x86/x64: Always mark ref for shift count as non-weak.
[luajit-2.0.git] / src / lj_asm_x86.h
blob401e3d502777bb8f4c8d31a66190fa43d14c670f
1 /*
2 ** x86/x64 IR assembler (SSA IR -> machine code).
3 ** Copyright (C) 2005-2012 Mike Pall. See Copyright Notice in luajit.h
4 */
6 /* -- Guard handling ------------------------------------------------------ */
8 /* Generate an exit stub group at the bottom of the reserved MCode memory. */
9 static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
11 ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff;
12 MCode *mxp = as->mcbot;
13 MCode *mxpstart = mxp;
14 if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop)
15 asm_mclimit(as);
16 /* Push low byte of exitno for each exit stub. */
17 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs;
18 for (i = 1; i < EXITSTUBS_PER_GROUP; i++) {
19 *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2);
20 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i);
22 /* Push the high byte of the exitno for each exit stub group. */
23 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8);
24 /* Store DISPATCH at original stack slot 0. Account for the two push ops. */
25 *mxp++ = XI_MOVmi;
26 *mxp++ = MODRM(XM_OFS8, 0, RID_ESP);
27 *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
28 *mxp++ = 2*sizeof(void *);
29 *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4;
30 /* Jump to exit handler which fills in the ExitState. */
31 *mxp++ = XI_JMP; mxp += 4;
32 *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler);
33 /* Commit the code for this group (even if assembly fails later on). */
34 lj_mcode_commitbot(as->J, mxp);
35 as->mcbot = mxp;
36 as->mclim = as->mcbot + MCLIM_REDZONE;
37 return mxpstart;
40 /* Setup all needed exit stubs. */
41 static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
43 ExitNo i;
44 if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
45 lj_trace_err(as->J, LJ_TRERR_SNAPOV);
46 for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
47 if (as->J->exitstubgroup[i] == NULL)
48 as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
51 /* Emit conditional branch to exit for guard.
52 ** It's important to emit this *after* all registers have been allocated,
53 ** because rematerializations may invalidate the flags.
55 static void asm_guardcc(ASMState *as, int cc)
57 MCode *target = exitstub_addr(as->J, as->snapno);
58 MCode *p = as->mcp;
59 if (LJ_UNLIKELY(p == as->invmcp)) {
60 as->loopinv = 1;
61 *(int32_t *)(p+1) = jmprel(p+5, target);
62 target = p;
63 cc ^= 1;
64 if (as->realign) {
65 emit_sjcc(as, cc, target);
66 return;
69 emit_jcc(as, cc, target);
72 /* -- Memory operand fusion ----------------------------------------------- */
74 /* Limit linear search to this distance. Avoids O(n^2) behavior. */
75 #define CONFLICT_SEARCH_LIM 31
77 /* Check if a reference is a signed 32 bit constant. */
78 static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
80 if (irref_isk(ref)) {
81 IRIns *ir = IR(ref);
82 if (ir->o != IR_KINT64) {
83 *k = ir->i;
84 return 1;
85 } else if (checki32((int64_t)ir_kint64(ir)->u64)) {
86 *k = (int32_t)ir_kint64(ir)->u64;
87 return 1;
90 return 0;
93 /* Check if there's no conflicting instruction between curins and ref.
94 ** Also avoid fusing loads if there are multiple references.
96 static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload)
98 IRIns *ir = as->ir;
99 IRRef i = as->curins;
100 if (i > ref + CONFLICT_SEARCH_LIM)
101 return 0; /* Give up, ref is too far away. */
102 while (--i > ref) {
103 if (ir[i].o == conflict)
104 return 0; /* Conflict found. */
105 else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref))
106 return 0;
108 return 1; /* Ok, no conflict. */
111 /* Fuse array base into memory operand. */
112 static IRRef asm_fuseabase(ASMState *as, IRRef ref)
114 IRIns *irb = IR(ref);
115 as->mrm.ofs = 0;
116 if (irb->o == IR_FLOAD) {
117 IRIns *ira = IR(irb->op1);
118 lua_assert(irb->op2 == IRFL_TAB_ARRAY);
119 /* We can avoid the FLOAD of t->array for colocated arrays. */
120 if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE &&
121 !neverfuse(as) && noconflict(as, irb->op1, IR_NEWREF, 1)) {
122 as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */
123 return irb->op1; /* Table obj. */
125 } else if (irb->o == IR_ADD && irref_isk(irb->op2)) {
126 /* Fuse base offset (vararg load). */
127 as->mrm.ofs = IR(irb->op2)->i;
128 return irb->op1;
130 return ref; /* Otherwise use the given array base. */
133 /* Fuse array reference into memory operand. */
134 static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow)
136 IRIns *irx;
137 lua_assert(ir->o == IR_AREF);
138 as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow);
139 irx = IR(ir->op2);
140 if (irref_isk(ir->op2)) {
141 as->mrm.ofs += 8*irx->i;
142 as->mrm.idx = RID_NONE;
143 } else {
144 rset_clear(allow, as->mrm.base);
145 as->mrm.scale = XM_SCALE8;
146 /* Fuse a constant ADD (e.g. t[i+1]) into the offset.
147 ** Doesn't help much without ABCelim, but reduces register pressure.
149 if (!LJ_64 && /* Has bad effects with negative index on x64. */
150 mayfuse(as, ir->op2) && ra_noreg(irx->r) &&
151 irx->o == IR_ADD && irref_isk(irx->op2)) {
152 as->mrm.ofs += 8*IR(irx->op2)->i;
153 as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow);
154 } else {
155 as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow);
160 /* Fuse array/hash/upvalue reference into memory operand.
161 ** Caveat: this may allocate GPRs for the base/idx registers. Be sure to
162 ** pass the final allow mask, excluding any GPRs used for other inputs.
163 ** In particular: 2-operand GPR instructions need to call ra_dest() first!
165 static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow)
167 IRIns *ir = IR(ref);
168 if (ra_noreg(ir->r)) {
169 switch ((IROp)ir->o) {
170 case IR_AREF:
171 if (mayfuse(as, ref)) {
172 asm_fusearef(as, ir, allow);
173 return;
175 break;
176 case IR_HREFK:
177 if (mayfuse(as, ref)) {
178 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
179 as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
180 as->mrm.idx = RID_NONE;
181 return;
183 break;
184 case IR_UREFC:
185 if (irref_isk(ir->op1)) {
186 GCfunc *fn = ir_kfunc(IR(ir->op1));
187 GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
188 as->mrm.ofs = ptr2addr(&uv->tv);
189 as->mrm.base = as->mrm.idx = RID_NONE;
190 return;
192 break;
193 default:
194 lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO ||
195 ir->o == IR_KKPTR);
196 break;
199 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
200 as->mrm.ofs = 0;
201 as->mrm.idx = RID_NONE;
204 /* Fuse FLOAD/FREF reference into memory operand. */
205 static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow)
207 lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF);
208 as->mrm.ofs = field_ofs[ir->op2];
209 as->mrm.idx = RID_NONE;
210 if (irref_isk(ir->op1)) {
211 as->mrm.ofs += IR(ir->op1)->i;
212 as->mrm.base = RID_NONE;
213 } else {
214 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
218 /* Fuse string reference into memory operand. */
219 static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow)
221 IRIns *irr;
222 lua_assert(ir->o == IR_STRREF);
223 as->mrm.base = as->mrm.idx = RID_NONE;
224 as->mrm.scale = XM_SCALE1;
225 as->mrm.ofs = sizeof(GCstr);
226 if (irref_isk(ir->op1)) {
227 as->mrm.ofs += IR(ir->op1)->i;
228 } else {
229 Reg r = ra_alloc1(as, ir->op1, allow);
230 rset_clear(allow, r);
231 as->mrm.base = (uint8_t)r;
233 irr = IR(ir->op2);
234 if (irref_isk(ir->op2)) {
235 as->mrm.ofs += irr->i;
236 } else {
237 Reg r;
238 /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */
239 if (!LJ_64 && /* Has bad effects with negative index on x64. */
240 mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) {
241 as->mrm.ofs += IR(irr->op2)->i;
242 r = ra_alloc1(as, irr->op1, allow);
243 } else {
244 r = ra_alloc1(as, ir->op2, allow);
246 if (as->mrm.base == RID_NONE)
247 as->mrm.base = (uint8_t)r;
248 else
249 as->mrm.idx = (uint8_t)r;
253 static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow)
255 IRIns *ir = IR(ref);
256 as->mrm.idx = RID_NONE;
257 if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
258 as->mrm.ofs = ir->i;
259 as->mrm.base = RID_NONE;
260 } else if (ir->o == IR_STRREF) {
261 asm_fusestrref(as, ir, allow);
262 } else {
263 as->mrm.ofs = 0;
264 if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) {
265 /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */
266 IRIns *irx;
267 IRRef idx;
268 Reg r;
269 if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */
270 ref = ir->op1;
271 ir = IR(ref);
272 if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r)))
273 goto noadd;
275 as->mrm.scale = XM_SCALE1;
276 idx = ir->op1;
277 ref = ir->op2;
278 irx = IR(idx);
279 if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */
280 idx = ir->op2;
281 ref = ir->op1;
282 irx = IR(idx);
284 if (canfuse(as, irx) && ra_noreg(irx->r)) {
285 if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) {
286 /* Recognize idx<<b with b = 0-3, corresponding to sz = (1),2,4,8. */
287 idx = irx->op1;
288 as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6);
289 } else if (irx->o == IR_ADD && irx->op1 == irx->op2) {
290 /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */
291 idx = irx->op1;
292 as->mrm.scale = XM_SCALE2;
295 r = ra_alloc1(as, idx, allow);
296 rset_clear(allow, r);
297 as->mrm.idx = (uint8_t)r;
299 noadd:
300 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
304 /* Fuse load into memory operand. */
305 static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow)
307 IRIns *ir = IR(ref);
308 if (ra_hasreg(ir->r)) {
309 if (allow != RSET_EMPTY) { /* Fast path. */
310 ra_noweak(as, ir->r);
311 return ir->r;
313 fusespill:
314 /* Force a spill if only memory operands are allowed (asm_x87load). */
315 as->mrm.base = RID_ESP;
316 as->mrm.ofs = ra_spill(as, ir);
317 as->mrm.idx = RID_NONE;
318 return RID_MRM;
320 if (ir->o == IR_KNUM) {
321 RegSet avail = as->freeset & ~as->modset & RSET_FPR;
322 lua_assert(allow != RSET_EMPTY);
323 if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */
324 as->mrm.ofs = ptr2addr(ir_knum(ir));
325 as->mrm.base = as->mrm.idx = RID_NONE;
326 return RID_MRM;
328 } else if (mayfuse(as, ref)) {
329 RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR;
330 if (ir->o == IR_SLOAD) {
331 if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) &&
332 noconflict(as, ref, IR_RETF, 0)) {
333 as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow);
334 as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0);
335 as->mrm.idx = RID_NONE;
336 return RID_MRM;
338 } else if (ir->o == IR_FLOAD) {
339 /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */
340 if ((irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t)) &&
341 noconflict(as, ref, IR_FSTORE, 0)) {
342 asm_fusefref(as, ir, xallow);
343 return RID_MRM;
345 } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) {
346 if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) {
347 asm_fuseahuref(as, ir->op1, xallow);
348 return RID_MRM;
350 } else if (ir->o == IR_XLOAD) {
351 /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp).
352 ** Fusing unaligned memory operands is ok on x86 (except for SIMD types).
354 if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) &&
355 noconflict(as, ref, IR_XSTORE, 0)) {
356 asm_fusexref(as, ir->op1, xallow);
357 return RID_MRM;
359 } else if (ir->o == IR_VLOAD) {
360 asm_fuseahuref(as, ir->op1, xallow);
361 return RID_MRM;
364 if (!(as->freeset & allow) &&
365 (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref)))
366 goto fusespill;
367 return ra_allocref(as, ref, allow);
370 #if LJ_64
371 /* Don't fuse a 32 bit load into a 64 bit operation. */
372 static Reg asm_fuseloadm(ASMState *as, IRRef ref, RegSet allow, int is64)
374 if (is64 && !irt_is64(IR(ref)->t))
375 return ra_alloc1(as, ref, allow);
376 return asm_fuseload(as, ref, allow);
378 #else
379 #define asm_fuseloadm(as, ref, allow, is64) asm_fuseload(as, (ref), (allow))
380 #endif
382 /* -- Calls --------------------------------------------------------------- */
384 /* Count the required number of stack slots for a call. */
385 static int asm_count_call_slots(ASMState *as, const CCallInfo *ci, IRRef *args)
387 uint32_t i, nargs = CCI_NARGS(ci);
388 int nslots = 0;
389 #if LJ_64
390 if (LJ_ABI_WIN) {
391 nslots = (int)(nargs*2); /* Only matters for more than four args. */
392 } else {
393 int ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR;
394 for (i = 0; i < nargs; i++)
395 if (args[i] && irt_isfp(IR(args[i])->t)) {
396 if (nfpr > 0) nfpr--; else nslots += 2;
397 } else {
398 if (ngpr > 0) ngpr--; else nslots += 2;
401 #else
402 int ngpr = 0;
403 if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL)
404 ngpr = 2;
405 else if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL)
406 ngpr = 1;
407 for (i = 0; i < nargs; i++)
408 if (args[i] && irt_isfp(IR(args[i])->t)) {
409 nslots += irt_isnum(IR(args[i])->t) ? 2 : 1;
410 } else {
411 if (ngpr > 0) ngpr--; else nslots++;
413 #endif
414 return nslots;
417 /* Generate a call to a C function. */
418 static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
420 uint32_t n, nargs = CCI_NARGS(ci);
421 int32_t ofs = STACKARG_OFS;
422 #if LJ_64
423 uint32_t gprs = REGARG_GPRS;
424 Reg fpr = REGARG_FIRSTFPR;
425 #if !LJ_ABI_WIN
426 MCode *patchnfpr = NULL;
427 #endif
428 #else
429 uint32_t gprs = 0;
430 if ((ci->flags & CCI_CC_MASK) != CCI_CC_CDECL) {
431 if ((ci->flags & CCI_CC_MASK) == CCI_CC_THISCALL)
432 gprs = (REGARG_GPRS & 31);
433 else if ((ci->flags & CCI_CC_MASK) == CCI_CC_FASTCALL)
434 gprs = REGARG_GPRS;
436 #endif
437 if ((void *)ci->func)
438 emit_call(as, ci->func);
439 #if LJ_64
440 if ((ci->flags & CCI_VARARG)) { /* Special handling for vararg calls. */
441 #if LJ_ABI_WIN
442 for (n = 0; n < 4 && n < nargs; n++) {
443 IRIns *ir = IR(args[n]);
444 if (irt_isfp(ir->t)) /* Duplicate FPRs in GPRs. */
445 emit_rr(as, XO_MOVDto, (irt_isnum(ir->t) ? REX_64 : 0) | (fpr+n),
446 ((gprs >> (n*5)) & 31)); /* Either MOVD or MOVQ. */
448 #else
449 patchnfpr = --as->mcp; /* Indicate number of used FPRs in register al. */
450 *--as->mcp = XI_MOVrib | RID_EAX;
451 #endif
453 #endif
454 for (n = 0; n < nargs; n++) { /* Setup args. */
455 IRRef ref = args[n];
456 IRIns *ir = IR(ref);
457 Reg r;
458 #if LJ_64 && LJ_ABI_WIN
459 /* Windows/x64 argument registers are strictly positional. */
460 r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31);
461 fpr++; gprs >>= 5;
462 #elif LJ_64
463 /* POSIX/x64 argument registers are used in order of appearance. */
464 if (irt_isfp(ir->t)) {
465 r = fpr <= REGARG_LASTFPR ? fpr++ : 0;
466 } else {
467 r = gprs & 31; gprs >>= 5;
469 #else
470 if (ref && irt_isfp(ir->t)) {
471 r = 0;
472 } else {
473 r = gprs & 31; gprs >>= 5;
474 if (!ref) continue;
476 #endif
477 if (r) { /* Argument is in a register. */
478 if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
479 #if LJ_64
480 if (ir->o == IR_KINT64)
481 emit_loadu64(as, r, ir_kint64(ir)->u64);
482 else
483 #endif
484 emit_loadi(as, r, ir->i);
485 } else {
486 lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
487 if (ra_hasreg(ir->r)) {
488 ra_noweak(as, ir->r);
489 emit_movrr(as, ir, r, ir->r);
490 } else {
491 ra_allocref(as, ref, RID2RSET(r));
494 } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */
495 lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */
496 if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
497 /* Split stores for unaligned FP consts. */
498 emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
499 emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
500 } else {
501 r = ra_alloc1(as, ref, RSET_FPR);
502 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
503 r, RID_ESP, ofs);
505 ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8;
506 } else { /* Non-FP argument is on stack. */
507 if (LJ_32 && ref < ASMREF_TMP1) {
508 emit_movmroi(as, RID_ESP, ofs, ir->i);
509 } else {
510 r = ra_alloc1(as, ref, RSET_GPR);
511 emit_movtomro(as, REX_64 + r, RID_ESP, ofs);
513 ofs += sizeof(intptr_t);
516 #if LJ_64 && !LJ_ABI_WIN
517 if (patchnfpr) *patchnfpr = fpr - REGARG_FIRSTFPR;
518 #endif
521 /* Setup result reg/sp for call. Evict scratch regs. */
522 static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
524 RegSet drop = RSET_SCRATCH;
525 int hiop = (LJ_32 && (ir+1)->o == IR_HIOP);
526 if ((ci->flags & CCI_NOFPRCLOBBER))
527 drop &= ~RSET_FPR;
528 if (ra_hasreg(ir->r))
529 rset_clear(drop, ir->r); /* Dest reg handled below. */
530 if (hiop && ra_hasreg((ir+1)->r))
531 rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */
532 ra_evictset(as, drop); /* Evictions must be performed first. */
533 if (ra_used(ir)) {
534 if (irt_isfp(ir->t)) {
535 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
536 #if LJ_64
537 if ((ci->flags & CCI_CASTU64)) {
538 Reg dest = ir->r;
539 if (ra_hasreg(dest)) {
540 ra_free(as, dest);
541 ra_modified(as, dest);
542 emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */
544 if (ofs) emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs);
545 } else {
546 ra_destreg(as, ir, RID_FPRET);
548 #else
549 /* Number result is in x87 st0 for x86 calling convention. */
550 Reg dest = ir->r;
551 if (ra_hasreg(dest)) {
552 ra_free(as, dest);
553 ra_modified(as, dest);
554 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
555 dest, RID_ESP, ofs);
557 if ((ci->flags & CCI_CASTU64)) {
558 emit_movtomro(as, RID_RETLO, RID_ESP, ofs);
559 emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4);
560 } else {
561 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
562 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
564 #endif
565 #if LJ_32
566 } else if (hiop) {
567 ra_destpair(as, ir);
568 #endif
569 } else {
570 lua_assert(!irt_ispri(ir->t));
571 ra_destreg(as, ir, RID_RET);
573 } else if (LJ_32 && irt_isfp(ir->t)) {
574 emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */
578 static void asm_call(ASMState *as, IRIns *ir)
580 IRRef args[CCI_NARGS_MAX];
581 const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
582 asm_collectargs(as, ir, ci, args);
583 asm_setupresult(as, ir, ci);
584 asm_gencall(as, ci, args);
587 /* Return a constant function pointer or NULL for indirect calls. */
588 static void *asm_callx_func(ASMState *as, IRIns *irf, IRRef func)
590 #if LJ_32
591 UNUSED(as);
592 if (irref_isk(func))
593 return (void *)irf->i;
594 #else
595 if (irref_isk(func)) {
596 MCode *p;
597 if (irf->o == IR_KINT64)
598 p = (MCode *)(void *)ir_k64(irf)->u64;
599 else
600 p = (MCode *)(void *)(uintptr_t)(uint32_t)irf->i;
601 if (p - as->mcp == (int32_t)(p - as->mcp))
602 return p; /* Call target is still in +-2GB range. */
603 /* Avoid the indirect case of emit_call(). Try to hoist func addr. */
605 #endif
606 return NULL;
609 static void asm_callx(ASMState *as, IRIns *ir)
611 IRRef args[CCI_NARGS_MAX];
612 CCallInfo ci;
613 IRRef func;
614 IRIns *irf;
615 int32_t spadj = 0;
616 ci.flags = asm_callx_flags(as, ir);
617 asm_collectargs(as, ir, &ci, args);
618 asm_setupresult(as, ir, &ci);
619 #if LJ_32
620 /* Have to readjust stack after non-cdecl calls due to callee cleanup. */
621 if ((ci.flags & CCI_CC_MASK) != CCI_CC_CDECL)
622 spadj = 4 * asm_count_call_slots(as, &ci, args);
623 #endif
624 func = ir->op2; irf = IR(func);
625 if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); }
626 ci.func = (ASMFunction)asm_callx_func(as, irf, func);
627 if (!(void *)ci.func) {
628 /* Use a (hoistable) non-scratch register for indirect calls. */
629 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
630 Reg r = ra_alloc1(as, func, allow);
631 if (LJ_32) emit_spsub(as, spadj); /* Above code may cause restores! */
632 emit_rr(as, XO_GROUP5, XOg_CALL, r);
633 } else if (LJ_32) {
634 emit_spsub(as, spadj);
636 asm_gencall(as, &ci, args);
639 /* -- Returns ------------------------------------------------------------- */
641 /* Return to lower frame. Guard that it goes to the right spot. */
642 static void asm_retf(ASMState *as, IRIns *ir)
644 Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
645 void *pc = ir_kptr(IR(ir->op2));
646 int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
647 as->topslot -= (BCReg)delta;
648 if ((int32_t)as->topslot < 0) as->topslot = 0;
649 emit_setgl(as, base, jit_base);
650 emit_addptr(as, base, -8*delta);
651 asm_guardcc(as, CC_NE);
652 emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc));
655 /* -- Type conversions ---------------------------------------------------- */
657 static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
659 Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
660 Reg dest = ra_dest(as, ir, RSET_GPR);
661 asm_guardcc(as, CC_P);
662 asm_guardcc(as, CC_NE);
663 emit_rr(as, XO_UCOMISD, left, tmp);
664 emit_rr(as, XO_CVTSI2SD, tmp, dest);
665 if (!(as->flags & JIT_F_SPLIT_XMM))
666 emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */
667 emit_rr(as, XO_CVTTSD2SI, dest, left);
668 /* Can't fuse since left is needed twice. */
671 static void asm_tobit(ASMState *as, IRIns *ir)
673 Reg dest = ra_dest(as, ir, RSET_GPR);
674 Reg tmp = ra_noreg(IR(ir->op1)->r) ?
675 ra_alloc1(as, ir->op1, RSET_FPR) :
676 ra_scratch(as, RSET_FPR);
677 Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp));
678 emit_rr(as, XO_MOVDto, tmp, dest);
679 emit_mrm(as, XO_ADDSD, tmp, right);
680 ra_left(as, tmp, ir->op1);
683 static void asm_conv(ASMState *as, IRIns *ir)
685 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
686 int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64));
687 int stfp = (st == IRT_NUM || st == IRT_FLOAT);
688 IRRef lref = ir->op1;
689 lua_assert(irt_type(ir->t) != st);
690 lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */
691 if (irt_isfp(ir->t)) {
692 Reg dest = ra_dest(as, ir, RSET_FPR);
693 if (stfp) { /* FP to FP conversion. */
694 Reg left = asm_fuseload(as, lref, RSET_FPR);
695 emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left);
696 if (left == dest) return; /* Avoid the XO_XORPS. */
697 } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */
698 /* number = (2^52+2^51 .. u32) - (2^52+2^51) */
699 cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000));
700 Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
701 if (irt_isfloat(ir->t))
702 emit_rr(as, XO_CVTSD2SS, dest, dest);
703 emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */
704 emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */
705 emit_loadn(as, bias, k);
706 emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR));
707 return;
708 } else { /* Integer to FP conversion. */
709 Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ?
710 ra_alloc1(as, lref, RSET_GPR) :
711 asm_fuseloadm(as, lref, RSET_GPR, st64);
712 if (LJ_64 && st == IRT_U64) {
713 MCLabel l_end = emit_label(as);
714 const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000));
715 emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */
716 emit_sjcc(as, CC_NS, l_end);
717 emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */
719 emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS,
720 dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left);
722 if (!(as->flags & JIT_F_SPLIT_XMM))
723 emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */
724 } else if (stfp) { /* FP to integer conversion. */
725 if (irt_isguard(ir->t)) {
726 /* Checked conversions are only supported from number to int. */
727 lua_assert(irt_isint(ir->t) && st == IRT_NUM);
728 asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
729 } else {
730 Reg dest = ra_dest(as, ir, RSET_GPR);
731 x86Op op = st == IRT_NUM ?
732 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) :
733 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI);
734 if (LJ_64 ? irt_isu64(ir->t) : irt_isu32(ir->t)) {
735 /* LJ_64: For inputs >= 2^63 add -2^64, convert again. */
736 /* LJ_32: For inputs >= 2^31 add -2^31, convert again and add 2^31. */
737 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
738 ra_scratch(as, RSET_FPR);
739 MCLabel l_end = emit_label(as);
740 if (LJ_32)
741 emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000);
742 emit_rr(as, op, dest|REX_64, tmp);
743 if (st == IRT_NUM)
744 emit_rma(as, XO_ADDSD, tmp, lj_ir_k64_find(as->J,
745 LJ_64 ? U64x(c3f00000,00000000) : U64x(c1e00000,00000000)));
746 else
747 emit_rma(as, XO_ADDSS, tmp, lj_ir_k64_find(as->J,
748 LJ_64 ? U64x(00000000,df800000) : U64x(00000000,cf000000)));
749 emit_sjcc(as, CC_NS, l_end);
750 emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest negative. */
751 emit_rr(as, op, dest|REX_64, tmp);
752 ra_left(as, tmp, lref);
753 } else {
754 Reg left = asm_fuseload(as, lref, RSET_FPR);
755 if (LJ_64 && irt_isu32(ir->t))
756 emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */
757 emit_mrm(as, op,
758 dest|((LJ_64 &&
759 (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0),
760 left);
763 } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
764 Reg left, dest = ra_dest(as, ir, RSET_GPR);
765 RegSet allow = RSET_GPR;
766 x86Op op;
767 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
768 if (st == IRT_I8) {
769 op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX;
770 } else if (st == IRT_U8) {
771 op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX;
772 } else if (st == IRT_I16) {
773 op = XO_MOVSXw;
774 } else {
775 op = XO_MOVZXw;
777 left = asm_fuseload(as, lref, allow);
778 /* Add extra MOV if source is already in wrong register. */
779 if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) {
780 Reg tmp = ra_scratch(as, allow);
781 emit_rr(as, op, dest, tmp);
782 emit_rr(as, XO_MOV, tmp, left);
783 } else {
784 emit_mrm(as, op, dest, left);
786 } else { /* 32/64 bit integer conversions. */
787 if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */
788 Reg dest = ra_dest(as, ir, RSET_GPR);
789 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
790 } else if (irt_is64(ir->t)) {
791 Reg dest = ra_dest(as, ir, RSET_GPR);
792 if (st64 || !(ir->op2 & IRCONV_SEXT)) {
793 /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
794 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
795 } else { /* 32 to 64 bit sign extension. */
796 Reg left = asm_fuseload(as, lref, RSET_GPR);
797 emit_mrm(as, XO_MOVSXd, dest|REX_64, left);
799 } else {
800 Reg dest = ra_dest(as, ir, RSET_GPR);
801 if (st64) {
802 Reg left = asm_fuseload(as, lref, RSET_GPR);
803 /* This is either a 32 bit reg/reg mov which zeroes the hiword
804 ** or a load of the loword from a 64 bit address.
806 emit_mrm(as, XO_MOV, dest, left);
807 } else { /* 32/32 bit no-op (cast). */
808 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
814 #if LJ_32 && LJ_HASFFI
815 /* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */
817 /* 64 bit integer to FP conversion in 32 bit mode. */
818 static void asm_conv_fp_int64(ASMState *as, IRIns *ir)
820 Reg hi = ra_alloc1(as, ir->op1, RSET_GPR);
821 Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi));
822 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
823 Reg dest = ir->r;
824 if (ra_hasreg(dest)) {
825 ra_free(as, dest);
826 ra_modified(as, dest);
827 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
828 dest, RID_ESP, ofs);
830 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
831 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
832 if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) {
833 /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */
834 MCLabel l_end = emit_label(as);
835 emit_rma(as, XO_FADDq, XOg_FADDq,
836 lj_ir_k64_find(as->J, U64x(43f00000,00000000)));
837 emit_sjcc(as, CC_NS, l_end);
838 emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */
839 } else {
840 lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64);
842 emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0);
843 /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */
844 emit_rmro(as, XO_MOVto, hi, RID_ESP, 4);
845 emit_rmro(as, XO_MOVto, lo, RID_ESP, 0);
848 /* FP to 64 bit integer conversion in 32 bit mode. */
849 static void asm_conv_int64_fp(ASMState *as, IRIns *ir)
851 IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
852 IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
853 Reg lo, hi;
854 lua_assert(st == IRT_NUM || st == IRT_FLOAT);
855 lua_assert(dt == IRT_I64 || dt == IRT_U64);
856 lua_assert(((ir-1)->op2 & IRCONV_TRUNC));
857 hi = ra_dest(as, ir, RSET_GPR);
858 lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi));
859 if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0);
860 /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */
861 if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */
862 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4);
863 emit_rmro(as, XO_MOVto, lo, RID_ESP, 4);
864 emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff);
866 if (dt == IRT_U64) {
867 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
868 MCLabel l_pop, l_end = emit_label(as);
869 emit_x87op(as, XI_FPOP);
870 l_pop = emit_label(as);
871 emit_sjmp(as, l_end);
872 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
873 if ((as->flags & JIT_F_SSE3))
874 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
875 else
876 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
877 emit_rma(as, XO_FADDq, XOg_FADDq,
878 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
879 emit_sjcc(as, CC_NS, l_pop);
880 emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */
882 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
883 if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */
884 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
885 } else { /* Otherwise set FPU rounding mode to truncate before the store. */
886 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
887 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0);
888 emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0);
889 emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0);
890 emit_loadi(as, lo, 0xc00);
891 emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0);
893 if (dt == IRT_U64)
894 emit_x87op(as, XI_FDUP);
895 emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd,
896 st == IRT_NUM ? XOg_FLDq: XOg_FLDd,
897 asm_fuseload(as, ir->op1, RSET_EMPTY));
899 #endif
901 static void asm_strto(ASMState *as, IRIns *ir)
903 /* Force a spill slot for the destination register (if any). */
904 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num];
905 IRRef args[2];
906 RegSet drop = RSET_SCRATCH;
907 if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r))
908 rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */
909 ra_evictset(as, drop);
910 asm_guardcc(as, CC_E);
911 emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */
912 args[0] = ir->op1; /* GCstr *str */
913 args[1] = ASMREF_TMP1; /* TValue *n */
914 asm_gencall(as, ci, args);
915 /* Store the result to the spill slot or temp slots. */
916 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
917 RID_ESP, sps_scale(ir->s));
920 static void asm_tostr(ASMState *as, IRIns *ir)
922 IRIns *irl = IR(ir->op1);
923 IRRef args[2];
924 args[0] = ASMREF_L;
925 as->gcsteps++;
926 if (irt_isnum(irl->t)) {
927 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
928 args[1] = ASMREF_TMP1; /* const lua_Number * */
929 asm_setupresult(as, ir, ci); /* GCstr * */
930 asm_gencall(as, ci, args);
931 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
932 RID_ESP, ra_spill(as, irl));
933 } else {
934 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
935 args[1] = ir->op1; /* int32_t k */
936 asm_setupresult(as, ir, ci); /* GCstr * */
937 asm_gencall(as, ci, args);
941 /* -- Memory references --------------------------------------------------- */
943 static void asm_aref(ASMState *as, IRIns *ir)
945 Reg dest = ra_dest(as, ir, RSET_GPR);
946 asm_fusearef(as, ir, RSET_GPR);
947 if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0))
948 emit_mrm(as, XO_LEA, dest, RID_MRM);
949 else if (as->mrm.base != dest)
950 emit_rr(as, XO_MOV, dest, as->mrm.base);
953 /* Merge NE(HREF, niltv) check. */
954 static MCode *merge_href_niltv(ASMState *as, IRIns *ir)
956 /* Assumes nothing else generates NE of HREF. */
957 if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins &&
958 ra_hasreg(ir->r)) {
959 MCode *p = as->mcp;
960 p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6;
961 /* Ensure no loop branch inversion happened. */
962 if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) {
963 as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */
964 return p + *(int32_t *)(p-4); /* Return exit address. */
967 return NULL;
970 /* Inlined hash lookup. Specialized for key type and for const keys.
971 ** The equivalent C code is:
972 ** Node *n = hashkey(t, key);
973 ** do {
974 ** if (lj_obj_equal(&n->key, key)) return &n->val;
975 ** } while ((n = nextnode(n)));
976 ** return niltv(L);
978 static void asm_href(ASMState *as, IRIns *ir)
980 MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */
981 RegSet allow = RSET_GPR;
982 Reg dest = ra_dest(as, ir, allow);
983 Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
984 Reg key = RID_NONE, tmp = RID_NONE;
985 IRIns *irkey = IR(ir->op2);
986 int isk = irref_isk(ir->op2);
987 IRType1 kt = irkey->t;
988 uint32_t khash;
989 MCLabel l_end, l_loop, l_next;
991 if (!isk) {
992 rset_clear(allow, tab);
993 key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
994 if (!irt_isstr(kt))
995 tmp = ra_scratch(as, rset_exclude(allow, key));
998 /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */
999 l_end = emit_label(as);
1000 if (nilexit && ir[1].o == IR_NE) {
1001 emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */
1002 nilexit = NULL;
1003 } else {
1004 emit_loada(as, dest, niltvg(J2G(as->J)));
1007 /* Follow hash chain until the end. */
1008 l_loop = emit_sjcc_label(as, CC_NZ);
1009 emit_rr(as, XO_TEST, dest, dest);
1010 emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next));
1011 l_next = emit_label(as);
1013 /* Type and value comparison. */
1014 if (nilexit)
1015 emit_jcc(as, CC_E, nilexit);
1016 else
1017 emit_sjcc(as, CC_E, l_end);
1018 if (irt_isnum(kt)) {
1019 if (isk) {
1020 /* Assumes -0.0 is already canonicalized to +0.0. */
1021 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo),
1022 (int32_t)ir_knum(irkey)->u32.lo);
1023 emit_sjcc(as, CC_NE, l_next);
1024 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi),
1025 (int32_t)ir_knum(irkey)->u32.hi);
1026 } else {
1027 emit_sjcc(as, CC_P, l_next);
1028 emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
1029 emit_sjcc(as, CC_AE, l_next);
1030 /* The type check avoids NaN penalties and complaints from Valgrind. */
1031 #if LJ_64
1032 emit_u32(as, LJ_TISNUM);
1033 emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it));
1034 #else
1035 emit_i8(as, LJ_TISNUM);
1036 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
1037 #endif
1039 #if LJ_64
1040 } else if (irt_islightud(kt)) {
1041 emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64));
1042 #endif
1043 } else {
1044 if (!irt_ispri(kt)) {
1045 lua_assert(irt_isaddr(kt));
1046 if (isk)
1047 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr),
1048 ptr2addr(ir_kgc(irkey)));
1049 else
1050 emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr));
1051 emit_sjcc(as, CC_NE, l_next);
1053 lua_assert(!irt_isnil(kt));
1054 emit_i8(as, irt_toitype(kt));
1055 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
1057 emit_sfixup(as, l_loop);
1058 checkmclim(as);
1060 /* Load main position relative to tab->node into dest. */
1061 khash = isk ? ir_khash(irkey) : 1;
1062 if (khash == 0) {
1063 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node));
1064 } else {
1065 emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node));
1066 if ((as->flags & JIT_F_PREFER_IMUL)) {
1067 emit_i8(as, sizeof(Node));
1068 emit_rr(as, XO_IMULi8, dest, dest);
1069 } else {
1070 emit_shifti(as, XOg_SHL, dest, 3);
1071 emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0);
1073 if (isk) {
1074 emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash);
1075 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
1076 } else if (irt_isstr(kt)) {
1077 emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash));
1078 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
1079 } else { /* Must match with hashrot() in lj_tab.c. */
1080 emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask));
1081 emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp);
1082 emit_shifti(as, XOg_ROL, tmp, HASH_ROT3);
1083 emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp);
1084 emit_shifti(as, XOg_ROL, dest, HASH_ROT2);
1085 emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest);
1086 emit_shifti(as, XOg_ROL, dest, HASH_ROT1);
1087 emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest);
1088 if (irt_isnum(kt)) {
1089 emit_rr(as, XO_ARITH(XOg_ADD), dest, dest);
1090 #if LJ_64
1091 emit_shifti(as, XOg_SHR|REX_64, dest, 32);
1092 emit_rr(as, XO_MOV, tmp, dest);
1093 emit_rr(as, XO_MOVDto, key|REX_64, dest);
1094 #else
1095 emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4);
1096 emit_rr(as, XO_MOVDto, key, tmp);
1097 #endif
1098 } else {
1099 emit_rr(as, XO_MOV, tmp, key);
1100 emit_rmro(as, XO_LEA, dest, key, HASH_BIAS);
1106 static void asm_hrefk(ASMState *as, IRIns *ir)
1108 IRIns *kslot = IR(ir->op2);
1109 IRIns *irkey = IR(kslot->op1);
1110 int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
1111 Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
1112 Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
1113 #if !LJ_64
1114 MCLabel l_exit;
1115 #endif
1116 lua_assert(ofs % sizeof(Node) == 0);
1117 if (ra_hasreg(dest)) {
1118 if (ofs != 0) {
1119 if (dest == node && !(as->flags & JIT_F_LEA_AGU))
1120 emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs);
1121 else
1122 emit_rmro(as, XO_LEA, dest, node, ofs);
1123 } else if (dest != node) {
1124 emit_rr(as, XO_MOV, dest, node);
1127 asm_guardcc(as, CC_NE);
1128 #if LJ_64
1129 if (!irt_ispri(irkey->t)) {
1130 Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node));
1131 emit_rmro(as, XO_CMP, key|REX_64, node,
1132 ofs + (int32_t)offsetof(Node, key.u64));
1133 lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t));
1134 /* Assumes -0.0 is already canonicalized to +0.0. */
1135 emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 :
1136 ((uint64_t)irt_toitype(irkey->t) << 32) |
1137 (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey)));
1138 } else {
1139 lua_assert(!irt_isnil(irkey->t));
1140 emit_i8(as, irt_toitype(irkey->t));
1141 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1142 ofs + (int32_t)offsetof(Node, key.it));
1144 #else
1145 l_exit = emit_label(as);
1146 if (irt_isnum(irkey->t)) {
1147 /* Assumes -0.0 is already canonicalized to +0.0. */
1148 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1149 ofs + (int32_t)offsetof(Node, key.u32.lo),
1150 (int32_t)ir_knum(irkey)->u32.lo);
1151 emit_sjcc(as, CC_NE, l_exit);
1152 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1153 ofs + (int32_t)offsetof(Node, key.u32.hi),
1154 (int32_t)ir_knum(irkey)->u32.hi);
1155 } else {
1156 if (!irt_ispri(irkey->t)) {
1157 lua_assert(irt_isgcv(irkey->t));
1158 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1159 ofs + (int32_t)offsetof(Node, key.gcr),
1160 ptr2addr(ir_kgc(irkey)));
1161 emit_sjcc(as, CC_NE, l_exit);
1163 lua_assert(!irt_isnil(irkey->t));
1164 emit_i8(as, irt_toitype(irkey->t));
1165 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1166 ofs + (int32_t)offsetof(Node, key.it));
1168 #endif
1171 static void asm_newref(ASMState *as, IRIns *ir)
1173 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
1174 IRRef args[3];
1175 IRIns *irkey;
1176 Reg tmp;
1177 if (ir->r == RID_SINK)
1178 return;
1179 args[0] = ASMREF_L; /* lua_State *L */
1180 args[1] = ir->op1; /* GCtab *t */
1181 args[2] = ASMREF_TMP1; /* cTValue *key */
1182 asm_setupresult(as, ir, ci); /* TValue * */
1183 asm_gencall(as, ci, args);
1184 tmp = ra_releasetmp(as, ASMREF_TMP1);
1185 irkey = IR(ir->op2);
1186 if (irt_isnum(irkey->t)) {
1187 /* For numbers use the constant itself or a spill slot as a TValue. */
1188 if (irref_isk(ir->op2))
1189 emit_loada(as, tmp, ir_knum(irkey));
1190 else
1191 emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey));
1192 } else {
1193 /* Otherwise use g->tmptv to hold the TValue. */
1194 if (!irref_isk(ir->op2)) {
1195 Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp));
1196 emit_movtomro(as, REX_64IR(irkey, src), tmp, 0);
1197 } else if (!irt_ispri(irkey->t)) {
1198 emit_movmroi(as, tmp, 0, irkey->i);
1200 if (!(LJ_64 && irt_islightud(irkey->t)))
1201 emit_movmroi(as, tmp, 4, irt_toitype(irkey->t));
1202 emit_loada(as, tmp, &J2G(as->J)->tmptv);
1206 static void asm_uref(ASMState *as, IRIns *ir)
1208 /* NYI: Check that UREFO is still open and not aliasing a slot. */
1209 Reg dest = ra_dest(as, ir, RSET_GPR);
1210 if (irref_isk(ir->op1)) {
1211 GCfunc *fn = ir_kfunc(IR(ir->op1));
1212 MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
1213 emit_rma(as, XO_MOV, dest, v);
1214 } else {
1215 Reg uv = ra_scratch(as, RSET_GPR);
1216 Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
1217 if (ir->o == IR_UREFC) {
1218 emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv));
1219 asm_guardcc(as, CC_NE);
1220 emit_i8(as, 1);
1221 emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed));
1222 } else {
1223 emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v));
1225 emit_rmro(as, XO_MOV, uv, func,
1226 (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
1230 static void asm_fref(ASMState *as, IRIns *ir)
1232 Reg dest = ra_dest(as, ir, RSET_GPR);
1233 asm_fusefref(as, ir, RSET_GPR);
1234 emit_mrm(as, XO_LEA, dest, RID_MRM);
1237 static void asm_strref(ASMState *as, IRIns *ir)
1239 Reg dest = ra_dest(as, ir, RSET_GPR);
1240 asm_fusestrref(as, ir, RSET_GPR);
1241 if (as->mrm.base == RID_NONE)
1242 emit_loadi(as, dest, as->mrm.ofs);
1243 else if (as->mrm.base == dest && as->mrm.idx == RID_NONE)
1244 emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs);
1245 else
1246 emit_mrm(as, XO_LEA, dest, RID_MRM);
1249 /* -- Loads and stores ---------------------------------------------------- */
1251 static void asm_fxload(ASMState *as, IRIns *ir)
1253 Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
1254 x86Op xo;
1255 if (ir->o == IR_FLOAD)
1256 asm_fusefref(as, ir, RSET_GPR);
1257 else
1258 asm_fusexref(as, ir->op1, RSET_GPR);
1259 /* ir->op2 is ignored -- unaligned loads are ok on x86. */
1260 switch (irt_type(ir->t)) {
1261 case IRT_I8: xo = XO_MOVSXb; break;
1262 case IRT_U8: xo = XO_MOVZXb; break;
1263 case IRT_I16: xo = XO_MOVSXw; break;
1264 case IRT_U16: xo = XO_MOVZXw; break;
1265 case IRT_NUM: xo = XMM_MOVRM(as); break;
1266 case IRT_FLOAT: xo = XO_MOVSS; break;
1267 default:
1268 if (LJ_64 && irt_is64(ir->t))
1269 dest |= REX_64;
1270 else
1271 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1272 xo = XO_MOV;
1273 break;
1275 emit_mrm(as, xo, dest, RID_MRM);
1278 static void asm_fxstore(ASMState *as, IRIns *ir)
1280 RegSet allow = RSET_GPR;
1281 Reg src = RID_NONE, osrc = RID_NONE;
1282 int32_t k = 0;
1283 if (ir->r == RID_SINK)
1284 return;
1285 /* The IRT_I16/IRT_U16 stores should never be simplified for constant
1286 ** values since mov word [mem], imm16 has a length-changing prefix.
1288 if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) ||
1289 !asm_isk32(as, ir->op2, &k)) {
1290 RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR :
1291 (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
1292 src = osrc = ra_alloc1(as, ir->op2, allow8);
1293 if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */
1294 rset_clear(allow, osrc);
1295 src = ra_scratch(as, allow8);
1297 rset_clear(allow, src);
1299 if (ir->o == IR_FSTORE) {
1300 asm_fusefref(as, IR(ir->op1), allow);
1301 } else {
1302 asm_fusexref(as, ir->op1, allow);
1303 if (LJ_32 && ir->o == IR_HIOP) as->mrm.ofs += 4;
1305 if (ra_hasreg(src)) {
1306 x86Op xo;
1307 switch (irt_type(ir->t)) {
1308 case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break;
1309 case IRT_I16: case IRT_U16: xo = XO_MOVtow; break;
1310 case IRT_NUM: xo = XO_MOVSDto; break;
1311 case IRT_FLOAT: xo = XO_MOVSSto; break;
1312 #if LJ_64
1313 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */
1314 #endif
1315 default:
1316 if (LJ_64 && irt_is64(ir->t))
1317 src |= REX_64;
1318 else
1319 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1320 xo = XO_MOVto;
1321 break;
1323 emit_mrm(as, xo, src, RID_MRM);
1324 if (!LJ_64 && src != osrc) {
1325 ra_noweak(as, osrc);
1326 emit_rr(as, XO_MOV, src, osrc);
1328 } else {
1329 if (irt_isi8(ir->t) || irt_isu8(ir->t)) {
1330 emit_i8(as, k);
1331 emit_mrm(as, XO_MOVmib, 0, RID_MRM);
1332 } else {
1333 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) ||
1334 irt_isaddr(ir->t));
1335 emit_i32(as, k);
1336 emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM);
1341 #if LJ_64
1342 static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck)
1344 if (ra_used(ir) || typecheck) {
1345 Reg dest = ra_dest(as, ir, RSET_GPR);
1346 if (typecheck) {
1347 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest));
1348 asm_guardcc(as, CC_NE);
1349 emit_i8(as, -2);
1350 emit_rr(as, XO_ARITHi8, XOg_CMP, tmp);
1351 emit_shifti(as, XOg_SAR|REX_64, tmp, 47);
1352 emit_rr(as, XO_MOV, tmp|REX_64, dest);
1354 return dest;
1355 } else {
1356 return RID_NONE;
1359 #endif
1361 static void asm_ahuvload(ASMState *as, IRIns *ir)
1363 lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
1364 (LJ_DUALNUM && irt_isint(ir->t)));
1365 #if LJ_64
1366 if (irt_islightud(ir->t)) {
1367 Reg dest = asm_load_lightud64(as, ir, 1);
1368 if (ra_hasreg(dest)) {
1369 asm_fuseahuref(as, ir->op1, RSET_GPR);
1370 emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM);
1372 return;
1373 } else
1374 #endif
1375 if (ra_used(ir)) {
1376 RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
1377 Reg dest = ra_dest(as, ir, allow);
1378 asm_fuseahuref(as, ir->op1, RSET_GPR);
1379 emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM);
1380 } else {
1381 asm_fuseahuref(as, ir->op1, RSET_GPR);
1383 /* Always do the type check, even if the load result is unused. */
1384 as->mrm.ofs += 4;
1385 asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
1386 if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
1387 lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
1388 emit_u32(as, LJ_TISNUM);
1389 emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
1390 } else {
1391 emit_i8(as, irt_toitype(ir->t));
1392 emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM);
1396 static void asm_ahustore(ASMState *as, IRIns *ir)
1398 if (ir->r == RID_SINK)
1399 return;
1400 if (irt_isnum(ir->t)) {
1401 Reg src = ra_alloc1(as, ir->op2, RSET_FPR);
1402 asm_fuseahuref(as, ir->op1, RSET_GPR);
1403 emit_mrm(as, XO_MOVSDto, src, RID_MRM);
1404 #if LJ_64
1405 } else if (irt_islightud(ir->t)) {
1406 Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
1407 asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src));
1408 emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM);
1409 #endif
1410 } else {
1411 IRIns *irr = IR(ir->op2);
1412 RegSet allow = RSET_GPR;
1413 Reg src = RID_NONE;
1414 if (!irref_isk(ir->op2)) {
1415 src = ra_alloc1(as, ir->op2, allow);
1416 rset_clear(allow, src);
1418 asm_fuseahuref(as, ir->op1, allow);
1419 if (ra_hasreg(src)) {
1420 emit_mrm(as, XO_MOVto, src, RID_MRM);
1421 } else if (!irt_ispri(irr->t)) {
1422 lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
1423 emit_i32(as, irr->i);
1424 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1426 as->mrm.ofs += 4;
1427 emit_i32(as, (int32_t)irt_toitype(ir->t));
1428 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1432 static void asm_sload(ASMState *as, IRIns *ir)
1434 int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
1435 IRType1 t = ir->t;
1436 Reg base;
1437 lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
1438 lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
1439 lua_assert(LJ_DUALNUM ||
1440 !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
1441 if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
1442 Reg left = ra_scratch(as, RSET_FPR);
1443 asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
1444 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1445 emit_rmro(as, XMM_MOVRM(as), left, base, ofs);
1446 t.irt = IRT_NUM; /* Continue with a regular number type check. */
1447 #if LJ_64
1448 } else if (irt_islightud(t)) {
1449 Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK));
1450 if (ra_hasreg(dest)) {
1451 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1452 emit_rmro(as, XO_MOV, dest|REX_64, base, ofs);
1454 return;
1455 #endif
1456 } else if (ra_used(ir)) {
1457 RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR;
1458 Reg dest = ra_dest(as, ir, allow);
1459 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1460 lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
1461 if ((ir->op2 & IRSLOAD_CONVERT)) {
1462 t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
1463 emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
1464 } else if (irt_isnum(t)) {
1465 emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
1466 } else {
1467 emit_rmro(as, XO_MOV, dest, base, ofs);
1469 } else {
1470 if (!(ir->op2 & IRSLOAD_TYPECHECK))
1471 return; /* No type check: avoid base alloc. */
1472 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1474 if ((ir->op2 & IRSLOAD_TYPECHECK)) {
1475 /* Need type check, even if the load result is unused. */
1476 asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
1477 if (LJ_64 && irt_type(t) >= IRT_NUM) {
1478 lua_assert(irt_isinteger(t) || irt_isnum(t));
1479 emit_u32(as, LJ_TISNUM);
1480 emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
1481 } else {
1482 emit_i8(as, irt_toitype(t));
1483 emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4);
1488 /* -- Allocations --------------------------------------------------------- */
1490 #if LJ_HASFFI
1491 static void asm_cnew(ASMState *as, IRIns *ir)
1493 CTState *cts = ctype_ctsG(J2G(as->J));
1494 CTypeID ctypeid = (CTypeID)IR(ir->op1)->i;
1495 CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
1496 lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i;
1497 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
1498 IRRef args[2];
1499 lua_assert(sz != CTSIZE_INVALID);
1501 args[0] = ASMREF_L; /* lua_State *L */
1502 args[1] = ASMREF_TMP1; /* MSize size */
1503 as->gcsteps++;
1504 asm_setupresult(as, ir, ci); /* GCcdata * */
1506 /* Initialize immutable cdata object. */
1507 if (ir->o == IR_CNEWI) {
1508 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
1509 #if LJ_64
1510 Reg r64 = sz == 8 ? REX_64 : 0;
1511 if (irref_isk(ir->op2)) {
1512 IRIns *irk = IR(ir->op2);
1513 uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 :
1514 (uint64_t)(uint32_t)irk->i;
1515 if (sz == 4 || checki32((int64_t)k)) {
1516 emit_i32(as, (int32_t)k);
1517 emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata));
1518 } else {
1519 emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata));
1520 emit_loadu64(as, RID_ECX, k);
1522 } else {
1523 Reg r = ra_alloc1(as, ir->op2, allow);
1524 emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata));
1526 #else
1527 int32_t ofs = sizeof(GCcdata);
1528 if (sz == 8) {
1529 ofs += 4; ir++;
1530 lua_assert(ir->o == IR_HIOP);
1532 do {
1533 if (irref_isk(ir->op2)) {
1534 emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i);
1535 } else {
1536 Reg r = ra_alloc1(as, ir->op2, allow);
1537 emit_movtomro(as, r, RID_RET, ofs);
1538 rset_clear(allow, r);
1540 if (ofs == sizeof(GCcdata)) break;
1541 ofs -= 4; ir--;
1542 } while (1);
1543 #endif
1544 lua_assert(sz == 4 || sz == 8);
1547 /* Combine initialization of marked, gct and ctypeid. */
1548 emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked));
1549 emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX,
1550 (int32_t)((~LJ_TCDATA<<8)+(ctypeid<<16)));
1551 emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES);
1552 emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite);
1554 asm_gencall(as, ci, args);
1555 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata)));
1557 #else
1558 #define asm_cnew(as, ir) ((void)0)
1559 #endif
1561 /* -- Write barriers ------------------------------------------------------ */
1563 static void asm_tbar(ASMState *as, IRIns *ir)
1565 Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
1566 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab));
1567 MCLabel l_end = emit_label(as);
1568 emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist));
1569 emit_setgl(as, tab, gc.grayagain);
1570 emit_getgl(as, tmp, gc.grayagain);
1571 emit_i8(as, ~LJ_GC_BLACK);
1572 emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked));
1573 emit_sjcc(as, CC_Z, l_end);
1574 emit_i8(as, LJ_GC_BLACK);
1575 emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked));
1578 static void asm_obar(ASMState *as, IRIns *ir)
1580 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
1581 IRRef args[2];
1582 MCLabel l_end;
1583 Reg obj;
1584 /* No need for other object barriers (yet). */
1585 lua_assert(IR(ir->op1)->o == IR_UREFC);
1586 ra_evictset(as, RSET_SCRATCH);
1587 l_end = emit_label(as);
1588 args[0] = ASMREF_TMP1; /* global_State *g */
1589 args[1] = ir->op1; /* TValue *tv */
1590 asm_gencall(as, ci, args);
1591 emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J));
1592 obj = IR(ir->op1)->r;
1593 emit_sjcc(as, CC_Z, l_end);
1594 emit_i8(as, LJ_GC_WHITES);
1595 if (irref_isk(ir->op2)) {
1596 GCobj *vp = ir_kgc(IR(ir->op2));
1597 emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked);
1598 } else {
1599 Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj));
1600 emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked));
1602 emit_sjcc(as, CC_Z, l_end);
1603 emit_i8(as, LJ_GC_BLACK);
1604 emit_rmro(as, XO_GROUP3b, XOg_TEST, obj,
1605 (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
1608 /* -- FP/int arithmetic and logic operations ------------------------------ */
1610 /* Load reference onto x87 stack. Force a spill to memory if needed. */
1611 static void asm_x87load(ASMState *as, IRRef ref)
1613 IRIns *ir = IR(ref);
1614 if (ir->o == IR_KNUM) {
1615 cTValue *tv = ir_knum(ir);
1616 if (tvispzero(tv)) /* Use fldz only for +0. */
1617 emit_x87op(as, XI_FLDZ);
1618 else if (tvispone(tv))
1619 emit_x87op(as, XI_FLD1);
1620 else
1621 emit_rma(as, XO_FLDq, XOg_FLDq, tv);
1622 } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) &&
1623 !irref_isk(ir->op1) && mayfuse(as, ir->op1)) {
1624 IRIns *iri = IR(ir->op1);
1625 emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri));
1626 } else {
1627 emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY));
1631 /* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */
1632 static int fpmjoin_pow(ASMState *as, IRIns *ir)
1634 IRIns *irp = IR(ir->op1);
1635 if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
1636 IRIns *irpp = IR(irp->op1);
1637 if (irpp == ir-2 && irpp->o == IR_FPMATH &&
1638 irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
1639 /* The modified regs must match with the *.dasc implementation. */
1640 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
1641 IRIns *irx;
1642 if (ra_hasreg(ir->r))
1643 rset_clear(drop, ir->r); /* Dest reg handled below. */
1644 ra_evictset(as, drop);
1645 ra_destreg(as, ir, RID_XMM0);
1646 emit_call(as, lj_vm_pow_sse);
1647 irx = IR(irpp->op1);
1648 if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1)
1649 irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */
1650 ra_left(as, RID_XMM0, irpp->op1);
1651 ra_left(as, RID_XMM1, irp->op2);
1652 return 1;
1655 return 0;
1658 static void asm_fpmath(ASMState *as, IRIns *ir)
1660 IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER;
1661 if (fpm == IRFPM_SQRT) {
1662 Reg dest = ra_dest(as, ir, RSET_FPR);
1663 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1664 emit_mrm(as, XO_SQRTSD, dest, left);
1665 } else if (fpm <= IRFPM_TRUNC) {
1666 if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */
1667 Reg dest = ra_dest(as, ir, RSET_FPR);
1668 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1669 /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op.
1670 ** Let's pretend it's a 3-byte opcode, and compensate afterwards.
1671 ** This is atrocious, but the alternatives are much worse.
1673 /* Round down/up/trunc == 1001/1010/1011. */
1674 emit_i8(as, 0x09 + fpm);
1675 emit_mrm(as, XO_ROUNDSD, dest, left);
1676 if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) {
1677 as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */
1679 *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */
1680 } else { /* Call helper functions for SSE2 variant. */
1681 /* The modified regs must match with the *.dasc implementation. */
1682 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
1683 if (ra_hasreg(ir->r))
1684 rset_clear(drop, ir->r); /* Dest reg handled below. */
1685 ra_evictset(as, drop);
1686 ra_destreg(as, ir, RID_XMM0);
1687 emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse :
1688 fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse);
1689 ra_left(as, RID_XMM0, ir->op1);
1691 } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) {
1692 /* Rejoined to pow(). */
1693 } else { /* Handle x87 ops. */
1694 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
1695 Reg dest = ir->r;
1696 if (ra_hasreg(dest)) {
1697 ra_free(as, dest);
1698 ra_modified(as, dest);
1699 emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs);
1701 emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs);
1702 switch (fpm) { /* st0 = lj_vm_*(st0) */
1703 case IRFPM_EXP: emit_call(as, lj_vm_exp_x87); break;
1704 case IRFPM_EXP2: emit_call(as, lj_vm_exp2_x87); break;
1705 case IRFPM_SIN: emit_x87op(as, XI_FSIN); break;
1706 case IRFPM_COS: emit_x87op(as, XI_FCOS); break;
1707 case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break;
1708 case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10:
1709 /* Note: the use of fyl2xp1 would be pointless here. When computing
1710 ** log(1.0+eps) the precision is already lost after 1.0 is added.
1711 ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense.
1713 emit_x87op(as, XI_FYL2X); break;
1714 case IRFPM_OTHER:
1715 switch (ir->o) {
1716 case IR_ATAN2:
1717 emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break;
1718 case IR_LDEXP:
1719 emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break;
1720 default: lua_assert(0); break;
1722 break;
1723 default: lua_assert(0); break;
1725 asm_x87load(as, ir->op1);
1726 switch (fpm) {
1727 case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break;
1728 case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break;
1729 case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break;
1730 case IRFPM_OTHER:
1731 if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2);
1732 break;
1733 default: break;
1738 static void asm_fppowi(ASMState *as, IRIns *ir)
1740 /* The modified regs must match with the *.dasc implementation. */
1741 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
1742 if (ra_hasreg(ir->r))
1743 rset_clear(drop, ir->r); /* Dest reg handled below. */
1744 ra_evictset(as, drop);
1745 ra_destreg(as, ir, RID_XMM0);
1746 emit_call(as, lj_vm_powi_sse);
1747 ra_left(as, RID_XMM0, ir->op1);
1748 ra_left(as, RID_EAX, ir->op2);
1751 #if LJ_64 && LJ_HASFFI
1752 static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id)
1754 const CCallInfo *ci = &lj_ir_callinfo[id];
1755 IRRef args[2];
1756 args[0] = ir->op1;
1757 args[1] = ir->op2;
1758 asm_setupresult(as, ir, ci);
1759 asm_gencall(as, ci, args);
1761 #endif
1763 static void asm_intmod(ASMState *as, IRIns *ir)
1765 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_vm_modi];
1766 IRRef args[2];
1767 args[0] = ir->op1;
1768 args[1] = ir->op2;
1769 asm_setupresult(as, ir, ci);
1770 asm_gencall(as, ci, args);
1773 static int asm_swapops(ASMState *as, IRIns *ir)
1775 IRIns *irl = IR(ir->op1);
1776 IRIns *irr = IR(ir->op2);
1777 lua_assert(ra_noreg(irr->r));
1778 if (!irm_iscomm(lj_ir_mode[ir->o]))
1779 return 0; /* Can't swap non-commutative operations. */
1780 if (irref_isk(ir->op2))
1781 return 0; /* Don't swap constants to the left. */
1782 if (ra_hasreg(irl->r))
1783 return 1; /* Swap if left already has a register. */
1784 if (ra_samehint(ir->r, irr->r))
1785 return 1; /* Swap if dest and right have matching hints. */
1786 if (as->curins > as->loopref) { /* In variant part? */
1787 if (ir->op2 < as->loopref && !irt_isphi(irr->t))
1788 return 0; /* Keep invariants on the right. */
1789 if (ir->op1 < as->loopref && !irt_isphi(irl->t))
1790 return 1; /* Swap invariants to the right. */
1792 if (opisfusableload(irl->o))
1793 return 1; /* Swap fusable loads to the right. */
1794 return 0; /* Otherwise don't swap. */
1797 static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo)
1799 IRRef lref = ir->op1;
1800 IRRef rref = ir->op2;
1801 RegSet allow = RSET_FPR;
1802 Reg dest;
1803 Reg right = IR(rref)->r;
1804 if (ra_hasreg(right)) {
1805 rset_clear(allow, right);
1806 ra_noweak(as, right);
1808 dest = ra_dest(as, ir, allow);
1809 if (lref == rref) {
1810 right = dest;
1811 } else if (ra_noreg(right)) {
1812 if (asm_swapops(as, ir)) {
1813 IRRef tmp = lref; lref = rref; rref = tmp;
1815 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1817 emit_mrm(as, xo, dest, right);
1818 ra_left(as, dest, lref);
1821 static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa)
1823 IRRef lref = ir->op1;
1824 IRRef rref = ir->op2;
1825 RegSet allow = RSET_GPR;
1826 Reg dest, right;
1827 int32_t k = 0;
1828 if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */
1829 as->flagmcp = NULL;
1830 as->mcp += (LJ_64 && *as->mcp < XI_TESTb) ? 3 : 2;
1832 right = IR(rref)->r;
1833 if (ra_hasreg(right)) {
1834 rset_clear(allow, right);
1835 ra_noweak(as, right);
1837 dest = ra_dest(as, ir, allow);
1838 if (lref == rref) {
1839 right = dest;
1840 } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) {
1841 if (asm_swapops(as, ir)) {
1842 IRRef tmp = lref; lref = rref; rref = tmp;
1844 right = asm_fuseloadm(as, rref, rset_clear(allow, dest), irt_is64(ir->t));
1846 if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */
1847 asm_guardcc(as, CC_O);
1848 if (xa != XOg_X_IMUL) {
1849 if (ra_hasreg(right))
1850 emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right);
1851 else
1852 emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k);
1853 } else if (ra_hasreg(right)) { /* IMUL r, mrm. */
1854 emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right);
1855 } else { /* IMUL r, r, k. */
1856 /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */
1857 Reg left = asm_fuseloadm(as, lref, RSET_GPR, irt_is64(ir->t));
1858 x86Op xo;
1859 if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8;
1860 } else { emit_i32(as, k); xo = XO_IMULi; }
1861 emit_mrm(as, xo, REX_64IR(ir, dest), left);
1862 return;
1864 ra_left(as, dest, lref);
1867 /* LEA is really a 4-operand ADD with an independent destination register,
1868 ** up to two source registers and an immediate. One register can be scaled
1869 ** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several
1870 ** instructions.
1872 ** Currently only a few common cases are supported:
1873 ** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated
1874 ** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b
1875 ** - Right ADD fusion: y = a+(b+k)
1876 ** The ommited variants have already been reduced by FOLD.
1878 ** There are more fusion opportunities, like gathering shifts or joining
1879 ** common references. But these are probably not worth the trouble, since
1880 ** array indexing is not decomposed and already makes use of all fields
1881 ** of the ModRM operand.
1883 static int asm_lea(ASMState *as, IRIns *ir)
1885 IRIns *irl = IR(ir->op1);
1886 IRIns *irr = IR(ir->op2);
1887 RegSet allow = RSET_GPR;
1888 Reg dest;
1889 as->mrm.base = as->mrm.idx = RID_NONE;
1890 as->mrm.scale = XM_SCALE1;
1891 as->mrm.ofs = 0;
1892 if (ra_hasreg(irl->r)) {
1893 rset_clear(allow, irl->r);
1894 ra_noweak(as, irl->r);
1895 as->mrm.base = irl->r;
1896 if (irref_isk(ir->op2) || ra_hasreg(irr->r)) {
1897 /* The PHI renaming logic does a better job in some cases. */
1898 if (ra_hasreg(ir->r) &&
1899 ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) ||
1900 (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2)))
1901 return 0;
1902 if (irref_isk(ir->op2)) {
1903 as->mrm.ofs = irr->i;
1904 } else {
1905 rset_clear(allow, irr->r);
1906 ra_noweak(as, irr->r);
1907 as->mrm.idx = irr->r;
1909 } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) &&
1910 irref_isk(irr->op2)) {
1911 Reg idx = ra_alloc1(as, irr->op1, allow);
1912 rset_clear(allow, idx);
1913 as->mrm.idx = (uint8_t)idx;
1914 as->mrm.ofs = IR(irr->op2)->i;
1915 } else {
1916 return 0;
1918 } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) &&
1919 (irref_isk(ir->op2) || irref_isk(irl->op2))) {
1920 Reg idx, base = ra_alloc1(as, irl->op1, allow);
1921 rset_clear(allow, base);
1922 as->mrm.base = (uint8_t)base;
1923 if (irref_isk(ir->op2)) {
1924 as->mrm.ofs = irr->i;
1925 idx = ra_alloc1(as, irl->op2, allow);
1926 } else {
1927 as->mrm.ofs = IR(irl->op2)->i;
1928 idx = ra_alloc1(as, ir->op2, allow);
1930 rset_clear(allow, idx);
1931 as->mrm.idx = (uint8_t)idx;
1932 } else {
1933 return 0;
1935 dest = ra_dest(as, ir, allow);
1936 emit_mrm(as, XO_LEA, dest, RID_MRM);
1937 return 1; /* Success. */
1940 static void asm_add(ASMState *as, IRIns *ir)
1942 if (irt_isnum(ir->t))
1943 asm_fparith(as, ir, XO_ADDSD);
1944 else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp ||
1945 irt_is64(ir->t) || !asm_lea(as, ir))
1946 asm_intarith(as, ir, XOg_ADD);
1949 static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg)
1951 Reg dest = ra_dest(as, ir, RSET_GPR);
1952 emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest);
1953 ra_left(as, dest, ir->op1);
1956 static void asm_min_max(ASMState *as, IRIns *ir, int cc)
1958 Reg right, dest = ra_dest(as, ir, RSET_GPR);
1959 IRRef lref = ir->op1, rref = ir->op2;
1960 if (irref_isk(rref)) { lref = rref; rref = ir->op1; }
1961 right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest));
1962 emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right);
1963 emit_rr(as, XO_CMP, REX_64IR(ir, dest), right);
1964 ra_left(as, dest, lref);
1967 static void asm_bitswap(ASMState *as, IRIns *ir)
1969 Reg dest = ra_dest(as, ir, RSET_GPR);
1970 as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24),
1971 REX_64IR(ir, 0), dest, 0, as->mcp, 1);
1972 ra_left(as, dest, ir->op1);
1975 static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs)
1977 IRRef rref = ir->op2;
1978 IRIns *irr = IR(rref);
1979 Reg dest;
1980 if (irref_isk(rref)) { /* Constant shifts. */
1981 int shift;
1982 dest = ra_dest(as, ir, RSET_GPR);
1983 shift = irr->i & (irt_is64(ir->t) ? 63 : 31);
1984 switch (shift) {
1985 case 0: break;
1986 case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break;
1987 default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break;
1989 } else { /* Variable shifts implicitly use register cl (i.e. ecx). */
1990 Reg right;
1991 dest = ra_dest(as, ir, rset_exclude(RSET_GPR, RID_ECX));
1992 if (dest == RID_ECX) {
1993 dest = ra_scratch(as, rset_exclude(RSET_GPR, RID_ECX));
1994 emit_rr(as, XO_MOV, RID_ECX, dest);
1996 right = irr->r;
1997 if (ra_noreg(right))
1998 right = ra_allocref(as, rref, RID2RSET(RID_ECX));
1999 else if (right != RID_ECX)
2000 ra_scratch(as, RID2RSET(RID_ECX));
2001 emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest);
2002 ra_noweak(as, right);
2003 if (right != RID_ECX)
2004 emit_rr(as, XO_MOV, RID_ECX, right);
2006 ra_left(as, dest, ir->op1);
2008 ** Note: avoid using the flags resulting from a shift or rotate!
2009 ** All of them cause a partial flag stall, except for r,1 shifts
2010 ** (but not rotates). And a shift count of 0 leaves the flags unmodified.
2014 /* -- Comparisons --------------------------------------------------------- */
2016 /* Virtual flags for unordered FP comparisons. */
2017 #define VCC_U 0x1000 /* Unordered. */
2018 #define VCC_P 0x2000 /* Needs extra CC_P branch. */
2019 #define VCC_S 0x4000 /* Swap avoids CC_P branch. */
2020 #define VCC_PS (VCC_P|VCC_S)
2022 /* Map of comparisons to flags. ORDER IR. */
2023 #define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf))
2024 static const uint16_t asm_compmap[IR_ABC+1] = {
2025 /* signed non-eq unsigned flags */
2026 /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS),
2027 /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0),
2028 /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS),
2029 /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0),
2030 /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U),
2031 /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS),
2032 /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U),
2033 /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS),
2034 /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P),
2035 /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P),
2036 /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */
2039 /* FP and integer comparisons. */
2040 static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc)
2042 if (irt_isnum(ir->t)) {
2043 IRRef lref = ir->op1;
2044 IRRef rref = ir->op2;
2045 Reg left, right;
2046 MCLabel l_around;
2048 ** An extra CC_P branch is required to preserve ordered/unordered
2049 ** semantics for FP comparisons. This can be avoided by swapping
2050 ** the operands and inverting the condition (except for EQ and UNE).
2051 ** So always try to swap if possible.
2053 ** Another option would be to swap operands to achieve better memory
2054 ** operand fusion. But it's unlikely that this outweighs the cost
2055 ** of the extra branches.
2057 if (cc & VCC_S) { /* Swap? */
2058 IRRef tmp = lref; lref = rref; rref = tmp;
2059 cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */
2061 left = ra_alloc1(as, lref, RSET_FPR);
2062 right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left));
2063 l_around = emit_label(as);
2064 asm_guardcc(as, cc >> 4);
2065 if (cc & VCC_P) { /* Extra CC_P branch required? */
2066 if (!(cc & VCC_U)) {
2067 asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */
2068 } else if (l_around != as->invmcp) {
2069 emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */
2070 } else {
2071 /* Patched to mcloop by asm_loop_fixup. */
2072 as->loopinv = 2;
2073 if (as->realign)
2074 emit_sjcc(as, CC_P, as->mcp);
2075 else
2076 emit_jcc(as, CC_P, as->mcp);
2079 emit_mrm(as, XO_UCOMISD, left, right);
2080 } else {
2081 IRRef lref = ir->op1, rref = ir->op2;
2082 IROp leftop = (IROp)(IR(lref)->o);
2083 Reg r64 = REX_64IR(ir, 0);
2084 int32_t imm = 0;
2085 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) ||
2086 irt_isu32(ir->t) || irt_isaddr(ir->t) || irt_isu8(ir->t));
2087 /* Swap constants (only for ABC) and fusable loads to the right. */
2088 if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) {
2089 if ((cc & 0xc) == 0xc) cc ^= 0x53; /* L <-> G, LE <-> GE */
2090 else if ((cc & 0xa) == 0x2) cc ^= 0x55; /* A <-> B, AE <-> BE */
2091 lref = ir->op2; rref = ir->op1;
2093 if (asm_isk32(as, rref, &imm)) {
2094 IRIns *irl = IR(lref);
2095 /* Check wether we can use test ins. Not for unsigned, since CF=0. */
2096 int usetest = (imm == 0 && (cc & 0xa) != 0x2);
2097 if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) {
2098 /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */
2099 Reg right, left = RID_NONE;
2100 RegSet allow = RSET_GPR;
2101 if (!asm_isk32(as, irl->op2, &imm)) {
2102 left = ra_alloc1(as, irl->op2, allow);
2103 rset_clear(allow, left);
2104 } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */
2105 IRIns *irll = IR(irl->op1);
2106 if (opisfusableload((IROp)irll->o) &&
2107 (irt_isi8(irll->t) || irt_isu8(irll->t))) {
2108 IRType1 origt = irll->t; /* Temporarily flip types. */
2109 irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT;
2110 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2111 right = asm_fuseload(as, irl->op1, RSET_GPR);
2112 as->curins++;
2113 irll->t = origt;
2114 if (right != RID_MRM) goto test_nofuse;
2115 /* Fusion succeeded, emit test byte mrm, imm8. */
2116 asm_guardcc(as, cc);
2117 emit_i8(as, (imm & 0xff));
2118 emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM);
2119 return;
2122 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2123 right = asm_fuseloadm(as, irl->op1, allow, r64);
2124 as->curins++; /* Undo the above. */
2125 test_nofuse:
2126 asm_guardcc(as, cc);
2127 if (ra_noreg(left)) {
2128 emit_i32(as, imm);
2129 emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right);
2130 } else {
2131 emit_mrm(as, XO_TEST, r64 + left, right);
2133 } else {
2134 Reg left;
2135 if (opisfusableload((IROp)irl->o) &&
2136 ((irt_isu8(irl->t) && checku8(imm)) ||
2137 ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) ||
2138 (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) {
2139 /* Only the IRT_INT case is fused by asm_fuseload.
2140 ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads
2141 ** are handled here.
2142 ** Note that cmp word [mem], imm16 should not be generated,
2143 ** since it has a length-changing prefix. Compares of a word
2144 ** against a sign-extended imm8 are ok, however.
2146 IRType1 origt = irl->t; /* Temporarily flip types. */
2147 irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT;
2148 left = asm_fuseload(as, lref, RSET_GPR);
2149 irl->t = origt;
2150 if (left == RID_MRM) { /* Fusion succeeded? */
2151 if (irt_isu8(irl->t) || irt_isu16(irl->t))
2152 cc >>= 4; /* Need unsigned compare. */
2153 asm_guardcc(as, cc);
2154 emit_i8(as, imm);
2155 emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ?
2156 XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM);
2157 return;
2158 } /* Otherwise handle register case as usual. */
2159 } else {
2160 left = asm_fuseloadm(as, lref,
2161 irt_isu8(ir->t) ? RSET_GPR8 : RSET_GPR, r64);
2163 asm_guardcc(as, cc);
2164 if (usetest && left != RID_MRM) {
2165 /* Use test r,r instead of cmp r,0. */
2166 x86Op xo = XO_TEST;
2167 if (irt_isu8(ir->t)) {
2168 lua_assert(ir->o == IR_EQ || ir->o == IR_NE);
2169 xo = XO_TESTb;
2170 if (!rset_test(RSET_RANGE(RID_EAX, RID_EBX+1), left)) {
2171 if (LJ_64) {
2172 left |= FORCE_REX;
2173 } else {
2174 emit_i32(as, 0xff);
2175 emit_mrm(as, XO_GROUP3, XOg_TEST, left);
2176 return;
2180 emit_rr(as, xo, r64 + left, left);
2181 if (irl+1 == ir) /* Referencing previous ins? */
2182 as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */
2183 } else {
2184 emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm);
2187 } else {
2188 Reg left = ra_alloc1(as, lref, RSET_GPR);
2189 Reg right = asm_fuseloadm(as, rref, rset_exclude(RSET_GPR, left), r64);
2190 asm_guardcc(as, cc);
2191 emit_mrm(as, XO_CMP, r64 + left, right);
2196 #if LJ_32 && LJ_HASFFI
2197 /* 64 bit integer comparisons in 32 bit mode. */
2198 static void asm_comp_int64(ASMState *as, IRIns *ir)
2200 uint32_t cc = asm_compmap[(ir-1)->o];
2201 RegSet allow = RSET_GPR;
2202 Reg lefthi = RID_NONE, leftlo = RID_NONE;
2203 Reg righthi = RID_NONE, rightlo = RID_NONE;
2204 MCLabel l_around;
2205 x86ModRM mrm;
2207 as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */
2209 /* Allocate/fuse hiword operands. */
2210 if (irref_isk(ir->op2)) {
2211 lefthi = asm_fuseload(as, ir->op1, allow);
2212 } else {
2213 lefthi = ra_alloc1(as, ir->op1, allow);
2214 righthi = asm_fuseload(as, ir->op2, allow);
2215 if (righthi == RID_MRM) {
2216 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2217 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2218 } else {
2219 rset_clear(allow, righthi);
2222 mrm = as->mrm; /* Save state for hiword instruction. */
2224 /* Allocate/fuse loword operands. */
2225 if (irref_isk((ir-1)->op2)) {
2226 leftlo = asm_fuseload(as, (ir-1)->op1, allow);
2227 } else {
2228 leftlo = ra_alloc1(as, (ir-1)->op1, allow);
2229 rightlo = asm_fuseload(as, (ir-1)->op2, allow);
2230 if (rightlo == RID_MRM) {
2231 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2232 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2233 } else {
2234 rset_clear(allow, rightlo);
2238 /* All register allocations must be performed _before_ this point. */
2239 l_around = emit_label(as);
2240 as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */
2242 /* Loword comparison and branch. */
2243 asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */
2244 if (ra_noreg(rightlo)) {
2245 int32_t imm = IR((ir-1)->op2)->i;
2246 if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM)
2247 emit_rr(as, XO_TEST, leftlo, leftlo);
2248 else
2249 emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm);
2250 } else {
2251 emit_mrm(as, XO_CMP, leftlo, rightlo);
2254 /* Hiword comparison and branches. */
2255 if ((cc & 15) != CC_NE)
2256 emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */
2257 if ((cc & 15) != CC_E)
2258 asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */
2259 as->mrm = mrm; /* Restore state. */
2260 if (ra_noreg(righthi)) {
2261 int32_t imm = IR(ir->op2)->i;
2262 if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM)
2263 emit_rr(as, XO_TEST, lefthi, lefthi);
2264 else
2265 emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm);
2266 } else {
2267 emit_mrm(as, XO_CMP, lefthi, righthi);
2270 #endif
2272 /* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
2274 /* Hiword op of a split 64 bit op. Previous op must be the loword op. */
2275 static void asm_hiop(ASMState *as, IRIns *ir)
2277 #if LJ_32 && LJ_HASFFI
2278 /* HIOP is marked as a store because it needs its own DCE logic. */
2279 int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
2280 if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
2281 if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
2282 if (usehi || uselo) {
2283 if (irt_isfp(ir->t))
2284 asm_conv_fp_int64(as, ir);
2285 else
2286 asm_conv_int64_fp(as, ir);
2288 as->curins--; /* Always skip the CONV. */
2289 return;
2290 } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
2291 asm_comp_int64(as, ir);
2292 return;
2293 } else if ((ir-1)->o == IR_XSTORE) {
2294 if ((ir-1)->r != RID_SINK)
2295 asm_fxstore(as, ir);
2296 return;
2298 if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
2299 switch ((ir-1)->o) {
2300 case IR_ADD:
2301 as->flagmcp = NULL;
2302 as->curins--;
2303 asm_intarith(as, ir, XOg_ADC);
2304 asm_intarith(as, ir-1, XOg_ADD);
2305 break;
2306 case IR_SUB:
2307 as->flagmcp = NULL;
2308 as->curins--;
2309 asm_intarith(as, ir, XOg_SBB);
2310 asm_intarith(as, ir-1, XOg_SUB);
2311 break;
2312 case IR_NEG: {
2313 Reg dest = ra_dest(as, ir, RSET_GPR);
2314 emit_rr(as, XO_GROUP3, XOg_NEG, dest);
2315 emit_i8(as, 0);
2316 emit_rr(as, XO_ARITHi8, XOg_ADC, dest);
2317 ra_left(as, dest, ir->op1);
2318 as->curins--;
2319 asm_neg_not(as, ir-1, XOg_NEG);
2320 break;
2322 case IR_CALLN:
2323 case IR_CALLXS:
2324 if (!uselo)
2325 ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */
2326 break;
2327 case IR_CNEWI:
2328 /* Nothing to do here. Handled by CNEWI itself. */
2329 break;
2330 default: lua_assert(0); break;
2332 #else
2333 UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */
2334 #endif
2337 /* -- Stack handling ------------------------------------------------------ */
2339 /* Check Lua stack size for overflow. Use exit handler as fallback. */
2340 static void asm_stack_check(ASMState *as, BCReg topslot,
2341 IRIns *irp, RegSet allow, ExitNo exitno)
2343 /* Try to get an unused temp. register, otherwise spill/restore eax. */
2344 Reg pbase = irp ? irp->r : RID_BASE;
2345 Reg r = allow ? rset_pickbot(allow) : RID_EAX;
2346 emit_jcc(as, CC_B, exitstub_addr(as->J, exitno));
2347 if (allow == RSET_EMPTY) /* Restore temp. register. */
2348 emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0);
2349 else
2350 ra_modified(as, r);
2351 emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot));
2352 if (ra_hasreg(pbase) && pbase != r)
2353 emit_rr(as, XO_ARITH(XOg_SUB), r, pbase);
2354 else
2355 emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE,
2356 ptr2addr(&J2G(as->J)->jit_base));
2357 emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack));
2358 emit_getgl(as, r, jit_L);
2359 if (allow == RSET_EMPTY) /* Spill temp. register. */
2360 emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0);
2363 /* Restore Lua stack from on-trace state. */
2364 static void asm_stack_restore(ASMState *as, SnapShot *snap)
2366 SnapEntry *map = &as->T->snapmap[snap->mapofs];
2367 SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1];
2368 MSize n, nent = snap->nent;
2369 /* Store the value of all modified slots to the Lua stack. */
2370 for (n = 0; n < nent; n++) {
2371 SnapEntry sn = map[n];
2372 BCReg s = snap_slot(sn);
2373 int32_t ofs = 8*((int32_t)s-1);
2374 IRRef ref = snap_ref(sn);
2375 IRIns *ir = IR(ref);
2376 if ((sn & SNAP_NORESTORE))
2377 continue;
2378 if (irt_isnum(ir->t)) {
2379 Reg src = ra_alloc1(as, ref, RSET_FPR);
2380 emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
2381 } else {
2382 lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
2383 (LJ_DUALNUM && irt_isinteger(ir->t)));
2384 if (!irref_isk(ref)) {
2385 Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
2386 emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
2387 } else if (!irt_ispri(ir->t)) {
2388 emit_movmroi(as, RID_BASE, ofs, ir->i);
2390 if ((sn & (SNAP_CONT|SNAP_FRAME))) {
2391 if (s != 0) /* Do not overwrite link to previous frame. */
2392 emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--));
2393 } else {
2394 if (!(LJ_64 && irt_islightud(ir->t)))
2395 emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t));
2398 checkmclim(as);
2400 lua_assert(map + nent == flinks);
2403 /* -- GC handling --------------------------------------------------------- */
2405 /* Check GC threshold and do one or more GC steps. */
2406 static void asm_gc_check(ASMState *as)
2408 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
2409 IRRef args[2];
2410 MCLabel l_end;
2411 Reg tmp;
2412 ra_evictset(as, RSET_SCRATCH);
2413 l_end = emit_label(as);
2414 /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
2415 asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
2416 emit_rr(as, XO_TEST, RID_RET, RID_RET);
2417 args[0] = ASMREF_TMP1; /* global_State *g */
2418 args[1] = ASMREF_TMP2; /* MSize steps */
2419 asm_gencall(as, ci, args);
2420 tmp = ra_releasetmp(as, ASMREF_TMP1);
2421 emit_loada(as, tmp, J2G(as->J));
2422 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), as->gcsteps);
2423 /* Jump around GC step if GC total < GC threshold. */
2424 emit_sjcc(as, CC_B, l_end);
2425 emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold);
2426 emit_getgl(as, tmp, gc.total);
2427 as->gcsteps = 0;
2428 checkmclim(as);
2431 /* -- Loop handling ------------------------------------------------------- */
2433 /* Fixup the loop branch. */
2434 static void asm_loop_fixup(ASMState *as)
2436 MCode *p = as->mctop;
2437 MCode *target = as->mcp;
2438 if (as->realign) { /* Realigned loops use short jumps. */
2439 as->realign = NULL; /* Stop another retry. */
2440 lua_assert(((intptr_t)target & 15) == 0);
2441 if (as->loopinv) { /* Inverted loop branch? */
2442 p -= 5;
2443 p[0] = XI_JMP;
2444 lua_assert(target - p >= -128);
2445 p[-1] = (MCode)(target - p); /* Patch sjcc. */
2446 if (as->loopinv == 2)
2447 p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */
2448 } else {
2449 lua_assert(target - p >= -128);
2450 p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */
2451 p[-2] = XI_JMPs;
2453 } else {
2454 MCode *newloop;
2455 p[-5] = XI_JMP;
2456 if (as->loopinv) { /* Inverted loop branch? */
2457 /* asm_guardcc already inverted the jcc and patched the jmp. */
2458 p -= 5;
2459 newloop = target+4;
2460 *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */
2461 if (as->loopinv == 2) {
2462 *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */
2463 newloop = target+8;
2465 } else { /* Otherwise just patch jmp. */
2466 *(int32_t *)(p-4) = (int32_t)(target - p);
2467 newloop = target+3;
2469 /* Realign small loops and shorten the loop branch. */
2470 if (newloop >= p - 128) {
2471 as->realign = newloop; /* Force a retry and remember alignment. */
2472 as->curins = as->stopins; /* Abort asm_trace now. */
2473 as->T->nins = as->orignins; /* Remove any added renames. */
2478 /* -- Head of trace ------------------------------------------------------- */
2480 /* Coalesce BASE register for a root trace. */
2481 static void asm_head_root_base(ASMState *as)
2483 IRIns *ir = IR(REF_BASE);
2484 Reg r = ir->r;
2485 if (ra_hasreg(r)) {
2486 ra_free(as, r);
2487 if (rset_test(as->modset, r))
2488 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2489 if (r != RID_BASE)
2490 emit_rr(as, XO_MOV, r, RID_BASE);
2494 /* Coalesce or reload BASE register for a side trace. */
2495 static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
2497 IRIns *ir = IR(REF_BASE);
2498 Reg r = ir->r;
2499 if (ra_hasreg(r)) {
2500 ra_free(as, r);
2501 if (rset_test(as->modset, r))
2502 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2503 if (irp->r == r) {
2504 rset_clear(allow, r); /* Mark same BASE register as coalesced. */
2505 } else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) {
2506 rset_clear(allow, irp->r);
2507 emit_rr(as, XO_MOV, r, irp->r); /* Move from coalesced parent reg. */
2508 } else {
2509 emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
2512 return allow;
2515 /* -- Tail of trace ------------------------------------------------------- */
2517 /* Fixup the tail code. */
2518 static void asm_tail_fixup(ASMState *as, TraceNo lnk)
2520 /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */
2521 MCode *p = as->mctop;
2522 MCode *target, *q;
2523 int32_t spadj = as->T->spadjust;
2524 if (spadj == 0) {
2525 p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
2526 } else {
2527 MCode *p1;
2528 /* Patch stack adjustment. */
2529 if (checki8(spadj)) {
2530 p -= 3;
2531 p1 = p-6;
2532 *p1 = (MCode)spadj;
2533 } else {
2534 p1 = p-9;
2535 *(int32_t *)p1 = spadj;
2537 if ((as->flags & JIT_F_LEA_AGU)) {
2538 #if LJ_64
2539 p1[-4] = 0x48;
2540 #endif
2541 p1[-3] = (MCode)XI_LEA;
2542 p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP);
2543 p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
2544 } else {
2545 #if LJ_64
2546 p1[-3] = 0x48;
2547 #endif
2548 p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi);
2549 p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP);
2552 /* Patch exit branch. */
2553 target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp;
2554 *(int32_t *)(p-4) = jmprel(p, target);
2555 p[-5] = XI_JMP;
2556 /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */
2557 for (q = as->mctop-1; q >= p; q--)
2558 *q = XI_NOP;
2559 as->mctop = p;
2562 /* Prepare tail of code. */
2563 static void asm_tail_prep(ASMState *as)
2565 MCode *p = as->mctop;
2566 /* Realign and leave room for backwards loop branch or exit branch. */
2567 if (as->realign) {
2568 int i = ((int)(intptr_t)as->realign) & 15;
2569 /* Fill unused mcode tail with NOPs to make the prefetcher happy. */
2570 while (i-- > 0)
2571 *--p = XI_NOP;
2572 as->mctop = p;
2573 p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */
2574 } else {
2575 p -= 5; /* Space for exit branch (near jmp). */
2577 if (as->loopref) {
2578 as->invmcp = as->mcp = p;
2579 } else {
2580 /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */
2581 as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0));
2582 as->invmcp = NULL;
2586 /* -- Instruction dispatch ------------------------------------------------ */
2588 /* Assemble a single instruction. */
2589 static void asm_ir(ASMState *as, IRIns *ir)
2591 switch ((IROp)ir->o) {
2592 /* Miscellaneous ops. */
2593 case IR_LOOP: asm_loop(as); break;
2594 case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
2595 case IR_USE:
2596 ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
2597 case IR_PHI: asm_phi(as, ir); break;
2598 case IR_HIOP: asm_hiop(as, ir); break;
2599 case IR_GCSTEP: asm_gcstep(as, ir); break;
2601 /* Guarded assertions. */
2602 case IR_LT: case IR_GE: case IR_LE: case IR_GT:
2603 case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
2604 case IR_EQ: case IR_NE: case IR_ABC:
2605 asm_comp(as, ir, asm_compmap[ir->o]);
2606 break;
2608 case IR_RETF: asm_retf(as, ir); break;
2610 /* Bit ops. */
2611 case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break;
2612 case IR_BSWAP: asm_bitswap(as, ir); break;
2614 case IR_BAND: asm_intarith(as, ir, XOg_AND); break;
2615 case IR_BOR: asm_intarith(as, ir, XOg_OR); break;
2616 case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break;
2618 case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break;
2619 case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break;
2620 case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break;
2621 case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break;
2622 case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break;
2624 /* Arithmetic ops. */
2625 case IR_ADD: asm_add(as, ir); break;
2626 case IR_SUB:
2627 if (irt_isnum(ir->t))
2628 asm_fparith(as, ir, XO_SUBSD);
2629 else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */
2630 asm_intarith(as, ir, XOg_SUB);
2631 break;
2632 case IR_MUL:
2633 if (irt_isnum(ir->t))
2634 asm_fparith(as, ir, XO_MULSD);
2635 else
2636 asm_intarith(as, ir, XOg_X_IMUL);
2637 break;
2638 case IR_DIV:
2639 #if LJ_64 && LJ_HASFFI
2640 if (!irt_isnum(ir->t))
2641 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
2642 IRCALL_lj_carith_divu64);
2643 else
2644 #endif
2645 asm_fparith(as, ir, XO_DIVSD);
2646 break;
2647 case IR_MOD:
2648 #if LJ_64 && LJ_HASFFI
2649 if (!irt_isint(ir->t))
2650 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
2651 IRCALL_lj_carith_modu64);
2652 else
2653 #endif
2654 asm_intmod(as, ir);
2655 break;
2657 case IR_NEG:
2658 if (irt_isnum(ir->t))
2659 asm_fparith(as, ir, XO_XORPS);
2660 else
2661 asm_neg_not(as, ir, XOg_NEG);
2662 break;
2663 case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break;
2665 case IR_MIN:
2666 if (irt_isnum(ir->t))
2667 asm_fparith(as, ir, XO_MINSD);
2668 else
2669 asm_min_max(as, ir, CC_G);
2670 break;
2671 case IR_MAX:
2672 if (irt_isnum(ir->t))
2673 asm_fparith(as, ir, XO_MAXSD);
2674 else
2675 asm_min_max(as, ir, CC_L);
2676 break;
2678 case IR_FPMATH: case IR_ATAN2: case IR_LDEXP:
2679 asm_fpmath(as, ir);
2680 break;
2681 case IR_POW:
2682 #if LJ_64 && LJ_HASFFI
2683 if (!irt_isnum(ir->t))
2684 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
2685 IRCALL_lj_carith_powu64);
2686 else
2687 #endif
2688 asm_fppowi(as, ir);
2689 break;
2691 /* Overflow-checking arithmetic ops. Note: don't use LEA here! */
2692 case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break;
2693 case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break;
2694 case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break;
2696 /* Memory references. */
2697 case IR_AREF: asm_aref(as, ir); break;
2698 case IR_HREF: asm_href(as, ir); break;
2699 case IR_HREFK: asm_hrefk(as, ir); break;
2700 case IR_NEWREF: asm_newref(as, ir); break;
2701 case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
2702 case IR_FREF: asm_fref(as, ir); break;
2703 case IR_STRREF: asm_strref(as, ir); break;
2705 /* Loads and stores. */
2706 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
2707 asm_ahuvload(as, ir);
2708 break;
2709 case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break;
2710 case IR_SLOAD: asm_sload(as, ir); break;
2712 case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
2713 case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break;
2715 /* Allocations. */
2716 case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
2717 case IR_TNEW: asm_tnew(as, ir); break;
2718 case IR_TDUP: asm_tdup(as, ir); break;
2719 case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
2721 /* Write barriers. */
2722 case IR_TBAR: asm_tbar(as, ir); break;
2723 case IR_OBAR: asm_obar(as, ir); break;
2725 /* Type conversions. */
2726 case IR_TOBIT: asm_tobit(as, ir); break;
2727 case IR_CONV: asm_conv(as, ir); break;
2728 case IR_TOSTR: asm_tostr(as, ir); break;
2729 case IR_STRTO: asm_strto(as, ir); break;
2731 /* Calls. */
2732 case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
2733 case IR_CALLXS: asm_callx(as, ir); break;
2734 case IR_CARG: break;
2736 default:
2737 setintV(&as->J->errinfo, ir->o);
2738 lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
2739 break;
2743 /* -- Trace setup --------------------------------------------------------- */
2745 /* Ensure there are enough stack slots for call arguments. */
2746 static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
2748 IRRef args[CCI_NARGS_MAX];
2749 int nslots;
2750 asm_collectargs(as, ir, ci, args);
2751 nslots = asm_count_call_slots(as, ci, args);
2752 if (nslots > as->evenspill) /* Leave room for args in stack slots. */
2753 as->evenspill = nslots;
2754 #if LJ_64
2755 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
2756 #else
2757 return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET);
2758 #endif
2761 /* Target-specific setup. */
2762 static void asm_setup_target(ASMState *as)
2764 asm_exitstub_setup(as, as->T->nsnap);
2767 /* -- Trace patching ------------------------------------------------------ */
2769 /* Patch exit jumps of existing machine code to a new target. */
2770 void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
2772 MCode *p = T->mcode;
2773 MCode *mcarea = lj_mcode_patch(J, p, 0);
2774 MSize len = T->szmcode;
2775 MCode *px = exitstub_addr(J, exitno) - 6;
2776 MCode *pe = p+len-6;
2777 uint32_t stateaddr = u32ptr(&J2G(J)->vmstate);
2778 if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px)
2779 *(int32_t *)(p+len-4) = jmprel(p+len, target);
2780 /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */
2781 for (; p < pe; p++)
2782 if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) {
2783 p += LJ_64 ? 11 : 10;
2784 break;
2786 lua_assert(p < pe);
2787 for (; p < pe; p++) {
2788 if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) {
2789 *(int32_t *)(p+2) = jmprel(p+6, target);
2790 p += 5;
2793 lj_mcode_sync(T->mcode, T->mcode + T->szmcode);
2794 lj_mcode_patch(J, mcarea, 1);