irp->op2 == IRCALL_softfp_mul) {
272 IRIns *irm4 = IR(irp->op1);
273 IRIns *irm3 = IR(irm4->op1);
274 IRIns *irm12 = IR(irm3->op1);
275 IRIns *irl1 = IR(irm12->op1);
276 if (irm12->op1 > J->loopref && irl1->o == IR_CALLN &&
277 irl1->op2 == IRCALL_lj_vm_log2) {
278 IRRef tmp = irl1->op1; /* Recycle first two args from LOG2. */
279 IRRef arg3 = irm3->op2, arg4 = irm4->op2;
280 J->cur.nins--;
281 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg3);
282 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), tmp, arg4);
283 ir->prev = tmp = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_pow);
284 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), tmp, tmp);
285 break;
289 hi = split_call_l(J, hisubst, oir, ir, IRCALL_lj_vm_floor + ir->op2);
290 break;
291 case IR_ATAN2:
292 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_atan2);
293 break;
294 case IR_LDEXP:
295 hi = split_call_li(J, hisubst, oir, ir, IRCALL_ldexp);
296 break;
297 case IR_NEG: case IR_ABS:
298 nir->o = IR_CONV; /* Pass through loword. */
299 nir->op2 = (IRT_INT << 5) | IRT_INT;
300 hi = split_emit(J, IRT(ir->o == IR_NEG ? IR_BXOR : IR_BAND, IRT_SOFTFP),
301 hisubst[ir->op1], hisubst[ir->op2]);
302 break;
303 case IR_SLOAD:
304 if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from int to number. */
305 nir->op2 &= ~IRSLOAD_CONVERT;
306 ir->prev = nref = split_emit(J, IRTI(IR_CALLN), nref,
307 IRCALL_softfp_i2d);
308 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
309 break;
311 /* fallthrough */
312 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
313 case IR_STRTO:
314 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
315 break;
316 case IR_XLOAD: {
317 IRIns inslo = *nir; /* Save/undo the emit of the lo XLOAD. */
318 J->cur.nins--;
319 hi = split_ptr(J, oir, ir->op1); /* Insert the hiref ADD. */
320 nref = lj_ir_nextins(J);
321 nir = IR(nref);
322 *nir = inslo; /* Re-emit lo XLOAD immediately before hi XLOAD. */
323 hi = split_emit(J, IRT(IR_XLOAD, IRT_SOFTFP), hi, ir->op2);
324 #if LJ_LE
325 ir->prev = nref;
326 #else
327 ir->prev = hi; hi = nref;
328 #endif
329 break;
331 case IR_ASTORE: case IR_HSTORE: case IR_USTORE:
332 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nir->op1, hisubst[ir->op2]);
333 break;
334 case IR_XSTORE: {
335 #if LJ_LE
336 IRRef hiref = hisubst[ir->op2];
337 #else
338 IRRef hiref = nir->op2; nir->op2 = hisubst[ir->op2];
339 #endif
340 split_emit(J, IRT(IR_XSTORE, IRT_SOFTFP),
341 split_ptr(J, oir, ir->op1), hiref);
342 break;
344 case IR_CONV: { /* Conversion to number. Others handled below. */
345 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
346 UNUSED(st);
347 #if LJ_32 && LJ_HASFFI
348 if (st == IRT_I64 || st == IRT_U64) {
349 hi = split_call_l(J, hisubst, oir, ir,
350 st == IRT_I64 ? IRCALL_fp64_l2d : IRCALL_fp64_ul2d);
351 break;
353 #endif
354 lua_assert(st == IRT_INT ||
355 (LJ_32 && LJ_HASFFI && (st == IRT_U32 || st == IRT_FLOAT)));
356 nir->o = IR_CALLN;
357 #if LJ_32 && LJ_HASFFI
358 nir->op2 = st == IRT_INT ? IRCALL_softfp_i2d :
359 st == IRT_FLOAT ? IRCALL_softfp_f2d :
360 IRCALL_softfp_ui2d;
361 #else
362 nir->op2 = IRCALL_softfp_i2d;
363 #endif
364 hi = split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
365 break;
367 case IR_CALLN:
368 case IR_CALLL:
369 case IR_CALLS:
370 case IR_CALLXS:
371 goto split_call;
372 case IR_PHI:
373 if (nir->op1 == nir->op2)
374 J->cur.nins--; /* Drop useless PHIs. */
375 if (hisubst[ir->op1] != hisubst[ir->op2])
376 split_emit(J, IRT(IR_PHI, IRT_SOFTFP),
377 hisubst[ir->op1], hisubst[ir->op2]);
378 break;
379 default:
380 lua_assert(ir->o <= IR_NE || ir->o == IR_MIN || ir->o == IR_MAX);
381 hi = split_emit(J, IRTG(IR_HIOP, IRT_SOFTFP),
382 hisubst[ir->op1], hisubst[ir->op2]);
383 break;
385 } else
386 #endif
387 #if LJ_32 && LJ_HASFFI
388 if (irt_isint64(ir->t)) {
389 IRRef hiref = hisubst[ir->op1];
390 nir->t.irt = IRT_INT | (nir->t.irt & IRT_GUARD); /* Turn into INT op. */
391 switch (ir->o) {
392 case IR_ADD:
393 case IR_SUB:
394 /* Use plain op for hiword if loword cannot produce a carry/borrow. */
395 if (irref_isk(nir->op2) && IR(nir->op2)->i == 0) {
396 ir->prev = nir->op1; /* Pass through loword. */
397 nir->op1 = hiref; nir->op2 = hisubst[ir->op2];
398 hi = nref;
399 break;
401 /* fallthrough */
402 case IR_NEG:
403 hi = split_emit(J, IRTI(IR_HIOP), hiref, hisubst[ir->op2]);
404 break;
405 case IR_MUL:
406 hi = split_call_ll(J, hisubst, oir, ir, IRCALL_lj_carith_mul64);
407 break;
408 case IR_DIV:
409 hi = split_call_ll(J, hisubst, oir, ir,
410 irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
411 IRCALL_lj_carith_divu64);
412 break;
413 case IR_MOD:
414 hi = split_call_ll(J, hisubst, oir, ir,
415 irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
416 IRCALL_lj_carith_modu64);
417 break;
418 case IR_POW:
419 hi = split_call_ll(J, hisubst, oir, ir,
420 irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
421 IRCALL_lj_carith_powu64);
422 break;
423 case IR_FLOAD:
424 lua_assert(ir->op2 == IRFL_CDATA_INT64);
425 hi = split_emit(J, IRTI(IR_FLOAD), nir->op1, IRFL_CDATA_INT64_4);
426 #if LJ_BE
427 ir->prev = hi; hi = nref;
428 #endif
429 break;
430 case IR_XLOAD:
431 hi = split_emit(J, IRTI(IR_XLOAD), split_ptr(J, oir, ir->op1), ir->op2);
432 #if LJ_BE
433 ir->prev = hi; hi = nref;
434 #endif
435 break;
436 case IR_XSTORE:
437 #if LJ_LE
438 hiref = hisubst[ir->op2];
439 #else
440 hiref = nir->op2; nir->op2 = hisubst[ir->op2];
441 #endif
442 split_emit(J, IRTI(IR_XSTORE), split_ptr(J, oir, ir->op1), hiref);
443 break;
444 case IR_CONV: { /* Conversion to 64 bit integer. Others handled below. */
445 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
446 #if LJ_SOFTFP
447 if (st == IRT_NUM) { /* NUM to 64 bit int conv. */
448 hi = split_call_l(J, hisubst, oir, ir,
449 irt_isi64(ir->t) ? IRCALL_fp64_d2l : IRCALL_fp64_d2ul);
450 } else if (st == IRT_FLOAT) { /* FLOAT to 64 bit int conv. */
451 nir->o = IR_CALLN;
452 nir->op2 = irt_isi64(ir->t) ? IRCALL_fp64_f2l : IRCALL_fp64_f2ul;
453 hi = split_emit(J, IRTI(IR_HIOP), nref, nref);
455 #else
456 if (st == IRT_NUM || st == IRT_FLOAT) { /* FP to 64 bit int conv. */
457 hi = split_emit(J, IRTI(IR_HIOP), nir->op1, nref);
459 #endif
460 else if (st == IRT_I64 || st == IRT_U64) { /* 64/64 bit cast. */
461 /* Drop cast, since assembler doesn't care. */
462 goto fwdlo;
463 } else if ((ir->op2 & IRCONV_SEXT)) { /* Sign-extend to 64 bit. */
464 IRRef k31 = lj_ir_kint(J, 31);
465 nir = IR(nref); /* May have been reallocated. */
466 ir->prev = nir->op1; /* Pass through loword. */
467 nir->o = IR_BSAR; /* hi = bsar(lo, 31). */
468 nir->op2 = k31;
469 hi = nref;
470 } else { /* Zero-extend to 64 bit. */
471 hi = lj_ir_kint(J, 0);
472 goto fwdlo;
474 break;
476 case IR_CALLXS:
477 goto split_call;
478 case IR_PHI: {
479 IRRef hiref2;
480 if ((irref_isk(nir->op1) && irref_isk(nir->op2)) ||
481 nir->op1 == nir->op2)
482 J->cur.nins--; /* Drop useless PHIs. */
483 hiref2 = hisubst[ir->op2];
484 if (!((irref_isk(hiref) && irref_isk(hiref2)) || hiref == hiref2))
485 split_emit(J, IRTI(IR_PHI), hiref, hiref2);
486 break;
488 default:
489 lua_assert(ir->o <= IR_NE); /* Comparisons. */
490 split_emit(J, IRTGI(IR_HIOP), hiref, hisubst[ir->op2]);
491 break;
493 } else
494 #endif
495 #if LJ_SOFTFP
496 if (ir->o == IR_SLOAD) {
497 if ((nir->op2 & IRSLOAD_CONVERT)) { /* Convert from number to int. */
498 nir->op2 &= ~IRSLOAD_CONVERT;
499 if (!(nir->op2 & IRSLOAD_TYPECHECK))
500 nir->t.irt = IRT_INT; /* Drop guard. */
501 split_emit(J, IRT(IR_HIOP, IRT_SOFTFP), nref, nref);
502 ir->prev = split_num2int(J, nref, nref+1, irt_isguard(ir->t));
504 } else if (ir->o == IR_TOBIT) {
505 IRRef tmp, op1 = ir->op1;
506 J->cur.nins--;
507 #if LJ_LE
508 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), oir[op1].prev, hisubst[op1]);
509 #else
510 tmp = split_emit(J, IRT(IR_CARG, IRT_NIL), hisubst[op1], oir[op1].prev);
511 #endif
512 ir->prev = split_emit(J, IRTI(IR_CALLN), tmp, IRCALL_lj_vm_tobit);
513 } else if (ir->o == IR_TOSTR) {
514 if (hisubst[ir->op1]) {
515 if (irref_isk(ir->op1))
516 nir->op1 = ir->op1;
517 else
518 split_emit(J, IRT(IR_HIOP, IRT_NIL), hisubst[ir->op1], nref);
520 } else if (ir->o == IR_HREF || ir->o == IR_NEWREF) {
521 if (irref_isk(ir->op2) && hisubst[ir->op2])
522 nir->op2 = ir->op2;
523 } else
524 #endif
525 if (ir->o == IR_CONV) { /* See above, too. */
526 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
527 #if LJ_32 && LJ_HASFFI
528 if (st == IRT_I64 || st == IRT_U64) { /* Conversion from 64 bit int. */
529 #if LJ_SOFTFP
530 if (irt_isfloat(ir->t)) {
531 split_call_l(J, hisubst, oir, ir,
532 st == IRT_I64 ? IRCALL_fp64_l2f : IRCALL_fp64_ul2f);
533 J->cur.nins--; /* Drop unused HIOP. */
535 #else
536 if (irt_isfp(ir->t)) { /* 64 bit integer to FP conversion. */
537 ir->prev = split_emit(J, IRT(IR_HIOP, irt_type(ir->t)),
538 hisubst[ir->op1], nref);
540 #endif
541 else { /* Truncate to lower 32 bits. */
542 fwdlo:
543 ir->prev = nir->op1; /* Forward loword. */
544 /* Replace with NOP to avoid messing up the snapshot logic. */
545 nir->ot = IRT(IR_NOP, IRT_NIL);
546 nir->op1 = nir->op2 = 0;
549 #endif
550 #if LJ_SOFTFP && LJ_32 && LJ_HASFFI
551 else if (irt_isfloat(ir->t)) {
552 if (st == IRT_NUM) {
553 split_call_l(J, hisubst, oir, ir, IRCALL_softfp_d2f);
554 J->cur.nins--; /* Drop unused HIOP. */
555 } else {
556 nir->o = IR_CALLN;
557 nir->op2 = st == IRT_INT ? IRCALL_softfp_i2f : IRCALL_softfp_ui2f;
559 } else if (st == IRT_FLOAT) {
560 nir->o = IR_CALLN;
561 nir->op2 = irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui;
562 } else
563 #endif
564 #if LJ_SOFTFP
565 if (st == IRT_NUM || (LJ_32 && LJ_HASFFI && st == IRT_FLOAT)) {
566 if (irt_isguard(ir->t)) {
567 lua_assert(st == IRT_NUM && irt_isint(ir->t));
568 J->cur.nins--;
569 ir->prev = split_num2int(J, nir->op1, hisubst[ir->op1], 1);
570 } else {
571 split_call_l(J, hisubst, oir, ir,
572 #if LJ_32 && LJ_HASFFI
573 st == IRT_NUM ?
574 (irt_isint(ir->t) ? IRCALL_softfp_d2i : IRCALL_softfp_d2ui) :
575 (irt_isint(ir->t) ? IRCALL_softfp_f2i : IRCALL_softfp_f2ui)
576 #else
577 IRCALL_softfp_d2i
578 #endif
580 J->cur.nins--; /* Drop unused HIOP. */
583 #endif
584 } else if (ir->o == IR_CALLXS) {
585 IRRef hiref;
586 split_call:
587 hiref = hisubst[ir->op1];
588 if (hiref) {
589 IROpT ot = nir->ot;
590 IRRef op2 = nir->op2;
591 nir->ot = IRT(IR_CARG, IRT_NIL);
592 #if LJ_LE
593 nir->op2 = hiref;
594 #else
595 nir->op2 = nir->op1; nir->op1 = hiref;
596 #endif
597 ir->prev = nref = split_emit(J, ot, nref, op2);
599 if (LJ_SOFTFP ? irt_is64(ir->t) : irt_isint64(ir->t))
600 hi = split_emit(J,
601 IRT(IR_HIOP, (LJ_SOFTFP && irt_isnum(ir->t)) ? IRT_SOFTFP : IRT_INT),
602 nref, nref);
603 } else if (ir->o == IR_CARG) {
604 IRRef hiref = hisubst[ir->op1];
605 if (hiref) {
606 IRRef op2 = nir->op2;
607 #if LJ_LE
608 nir->op2 = hiref;
609 #else
610 nir->op2 = nir->op1; nir->op1 = hiref;
611 #endif
612 ir->prev = nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
613 nir = IR(nref);
615 hiref = hisubst[ir->op2];
616 if (hiref) {
617 #if !LJ_TARGET_X86
618 int carg = 0;
619 IRIns *cir;
620 for (cir = IR(nir->op1); cir->o == IR_CARG; cir = IR(cir->op1))
621 carg++;
622 if ((carg & 1) == 0) { /* Align 64 bit arguments. */
623 IRRef op2 = nir->op2;
624 nir->op2 = REF_NIL;
625 nref = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, op2);
626 nir = IR(nref);
628 #endif
629 #if LJ_BE
630 { IRRef tmp = nir->op2; nir->op2 = hiref; hiref = tmp; }
631 #endif
632 ir->prev = split_emit(J, IRT(IR_CARG, IRT_NIL), nref, hiref);
634 } else if (ir->o == IR_CNEWI) {
635 if (hisubst[ir->op2])
636 split_emit(J, IRT(IR_HIOP, IRT_NIL), nref, hisubst[ir->op2]);
637 } else if (ir->o == IR_LOOP) {
638 J->loopref = nref; /* Needed by assembler. */
640 hisubst[ref] = hi; /* Store hiword substitution. */
643 /* Add PHI marks. */
644 for (ref = J->cur.nins-1; ref >= REF_FIRST; ref--) {
645 IRIns *ir = IR(ref);
646 if (ir->o != IR_PHI) break;
647 if (!irref_isk(ir->op1)) irt_setphi(IR(ir->op1)->t);
648 if (ir->op2 > J->loopref) irt_setphi(IR(ir->op2)->t);
651 /* Substitute snapshot maps. */
652 oir[nins].prev = J->cur.nins; /* Substitution for last snapshot. */
654 SnapNo i, nsnap = J->cur.nsnap;
655 for (i = 0; i < nsnap; i++) {
656 SnapShot *snap = &J->cur.snap[i];
657 SnapEntry *map = &J->cur.snapmap[snap->mapofs];
658 MSize n, nent = snap->nent;
659 snap->ref = snap->ref == REF_FIRST ? REF_FIRST : oir[snap->ref].prev;
660 for (n = 0; n < nent; n++) {
661 SnapEntry sn = map[n];
662 IRIns *ir = &oir[snap_ref(sn)];
663 if (!(LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && irref_isk(snap_ref(sn))))
664 map[n] = ((sn & 0xffff0000) | ir->prev);
670 /* Protected callback for split pass. */
671 static TValue *cpsplit(lua_State *L, lua_CFunction dummy, void *ud)
673 jit_State *J = (jit_State *)ud;
674 split_ir(J);
675 UNUSED(L); UNUSED(dummy);
676 return NULL;
679 #if defined(LUA_USE_ASSERT) || LJ_SOFTFP
680 /* Slow, but sure way to check whether a SPLIT pass is needed. */
681 static int split_needsplit(jit_State *J)
683 IRIns *ir, *irend;
684 IRRef ref;
685 for (ir = IR(REF_FIRST), irend = IR(J->cur.nins); ir < irend; ir++)
686 if (LJ_SOFTFP ? irt_is64orfp(ir->t) : irt_isint64(ir->t))
687 return 1;
688 if (LJ_SOFTFP) {
689 for (ref = J->chain[IR_SLOAD]; ref; ref = IR(ref)->prev)
690 if ((IR(ref)->op2 & IRSLOAD_CONVERT))
691 return 1;
693 for (ref = J->chain[IR_CONV]; ref; ref = IR(ref)->prev) {
694 IRType st = (IR(ref)->op2 & IRCONV_SRCMASK);
695 if ((LJ_SOFTFP && (st == IRT_NUM || st == IRT_FLOAT)) ||
696 st == IRT_I64 || st == IRT_U64)
697 return 1;
699 return 0; /* Nope. */
701 #endif
703 /* SPLIT pass. */
704 void lj_opt_split(jit_State *J)
706 #if LJ_SOFTFP
707 if (!J->needsplit)
708 J->needsplit = split_needsplit(J);
709 #else
710 lua_assert(J->needsplit >= split_needsplit(J)); /* Verify flag. */
711 #endif
712 if (J->needsplit) {
713 int errcode = lj_vm_cpcall(J->L, NULL, J, cpsplit);
714 if (errcode) {
715 /* Completely reset the trace to avoid inconsistent dump on abort. */
716 J->cur.nins = J->cur.nk = REF_BASE;
717 J->cur.nsnap = 0;
718 lj_err_throw(J->L, errcode); /* Propagate errors. */
723 #undef IR
725 #endif