Fix bytecode JMP slot range after const + and/or optimization.
[luajit-2.0.git] / src / lj_parse.c
blob2835aef087c5d6b9de2e57142ce85bfc78297ea4
1 /*
2 ** Lua parser (source code -> bytecode).
3 ** Copyright (C) 2005-2012 Mike Pall. See Copyright Notice in luajit.h
4 **
5 ** Major portions taken verbatim or adapted from the Lua interpreter.
6 ** Copyright (C) 1994-2008 Lua.org, PUC-Rio. See Copyright Notice in lua.h
7 */
9 #define lj_parse_c
10 #define LUA_CORE
12 #include "lj_obj.h"
13 #include "lj_gc.h"
14 #include "lj_err.h"
15 #include "lj_debug.h"
16 #include "lj_str.h"
17 #include "lj_tab.h"
18 #include "lj_func.h"
19 #include "lj_state.h"
20 #include "lj_bc.h"
21 #if LJ_HASFFI
22 #include "lj_ctype.h"
23 #endif
24 #include "lj_lex.h"
25 #include "lj_parse.h"
26 #include "lj_vm.h"
27 #include "lj_vmevent.h"
29 /* -- Parser structures and definitions ----------------------------------- */
31 /* Expression kinds. */
32 typedef enum {
33 /* Constant expressions must be first and in this order: */
34 VKNIL,
35 VKFALSE,
36 VKTRUE,
37 VKSTR, /* sval = string value */
38 VKNUM, /* nval = number value */
39 VKLAST = VKNUM,
40 VKCDATA, /* nval = cdata value, not treated as a constant expression */
41 /* Non-constant expressions follow: */
42 VLOCAL, /* info = local register */
43 VUPVAL, /* info = upvalue index */
44 VGLOBAL, /* sval = string value */
45 VINDEXED, /* info = table register, aux = index reg/byte/string const */
46 VJMP, /* info = instruction PC */
47 VRELOCABLE, /* info = instruction PC */
48 VNONRELOC, /* info = result register */
49 VCALL, /* info = instruction PC, aux = base */
50 VVOID
51 } ExpKind;
53 /* Expression descriptor. */
54 typedef struct ExpDesc {
55 union {
56 struct {
57 uint32_t info; /* Primary info. */
58 uint32_t aux; /* Secondary info. */
59 } s;
60 TValue nval; /* Number value. */
61 GCstr *sval; /* String value. */
62 } u;
63 ExpKind k;
64 BCPos t; /* True condition jump list. */
65 BCPos f; /* False condition jump list. */
66 } ExpDesc;
68 /* Macros for expressions. */
69 #define expr_hasjump(e) ((e)->t != (e)->f)
71 #define expr_isk(e) ((e)->k <= VKLAST)
72 #define expr_isk_nojump(e) (expr_isk(e) && !expr_hasjump(e))
73 #define expr_isnumk(e) ((e)->k == VKNUM)
74 #define expr_isnumk_nojump(e) (expr_isnumk(e) && !expr_hasjump(e))
75 #define expr_isstrk(e) ((e)->k == VKSTR)
77 #define expr_numtv(e) check_exp(expr_isnumk((e)), &(e)->u.nval)
78 #define expr_numberV(e) numberVnum(expr_numtv((e)))
80 /* Initialize expression. */
81 static LJ_AINLINE void expr_init(ExpDesc *e, ExpKind k, uint32_t info)
83 e->k = k;
84 e->u.s.info = info;
85 e->f = e->t = NO_JMP;
88 /* Check number constant for +-0. */
89 static int expr_numiszero(ExpDesc *e)
91 TValue *o = expr_numtv(e);
92 return tvisint(o) ? (intV(o) == 0) : tviszero(o);
95 /* Per-function linked list of scope blocks. */
96 typedef struct FuncScope {
97 struct FuncScope *prev; /* Link to outer scope. */
98 BCPos breaklist; /* Jump list for loop breaks. */
99 uint8_t nactvar; /* Number of active vars outside the scope. */
100 uint8_t upval; /* Some variable in the scope is an upvalue. */
101 uint8_t isbreakable; /* Scope is a loop and allows a break. */
102 } FuncScope;
104 /* Index into variable stack. */
105 typedef uint16_t VarIndex;
106 #define LJ_MAX_VSTACK 65536
108 /* Upvalue map. */
109 typedef struct UVMap {
110 VarIndex vidx; /* Varinfo index. */
111 uint16_t slot; /* Slot or parent upvalue index. */
112 } UVMap;
114 /* Per-function state. */
115 typedef struct FuncState {
116 GCtab *kt; /* Hash table for constants. */
117 LexState *ls; /* Lexer state. */
118 lua_State *L; /* Lua state. */
119 FuncScope *bl; /* Current scope. */
120 struct FuncState *prev; /* Enclosing function. */
121 BCPos pc; /* Next bytecode position. */
122 BCPos lasttarget; /* Bytecode position of last jump target. */
123 BCPos jpc; /* Pending jump list to next bytecode. */
124 BCReg freereg; /* First free register. */
125 BCReg nactvar; /* Number of active local variables. */
126 BCReg nkn, nkgc; /* Number of lua_Number/GCobj constants */
127 BCLine linedefined; /* First line of the function definition. */
128 BCInsLine *bcbase; /* Base of bytecode stack. */
129 BCPos bclim; /* Limit of bytecode stack. */
130 MSize vbase; /* Base of variable stack for this function. */
131 uint8_t flags; /* Prototype flags. */
132 uint8_t numparams; /* Number of parameters. */
133 uint8_t framesize; /* Fixed frame size. */
134 uint8_t nuv; /* Number of upvalues */
135 VarIndex varmap[LJ_MAX_LOCVAR]; /* Map from register to variable idx. */
136 UVMap uvloc[LJ_MAX_UPVAL]; /* Map from upvalue to variable idx and slot. */
137 } FuncState;
139 /* Binary and unary operators. ORDER OPR */
140 typedef enum BinOpr {
141 OPR_ADD, OPR_SUB, OPR_MUL, OPR_DIV, OPR_MOD, OPR_POW, /* ORDER ARITH */
142 OPR_CONCAT,
143 OPR_NE, OPR_EQ,
144 OPR_LT, OPR_GE, OPR_LE, OPR_GT,
145 OPR_AND, OPR_OR,
146 OPR_NOBINOPR
147 } BinOpr;
149 LJ_STATIC_ASSERT((int)BC_ISGE-(int)BC_ISLT == (int)OPR_GE-(int)OPR_LT);
150 LJ_STATIC_ASSERT((int)BC_ISLE-(int)BC_ISLT == (int)OPR_LE-(int)OPR_LT);
151 LJ_STATIC_ASSERT((int)BC_ISGT-(int)BC_ISLT == (int)OPR_GT-(int)OPR_LT);
152 LJ_STATIC_ASSERT((int)BC_SUBVV-(int)BC_ADDVV == (int)OPR_SUB-(int)OPR_ADD);
153 LJ_STATIC_ASSERT((int)BC_MULVV-(int)BC_ADDVV == (int)OPR_MUL-(int)OPR_ADD);
154 LJ_STATIC_ASSERT((int)BC_DIVVV-(int)BC_ADDVV == (int)OPR_DIV-(int)OPR_ADD);
155 LJ_STATIC_ASSERT((int)BC_MODVV-(int)BC_ADDVV == (int)OPR_MOD-(int)OPR_ADD);
157 /* -- Error handling ------------------------------------------------------ */
159 LJ_NORET LJ_NOINLINE static void err_syntax(LexState *ls, ErrMsg em)
161 lj_lex_error(ls, ls->token, em);
164 LJ_NORET LJ_NOINLINE static void err_token(LexState *ls, LexToken token)
166 lj_lex_error(ls, ls->token, LJ_ERR_XTOKEN, lj_lex_token2str(ls, token));
169 LJ_NORET static void err_limit(FuncState *fs, uint32_t limit, const char *what)
171 if (fs->linedefined == 0)
172 lj_lex_error(fs->ls, 0, LJ_ERR_XLIMM, limit, what);
173 else
174 lj_lex_error(fs->ls, 0, LJ_ERR_XLIMF, fs->linedefined, limit, what);
177 #define checklimit(fs, v, l, m) if ((v) >= (l)) err_limit(fs, l, m)
178 #define checklimitgt(fs, v, l, m) if ((v) > (l)) err_limit(fs, l, m)
179 #define checkcond(ls, c, em) { if (!(c)) err_syntax(ls, em); }
181 /* -- Management of constants --------------------------------------------- */
183 /* Return bytecode encoding for primitive constant. */
184 #define const_pri(e) check_exp((e)->k <= VKTRUE, (e)->k)
186 #define tvhaskslot(o) ((o)->u32.hi == 0)
187 #define tvkslot(o) ((o)->u32.lo)
189 /* Add a number constant. */
190 static BCReg const_num(FuncState *fs, ExpDesc *e)
192 lua_State *L = fs->L;
193 TValue *o;
194 lua_assert(expr_isnumk(e));
195 o = lj_tab_set(L, fs->kt, &e->u.nval);
196 if (tvhaskslot(o))
197 return tvkslot(o);
198 o->u64 = fs->nkn;
199 return fs->nkn++;
202 /* Add a GC object constant. */
203 static BCReg const_gc(FuncState *fs, GCobj *gc, uint32_t itype)
205 lua_State *L = fs->L;
206 TValue key, *o;
207 setgcV(L, &key, gc, itype);
208 /* NOBARRIER: the key is new or kept alive. */
209 o = lj_tab_set(L, fs->kt, &key);
210 if (tvhaskslot(o))
211 return tvkslot(o);
212 o->u64 = fs->nkgc;
213 return fs->nkgc++;
216 /* Add a string constant. */
217 static BCReg const_str(FuncState *fs, ExpDesc *e)
219 lua_assert(expr_isstrk(e) || e->k == VGLOBAL);
220 return const_gc(fs, obj2gco(e->u.sval), LJ_TSTR);
223 /* Anchor string constant to avoid GC. */
224 GCstr *lj_parse_keepstr(LexState *ls, const char *str, size_t len)
226 /* NOBARRIER: the key is new or kept alive. */
227 lua_State *L = ls->L;
228 GCstr *s = lj_str_new(L, str, len);
229 TValue *tv = lj_tab_setstr(L, ls->fs->kt, s);
230 if (tvisnil(tv)) setboolV(tv, 1);
231 lj_gc_check(L);
232 return s;
235 #if LJ_HASFFI
236 /* Anchor cdata to avoid GC. */
237 void lj_parse_keepcdata(LexState *ls, TValue *tv, GCcdata *cd)
239 /* NOBARRIER: the key is new or kept alive. */
240 lua_State *L = ls->L;
241 setcdataV(L, tv, cd);
242 setboolV(lj_tab_set(L, ls->fs->kt, tv), 1);
244 #endif
246 /* -- Jump list handling -------------------------------------------------- */
248 /* Get next element in jump list. */
249 static BCPos jmp_next(FuncState *fs, BCPos pc)
251 ptrdiff_t delta = bc_j(fs->bcbase[pc].ins);
252 if ((BCPos)delta == NO_JMP)
253 return NO_JMP;
254 else
255 return (BCPos)(((ptrdiff_t)pc+1)+delta);
258 /* Check if any of the instructions on the jump list produce no value. */
259 static int jmp_novalue(FuncState *fs, BCPos list)
261 for (; list != NO_JMP; list = jmp_next(fs, list)) {
262 BCIns p = fs->bcbase[list >= 1 ? list-1 : list].ins;
263 if (!(bc_op(p) == BC_ISTC || bc_op(p) == BC_ISFC || bc_a(p) == NO_REG))
264 return 1;
266 return 0;
269 /* Patch register of test instructions. */
270 static int jmp_patchtestreg(FuncState *fs, BCPos pc, BCReg reg)
272 BCInsLine *ilp = &fs->bcbase[pc >= 1 ? pc-1 : pc];
273 BCOp op = bc_op(ilp->ins);
274 if (op == BC_ISTC || op == BC_ISFC) {
275 if (reg != NO_REG && reg != bc_d(ilp->ins)) {
276 setbc_a(&ilp->ins, reg);
277 } else { /* Nothing to store or already in the right register. */
278 setbc_op(&ilp->ins, op+(BC_IST-BC_ISTC));
279 setbc_a(&ilp->ins, 0);
281 } else if (bc_a(ilp->ins) == NO_REG) {
282 if (reg == NO_REG) {
283 ilp->ins = BCINS_AJ(BC_JMP, bc_a(fs->bcbase[pc].ins), 0);
284 } else {
285 setbc_a(&ilp->ins, reg);
286 if (reg >= bc_a(ilp[1].ins))
287 setbc_a(&ilp[1].ins, reg+1);
289 } else {
290 return 0; /* Cannot patch other instructions. */
292 return 1;
295 /* Drop values for all instructions on jump list. */
296 static void jmp_dropval(FuncState *fs, BCPos list)
298 for (; list != NO_JMP; list = jmp_next(fs, list))
299 jmp_patchtestreg(fs, list, NO_REG);
302 /* Patch jump instruction to target. */
303 static void jmp_patchins(FuncState *fs, BCPos pc, BCPos dest)
305 BCIns *jmp = &fs->bcbase[pc].ins;
306 BCPos offset = dest-(pc+1)+BCBIAS_J;
307 lua_assert(dest != NO_JMP);
308 if (offset > BCMAX_D)
309 err_syntax(fs->ls, LJ_ERR_XJUMP);
310 setbc_d(jmp, offset);
313 /* Append to jump list. */
314 static void jmp_append(FuncState *fs, BCPos *l1, BCPos l2)
316 if (l2 == NO_JMP) {
317 return;
318 } else if (*l1 == NO_JMP) {
319 *l1 = l2;
320 } else {
321 BCPos list = *l1;
322 BCPos next;
323 while ((next = jmp_next(fs, list)) != NO_JMP) /* Find last element. */
324 list = next;
325 jmp_patchins(fs, list, l2);
329 /* Patch jump list and preserve produced values. */
330 static void jmp_patchval(FuncState *fs, BCPos list, BCPos vtarget,
331 BCReg reg, BCPos dtarget)
333 while (list != NO_JMP) {
334 BCPos next = jmp_next(fs, list);
335 if (jmp_patchtestreg(fs, list, reg))
336 jmp_patchins(fs, list, vtarget); /* Jump to target with value. */
337 else
338 jmp_patchins(fs, list, dtarget); /* Jump to default target. */
339 list = next;
343 /* Jump to following instruction. Append to list of pending jumps. */
344 static void jmp_tohere(FuncState *fs, BCPos list)
346 fs->lasttarget = fs->pc;
347 jmp_append(fs, &fs->jpc, list);
350 /* Patch jump list to target. */
351 static void jmp_patch(FuncState *fs, BCPos list, BCPos target)
353 if (target == fs->pc) {
354 jmp_tohere(fs, list);
355 } else {
356 lua_assert(target < fs->pc);
357 jmp_patchval(fs, list, target, NO_REG, target);
361 /* -- Bytecode register allocator ----------------------------------------- */
363 /* Bump frame size. */
364 static void bcreg_bump(FuncState *fs, BCReg n)
366 BCReg sz = fs->freereg + n;
367 if (sz > fs->framesize) {
368 if (sz >= LJ_MAX_SLOTS)
369 err_syntax(fs->ls, LJ_ERR_XSLOTS);
370 fs->framesize = (uint8_t)sz;
374 /* Reserve registers. */
375 static void bcreg_reserve(FuncState *fs, BCReg n)
377 bcreg_bump(fs, n);
378 fs->freereg += n;
381 /* Free register. */
382 static void bcreg_free(FuncState *fs, BCReg reg)
384 if (reg >= fs->nactvar) {
385 fs->freereg--;
386 lua_assert(reg == fs->freereg);
390 /* Free register for expression. */
391 static void expr_free(FuncState *fs, ExpDesc *e)
393 if (e->k == VNONRELOC)
394 bcreg_free(fs, e->u.s.info);
397 /* -- Bytecode emitter ---------------------------------------------------- */
399 /* Emit bytecode instruction. */
400 static BCPos bcemit_INS(FuncState *fs, BCIns ins)
402 BCPos pc = fs->pc;
403 LexState *ls = fs->ls;
404 jmp_patchval(fs, fs->jpc, pc, NO_REG, pc);
405 fs->jpc = NO_JMP;
406 if (LJ_UNLIKELY(pc >= fs->bclim)) {
407 ptrdiff_t base = fs->bcbase - ls->bcstack;
408 checklimit(fs, ls->sizebcstack, LJ_MAX_BCINS, "bytecode instructions");
409 lj_mem_growvec(fs->L, ls->bcstack, ls->sizebcstack, LJ_MAX_BCINS,BCInsLine);
410 fs->bclim = (BCPos)(ls->sizebcstack - base);
411 fs->bcbase = ls->bcstack + base;
413 fs->bcbase[pc].ins = ins;
414 fs->bcbase[pc].line = ls->lastline;
415 fs->pc = pc+1;
416 return pc;
419 #define bcemit_ABC(fs, o, a, b, c) bcemit_INS(fs, BCINS_ABC(o, a, b, c))
420 #define bcemit_AD(fs, o, a, d) bcemit_INS(fs, BCINS_AD(o, a, d))
421 #define bcemit_AJ(fs, o, a, j) bcemit_INS(fs, BCINS_AJ(o, a, j))
423 #define bcptr(fs, e) (&(fs)->bcbase[(e)->u.s.info].ins)
425 /* -- Bytecode emitter for expressions ------------------------------------ */
427 /* Discharge non-constant expression to any register. */
428 static void expr_discharge(FuncState *fs, ExpDesc *e)
430 BCIns ins;
431 if (e->k == VUPVAL) {
432 ins = BCINS_AD(BC_UGET, 0, e->u.s.info);
433 } else if (e->k == VGLOBAL) {
434 ins = BCINS_AD(BC_GGET, 0, const_str(fs, e));
435 } else if (e->k == VINDEXED) {
436 BCReg rc = e->u.s.aux;
437 if ((int32_t)rc < 0) {
438 ins = BCINS_ABC(BC_TGETS, 0, e->u.s.info, ~rc);
439 } else if (rc > BCMAX_C) {
440 ins = BCINS_ABC(BC_TGETB, 0, e->u.s.info, rc-(BCMAX_C+1));
441 } else {
442 bcreg_free(fs, rc);
443 ins = BCINS_ABC(BC_TGETV, 0, e->u.s.info, rc);
445 bcreg_free(fs, e->u.s.info);
446 } else if (e->k == VCALL) {
447 e->u.s.info = e->u.s.aux;
448 e->k = VNONRELOC;
449 return;
450 } else if (e->k == VLOCAL) {
451 e->k = VNONRELOC;
452 return;
453 } else {
454 return;
456 e->u.s.info = bcemit_INS(fs, ins);
457 e->k = VRELOCABLE;
460 /* Emit bytecode to set a range of registers to nil. */
461 static void bcemit_nil(FuncState *fs, BCReg from, BCReg n)
463 if (fs->pc > fs->lasttarget) { /* No jumps to current position? */
464 BCIns *ip = &fs->bcbase[fs->pc-1].ins;
465 BCReg pto, pfrom = bc_a(*ip);
466 switch (bc_op(*ip)) { /* Try to merge with the previous instruction. */
467 case BC_KPRI:
468 if (bc_d(*ip) != ~LJ_TNIL) break;
469 if (from == pfrom) {
470 if (n == 1) return;
471 } else if (from == pfrom+1) {
472 from = pfrom;
473 n++;
474 } else {
475 break;
477 fs->pc--; /* Drop KPRI. */
478 break;
479 case BC_KNIL:
480 pto = bc_d(*ip);
481 if (pfrom <= from && from <= pto+1) { /* Can we connect both ranges? */
482 if (from+n-1 > pto)
483 setbc_d(ip, from+n-1); /* Patch previous instruction range. */
484 return;
486 break;
487 default:
488 break;
491 /* Emit new instruction or replace old instruction. */
492 bcemit_INS(fs, n == 1 ? BCINS_AD(BC_KPRI, from, VKNIL) :
493 BCINS_AD(BC_KNIL, from, from+n-1));
496 /* Discharge an expression to a specific register. Ignore branches. */
497 static void expr_toreg_nobranch(FuncState *fs, ExpDesc *e, BCReg reg)
499 BCIns ins;
500 expr_discharge(fs, e);
501 if (e->k == VKSTR) {
502 ins = BCINS_AD(BC_KSTR, reg, const_str(fs, e));
503 } else if (e->k == VKNUM) {
504 #if LJ_DUALNUM
505 cTValue *tv = expr_numtv(e);
506 if (tvisint(tv) && checki16(intV(tv)))
507 ins = BCINS_AD(BC_KSHORT, reg, (BCReg)(uint16_t)intV(tv));
508 else
509 #else
510 lua_Number n = expr_numberV(e);
511 int32_t k = lj_num2int(n);
512 if (checki16(k) && n == (lua_Number)k)
513 ins = BCINS_AD(BC_KSHORT, reg, (BCReg)(uint16_t)k);
514 else
515 #endif
516 ins = BCINS_AD(BC_KNUM, reg, const_num(fs, e));
517 #if LJ_HASFFI
518 } else if (e->k == VKCDATA) {
519 fs->flags |= PROTO_FFI;
520 ins = BCINS_AD(BC_KCDATA, reg,
521 const_gc(fs, obj2gco(cdataV(&e->u.nval)), LJ_TCDATA));
522 #endif
523 } else if (e->k == VRELOCABLE) {
524 setbc_a(bcptr(fs, e), reg);
525 goto noins;
526 } else if (e->k == VNONRELOC) {
527 if (reg == e->u.s.info)
528 goto noins;
529 ins = BCINS_AD(BC_MOV, reg, e->u.s.info);
530 } else if (e->k == VKNIL) {
531 bcemit_nil(fs, reg, 1);
532 goto noins;
533 } else if (e->k <= VKTRUE) {
534 ins = BCINS_AD(BC_KPRI, reg, const_pri(e));
535 } else {
536 lua_assert(e->k == VVOID || e->k == VJMP);
537 return;
539 bcemit_INS(fs, ins);
540 noins:
541 e->u.s.info = reg;
542 e->k = VNONRELOC;
545 /* Forward declaration. */
546 static BCPos bcemit_jmp(FuncState *fs);
548 /* Discharge an expression to a specific register. */
549 static void expr_toreg(FuncState *fs, ExpDesc *e, BCReg reg)
551 expr_toreg_nobranch(fs, e, reg);
552 if (e->k == VJMP)
553 jmp_append(fs, &e->t, e->u.s.info); /* Add it to the true jump list. */
554 if (expr_hasjump(e)) { /* Discharge expression with branches. */
555 BCPos jend, jfalse = NO_JMP, jtrue = NO_JMP;
556 if (jmp_novalue(fs, e->t) || jmp_novalue(fs, e->f)) {
557 BCPos jval = (e->k == VJMP) ? NO_JMP : bcemit_jmp(fs);
558 jfalse = bcemit_AD(fs, BC_KPRI, reg, VKFALSE);
559 bcemit_AJ(fs, BC_JMP, fs->freereg, 1);
560 jtrue = bcemit_AD(fs, BC_KPRI, reg, VKTRUE);
561 jmp_tohere(fs, jval);
563 jend = fs->pc;
564 fs->lasttarget = jend;
565 jmp_patchval(fs, e->f, jend, reg, jfalse);
566 jmp_patchval(fs, e->t, jend, reg, jtrue);
568 e->f = e->t = NO_JMP;
569 e->u.s.info = reg;
570 e->k = VNONRELOC;
573 /* Discharge an expression to the next free register. */
574 static void expr_tonextreg(FuncState *fs, ExpDesc *e)
576 expr_discharge(fs, e);
577 expr_free(fs, e);
578 bcreg_reserve(fs, 1);
579 expr_toreg(fs, e, fs->freereg - 1);
582 /* Discharge an expression to any register. */
583 static BCReg expr_toanyreg(FuncState *fs, ExpDesc *e)
585 expr_discharge(fs, e);
586 if (e->k == VNONRELOC) {
587 if (!expr_hasjump(e)) return e->u.s.info; /* Already in a register. */
588 if (e->u.s.info >= fs->nactvar) {
589 expr_toreg(fs, e, e->u.s.info); /* Discharge to temp. register. */
590 return e->u.s.info;
593 expr_tonextreg(fs, e); /* Discharge to next register. */
594 return e->u.s.info;
597 /* Partially discharge expression to a value. */
598 static void expr_toval(FuncState *fs, ExpDesc *e)
600 if (expr_hasjump(e))
601 expr_toanyreg(fs, e);
602 else
603 expr_discharge(fs, e);
606 /* Emit store for LHS expression. */
607 static void bcemit_store(FuncState *fs, ExpDesc *var, ExpDesc *e)
609 BCIns ins;
610 if (var->k == VLOCAL) {
611 expr_free(fs, e);
612 expr_toreg(fs, e, var->u.s.info);
613 return;
614 } else if (var->k == VUPVAL) {
615 expr_toval(fs, e);
616 if (e->k <= VKTRUE)
617 ins = BCINS_AD(BC_USETP, var->u.s.info, const_pri(e));
618 else if (e->k == VKSTR)
619 ins = BCINS_AD(BC_USETS, var->u.s.info, const_str(fs, e));
620 else if (e->k == VKNUM)
621 ins = BCINS_AD(BC_USETN, var->u.s.info, const_num(fs, e));
622 else
623 ins = BCINS_AD(BC_USETV, var->u.s.info, expr_toanyreg(fs, e));
624 } else if (var->k == VGLOBAL) {
625 BCReg ra = expr_toanyreg(fs, e);
626 ins = BCINS_AD(BC_GSET, ra, const_str(fs, var));
627 } else {
628 BCReg ra, rc;
629 lua_assert(var->k == VINDEXED);
630 ra = expr_toanyreg(fs, e);
631 rc = var->u.s.aux;
632 if ((int32_t)rc < 0) {
633 ins = BCINS_ABC(BC_TSETS, ra, var->u.s.info, ~rc);
634 } else if (rc > BCMAX_C) {
635 ins = BCINS_ABC(BC_TSETB, ra, var->u.s.info, rc-(BCMAX_C+1));
636 } else {
637 /* Free late alloced key reg to avoid assert on free of value reg. */
638 /* This can only happen when called from expr_table(). */
639 lua_assert(e->k != VNONRELOC || ra < fs->nactvar ||
640 rc < ra || (bcreg_free(fs, rc),1));
641 ins = BCINS_ABC(BC_TSETV, ra, var->u.s.info, rc);
644 bcemit_INS(fs, ins);
645 expr_free(fs, e);
648 /* Emit method lookup expression. */
649 static void bcemit_method(FuncState *fs, ExpDesc *e, ExpDesc *key)
651 BCReg idx, func, obj = expr_toanyreg(fs, e);
652 expr_free(fs, e);
653 func = fs->freereg;
654 bcemit_AD(fs, BC_MOV, func+1, obj); /* Copy object to first argument. */
655 lua_assert(expr_isstrk(key));
656 idx = const_str(fs, key);
657 if (idx <= BCMAX_C) {
658 bcreg_reserve(fs, 2);
659 bcemit_ABC(fs, BC_TGETS, func, obj, idx);
660 } else {
661 bcreg_reserve(fs, 3);
662 bcemit_AD(fs, BC_KSTR, func+2, idx);
663 bcemit_ABC(fs, BC_TGETV, func, obj, func+2);
664 fs->freereg--;
666 e->u.s.info = func;
667 e->k = VNONRELOC;
670 /* -- Bytecode emitter for branches --------------------------------------- */
672 /* Emit unconditional branch. */
673 static BCPos bcemit_jmp(FuncState *fs)
675 BCPos jpc = fs->jpc;
676 BCPos j = fs->pc - 1;
677 BCIns *ip = &fs->bcbase[j].ins;
678 fs->jpc = NO_JMP;
679 if ((int32_t)j >= (int32_t)fs->lasttarget &&
680 bc_op(*ip) == BC_UCLO)
681 setbc_j(ip, NO_JMP);
682 else
683 j = bcemit_AJ(fs, BC_JMP, fs->freereg, NO_JMP);
684 jmp_append(fs, &j, jpc);
685 return j;
688 /* Invert branch condition of bytecode instruction. */
689 static void invertcond(FuncState *fs, ExpDesc *e)
691 BCIns *ip = &fs->bcbase[e->u.s.info - 1].ins;
692 setbc_op(ip, bc_op(*ip)^1);
695 /* Emit conditional branch. */
696 static BCPos bcemit_branch(FuncState *fs, ExpDesc *e, int cond)
698 BCPos pc;
699 if (e->k == VRELOCABLE) {
700 BCIns *ip = bcptr(fs, e);
701 if (bc_op(*ip) == BC_NOT) {
702 *ip = BCINS_AD(cond ? BC_ISF : BC_IST, 0, bc_d(*ip));
703 return bcemit_jmp(fs);
706 if (e->k != VNONRELOC) {
707 bcreg_reserve(fs, 1);
708 expr_toreg_nobranch(fs, e, fs->freereg-1);
710 bcemit_AD(fs, cond ? BC_ISTC : BC_ISFC, NO_REG, e->u.s.info);
711 pc = bcemit_jmp(fs);
712 expr_free(fs, e);
713 return pc;
716 /* Emit branch on true condition. */
717 static void bcemit_branch_t(FuncState *fs, ExpDesc *e)
719 BCPos pc;
720 expr_discharge(fs, e);
721 if (e->k == VKSTR || e->k == VKNUM || e->k == VKTRUE)
722 pc = NO_JMP; /* Never jump. */
723 else if (e->k == VJMP)
724 invertcond(fs, e), pc = e->u.s.info;
725 else if (e->k == VKFALSE || e->k == VKNIL)
726 expr_toreg_nobranch(fs, e, NO_REG), pc = bcemit_jmp(fs);
727 else
728 pc = bcemit_branch(fs, e, 0);
729 jmp_append(fs, &e->f, pc);
730 jmp_tohere(fs, e->t);
731 e->t = NO_JMP;
734 /* Emit branch on false condition. */
735 static void bcemit_branch_f(FuncState *fs, ExpDesc *e)
737 BCPos pc;
738 expr_discharge(fs, e);
739 if (e->k == VKNIL || e->k == VKFALSE)
740 pc = NO_JMP; /* Never jump. */
741 else if (e->k == VJMP)
742 pc = e->u.s.info;
743 else if (e->k == VKSTR || e->k == VKNUM || e->k == VKTRUE)
744 expr_toreg_nobranch(fs, e, NO_REG), pc = bcemit_jmp(fs);
745 else
746 pc = bcemit_branch(fs, e, 1);
747 jmp_append(fs, &e->t, pc);
748 jmp_tohere(fs, e->f);
749 e->f = NO_JMP;
752 /* -- Bytecode emitter for operators -------------------------------------- */
754 /* Try constant-folding of arithmetic operators. */
755 static int foldarith(BinOpr opr, ExpDesc *e1, ExpDesc *e2)
757 TValue o;
758 lua_Number n;
759 if (!expr_isnumk_nojump(e1) || !expr_isnumk_nojump(e2)) return 0;
760 n = lj_vm_foldarith(expr_numberV(e1), expr_numberV(e2), (int)opr-OPR_ADD);
761 setnumV(&o, n);
762 if (tvisnan(&o) || tvismzero(&o)) return 0; /* Avoid NaN and -0 as consts. */
763 if (LJ_DUALNUM) {
764 int32_t k = lj_num2int(n);
765 if ((lua_Number)k == n) {
766 setintV(&e1->u.nval, k);
767 return 1;
770 setnumV(&e1->u.nval, n);
771 return 1;
774 /* Emit arithmetic operator. */
775 static void bcemit_arith(FuncState *fs, BinOpr opr, ExpDesc *e1, ExpDesc *e2)
777 BCReg rb, rc, t;
778 uint32_t op;
779 if (foldarith(opr, e1, e2))
780 return;
781 if (opr == OPR_POW) {
782 op = BC_POW;
783 rc = expr_toanyreg(fs, e2);
784 rb = expr_toanyreg(fs, e1);
785 } else {
786 op = opr-OPR_ADD+BC_ADDVV;
787 /* Must discharge 2nd operand first since VINDEXED might free regs. */
788 expr_toval(fs, e2);
789 if (expr_isnumk(e2) && (rc = const_num(fs, e2)) <= BCMAX_C)
790 op -= BC_ADDVV-BC_ADDVN;
791 else
792 rc = expr_toanyreg(fs, e2);
793 /* 1st operand discharged by bcemit_binop_left, but need KNUM/KSHORT. */
794 lua_assert(expr_isnumk(e1) || e1->k == VNONRELOC);
795 expr_toval(fs, e1);
796 /* Avoid two consts to satisfy bytecode constraints. */
797 if (expr_isnumk(e1) && !expr_isnumk(e2) &&
798 (t = const_num(fs, e1)) <= BCMAX_B) {
799 rb = rc; rc = t; op -= BC_ADDVV-BC_ADDNV;
800 } else {
801 rb = expr_toanyreg(fs, e1);
804 /* Using expr_free might cause asserts if the order is wrong. */
805 if (e1->k == VNONRELOC && e1->u.s.info >= fs->nactvar) fs->freereg--;
806 if (e2->k == VNONRELOC && e2->u.s.info >= fs->nactvar) fs->freereg--;
807 e1->u.s.info = bcemit_ABC(fs, op, 0, rb, rc);
808 e1->k = VRELOCABLE;
811 /* Emit comparison operator. */
812 static void bcemit_comp(FuncState *fs, BinOpr opr, ExpDesc *e1, ExpDesc *e2)
814 ExpDesc *eret = e1;
815 BCIns ins;
816 expr_toval(fs, e1);
817 if (opr == OPR_EQ || opr == OPR_NE) {
818 BCOp op = opr == OPR_EQ ? BC_ISEQV : BC_ISNEV;
819 BCReg ra;
820 if (expr_isk(e1)) { e1 = e2; e2 = eret; } /* Need constant in 2nd arg. */
821 ra = expr_toanyreg(fs, e1); /* First arg must be in a reg. */
822 expr_toval(fs, e2);
823 switch (e2->k) {
824 case VKNIL: case VKFALSE: case VKTRUE:
825 ins = BCINS_AD(op+(BC_ISEQP-BC_ISEQV), ra, const_pri(e2));
826 break;
827 case VKSTR:
828 ins = BCINS_AD(op+(BC_ISEQS-BC_ISEQV), ra, const_str(fs, e2));
829 break;
830 case VKNUM:
831 ins = BCINS_AD(op+(BC_ISEQN-BC_ISEQV), ra, const_num(fs, e2));
832 break;
833 default:
834 ins = BCINS_AD(op, ra, expr_toanyreg(fs, e2));
835 break;
837 } else {
838 uint32_t op = opr-OPR_LT+BC_ISLT;
839 BCReg ra, rd;
840 if ((op-BC_ISLT) & 1) { /* GT -> LT, GE -> LE */
841 e1 = e2; e2 = eret; /* Swap operands. */
842 op = ((op-BC_ISLT)^3)+BC_ISLT;
844 rd = expr_toanyreg(fs, e2);
845 ra = expr_toanyreg(fs, e1);
846 ins = BCINS_AD(op, ra, rd);
848 /* Using expr_free might cause asserts if the order is wrong. */
849 if (e1->k == VNONRELOC && e1->u.s.info >= fs->nactvar) fs->freereg--;
850 if (e2->k == VNONRELOC && e2->u.s.info >= fs->nactvar) fs->freereg--;
851 bcemit_INS(fs, ins);
852 eret->u.s.info = bcemit_jmp(fs);
853 eret->k = VJMP;
856 /* Fixup left side of binary operator. */
857 static void bcemit_binop_left(FuncState *fs, BinOpr op, ExpDesc *e)
859 if (op == OPR_AND) {
860 bcemit_branch_t(fs, e);
861 } else if (op == OPR_OR) {
862 bcemit_branch_f(fs, e);
863 } else if (op == OPR_CONCAT) {
864 expr_tonextreg(fs, e);
865 } else if (op == OPR_EQ || op == OPR_NE) {
866 if (!expr_isk_nojump(e)) expr_toanyreg(fs, e);
867 } else {
868 if (!expr_isnumk_nojump(e)) expr_toanyreg(fs, e);
872 /* Emit binary operator. */
873 static void bcemit_binop(FuncState *fs, BinOpr op, ExpDesc *e1, ExpDesc *e2)
875 if (op <= OPR_POW) {
876 bcemit_arith(fs, op, e1, e2);
877 } else if (op == OPR_AND) {
878 lua_assert(e1->t == NO_JMP); /* List must be closed. */
879 expr_discharge(fs, e2);
880 jmp_append(fs, &e2->f, e1->f);
881 *e1 = *e2;
882 } else if (op == OPR_OR) {
883 lua_assert(e1->f == NO_JMP); /* List must be closed. */
884 expr_discharge(fs, e2);
885 jmp_append(fs, &e2->t, e1->t);
886 *e1 = *e2;
887 } else if (op == OPR_CONCAT) {
888 expr_toval(fs, e2);
889 if (e2->k == VRELOCABLE && bc_op(*bcptr(fs, e2)) == BC_CAT) {
890 lua_assert(e1->u.s.info == bc_b(*bcptr(fs, e2))-1);
891 expr_free(fs, e1);
892 setbc_b(bcptr(fs, e2), e1->u.s.info);
893 e1->u.s.info = e2->u.s.info;
894 } else {
895 expr_tonextreg(fs, e2);
896 expr_free(fs, e2);
897 expr_free(fs, e1);
898 e1->u.s.info = bcemit_ABC(fs, BC_CAT, 0, e1->u.s.info, e2->u.s.info);
900 e1->k = VRELOCABLE;
901 } else {
902 lua_assert(op == OPR_NE || op == OPR_EQ ||
903 op == OPR_LT || op == OPR_GE || op == OPR_LE || op == OPR_GT);
904 bcemit_comp(fs, op, e1, e2);
908 /* Emit unary operator. */
909 static void bcemit_unop(FuncState *fs, BCOp op, ExpDesc *e)
911 if (op == BC_NOT) {
912 /* Swap true and false lists. */
913 { BCPos temp = e->f; e->f = e->t; e->t = temp; }
914 jmp_dropval(fs, e->f);
915 jmp_dropval(fs, e->t);
916 expr_discharge(fs, e);
917 if (e->k == VKNIL || e->k == VKFALSE) {
918 e->k = VKTRUE;
919 return;
920 } else if (expr_isk(e) || (LJ_HASFFI && e->k == VKCDATA)) {
921 e->k = VKFALSE;
922 return;
923 } else if (e->k == VJMP) {
924 invertcond(fs, e);
925 return;
926 } else if (e->k == VRELOCABLE) {
927 bcreg_reserve(fs, 1);
928 setbc_a(bcptr(fs, e), fs->freereg-1);
929 e->u.s.info = fs->freereg-1;
930 e->k = VNONRELOC;
931 } else {
932 lua_assert(e->k == VNONRELOC);
934 } else {
935 lua_assert(op == BC_UNM || op == BC_LEN);
936 if (op == BC_UNM && !expr_hasjump(e)) { /* Constant-fold negations. */
937 #if LJ_HASFFI
938 if (e->k == VKCDATA) { /* Fold in-place since cdata is not interned. */
939 GCcdata *cd = cdataV(&e->u.nval);
940 int64_t *p = (int64_t *)cdataptr(cd);
941 if (cd->typeid == CTID_COMPLEX_DOUBLE)
942 p[1] ^= (int64_t)U64x(80000000,00000000);
943 else
944 *p = -*p;
945 return;
946 } else
947 #endif
948 if (expr_isnumk(e) && !expr_numiszero(e)) { /* Avoid folding to -0. */
949 TValue *o = expr_numtv(e);
950 if (tvisint(o)) {
951 int32_t k = intV(o);
952 if (k == -k)
953 setnumV(o, -(lua_Number)k);
954 else
955 setintV(o, -k);
956 return;
957 } else {
958 o->u64 ^= U64x(80000000,00000000);
959 return;
963 expr_toanyreg(fs, e);
965 expr_free(fs, e);
966 e->u.s.info = bcemit_AD(fs, op, 0, e->u.s.info);
967 e->k = VRELOCABLE;
970 /* -- Lexer support ------------------------------------------------------- */
972 /* Check and consume optional token. */
973 static int lex_opt(LexState *ls, LexToken tok)
975 if (ls->token == tok) {
976 lj_lex_next(ls);
977 return 1;
979 return 0;
982 /* Check and consume token. */
983 static void lex_check(LexState *ls, LexToken tok)
985 if (ls->token != tok)
986 err_token(ls, tok);
987 lj_lex_next(ls);
990 /* Check for matching token. */
991 static void lex_match(LexState *ls, LexToken what, LexToken who, BCLine line)
993 if (!lex_opt(ls, what)) {
994 if (line == ls->linenumber) {
995 err_token(ls, what);
996 } else {
997 const char *swhat = lj_lex_token2str(ls, what);
998 const char *swho = lj_lex_token2str(ls, who);
999 lj_lex_error(ls, ls->token, LJ_ERR_XMATCH, swhat, swho, line);
1004 /* Check for string token. */
1005 static GCstr *lex_str(LexState *ls)
1007 GCstr *s;
1008 if (ls->token != TK_name)
1009 err_token(ls, TK_name);
1010 s = strV(&ls->tokenval);
1011 lj_lex_next(ls);
1012 return s;
1015 /* -- Variable handling --------------------------------------------------- */
1017 #define var_get(ls, fs, i) ((ls)->vstack[(fs)->varmap[(i)]])
1019 /* Define a new local variable. */
1020 static void var_new(LexState *ls, BCReg n, GCstr *name)
1022 FuncState *fs = ls->fs;
1023 MSize vtop = ls->vtop;
1024 checklimit(fs, fs->nactvar+n, LJ_MAX_LOCVAR, "local variables");
1025 if (LJ_UNLIKELY(vtop >= ls->sizevstack)) {
1026 if (ls->sizevstack >= LJ_MAX_VSTACK)
1027 lj_lex_error(ls, 0, LJ_ERR_XLIMC, LJ_MAX_VSTACK);
1028 lj_mem_growvec(ls->L, ls->vstack, ls->sizevstack, LJ_MAX_VSTACK, VarInfo);
1030 lua_assert((uintptr_t)name < VARNAME__MAX ||
1031 lj_tab_getstr(fs->kt, name) != NULL);
1032 /* NOBARRIER: name is anchored in fs->kt and ls->vstack is not a GCobj. */
1033 setgcref(ls->vstack[vtop].name, obj2gco(name));
1034 fs->varmap[fs->nactvar+n] = (uint16_t)vtop;
1035 ls->vtop = vtop+1;
1038 #define var_new_lit(ls, n, v) \
1039 var_new(ls, (n), lj_parse_keepstr(ls, "" v, sizeof(v)-1))
1041 #define var_new_fixed(ls, n, vn) \
1042 var_new(ls, (n), (GCstr *)(uintptr_t)(vn))
1044 /* Add local variables. */
1045 static void var_add(LexState *ls, BCReg nvars)
1047 FuncState *fs = ls->fs;
1048 fs->nactvar = (uint8_t)(fs->nactvar + nvars);
1049 for (; nvars; nvars--)
1050 var_get(ls, fs, fs->nactvar - nvars).startpc = fs->pc;
1053 /* Remove local variables. */
1054 static void var_remove(LexState *ls, BCReg tolevel)
1056 FuncState *fs = ls->fs;
1057 while (fs->nactvar > tolevel)
1058 var_get(ls, fs, --fs->nactvar).endpc = fs->pc;
1061 /* Lookup local variable name. */
1062 static BCReg var_lookup_local(FuncState *fs, GCstr *n)
1064 int i;
1065 for (i = fs->nactvar-1; i >= 0; i--) {
1066 if (n == strref(var_get(fs->ls, fs, i).name))
1067 return (BCReg)i;
1069 return (BCReg)-1; /* Not found. */
1072 /* Lookup or add upvalue index. */
1073 static MSize var_lookup_uv(FuncState *fs, MSize vidx, ExpDesc *e)
1075 MSize i, n = fs->nuv;
1076 for (i = 0; i < n; i++)
1077 if (fs->uvloc[i].vidx == vidx)
1078 return i; /* Already exists. */
1079 /* Otherwise create a new one. */
1080 checklimit(fs, fs->nuv, LJ_MAX_UPVAL, "upvalues");
1081 lua_assert(e->k == VLOCAL || e->k == VUPVAL);
1082 fs->uvloc[n].vidx = (uint16_t)vidx;
1083 fs->uvloc[n].slot = (uint16_t)(e->u.s.info | (e->k == VLOCAL ? 0x8000 : 0));
1084 fs->nuv = n+1;
1085 return n;
1088 /* Forward declaration. */
1089 static void scope_uvmark(FuncState *fs, BCReg level);
1091 /* Recursively lookup variables in enclosing functions. */
1092 static MSize var_lookup_(FuncState *fs, GCstr *name, ExpDesc *e, int first)
1094 if (fs) {
1095 BCReg reg = var_lookup_local(fs, name);
1096 if ((int32_t)reg >= 0) { /* Local in this function? */
1097 expr_init(e, VLOCAL, reg);
1098 if (!first)
1099 scope_uvmark(fs, reg); /* Scope now has an upvalue. */
1100 return (MSize)fs->varmap[reg];
1101 } else {
1102 MSize vidx = var_lookup_(fs->prev, name, e, 0); /* Var in outer func? */
1103 if ((int32_t)vidx >= 0) { /* Yes, make it an upvalue here. */
1104 e->u.s.info = (uint8_t)var_lookup_uv(fs, vidx, e);
1105 e->k = VUPVAL;
1106 return vidx;
1109 } else { /* Not found in any function, must be a global. */
1110 expr_init(e, VGLOBAL, 0);
1111 e->u.sval = name;
1113 return (MSize)-1; /* Global. */
1116 /* Lookup variable name. */
1117 #define var_lookup(ls, e) \
1118 var_lookup_((ls)->fs, lex_str(ls), (e), 1)
1120 /* -- Function state management ------------------------------------------- */
1122 /* Fixup bytecode for prototype. */
1123 static void fs_fixup_bc(FuncState *fs, GCproto *pt, BCIns *bc, MSize n)
1125 BCInsLine *base = fs->bcbase;
1126 MSize i;
1127 pt->sizebc = n;
1128 bc[0] = BCINS_AD((fs->flags & PROTO_VARARG) ? BC_FUNCV : BC_FUNCF,
1129 fs->framesize, 0);
1130 for (i = 1; i < n; i++)
1131 bc[i] = base[i].ins;
1134 /* Fixup constants for prototype. */
1135 static void fs_fixup_k(FuncState *fs, GCproto *pt, void *kptr)
1137 GCtab *kt;
1138 TValue *array;
1139 Node *node;
1140 MSize i, hmask;
1141 checklimitgt(fs, fs->nkn, BCMAX_D+1, "constants");
1142 checklimitgt(fs, fs->nkgc, BCMAX_D+1, "constants");
1143 setmref(pt->k, kptr);
1144 pt->sizekn = fs->nkn;
1145 pt->sizekgc = fs->nkgc;
1146 kt = fs->kt;
1147 array = tvref(kt->array);
1148 for (i = 0; i < kt->asize; i++)
1149 if (tvhaskslot(&array[i])) {
1150 TValue *tv = &((TValue *)kptr)[tvkslot(&array[i])];
1151 if (LJ_DUALNUM)
1152 setintV(tv, (int32_t)i);
1153 else
1154 setnumV(tv, (lua_Number)i);
1156 node = noderef(kt->node);
1157 hmask = kt->hmask;
1158 for (i = 0; i <= hmask; i++) {
1159 Node *n = &node[i];
1160 if (tvhaskslot(&n->val)) {
1161 ptrdiff_t kidx = (ptrdiff_t)tvkslot(&n->val);
1162 lua_assert(!tvisint(&n->key));
1163 if (tvisnum(&n->key)) {
1164 TValue *tv = &((TValue *)kptr)[kidx];
1165 if (LJ_DUALNUM) {
1166 lua_Number nn = numV(&n->key);
1167 int32_t k = lj_num2int(nn);
1168 lua_assert(!tvismzero(&n->key));
1169 if ((lua_Number)k == nn)
1170 setintV(tv, k);
1171 else
1172 *tv = n->key;
1173 } else {
1174 *tv = n->key;
1176 } else {
1177 GCobj *o = gcV(&n->key);
1178 setgcref(((GCRef *)kptr)[~kidx], o);
1179 lj_gc_objbarrier(fs->L, pt, o);
1185 /* Fixup upvalues for prototype. */
1186 static void fs_fixup_uv(FuncState *fs, GCproto *pt, uint16_t *uv)
1188 MSize i, n = fs->nuv;
1189 setmref(pt->uv, uv);
1190 pt->sizeuv = n;
1191 for (i = 0; i < n; i++)
1192 uv[i] = fs->uvloc[i].slot;
1195 #ifndef LUAJIT_DISABLE_DEBUGINFO
1196 /* Prepare lineinfo for prototype. */
1197 static size_t fs_prep_line(FuncState *fs, BCLine numline)
1199 return (fs->pc-1) << (numline < 256 ? 0 : numline < 65536 ? 1 : 2);
1202 /* Fixup lineinfo for prototype. */
1203 static void fs_fixup_line(FuncState *fs, GCproto *pt,
1204 void *lineinfo, BCLine numline)
1206 BCInsLine *base = fs->bcbase + 1;
1207 BCLine first = fs->linedefined;
1208 MSize i = 0, n = fs->pc-1;
1209 pt->firstline = fs->linedefined;
1210 pt->numline = numline;
1211 setmref(pt->lineinfo, lineinfo);
1212 if (LJ_LIKELY(numline < 256)) {
1213 uint8_t *li = (uint8_t *)lineinfo;
1214 do {
1215 BCLine delta = base[i].line - first;
1216 lua_assert(delta >= 0 && delta < 256);
1217 li[i] = (uint8_t)delta;
1218 } while (++i < n);
1219 } else if (LJ_LIKELY(numline < 65536)) {
1220 uint16_t *li = (uint16_t *)lineinfo;
1221 do {
1222 BCLine delta = base[i].line - first;
1223 lua_assert(delta >= 0 && delta < 65536);
1224 li[i] = (uint16_t)delta;
1225 } while (++i < n);
1226 } else {
1227 uint32_t *li = (uint32_t *)lineinfo;
1228 do {
1229 BCLine delta = base[i].line - first;
1230 lua_assert(delta >= 0);
1231 li[i] = (uint32_t)delta;
1232 } while (++i < n);
1236 /* Resize buffer if needed. */
1237 static LJ_NOINLINE void fs_buf_resize(LexState *ls, MSize len)
1239 MSize sz = ls->sb.sz * 2;
1240 while (ls->sb.n + len > sz) sz = sz * 2;
1241 lj_str_resizebuf(ls->L, &ls->sb, sz);
1244 static LJ_AINLINE void fs_buf_need(LexState *ls, MSize len)
1246 if (LJ_UNLIKELY(ls->sb.n + len > ls->sb.sz))
1247 fs_buf_resize(ls, len);
1250 /* Add string to buffer. */
1251 static void fs_buf_str(LexState *ls, const char *str, MSize len)
1253 char *p = ls->sb.buf + ls->sb.n;
1254 MSize i;
1255 ls->sb.n += len;
1256 for (i = 0; i < len; i++) p[i] = str[i];
1259 /* Add ULEB128 value to buffer. */
1260 static void fs_buf_uleb128(LexState *ls, uint32_t v)
1262 MSize n = ls->sb.n;
1263 uint8_t *p = (uint8_t *)ls->sb.buf;
1264 for (; v >= 0x80; v >>= 7)
1265 p[n++] = (uint8_t)((v & 0x7f) | 0x80);
1266 p[n++] = (uint8_t)v;
1267 ls->sb.n = n;
1270 /* Prepare variable info for prototype. */
1271 static size_t fs_prep_var(LexState *ls, FuncState *fs, size_t *ofsvar)
1273 VarInfo *vstack = fs->ls->vstack;
1274 MSize i, n;
1275 BCPos lastpc;
1276 lj_str_resetbuf(&ls->sb); /* Copy to temp. string buffer. */
1277 /* Store upvalue names. */
1278 for (i = 0, n = fs->nuv; i < n; i++) {
1279 GCstr *s = strref(vstack[fs->uvloc[i].vidx].name);
1280 MSize len = s->len+1;
1281 fs_buf_need(ls, len);
1282 fs_buf_str(ls, strdata(s), len);
1284 *ofsvar = ls->sb.n;
1285 vstack += fs->vbase;
1286 lastpc = 0;
1287 /* Store local variable names and compressed ranges. */
1288 for (i = 0, n = ls->vtop - fs->vbase; i < n; i++) {
1289 GCstr *s = strref(vstack[i].name);
1290 BCPos startpc = vstack[i].startpc, endpc = vstack[i].endpc;
1291 if ((uintptr_t)s < VARNAME__MAX) {
1292 fs_buf_need(ls, 1 + 2*5);
1293 ls->sb.buf[ls->sb.n++] = (uint8_t)(uintptr_t)s;
1294 } else {
1295 MSize len = s->len+1;
1296 fs_buf_need(ls, len + 2*5);
1297 fs_buf_str(ls, strdata(s), len);
1299 fs_buf_uleb128(ls, startpc-lastpc);
1300 fs_buf_uleb128(ls, endpc-startpc);
1301 lastpc = startpc;
1303 fs_buf_need(ls, 1);
1304 ls->sb.buf[ls->sb.n++] = '\0'; /* Terminator for varinfo. */
1305 return ls->sb.n;
1308 /* Fixup variable info for prototype. */
1309 static void fs_fixup_var(LexState *ls, GCproto *pt, uint8_t *p, size_t ofsvar)
1311 setmref(pt->uvinfo, p);
1312 setmref(pt->varinfo, (char *)p + ofsvar);
1313 memcpy(p, ls->sb.buf, ls->sb.n); /* Copy from temp. string buffer. */
1315 #else
1317 /* Initialize with empty debug info, if disabled. */
1318 #define fs_prep_line(fs, numline) (UNUSED(numline), 0)
1319 #define fs_fixup_line(fs, pt, li, numline) \
1320 pt->firstline = pt->numline = 0, setmref((pt)->lineinfo, NULL)
1321 #define fs_prep_var(ls, fs, ofsvar) (UNUSED(ofsvar), 0)
1322 #define fs_fixup_var(ls, pt, p, ofsvar) \
1323 setmref((pt)->uvinfo, NULL), setmref((pt)->varinfo, NULL)
1325 #endif
1327 /* Check if bytecode op returns. */
1328 static int bcopisret(BCOp op)
1330 switch (op) {
1331 case BC_CALLMT: case BC_CALLT:
1332 case BC_RETM: case BC_RET: case BC_RET0: case BC_RET1:
1333 return 1;
1334 default:
1335 return 0;
1339 /* Fixup return instruction for prototype. */
1340 static void fs_fixup_ret(FuncState *fs)
1342 BCPos lastpc = fs->pc;
1343 if (lastpc <= fs->lasttarget || !bcopisret(bc_op(fs->bcbase[lastpc-1].ins))) {
1344 if (fs->flags & PROTO_CHILD)
1345 bcemit_AJ(fs, BC_UCLO, 0, 0);
1346 bcemit_AD(fs, BC_RET0, 0, 1); /* Need final return. */
1348 /* May need to fixup returns encoded before first function was created. */
1349 if (fs->flags & PROTO_FIXUP_RETURN) {
1350 BCPos pc;
1351 for (pc = 0; pc < lastpc; pc++) {
1352 BCIns ins = fs->bcbase[pc].ins;
1353 BCPos offset;
1354 switch (bc_op(ins)) {
1355 case BC_CALLMT: case BC_CALLT:
1356 case BC_RETM: case BC_RET: case BC_RET0: case BC_RET1:
1357 offset = bcemit_INS(fs, ins)-(pc+1)+BCBIAS_J; /* Copy return ins. */
1358 if (offset > BCMAX_D)
1359 err_syntax(fs->ls, LJ_ERR_XFIXUP);
1360 /* Replace with UCLO plus branch. */
1361 fs->bcbase[pc].ins = BCINS_AD(BC_UCLO, 0, offset);
1362 break;
1363 case BC_UCLO:
1364 return; /* We're done. */
1365 default:
1366 break;
1372 /* Finish a FuncState and return the new prototype. */
1373 static GCproto *fs_finish(LexState *ls, BCLine line)
1375 lua_State *L = ls->L;
1376 FuncState *fs = ls->fs;
1377 BCLine numline = line - fs->linedefined;
1378 size_t sizept, ofsk, ofsuv, ofsli, ofsdbg, ofsvar;
1379 GCproto *pt;
1381 /* Apply final fixups. */
1382 lua_assert(fs->bl == NULL);
1383 fs_fixup_ret(fs);
1384 var_remove(ls, 0);
1386 /* Calculate total size of prototype including all colocated arrays. */
1387 sizept = sizeof(GCproto) + fs->pc*sizeof(BCIns) + fs->nkgc*sizeof(GCRef);
1388 sizept = (sizept + sizeof(TValue)-1) & ~(sizeof(TValue)-1);
1389 ofsk = sizept; sizept += fs->nkn*sizeof(TValue);
1390 ofsuv = sizept; sizept += ((fs->nuv+1)&~1)*2;
1391 ofsli = sizept; sizept += fs_prep_line(fs, numline);
1392 ofsdbg = sizept; sizept += fs_prep_var(ls, fs, &ofsvar);
1394 /* Allocate prototype and initialize its fields. */
1395 pt = (GCproto *)lj_mem_newgco(L, (MSize)sizept);
1396 pt->gct = ~LJ_TPROTO;
1397 pt->sizept = (MSize)sizept;
1398 pt->trace = 0;
1399 pt->flags = (uint8_t)(fs->flags & ~(PROTO_HAS_RETURN|PROTO_FIXUP_RETURN));
1400 pt->numparams = fs->numparams;
1401 pt->framesize = fs->framesize;
1402 setgcref(pt->chunkname, obj2gco(ls->chunkname));
1404 /* Close potentially uninitialized gap between bc and kgc. */
1405 *(uint32_t *)((char *)pt + ofsk - sizeof(GCRef)*(fs->nkgc+1)) = 0;
1406 fs_fixup_bc(fs, pt, (BCIns *)((char *)pt + sizeof(GCproto)), fs->pc);
1407 fs_fixup_k(fs, pt, (void *)((char *)pt + ofsk));
1408 fs_fixup_uv(fs, pt, (uint16_t *)((char *)pt + ofsuv));
1409 fs_fixup_line(fs, pt, (void *)((char *)pt + ofsli), numline);
1410 fs_fixup_var(ls, pt, (uint8_t *)((char *)pt + ofsdbg), ofsvar);
1412 lj_vmevent_send(L, BC,
1413 setprotoV(L, L->top++, pt);
1416 L->top--; /* Pop table of constants. */
1417 ls->vtop = fs->vbase; /* Reset variable stack. */
1418 ls->fs = fs->prev;
1419 lua_assert(ls->fs != NULL || ls->token == TK_eof);
1420 return pt;
1423 /* Initialize a new FuncState. */
1424 static void fs_init(LexState *ls, FuncState *fs)
1426 lua_State *L = ls->L;
1427 fs->prev = ls->fs; ls->fs = fs; /* Append to list. */
1428 fs->ls = ls;
1429 fs->vbase = ls->vtop;
1430 fs->L = L;
1431 fs->pc = 0;
1432 fs->lasttarget = 0;
1433 fs->jpc = NO_JMP;
1434 fs->freereg = 0;
1435 fs->nkgc = 0;
1436 fs->nkn = 0;
1437 fs->nactvar = 0;
1438 fs->nuv = 0;
1439 fs->bl = NULL;
1440 fs->flags = 0;
1441 fs->framesize = 1; /* Minimum frame size. */
1442 fs->kt = lj_tab_new(L, 0, 0);
1443 /* Anchor table of constants in stack to avoid being collected. */
1444 settabV(L, L->top, fs->kt);
1445 incr_top(L);
1448 /* -- Expressions --------------------------------------------------------- */
1450 /* Forward declaration. */
1451 static void expr(LexState *ls, ExpDesc *v);
1453 /* Return string expression. */
1454 static void expr_str(LexState *ls, ExpDesc *e)
1456 expr_init(e, VKSTR, 0);
1457 e->u.sval = lex_str(ls);
1460 /* Return index expression. */
1461 static void expr_index(FuncState *fs, ExpDesc *t, ExpDesc *e)
1463 /* Already called: expr_toval(fs, e). */
1464 t->k = VINDEXED;
1465 if (expr_isnumk(e)) {
1466 #if LJ_DUALNUM
1467 if (tvisint(expr_numtv(e))) {
1468 int32_t k = intV(expr_numtv(e));
1469 if (checku8(k)) {
1470 t->u.s.aux = BCMAX_C+1+(uint32_t)k; /* 256..511: const byte key */
1471 return;
1474 #else
1475 lua_Number n = expr_numberV(e);
1476 int32_t k = lj_num2int(n);
1477 if (checku8(k) && n == (lua_Number)k) {
1478 t->u.s.aux = BCMAX_C+1+(uint32_t)k; /* 256..511: const byte key */
1479 return;
1481 #endif
1482 } else if (expr_isstrk(e)) {
1483 BCReg idx = const_str(fs, e);
1484 if (idx <= BCMAX_C) {
1485 t->u.s.aux = ~idx; /* -256..-1: const string key */
1486 return;
1489 t->u.s.aux = expr_toanyreg(fs, e); /* 0..255: register */
1492 /* Parse index expression with named field. */
1493 static void expr_field(LexState *ls, ExpDesc *v)
1495 FuncState *fs = ls->fs;
1496 ExpDesc key;
1497 expr_toanyreg(fs, v);
1498 lj_lex_next(ls); /* Skip dot or colon. */
1499 expr_str(ls, &key);
1500 expr_index(fs, v, &key);
1503 /* Parse index expression with brackets. */
1504 static void expr_bracket(LexState *ls, ExpDesc *v)
1506 lj_lex_next(ls); /* Skip '['. */
1507 expr(ls, v);
1508 expr_toval(ls->fs, v);
1509 lex_check(ls, ']');
1512 /* Get value of constant expression. */
1513 static void expr_kvalue(TValue *v, ExpDesc *e)
1515 if (e->k <= VKTRUE) {
1516 setitype(v, ~(uint32_t)e->k);
1517 } else if (e->k == VKSTR) {
1518 setgcref(v->gcr, obj2gco(e->u.sval));
1519 setitype(v, LJ_TSTR);
1520 } else {
1521 lua_assert(tvisnumber(expr_numtv(e)));
1522 *v = *expr_numtv(e);
1526 /* Parse table constructor expression. */
1527 static void expr_table(LexState *ls, ExpDesc *e)
1529 FuncState *fs = ls->fs;
1530 BCLine line = ls->linenumber;
1531 GCtab *t = NULL;
1532 int vcall = 0, needarr = 0;
1533 int32_t narr = 1; /* First array index. */
1534 uint32_t nhash = 0; /* Number of hash entries. */
1535 BCReg freg = fs->freereg;
1536 BCPos pc = bcemit_AD(fs, BC_TNEW, freg, 0);
1537 expr_init(e, VNONRELOC, freg);
1538 bcreg_reserve(fs, 1);
1539 freg++;
1540 lex_check(ls, '{');
1541 while (ls->token != '}') {
1542 ExpDesc key, val;
1543 vcall = 0;
1544 if (ls->token == '[') {
1545 expr_bracket(ls, &key); /* Already calls expr_toval. */
1546 if (!expr_isk(&key)) expr_index(fs, e, &key);
1547 if (expr_isnumk(&key) && expr_numiszero(&key)) needarr = 1; else nhash++;
1548 lex_check(ls, '=');
1549 } else if (ls->token == TK_name && lj_lex_lookahead(ls) == '=') {
1550 expr_str(ls, &key);
1551 lex_check(ls, '=');
1552 nhash++;
1553 } else {
1554 expr_init(&key, VKNUM, 0);
1555 setintV(&key.u.nval, narr);
1556 narr++;
1557 needarr = vcall = 1;
1559 expr(ls, &val);
1560 if (expr_isk_nojump(&val) && expr_isk(&key) && key.k != VKNIL) {
1561 TValue k;
1562 if (!t) { /* Create template table on demand. */
1563 BCReg kidx;
1564 t = lj_tab_new(fs->L, 0, 0);
1565 kidx = const_gc(fs, obj2gco(t), LJ_TTAB);
1566 fs->bcbase[pc].ins = BCINS_AD(BC_TDUP, freg-1, kidx);
1568 vcall = 0;
1569 expr_kvalue(&k, &key);
1570 expr_kvalue(lj_tab_set(fs->L, t, &k), &val);
1571 lj_gc_anybarriert(fs->L, t);
1572 } else {
1573 if (val.k != VCALL) { expr_toanyreg(fs, &val); vcall = 0; }
1574 if (expr_isk(&key)) expr_index(fs, e, &key);
1575 bcemit_store(fs, e, &val);
1577 fs->freereg = freg;
1578 if (!lex_opt(ls, ',') && !lex_opt(ls, ';')) break;
1580 lex_match(ls, '}', '{', line);
1581 if (vcall) {
1582 BCInsLine *ilp = &fs->bcbase[fs->pc-1];
1583 ExpDesc en;
1584 lua_assert(bc_a(ilp->ins) == freg &&
1585 bc_op(ilp->ins) == (narr > 256 ? BC_TSETV : BC_TSETB));
1586 expr_init(&en, VKNUM, 0);
1587 en.u.nval.u32.lo = narr-1;
1588 en.u.nval.u32.hi = 0x43300000; /* Biased integer to avoid denormals. */
1589 if (narr > 256) { fs->pc--; ilp--; }
1590 ilp->ins = BCINS_AD(BC_TSETM, freg, const_num(fs, &en));
1591 setbc_b(&ilp[-1].ins, 0);
1593 if (pc == fs->pc-1) { /* Make expr relocable if possible. */
1594 e->u.s.info = pc;
1595 fs->freereg--;
1596 e->k = VRELOCABLE;
1597 } else {
1598 e->k = VNONRELOC; /* May have been changed by expr_index. */
1600 if (!t) { /* Construct TNEW RD: hhhhhaaaaaaaaaaa. */
1601 BCIns *ip = &fs->bcbase[pc].ins;
1602 if (!needarr) narr = 0;
1603 else if (narr < 3) narr = 3;
1604 else if (narr > 0x7ff) narr = 0x7ff;
1605 setbc_d(ip, (uint32_t)narr|(hsize2hbits(nhash)<<11));
1609 /* Parse function parameters. */
1610 static BCReg parse_params(LexState *ls, int needself)
1612 FuncState *fs = ls->fs;
1613 BCReg nparams = 0;
1614 lex_check(ls, '(');
1615 if (needself)
1616 var_new_lit(ls, nparams++, "self");
1617 if (ls->token != ')') {
1618 do {
1619 if (ls->token == TK_name) {
1620 var_new(ls, nparams++, lex_str(ls));
1621 } else if (ls->token == TK_dots) {
1622 lj_lex_next(ls);
1623 fs->flags |= PROTO_VARARG;
1624 break;
1625 } else {
1626 err_syntax(ls, LJ_ERR_XPARAM);
1628 } while (lex_opt(ls, ','));
1630 var_add(ls, nparams);
1631 lua_assert(fs->nactvar == nparams);
1632 bcreg_reserve(fs, nparams);
1633 lex_check(ls, ')');
1634 return nparams;
1637 /* Forward declaration. */
1638 static void parse_chunk(LexState *ls);
1640 /* Parse body of a function. */
1641 static void parse_body(LexState *ls, ExpDesc *e, int needself, BCLine line)
1643 FuncState fs, *pfs = ls->fs;
1644 GCproto *pt;
1645 ptrdiff_t oldbase = pfs->bcbase - ls->bcstack;
1646 fs_init(ls, &fs);
1647 fs.linedefined = line;
1648 fs.numparams = (uint8_t)parse_params(ls, needself);
1649 fs.bcbase = pfs->bcbase + pfs->pc;
1650 fs.bclim = pfs->bclim - pfs->pc;
1651 bcemit_AD(&fs, BC_FUNCF, 0, 0); /* Placeholder. */
1652 parse_chunk(ls);
1653 if (ls->token != TK_end) lex_match(ls, TK_end, TK_function, line);
1654 pt = fs_finish(ls, (ls->lastline = ls->linenumber));
1655 pfs->bcbase = ls->bcstack + oldbase; /* May have been reallocated. */
1656 pfs->bclim = (BCPos)(ls->sizebcstack - oldbase);
1657 /* Store new prototype in the constant array of the parent. */
1658 expr_init(e, VRELOCABLE,
1659 bcemit_AD(pfs, BC_FNEW, 0, const_gc(pfs, obj2gco(pt), LJ_TPROTO)));
1660 #if LJ_HASFFI
1661 pfs->flags |= (fs.flags & PROTO_FFI);
1662 #endif
1663 if (!(pfs->flags & PROTO_CHILD)) {
1664 if (pfs->flags & PROTO_HAS_RETURN)
1665 pfs->flags |= PROTO_FIXUP_RETURN;
1666 pfs->flags |= PROTO_CHILD;
1668 lj_lex_next(ls);
1671 /* Parse expression list. Last expression is left open. */
1672 static BCReg expr_list(LexState *ls, ExpDesc *v)
1674 BCReg n = 1;
1675 expr(ls, v);
1676 while (lex_opt(ls, ',')) {
1677 expr_tonextreg(ls->fs, v);
1678 expr(ls, v);
1679 n++;
1681 return n;
1684 /* Parse function argument list. */
1685 static void parse_args(LexState *ls, ExpDesc *e)
1687 FuncState *fs = ls->fs;
1688 ExpDesc args;
1689 BCIns ins;
1690 BCReg base;
1691 BCLine line = ls->linenumber;
1692 if (ls->token == '(') {
1693 if (line != ls->lastline)
1694 err_syntax(ls, LJ_ERR_XAMBIG);
1695 lj_lex_next(ls);
1696 if (ls->token == ')') { /* f(). */
1697 args.k = VVOID;
1698 } else {
1699 expr_list(ls, &args);
1700 if (args.k == VCALL) /* f(a, b, g()) or f(a, b, ...). */
1701 setbc_b(bcptr(fs, &args), 0); /* Pass on multiple results. */
1703 lex_match(ls, ')', '(', line);
1704 } else if (ls->token == '{') {
1705 expr_table(ls, &args);
1706 } else if (ls->token == TK_string) {
1707 expr_init(&args, VKSTR, 0);
1708 args.u.sval = strV(&ls->tokenval);
1709 lj_lex_next(ls);
1710 } else {
1711 err_syntax(ls, LJ_ERR_XFUNARG);
1712 return; /* Silence compiler. */
1714 lua_assert(e->k == VNONRELOC);
1715 base = e->u.s.info; /* Base register for call. */
1716 if (args.k == VCALL) {
1717 ins = BCINS_ABC(BC_CALLM, base, 2, args.u.s.aux - base - 1);
1718 } else {
1719 if (args.k != VVOID)
1720 expr_tonextreg(fs, &args);
1721 ins = BCINS_ABC(BC_CALL, base, 2, fs->freereg - base);
1723 expr_init(e, VCALL, bcemit_INS(fs, ins));
1724 e->u.s.aux = base;
1725 fs->bcbase[fs->pc - 1].line = line;
1726 fs->freereg = base+1; /* Leave one result by default. */
1729 /* Parse primary expression. */
1730 static void expr_primary(LexState *ls, ExpDesc *v)
1732 FuncState *fs = ls->fs;
1733 /* Parse prefix expression. */
1734 if (ls->token == '(') {
1735 BCLine line = ls->linenumber;
1736 lj_lex_next(ls);
1737 expr(ls, v);
1738 lex_match(ls, ')', '(', line);
1739 expr_discharge(ls->fs, v);
1740 } else if (ls->token == TK_name) {
1741 var_lookup(ls, v);
1742 } else {
1743 err_syntax(ls, LJ_ERR_XSYMBOL);
1745 for (;;) { /* Parse multiple expression suffixes. */
1746 if (ls->token == '.') {
1747 expr_field(ls, v);
1748 } else if (ls->token == '[') {
1749 ExpDesc key;
1750 expr_toanyreg(fs, v);
1751 expr_bracket(ls, &key);
1752 expr_index(fs, v, &key);
1753 } else if (ls->token == ':') {
1754 ExpDesc key;
1755 lj_lex_next(ls);
1756 expr_str(ls, &key);
1757 bcemit_method(fs, v, &key);
1758 parse_args(ls, v);
1759 } else if (ls->token == '(' || ls->token == TK_string || ls->token == '{') {
1760 expr_tonextreg(fs, v);
1761 parse_args(ls, v);
1762 } else {
1763 break;
1768 /* Parse simple expression. */
1769 static void expr_simple(LexState *ls, ExpDesc *v)
1771 switch (ls->token) {
1772 case TK_number:
1773 expr_init(v, (LJ_HASFFI && tviscdata(&ls->tokenval)) ? VKCDATA : VKNUM, 0);
1774 copyTV(ls->L, &v->u.nval, &ls->tokenval);
1775 break;
1776 case TK_string:
1777 expr_init(v, VKSTR, 0);
1778 v->u.sval = strV(&ls->tokenval);
1779 break;
1780 case TK_nil:
1781 expr_init(v, VKNIL, 0);
1782 break;
1783 case TK_true:
1784 expr_init(v, VKTRUE, 0);
1785 break;
1786 case TK_false:
1787 expr_init(v, VKFALSE, 0);
1788 break;
1789 case TK_dots: { /* Vararg. */
1790 FuncState *fs = ls->fs;
1791 BCReg base;
1792 checkcond(ls, fs->flags & PROTO_VARARG, LJ_ERR_XDOTS);
1793 bcreg_reserve(fs, 1);
1794 base = fs->freereg-1;
1795 expr_init(v, VCALL, bcemit_ABC(fs, BC_VARG, base, 2, fs->numparams));
1796 v->u.s.aux = base;
1797 break;
1799 case '{': /* Table constructor. */
1800 expr_table(ls, v);
1801 return;
1802 case TK_function:
1803 lj_lex_next(ls);
1804 parse_body(ls, v, 0, ls->linenumber);
1805 return;
1806 default:
1807 expr_primary(ls, v);
1808 return;
1810 lj_lex_next(ls);
1813 /* Manage syntactic levels to avoid blowing up the stack. */
1814 static void synlevel_begin(LexState *ls)
1816 if (++ls->level >= LJ_MAX_XLEVEL)
1817 lj_lex_error(ls, 0, LJ_ERR_XLEVELS);
1820 #define synlevel_end(ls) ((ls)->level--)
1822 /* Convert token to binary operator. */
1823 static BinOpr token2binop(LexToken tok)
1825 switch (tok) {
1826 case '+': return OPR_ADD;
1827 case '-': return OPR_SUB;
1828 case '*': return OPR_MUL;
1829 case '/': return OPR_DIV;
1830 case '%': return OPR_MOD;
1831 case '^': return OPR_POW;
1832 case TK_concat: return OPR_CONCAT;
1833 case TK_ne: return OPR_NE;
1834 case TK_eq: return OPR_EQ;
1835 case '<': return OPR_LT;
1836 case TK_le: return OPR_LE;
1837 case '>': return OPR_GT;
1838 case TK_ge: return OPR_GE;
1839 case TK_and: return OPR_AND;
1840 case TK_or: return OPR_OR;
1841 default: return OPR_NOBINOPR;
1845 /* Priorities for each binary operator. ORDER OPR. */
1846 static const struct {
1847 uint8_t left; /* Left priority. */
1848 uint8_t right; /* Right priority. */
1849 } priority[] = {
1850 {6,6}, {6,6}, {7,7}, {7,7}, {7,7}, /* ADD SUB MUL DIV MOD */
1851 {10,9}, {5,4}, /* POW CONCAT (right associative) */
1852 {3,3}, {3,3}, /* EQ NE */
1853 {3,3}, {3,3}, {3,3}, {3,3}, /* LT GE GT LE */
1854 {2,2}, {1,1} /* AND OR */
1857 #define UNARY_PRIORITY 8 /* Priority for unary operators. */
1859 /* Forward declaration. */
1860 static BinOpr expr_binop(LexState *ls, ExpDesc *v, uint32_t limit);
1862 /* Parse unary expression. */
1863 static void expr_unop(LexState *ls, ExpDesc *v)
1865 BCOp op;
1866 if (ls->token == TK_not) {
1867 op = BC_NOT;
1868 } else if (ls->token == '-') {
1869 op = BC_UNM;
1870 } else if (ls->token == '#') {
1871 op = BC_LEN;
1872 } else {
1873 expr_simple(ls, v);
1874 return;
1876 lj_lex_next(ls);
1877 expr_binop(ls, v, UNARY_PRIORITY);
1878 bcemit_unop(ls->fs, op, v);
1881 /* Parse binary expressions with priority higher than the limit. */
1882 static BinOpr expr_binop(LexState *ls, ExpDesc *v, uint32_t limit)
1884 BinOpr op;
1885 synlevel_begin(ls);
1886 expr_unop(ls, v);
1887 op = token2binop(ls->token);
1888 while (op != OPR_NOBINOPR && priority[op].left > limit) {
1889 ExpDesc v2;
1890 BinOpr nextop;
1891 lj_lex_next(ls);
1892 bcemit_binop_left(ls->fs, op, v);
1893 /* Parse binary expression with higher priority. */
1894 nextop = expr_binop(ls, &v2, priority[op].right);
1895 bcemit_binop(ls->fs, op, v, &v2);
1896 op = nextop;
1898 synlevel_end(ls);
1899 return op; /* Return unconsumed binary operator (if any). */
1902 /* Parse expression. */
1903 static void expr(LexState *ls, ExpDesc *v)
1905 expr_binop(ls, v, 0); /* Priority 0: parse whole expression. */
1908 /* Assign expression to the next register. */
1909 static void expr_next(LexState *ls)
1911 ExpDesc e;
1912 expr(ls, &e);
1913 expr_tonextreg(ls->fs, &e);
1916 /* Parse conditional expression. */
1917 static BCPos expr_cond(LexState *ls)
1919 ExpDesc v;
1920 expr(ls, &v);
1921 if (v.k == VKNIL) v.k = VKFALSE;
1922 bcemit_branch_t(ls->fs, &v);
1923 return v.f;
1926 /* -- Scope handling ------------------------------------------------------ */
1928 /* Begin a scope. */
1929 static void scope_begin(FuncState *fs, FuncScope *bl, int isbreakable)
1931 bl->breaklist = NO_JMP;
1932 bl->isbreakable = (uint8_t)isbreakable;
1933 bl->nactvar = (uint8_t)fs->nactvar;
1934 bl->upval = 0;
1935 bl->prev = fs->bl;
1936 fs->bl = bl;
1937 lua_assert(fs->freereg == fs->nactvar);
1940 /* End a scope. */
1941 static void scope_end(FuncState *fs)
1943 FuncScope *bl = fs->bl;
1944 fs->bl = bl->prev;
1945 var_remove(fs->ls, bl->nactvar);
1946 fs->freereg = fs->nactvar;
1947 lua_assert(bl->nactvar == fs->nactvar);
1948 /* A scope is either breakable or has upvalues. */
1949 lua_assert(!bl->isbreakable || !bl->upval);
1950 if (bl->upval)
1951 bcemit_AJ(fs, BC_UCLO, bl->nactvar, 0);
1952 else /* Avoid in upval case, it clears lasttarget and kills UCLO+JMP join. */
1953 jmp_tohere(fs, bl->breaklist);
1956 /* Mark scope as having an upvalue. */
1957 static void scope_uvmark(FuncState *fs, BCReg level)
1959 FuncScope *bl;
1960 for (bl = fs->bl; bl && bl->nactvar > level; bl = bl->prev)
1962 if (bl)
1963 bl->upval = 1;
1966 /* Parse 'break' statement. */
1967 static void parse_break(LexState *ls)
1969 FuncState *fs = ls->fs;
1970 FuncScope *bl;
1971 BCReg savefr;
1972 int upval = 0;
1973 for (bl = fs->bl; bl && !bl->isbreakable; bl = bl->prev)
1974 upval |= bl->upval; /* Collect upvalues in intervening scopes. */
1975 if (!bl) /* Error if no breakable scope found. */
1976 err_syntax(ls, LJ_ERR_XBREAK);
1977 savefr = fs->freereg;
1978 fs->freereg = bl->nactvar; /* Shrink slots to help data-flow analysis. */
1979 if (upval)
1980 bcemit_AJ(fs, BC_UCLO, bl->nactvar, 0); /* Close upvalues. */
1981 jmp_append(fs, &bl->breaklist, bcemit_jmp(fs));
1982 fs->freereg = savefr;
1985 /* Check for end of block. */
1986 static int endofblock(LexToken token)
1988 switch (token) {
1989 case TK_else: case TK_elseif: case TK_end: case TK_until: case TK_eof:
1990 return 1;
1991 default:
1992 return 0;
1996 /* Parse 'return' statement. */
1997 static void parse_return(LexState *ls)
1999 BCIns ins;
2000 FuncState *fs = ls->fs;
2001 lj_lex_next(ls); /* Skip 'return'. */
2002 fs->flags |= PROTO_HAS_RETURN;
2003 if (endofblock(ls->token) || ls->token == ';') { /* Bare return. */
2004 ins = BCINS_AD(BC_RET0, 0, 1);
2005 } else { /* Return with one or more values. */
2006 ExpDesc e; /* Receives the _last_ expression in the list. */
2007 BCReg nret = expr_list(ls, &e);
2008 if (nret == 1) { /* Return one result. */
2009 if (e.k == VCALL) { /* Check for tail call. */
2010 BCIns *ip = bcptr(fs, &e);
2011 /* It doesn't pay off to add BC_VARGT just for 'return ...'. */
2012 if (bc_op(*ip) == BC_VARG) goto notailcall;
2013 fs->pc--;
2014 ins = BCINS_AD(bc_op(*ip)-BC_CALL+BC_CALLT, bc_a(*ip), bc_c(*ip));
2015 } else { /* Can return the result from any register. */
2016 ins = BCINS_AD(BC_RET1, expr_toanyreg(fs, &e), 2);
2018 } else {
2019 if (e.k == VCALL) { /* Append all results from a call. */
2020 notailcall:
2021 setbc_b(bcptr(fs, &e), 0);
2022 ins = BCINS_AD(BC_RETM, fs->nactvar, e.u.s.aux - fs->nactvar);
2023 } else {
2024 expr_tonextreg(fs, &e); /* Force contiguous registers. */
2025 ins = BCINS_AD(BC_RET, fs->nactvar, nret+1);
2029 if (fs->flags & PROTO_CHILD)
2030 bcemit_AJ(fs, BC_UCLO, 0, 0); /* May need to close upvalues first. */
2031 bcemit_INS(fs, ins);
2034 /* Parse a block. */
2035 static void parse_block(LexState *ls)
2037 FuncState *fs = ls->fs;
2038 FuncScope bl;
2039 scope_begin(fs, &bl, 0);
2040 parse_chunk(ls);
2041 lua_assert(bl.breaklist == NO_JMP);
2042 scope_end(fs);
2045 /* -- Assignments --------------------------------------------------------- */
2047 /* List of LHS variables. */
2048 typedef struct LHSVarList {
2049 ExpDesc v; /* LHS variable. */
2050 struct LHSVarList *prev; /* Link to previous LHS variable. */
2051 } LHSVarList;
2053 /* Eliminate write-after-read hazards for local variable assignment. */
2054 static void assign_hazard(LexState *ls, LHSVarList *lh, const ExpDesc *v)
2056 FuncState *fs = ls->fs;
2057 BCReg reg = v->u.s.info; /* Check against this variable. */
2058 BCReg tmp = fs->freereg; /* Rename to this temp. register (if needed). */
2059 int hazard = 0;
2060 for (; lh; lh = lh->prev) {
2061 if (lh->v.k == VINDEXED) {
2062 if (lh->v.u.s.info == reg) { /* t[i], t = 1, 2 */
2063 hazard = 1;
2064 lh->v.u.s.info = tmp;
2066 if (lh->v.u.s.aux == reg) { /* t[i], i = 1, 2 */
2067 hazard = 1;
2068 lh->v.u.s.aux = tmp;
2072 if (hazard) {
2073 bcemit_AD(fs, BC_MOV, tmp, reg); /* Rename conflicting variable. */
2074 bcreg_reserve(fs, 1);
2078 /* Adjust LHS/RHS of an assignment. */
2079 static void assign_adjust(LexState *ls, BCReg nvars, BCReg nexps, ExpDesc *e)
2081 FuncState *fs = ls->fs;
2082 int32_t extra = (int32_t)nvars - (int32_t)nexps;
2083 if (e->k == VCALL) {
2084 extra++; /* Compensate for the VCALL itself. */
2085 if (extra < 0) extra = 0;
2086 setbc_b(bcptr(fs, e), extra+1); /* Fixup call results. */
2087 if (extra > 1) bcreg_reserve(fs, (BCReg)extra-1);
2088 } else {
2089 if (e->k != VVOID)
2090 expr_tonextreg(fs, e); /* Close last expression. */
2091 if (extra > 0) { /* Leftover LHS are set to nil. */
2092 BCReg reg = fs->freereg;
2093 bcreg_reserve(fs, (BCReg)extra);
2094 bcemit_nil(fs, reg, (BCReg)extra);
2099 /* Recursively parse assignment statement. */
2100 static void parse_assignment(LexState *ls, LHSVarList *lh, BCReg nvars)
2102 ExpDesc e;
2103 checkcond(ls, VLOCAL <= lh->v.k && lh->v.k <= VINDEXED, LJ_ERR_XSYNTAX);
2104 if (lex_opt(ls, ',')) { /* Collect LHS list and recurse upwards. */
2105 LHSVarList vl;
2106 vl.prev = lh;
2107 expr_primary(ls, &vl.v);
2108 if (vl.v.k == VLOCAL)
2109 assign_hazard(ls, lh, &vl.v);
2110 checklimit(ls->fs, ls->level + nvars, LJ_MAX_XLEVEL, "variable names");
2111 parse_assignment(ls, &vl, nvars+1);
2112 } else { /* Parse RHS. */
2113 BCReg nexps;
2114 lex_check(ls, '=');
2115 nexps = expr_list(ls, &e);
2116 if (nexps == nvars) {
2117 if (e.k == VCALL) {
2118 if (bc_op(*bcptr(ls->fs, &e)) == BC_VARG) { /* Vararg assignment. */
2119 ls->fs->freereg--;
2120 e.k = VRELOCABLE;
2121 } else { /* Multiple call results. */
2122 e.u.s.info = e.u.s.aux; /* Base of call is not relocatable. */
2123 e.k = VNONRELOC;
2126 bcemit_store(ls->fs, &lh->v, &e);
2127 return;
2129 assign_adjust(ls, nvars, nexps, &e);
2130 if (nexps > nvars)
2131 ls->fs->freereg -= nexps - nvars; /* Drop leftover regs. */
2133 /* Assign RHS to LHS and recurse downwards. */
2134 expr_init(&e, VNONRELOC, ls->fs->freereg-1);
2135 bcemit_store(ls->fs, &lh->v, &e);
2138 /* Parse call statement or assignment. */
2139 static void parse_call_assign(LexState *ls)
2141 FuncState *fs = ls->fs;
2142 LHSVarList vl;
2143 expr_primary(ls, &vl.v);
2144 if (vl.v.k == VCALL) { /* Function call statement. */
2145 setbc_b(bcptr(fs, &vl.v), 1); /* No results. */
2146 } else { /* Start of an assignment. */
2147 vl.prev = NULL;
2148 parse_assignment(ls, &vl, 1);
2152 /* Parse 'local' statement. */
2153 static void parse_local(LexState *ls)
2155 if (lex_opt(ls, TK_function)) { /* Local function declaration. */
2156 ExpDesc v, b;
2157 FuncState *fs = ls->fs;
2158 var_new(ls, 0, lex_str(ls));
2159 expr_init(&v, VLOCAL, fs->freereg);
2160 bcreg_reserve(fs, 1);
2161 var_add(ls, 1);
2162 parse_body(ls, &b, 0, ls->linenumber);
2163 bcemit_store(fs, &v, &b);
2164 /* The upvalue is in scope, but the local is only valid after the store. */
2165 var_get(ls, fs, fs->nactvar - 1).startpc = fs->pc;
2166 } else { /* Local variable declaration. */
2167 ExpDesc e;
2168 BCReg nexps, nvars = 0;
2169 do { /* Collect LHS. */
2170 var_new(ls, nvars++, lex_str(ls));
2171 } while (lex_opt(ls, ','));
2172 if (lex_opt(ls, '=')) { /* Optional RHS. */
2173 nexps = expr_list(ls, &e);
2174 } else { /* Or implicitly set to nil. */
2175 e.k = VVOID;
2176 nexps = 0;
2178 assign_adjust(ls, nvars, nexps, &e);
2179 var_add(ls, nvars);
2183 /* Parse 'function' statement. */
2184 static void parse_func(LexState *ls, BCLine line)
2186 FuncState *fs;
2187 ExpDesc v, b;
2188 int needself = 0;
2189 lj_lex_next(ls); /* Skip 'function'. */
2190 /* Parse function name. */
2191 var_lookup(ls, &v);
2192 while (ls->token == '.') /* Multiple dot-separated fields. */
2193 expr_field(ls, &v);
2194 if (ls->token == ':') { /* Optional colon to signify method call. */
2195 needself = 1;
2196 expr_field(ls, &v);
2198 parse_body(ls, &b, needself, line);
2199 fs = ls->fs;
2200 bcemit_store(fs, &v, &b);
2201 fs->bcbase[fs->pc - 1].line = line; /* Set line for the store. */
2204 /* -- Loop and conditional statements ------------------------------------- */
2206 /* Parse 'while' statement. */
2207 static void parse_while(LexState *ls, BCLine line)
2209 FuncState *fs = ls->fs;
2210 BCPos start, loop, condexit;
2211 FuncScope bl;
2212 lj_lex_next(ls); /* Skip 'while'. */
2213 start = fs->lasttarget = fs->pc;
2214 condexit = expr_cond(ls);
2215 scope_begin(fs, &bl, 1);
2216 lex_check(ls, TK_do);
2217 loop = bcemit_AD(fs, BC_LOOP, fs->nactvar, 0);
2218 parse_block(ls);
2219 jmp_patch(fs, bcemit_jmp(fs), start);
2220 lex_match(ls, TK_end, TK_while, line);
2221 scope_end(fs);
2222 jmp_tohere(fs, condexit);
2223 jmp_patchins(fs, loop, fs->pc);
2226 /* Parse 'repeat' statement. */
2227 static void parse_repeat(LexState *ls, BCLine line)
2229 FuncState *fs = ls->fs;
2230 BCPos loop = fs->lasttarget = fs->pc;
2231 BCPos condexit;
2232 FuncScope bl1, bl2;
2233 scope_begin(fs, &bl1, 1); /* Breakable loop scope. */
2234 scope_begin(fs, &bl2, 0); /* Inner scope. */
2235 lj_lex_next(ls); /* Skip 'repeat'. */
2236 bcemit_AD(fs, BC_LOOP, fs->nactvar, 0);
2237 parse_chunk(ls);
2238 lex_match(ls, TK_until, TK_repeat, line);
2239 condexit = expr_cond(ls); /* Parse condition (still inside inner scope). */
2240 if (!bl2.upval) { /* No upvalues? Just end inner scope. */
2241 scope_end(fs);
2242 } else { /* Otherwise generate: cond: UCLO+JMP out, !cond: UCLO+JMP loop. */
2243 parse_break(ls); /* Break from loop and close upvalues. */
2244 jmp_tohere(fs, condexit);
2245 scope_end(fs); /* End inner scope and close upvalues. */
2246 condexit = bcemit_jmp(fs);
2248 jmp_patch(fs, condexit, loop); /* Jump backwards if !cond. */
2249 jmp_patchins(fs, loop, fs->pc);
2250 scope_end(fs); /* End loop scope. */
2253 /* Parse numeric 'for'. */
2254 static void parse_for_num(LexState *ls, GCstr *varname, BCLine line)
2256 FuncState *fs = ls->fs;
2257 BCReg base = fs->freereg;
2258 FuncScope bl;
2259 BCPos loop, loopend;
2260 /* Hidden control variables. */
2261 var_new_fixed(ls, FORL_IDX, VARNAME_FOR_IDX);
2262 var_new_fixed(ls, FORL_STOP, VARNAME_FOR_STOP);
2263 var_new_fixed(ls, FORL_STEP, VARNAME_FOR_STEP);
2264 /* Visible copy of index variable. */
2265 var_new(ls, FORL_EXT, varname);
2266 lex_check(ls, '=');
2267 expr_next(ls);
2268 lex_check(ls, ',');
2269 expr_next(ls);
2270 if (lex_opt(ls, ',')) {
2271 expr_next(ls);
2272 } else {
2273 bcemit_AD(fs, BC_KSHORT, fs->freereg, 1); /* Default step is 1. */
2274 bcreg_reserve(fs, 1);
2276 var_add(ls, 3); /* Hidden control variables. */
2277 lex_check(ls, TK_do);
2278 loop = bcemit_AJ(fs, BC_FORI, base, NO_JMP);
2279 scope_begin(fs, &bl, 0); /* Scope for visible variables. */
2280 var_add(ls, 1);
2281 bcreg_reserve(fs, 1);
2282 parse_block(ls);
2283 scope_end(fs);
2284 /* Perform loop inversion. Loop control instructions are at the end. */
2285 loopend = bcemit_AJ(fs, BC_FORL, base, NO_JMP);
2286 fs->bcbase[loopend].line = line; /* Fix line for control ins. */
2287 jmp_patchins(fs, loopend, loop+1);
2288 jmp_patchins(fs, loop, fs->pc);
2291 /* Try to predict whether the iterator is next() and specialize the bytecode.
2292 ** Detecting next() and pairs() by name is simplistic, but quite effective.
2293 ** The interpreter backs off if the check for the closure fails at runtime.
2295 static int predict_next(LexState *ls, FuncState *fs, BCPos pc)
2297 BCIns ins = fs->bcbase[pc].ins;
2298 GCstr *name;
2299 cTValue *o;
2300 switch (bc_op(ins)) {
2301 case BC_MOV:
2302 name = gco2str(gcref(var_get(ls, fs, bc_d(ins)).name));
2303 break;
2304 case BC_UGET:
2305 name = gco2str(gcref(ls->vstack[fs->uvloc[bc_d(ins)].vidx].name));
2306 break;
2307 case BC_GGET:
2308 /* There's no inverse index (yet), so lookup the strings. */
2309 o = lj_tab_getstr(fs->kt, lj_str_newlit(ls->L, "pairs"));
2310 if (o && tvhaskslot(o) && tvkslot(o) == bc_d(ins))
2311 return 1;
2312 o = lj_tab_getstr(fs->kt, lj_str_newlit(ls->L, "next"));
2313 if (o && tvhaskslot(o) && tvkslot(o) == bc_d(ins))
2314 return 1;
2315 return 0;
2316 default:
2317 return 0;
2319 return (name->len == 5 && !strcmp(strdata(name), "pairs")) ||
2320 (name->len == 4 && !strcmp(strdata(name), "next"));
2323 /* Parse 'for' iterator. */
2324 static void parse_for_iter(LexState *ls, GCstr *indexname)
2326 FuncState *fs = ls->fs;
2327 ExpDesc e;
2328 BCReg nvars = 0;
2329 BCLine line;
2330 BCReg base = fs->freereg + 3;
2331 BCPos loop, loopend, exprpc = fs->pc;
2332 FuncScope bl;
2333 int isnext;
2334 /* Hidden control variables. */
2335 var_new_fixed(ls, nvars++, VARNAME_FOR_GEN);
2336 var_new_fixed(ls, nvars++, VARNAME_FOR_STATE);
2337 var_new_fixed(ls, nvars++, VARNAME_FOR_CTL);
2338 /* Visible variables returned from iterator. */
2339 var_new(ls, nvars++, indexname);
2340 while (lex_opt(ls, ','))
2341 var_new(ls, nvars++, lex_str(ls));
2342 lex_check(ls, TK_in);
2343 line = ls->linenumber;
2344 assign_adjust(ls, 3, expr_list(ls, &e), &e);
2345 bcreg_bump(fs, 3); /* The iterator needs another 3 slots (func + 2 args). */
2346 isnext = (nvars <= 5 && predict_next(ls, fs, exprpc));
2347 var_add(ls, 3); /* Hidden control variables. */
2348 lex_check(ls, TK_do);
2349 loop = bcemit_AJ(fs, isnext ? BC_ISNEXT : BC_JMP, base, NO_JMP);
2350 scope_begin(fs, &bl, 0); /* Scope for visible variables. */
2351 var_add(ls, nvars-3);
2352 bcreg_reserve(fs, nvars-3);
2353 parse_block(ls);
2354 scope_end(fs);
2355 /* Perform loop inversion. Loop control instructions are at the end. */
2356 jmp_patchins(fs, loop, fs->pc);
2357 bcemit_ABC(fs, isnext ? BC_ITERN : BC_ITERC, base, nvars-3+1, 2+1);
2358 loopend = bcemit_AJ(fs, BC_ITERL, base, NO_JMP);
2359 fs->bcbase[loopend-1].line = line; /* Fix line for control ins. */
2360 fs->bcbase[loopend].line = line;
2361 jmp_patchins(fs, loopend, loop+1);
2364 /* Parse 'for' statement. */
2365 static void parse_for(LexState *ls, BCLine line)
2367 FuncState *fs = ls->fs;
2368 GCstr *varname;
2369 FuncScope bl;
2370 scope_begin(fs, &bl, 1); /* Breakable loop scope. */
2371 lj_lex_next(ls); /* Skip 'for'. */
2372 varname = lex_str(ls); /* Get first variable name. */
2373 if (ls->token == '=')
2374 parse_for_num(ls, varname, line);
2375 else if (ls->token == ',' || ls->token == TK_in)
2376 parse_for_iter(ls, varname);
2377 else
2378 err_syntax(ls, LJ_ERR_XFOR);
2379 lex_match(ls, TK_end, TK_for, line);
2380 scope_end(fs); /* Resolve break list. */
2383 /* Parse condition and 'then' block. */
2384 static BCPos parse_then(LexState *ls)
2386 BCPos condexit;
2387 lj_lex_next(ls); /* Skip 'if' or 'elseif'. */
2388 condexit = expr_cond(ls);
2389 lex_check(ls, TK_then);
2390 parse_block(ls);
2391 return condexit;
2394 /* Parse 'if' statement. */
2395 static void parse_if(LexState *ls, BCLine line)
2397 FuncState *fs = ls->fs;
2398 BCPos flist;
2399 BCPos escapelist = NO_JMP;
2400 flist = parse_then(ls);
2401 while (ls->token == TK_elseif) { /* Parse multiple 'elseif' blocks. */
2402 jmp_append(fs, &escapelist, bcemit_jmp(fs));
2403 jmp_tohere(fs, flist);
2404 flist = parse_then(ls);
2406 if (ls->token == TK_else) { /* Parse optional 'else' block. */
2407 jmp_append(fs, &escapelist, bcemit_jmp(fs));
2408 jmp_tohere(fs, flist);
2409 lj_lex_next(ls); /* Skip 'else'. */
2410 parse_block(ls);
2411 } else {
2412 jmp_append(fs, &escapelist, flist);
2414 jmp_tohere(fs, escapelist);
2415 lex_match(ls, TK_end, TK_if, line);
2418 /* -- Parse statements ---------------------------------------------------- */
2420 /* Parse a statement. Returns 1 if it must be the last one in a chunk. */
2421 static int parse_stmt(LexState *ls)
2423 BCLine line = ls->linenumber;
2424 switch (ls->token) {
2425 case TK_if:
2426 parse_if(ls, line);
2427 break;
2428 case TK_while:
2429 parse_while(ls, line);
2430 break;
2431 case TK_do:
2432 lj_lex_next(ls);
2433 parse_block(ls);
2434 lex_match(ls, TK_end, TK_do, line);
2435 break;
2436 case TK_for:
2437 parse_for(ls, line);
2438 break;
2439 case TK_repeat:
2440 parse_repeat(ls, line);
2441 break;
2442 case TK_function:
2443 parse_func(ls, line);
2444 break;
2445 case TK_local:
2446 lj_lex_next(ls);
2447 parse_local(ls);
2448 break;
2449 case TK_return:
2450 parse_return(ls);
2451 return 1; /* Must be last. */
2452 case TK_break:
2453 lj_lex_next(ls);
2454 parse_break(ls);
2455 return 1; /* Must be last. */
2456 #ifdef LUAJIT_ENABLE_LUA52COMPAT
2457 case ';':
2458 lj_lex_next(ls);
2459 break;
2460 #endif
2461 default:
2462 parse_call_assign(ls);
2463 break;
2465 return 0;
2468 /* A chunk is a list of statements optionally separated by semicolons. */
2469 static void parse_chunk(LexState *ls)
2471 int islast = 0;
2472 synlevel_begin(ls);
2473 while (!islast && !endofblock(ls->token)) {
2474 islast = parse_stmt(ls);
2475 lex_opt(ls, ';');
2476 lua_assert(ls->fs->framesize >= ls->fs->freereg &&
2477 ls->fs->freereg >= ls->fs->nactvar);
2478 ls->fs->freereg = ls->fs->nactvar; /* Free registers after each stmt. */
2480 synlevel_end(ls);
2483 /* Entry point of bytecode parser. */
2484 GCproto *lj_parse(LexState *ls)
2486 FuncState fs;
2487 GCproto *pt;
2488 lua_State *L = ls->L;
2489 #ifdef LUAJIT_DISABLE_DEBUGINFO
2490 ls->chunkname = lj_str_newlit(L, "=");
2491 #else
2492 ls->chunkname = lj_str_newz(L, ls->chunkarg);
2493 #endif
2494 setstrV(L, L->top, ls->chunkname); /* Anchor chunkname string. */
2495 incr_top(L);
2496 ls->level = 0;
2497 fs_init(ls, &fs);
2498 fs.linedefined = 0;
2499 fs.numparams = 0;
2500 fs.bcbase = NULL;
2501 fs.bclim = 0;
2502 fs.flags |= PROTO_VARARG; /* Main chunk is always a vararg func. */
2503 bcemit_AD(&fs, BC_FUNCV, 0, 0); /* Placeholder. */
2504 lj_lex_next(ls); /* Read-ahead first token. */
2505 parse_chunk(ls);
2506 if (ls->token != TK_eof)
2507 err_token(ls, TK_eof);
2508 pt = fs_finish(ls, ls->linenumber);
2509 L->top--; /* Drop chunkname. */
2510 lua_assert(fs.prev == NULL);
2511 lua_assert(ls->fs == NULL);
2512 lua_assert(pt->sizeuv == 0);
2513 return pt;