Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / VMCore / Constants.cpp
blob57498b485921dd3c004ade3ea55b76187857b67b
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
43 // Constructor to create a '0' constant of arbitrary type...
44 Constant *Constant::getNullValue(const Type *Ty) {
45 switch (Ty->getTypeID()) {
46 case Type::IntegerTyID:
47 return ConstantInt::get(Ty, 0);
48 case Type::FloatTyID:
49 return ConstantFP::get(Ty->getContext(),
50 APFloat::getZero(APFloat::IEEEsingle));
51 case Type::DoubleTyID:
52 return ConstantFP::get(Ty->getContext(),
53 APFloat::getZero(APFloat::IEEEdouble));
54 case Type::X86_FP80TyID:
55 return ConstantFP::get(Ty->getContext(),
56 APFloat::getZero(APFloat::x87DoubleExtended));
57 case Type::FP128TyID:
58 return ConstantFP::get(Ty->getContext(),
59 APFloat::getZero(APFloat::IEEEquad));
60 case Type::PPC_FP128TyID:
61 return ConstantFP::get(Ty->getContext(),
62 APFloat(APInt::getNullValue(128)));
63 case Type::PointerTyID:
64 return ConstantPointerNull::get(cast<PointerType>(Ty));
65 case Type::StructTyID:
66 case Type::ArrayTyID:
67 case Type::VectorTyID:
68 return ConstantAggregateZero::get(Ty);
69 default:
70 // Function, Label, or Opaque type?
71 assert(!"Cannot create a null constant of that type!");
72 return 0;
76 Constant *Constant::getIntegerValue(const Type *Ty, const APInt &V) {
77 const Type *ScalarTy = Ty->getScalarType();
79 // Create the base integer constant.
80 Constant *C = ConstantInt::get(Ty->getContext(), V);
82 // Convert an integer to a pointer, if necessary.
83 if (const PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
84 C = ConstantExpr::getIntToPtr(C, PTy);
86 // Broadcast a scalar to a vector, if necessary.
87 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
88 C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
90 return C;
93 Constant *Constant::getAllOnesValue(const Type *Ty) {
94 if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty))
95 return ConstantInt::get(Ty->getContext(),
96 APInt::getAllOnesValue(ITy->getBitWidth()));
98 if (Ty->isFloatingPointTy()) {
99 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
100 !Ty->isPPC_FP128Ty());
101 return ConstantFP::get(Ty->getContext(), FL);
104 SmallVector<Constant*, 16> Elts;
105 const VectorType *VTy = cast<VectorType>(Ty);
106 Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
107 assert(Elts[0] && "Not a vector integer type!");
108 return cast<ConstantVector>(ConstantVector::get(Elts));
111 void Constant::destroyConstantImpl() {
112 // When a Constant is destroyed, there may be lingering
113 // references to the constant by other constants in the constant pool. These
114 // constants are implicitly dependent on the module that is being deleted,
115 // but they don't know that. Because we only find out when the CPV is
116 // deleted, we must now notify all of our users (that should only be
117 // Constants) that they are, in fact, invalid now and should be deleted.
119 while (!use_empty()) {
120 Value *V = use_back();
121 #ifndef NDEBUG // Only in -g mode...
122 if (!isa<Constant>(V)) {
123 dbgs() << "While deleting: " << *this
124 << "\n\nUse still stuck around after Def is destroyed: "
125 << *V << "\n\n";
127 #endif
128 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
129 Constant *CV = cast<Constant>(V);
130 CV->destroyConstant();
132 // The constant should remove itself from our use list...
133 assert((use_empty() || use_back() != V) && "Constant not removed!");
136 // Value has no outstanding references it is safe to delete it now...
137 delete this;
140 /// canTrap - Return true if evaluation of this constant could trap. This is
141 /// true for things like constant expressions that could divide by zero.
142 bool Constant::canTrap() const {
143 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
144 // The only thing that could possibly trap are constant exprs.
145 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
146 if (!CE) return false;
148 // ConstantExpr traps if any operands can trap.
149 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
150 if (CE->getOperand(i)->canTrap())
151 return true;
153 // Otherwise, only specific operations can trap.
154 switch (CE->getOpcode()) {
155 default:
156 return false;
157 case Instruction::UDiv:
158 case Instruction::SDiv:
159 case Instruction::FDiv:
160 case Instruction::URem:
161 case Instruction::SRem:
162 case Instruction::FRem:
163 // Div and rem can trap if the RHS is not known to be non-zero.
164 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
165 return true;
166 return false;
170 /// isConstantUsed - Return true if the constant has users other than constant
171 /// exprs and other dangling things.
172 bool Constant::isConstantUsed() const {
173 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
174 const Constant *UC = dyn_cast<Constant>(*UI);
175 if (UC == 0 || isa<GlobalValue>(UC))
176 return true;
178 if (UC->isConstantUsed())
179 return true;
181 return false;
186 /// getRelocationInfo - This method classifies the entry according to
187 /// whether or not it may generate a relocation entry. This must be
188 /// conservative, so if it might codegen to a relocatable entry, it should say
189 /// so. The return values are:
190 ///
191 /// NoRelocation: This constant pool entry is guaranteed to never have a
192 /// relocation applied to it (because it holds a simple constant like
193 /// '4').
194 /// LocalRelocation: This entry has relocations, but the entries are
195 /// guaranteed to be resolvable by the static linker, so the dynamic
196 /// linker will never see them.
197 /// GlobalRelocations: This entry may have arbitrary relocations.
199 /// FIXME: This really should not be in VMCore.
200 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
201 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
202 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
203 return LocalRelocation; // Local to this file/library.
204 return GlobalRelocations; // Global reference.
207 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
208 return BA->getFunction()->getRelocationInfo();
210 // While raw uses of blockaddress need to be relocated, differences between
211 // two of them don't when they are for labels in the same function. This is a
212 // common idiom when creating a table for the indirect goto extension, so we
213 // handle it efficiently here.
214 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
215 if (CE->getOpcode() == Instruction::Sub) {
216 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
217 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
218 if (LHS && RHS &&
219 LHS->getOpcode() == Instruction::PtrToInt &&
220 RHS->getOpcode() == Instruction::PtrToInt &&
221 isa<BlockAddress>(LHS->getOperand(0)) &&
222 isa<BlockAddress>(RHS->getOperand(0)) &&
223 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
224 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
225 return NoRelocation;
228 PossibleRelocationsTy Result = NoRelocation;
229 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
230 Result = std::max(Result,
231 cast<Constant>(getOperand(i))->getRelocationInfo());
233 return Result;
237 /// getVectorElements - This method, which is only valid on constant of vector
238 /// type, returns the elements of the vector in the specified smallvector.
239 /// This handles breaking down a vector undef into undef elements, etc. For
240 /// constant exprs and other cases we can't handle, we return an empty vector.
241 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
242 assert(getType()->isVectorTy() && "Not a vector constant!");
244 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
245 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
246 Elts.push_back(CV->getOperand(i));
247 return;
250 const VectorType *VT = cast<VectorType>(getType());
251 if (isa<ConstantAggregateZero>(this)) {
252 Elts.assign(VT->getNumElements(),
253 Constant::getNullValue(VT->getElementType()));
254 return;
257 if (isa<UndefValue>(this)) {
258 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
259 return;
262 // Unknown type, must be constant expr etc.
266 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
267 /// it. This involves recursively eliminating any dead users of the
268 /// constantexpr.
269 static bool removeDeadUsersOfConstant(const Constant *C) {
270 if (isa<GlobalValue>(C)) return false; // Cannot remove this
272 while (!C->use_empty()) {
273 const Constant *User = dyn_cast<Constant>(C->use_back());
274 if (!User) return false; // Non-constant usage;
275 if (!removeDeadUsersOfConstant(User))
276 return false; // Constant wasn't dead
279 const_cast<Constant*>(C)->destroyConstant();
280 return true;
284 /// removeDeadConstantUsers - If there are any dead constant users dangling
285 /// off of this constant, remove them. This method is useful for clients
286 /// that want to check to see if a global is unused, but don't want to deal
287 /// with potentially dead constants hanging off of the globals.
288 void Constant::removeDeadConstantUsers() const {
289 Value::const_use_iterator I = use_begin(), E = use_end();
290 Value::const_use_iterator LastNonDeadUser = E;
291 while (I != E) {
292 const Constant *User = dyn_cast<Constant>(*I);
293 if (User == 0) {
294 LastNonDeadUser = I;
295 ++I;
296 continue;
299 if (!removeDeadUsersOfConstant(User)) {
300 // If the constant wasn't dead, remember that this was the last live use
301 // and move on to the next constant.
302 LastNonDeadUser = I;
303 ++I;
304 continue;
307 // If the constant was dead, then the iterator is invalidated.
308 if (LastNonDeadUser == E) {
309 I = use_begin();
310 if (I == E) break;
311 } else {
312 I = LastNonDeadUser;
313 ++I;
320 //===----------------------------------------------------------------------===//
321 // ConstantInt
322 //===----------------------------------------------------------------------===//
324 ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
325 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
326 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
329 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
330 LLVMContextImpl *pImpl = Context.pImpl;
331 if (!pImpl->TheTrueVal)
332 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
333 return pImpl->TheTrueVal;
336 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
337 LLVMContextImpl *pImpl = Context.pImpl;
338 if (!pImpl->TheFalseVal)
339 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
340 return pImpl->TheFalseVal;
343 Constant *ConstantInt::getTrue(const Type *Ty) {
344 const VectorType *VTy = dyn_cast<VectorType>(Ty);
345 if (!VTy) {
346 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
347 return ConstantInt::getTrue(Ty->getContext());
349 assert(VTy->getElementType()->isIntegerTy(1) &&
350 "True must be vector of i1 or i1.");
351 SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
352 ConstantInt::getTrue(Ty->getContext()));
353 return ConstantVector::get(Splat);
356 Constant *ConstantInt::getFalse(const Type *Ty) {
357 const VectorType *VTy = dyn_cast<VectorType>(Ty);
358 if (!VTy) {
359 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
360 return ConstantInt::getFalse(Ty->getContext());
362 assert(VTy->getElementType()->isIntegerTy(1) &&
363 "False must be vector of i1 or i1.");
364 SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
365 ConstantInt::getFalse(Ty->getContext()));
366 return ConstantVector::get(Splat);
370 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
371 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
372 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
373 // compare APInt's of different widths, which would violate an APInt class
374 // invariant which generates an assertion.
375 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
376 // Get the corresponding integer type for the bit width of the value.
377 const IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
378 // get an existing value or the insertion position
379 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
380 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
381 if (!Slot) Slot = new ConstantInt(ITy, V);
382 return Slot;
385 Constant *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
386 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
388 // For vectors, broadcast the value.
389 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
390 return ConstantVector::get(SmallVector<Constant*,
391 16>(VTy->getNumElements(), C));
393 return C;
396 ConstantInt* ConstantInt::get(const IntegerType* Ty, uint64_t V,
397 bool isSigned) {
398 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
401 ConstantInt* ConstantInt::getSigned(const IntegerType* Ty, int64_t V) {
402 return get(Ty, V, true);
405 Constant *ConstantInt::getSigned(const Type *Ty, int64_t V) {
406 return get(Ty, V, true);
409 Constant *ConstantInt::get(const Type* Ty, const APInt& V) {
410 ConstantInt *C = get(Ty->getContext(), V);
411 assert(C->getType() == Ty->getScalarType() &&
412 "ConstantInt type doesn't match the type implied by its value!");
414 // For vectors, broadcast the value.
415 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
416 return ConstantVector::get(
417 SmallVector<Constant *, 16>(VTy->getNumElements(), C));
419 return C;
422 ConstantInt* ConstantInt::get(const IntegerType* Ty, StringRef Str,
423 uint8_t radix) {
424 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
427 //===----------------------------------------------------------------------===//
428 // ConstantFP
429 //===----------------------------------------------------------------------===//
431 static const fltSemantics *TypeToFloatSemantics(const Type *Ty) {
432 if (Ty->isFloatTy())
433 return &APFloat::IEEEsingle;
434 if (Ty->isDoubleTy())
435 return &APFloat::IEEEdouble;
436 if (Ty->isX86_FP80Ty())
437 return &APFloat::x87DoubleExtended;
438 else if (Ty->isFP128Ty())
439 return &APFloat::IEEEquad;
441 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
442 return &APFloat::PPCDoubleDouble;
445 /// get() - This returns a constant fp for the specified value in the
446 /// specified type. This should only be used for simple constant values like
447 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
448 Constant *ConstantFP::get(const Type* Ty, double V) {
449 LLVMContext &Context = Ty->getContext();
451 APFloat FV(V);
452 bool ignored;
453 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
454 APFloat::rmNearestTiesToEven, &ignored);
455 Constant *C = get(Context, FV);
457 // For vectors, broadcast the value.
458 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
459 return ConstantVector::get(
460 SmallVector<Constant *, 16>(VTy->getNumElements(), C));
462 return C;
466 Constant *ConstantFP::get(const Type* Ty, StringRef Str) {
467 LLVMContext &Context = Ty->getContext();
469 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
470 Constant *C = get(Context, FV);
472 // For vectors, broadcast the value.
473 if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
474 return ConstantVector::get(
475 SmallVector<Constant *, 16>(VTy->getNumElements(), C));
477 return C;
481 ConstantFP* ConstantFP::getNegativeZero(const Type* Ty) {
482 LLVMContext &Context = Ty->getContext();
483 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
484 apf.changeSign();
485 return get(Context, apf);
489 Constant *ConstantFP::getZeroValueForNegation(const Type* Ty) {
490 if (const VectorType *PTy = dyn_cast<VectorType>(Ty))
491 if (PTy->getElementType()->isFloatingPointTy()) {
492 SmallVector<Constant*, 16> zeros(PTy->getNumElements(),
493 getNegativeZero(PTy->getElementType()));
494 return ConstantVector::get(zeros);
497 if (Ty->isFloatingPointTy())
498 return getNegativeZero(Ty);
500 return Constant::getNullValue(Ty);
504 // ConstantFP accessors.
505 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
506 DenseMapAPFloatKeyInfo::KeyTy Key(V);
508 LLVMContextImpl* pImpl = Context.pImpl;
510 ConstantFP *&Slot = pImpl->FPConstants[Key];
512 if (!Slot) {
513 const Type *Ty;
514 if (&V.getSemantics() == &APFloat::IEEEsingle)
515 Ty = Type::getFloatTy(Context);
516 else if (&V.getSemantics() == &APFloat::IEEEdouble)
517 Ty = Type::getDoubleTy(Context);
518 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
519 Ty = Type::getX86_FP80Ty(Context);
520 else if (&V.getSemantics() == &APFloat::IEEEquad)
521 Ty = Type::getFP128Ty(Context);
522 else {
523 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
524 "Unknown FP format");
525 Ty = Type::getPPC_FP128Ty(Context);
527 Slot = new ConstantFP(Ty, V);
530 return Slot;
533 ConstantFP *ConstantFP::getInfinity(const Type *Ty, bool Negative) {
534 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
535 return ConstantFP::get(Ty->getContext(),
536 APFloat::getInf(Semantics, Negative));
539 ConstantFP::ConstantFP(const Type *Ty, const APFloat& V)
540 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
541 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
542 "FP type Mismatch");
545 bool ConstantFP::isNullValue() const {
546 return Val.isZero() && !Val.isNegative();
549 bool ConstantFP::isExactlyValue(const APFloat& V) const {
550 return Val.bitwiseIsEqual(V);
553 //===----------------------------------------------------------------------===//
554 // ConstantXXX Classes
555 //===----------------------------------------------------------------------===//
558 ConstantArray::ConstantArray(const ArrayType *T,
559 const std::vector<Constant*> &V)
560 : Constant(T, ConstantArrayVal,
561 OperandTraits<ConstantArray>::op_end(this) - V.size(),
562 V.size()) {
563 assert(V.size() == T->getNumElements() &&
564 "Invalid initializer vector for constant array");
565 Use *OL = OperandList;
566 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
567 I != E; ++I, ++OL) {
568 Constant *C = *I;
569 assert(C->getType() == T->getElementType() &&
570 "Initializer for array element doesn't match array element type!");
571 *OL = C;
575 Constant *ConstantArray::get(const ArrayType *Ty, ArrayRef<Constant*> V) {
576 for (unsigned i = 0, e = V.size(); i != e; ++i) {
577 assert(V[i]->getType() == Ty->getElementType() &&
578 "Wrong type in array element initializer");
580 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
581 // If this is an all-zero array, return a ConstantAggregateZero object
582 if (!V.empty()) {
583 Constant *C = V[0];
584 if (!C->isNullValue())
585 return pImpl->ArrayConstants.getOrCreate(Ty, V);
587 for (unsigned i = 1, e = V.size(); i != e; ++i)
588 if (V[i] != C)
589 return pImpl->ArrayConstants.getOrCreate(Ty, V);
592 return ConstantAggregateZero::get(Ty);
595 /// ConstantArray::get(const string&) - Return an array that is initialized to
596 /// contain the specified string. If length is zero then a null terminator is
597 /// added to the specified string so that it may be used in a natural way.
598 /// Otherwise, the length parameter specifies how much of the string to use
599 /// and it won't be null terminated.
601 Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
602 bool AddNull) {
603 std::vector<Constant*> ElementVals;
604 ElementVals.reserve(Str.size() + size_t(AddNull));
605 for (unsigned i = 0; i < Str.size(); ++i)
606 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
608 // Add a null terminator to the string...
609 if (AddNull) {
610 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
613 ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
614 return get(ATy, ElementVals);
617 /// getTypeForElements - Return an anonymous struct type to use for a constant
618 /// with the specified set of elements. The list must not be empty.
619 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
620 ArrayRef<Constant*> V,
621 bool Packed) {
622 SmallVector<const Type*, 16> EltTypes;
623 for (unsigned i = 0, e = V.size(); i != e; ++i)
624 EltTypes.push_back(V[i]->getType());
626 return StructType::get(Context, EltTypes, Packed);
630 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
631 bool Packed) {
632 assert(!V.empty() &&
633 "ConstantStruct::getTypeForElements cannot be called on empty list");
634 return getTypeForElements(V[0]->getContext(), V, Packed);
638 ConstantStruct::ConstantStruct(const StructType *T,
639 const std::vector<Constant*> &V)
640 : Constant(T, ConstantStructVal,
641 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
642 V.size()) {
643 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
644 "Invalid initializer vector for constant structure");
645 Use *OL = OperandList;
646 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
647 I != E; ++I, ++OL) {
648 Constant *C = *I;
649 assert((T->isOpaque() || C->getType() == T->getElementType(I-V.begin())) &&
650 "Initializer for struct element doesn't match struct element type!");
651 *OL = C;
655 // ConstantStruct accessors.
656 Constant *ConstantStruct::get(const StructType *ST, ArrayRef<Constant*> V) {
657 // Create a ConstantAggregateZero value if all elements are zeros.
658 for (unsigned i = 0, e = V.size(); i != e; ++i)
659 if (!V[i]->isNullValue())
660 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
662 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
663 "Incorrect # elements specified to ConstantStruct::get");
664 return ConstantAggregateZero::get(ST);
667 Constant* ConstantStruct::get(const StructType *T, ...) {
668 va_list ap;
669 SmallVector<Constant*, 8> Values;
670 va_start(ap, T);
671 while (Constant *Val = va_arg(ap, llvm::Constant*))
672 Values.push_back(Val);
673 va_end(ap);
674 return get(T, Values);
677 ConstantVector::ConstantVector(const VectorType *T,
678 const std::vector<Constant*> &V)
679 : Constant(T, ConstantVectorVal,
680 OperandTraits<ConstantVector>::op_end(this) - V.size(),
681 V.size()) {
682 Use *OL = OperandList;
683 for (std::vector<Constant*>::const_iterator I = V.begin(), E = V.end();
684 I != E; ++I, ++OL) {
685 Constant *C = *I;
686 assert(C->getType() == T->getElementType() &&
687 "Initializer for vector element doesn't match vector element type!");
688 *OL = C;
692 // ConstantVector accessors.
693 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
694 assert(!V.empty() && "Vectors can't be empty");
695 const VectorType *T = VectorType::get(V.front()->getType(), V.size());
696 LLVMContextImpl *pImpl = T->getContext().pImpl;
698 // If this is an all-undef or all-zero vector, return a
699 // ConstantAggregateZero or UndefValue.
700 Constant *C = V[0];
701 bool isZero = C->isNullValue();
702 bool isUndef = isa<UndefValue>(C);
704 if (isZero || isUndef) {
705 for (unsigned i = 1, e = V.size(); i != e; ++i)
706 if (V[i] != C) {
707 isZero = isUndef = false;
708 break;
712 if (isZero)
713 return ConstantAggregateZero::get(T);
714 if (isUndef)
715 return UndefValue::get(T);
717 return pImpl->VectorConstants.getOrCreate(T, V);
720 // Utility function for determining if a ConstantExpr is a CastOp or not. This
721 // can't be inline because we don't want to #include Instruction.h into
722 // Constant.h
723 bool ConstantExpr::isCast() const {
724 return Instruction::isCast(getOpcode());
727 bool ConstantExpr::isCompare() const {
728 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
731 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
732 if (getOpcode() != Instruction::GetElementPtr) return false;
734 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
735 User::const_op_iterator OI = llvm::next(this->op_begin());
737 // Skip the first index, as it has no static limit.
738 ++GEPI;
739 ++OI;
741 // The remaining indices must be compile-time known integers within the
742 // bounds of the corresponding notional static array types.
743 for (; GEPI != E; ++GEPI, ++OI) {
744 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
745 if (!CI) return false;
746 if (const ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
747 if (CI->getValue().getActiveBits() > 64 ||
748 CI->getZExtValue() >= ATy->getNumElements())
749 return false;
752 // All the indices checked out.
753 return true;
756 bool ConstantExpr::hasIndices() const {
757 return getOpcode() == Instruction::ExtractValue ||
758 getOpcode() == Instruction::InsertValue;
761 ArrayRef<unsigned> ConstantExpr::getIndices() const {
762 if (const ExtractValueConstantExpr *EVCE =
763 dyn_cast<ExtractValueConstantExpr>(this))
764 return EVCE->Indices;
766 return cast<InsertValueConstantExpr>(this)->Indices;
769 unsigned ConstantExpr::getPredicate() const {
770 assert(getOpcode() == Instruction::FCmp ||
771 getOpcode() == Instruction::ICmp);
772 return ((const CompareConstantExpr*)this)->predicate;
775 /// getWithOperandReplaced - Return a constant expression identical to this
776 /// one, but with the specified operand set to the specified value.
777 Constant *
778 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
779 assert(OpNo < getNumOperands() && "Operand num is out of range!");
780 assert(Op->getType() == getOperand(OpNo)->getType() &&
781 "Replacing operand with value of different type!");
782 if (getOperand(OpNo) == Op)
783 return const_cast<ConstantExpr*>(this);
785 Constant *Op0, *Op1, *Op2;
786 switch (getOpcode()) {
787 case Instruction::Trunc:
788 case Instruction::ZExt:
789 case Instruction::SExt:
790 case Instruction::FPTrunc:
791 case Instruction::FPExt:
792 case Instruction::UIToFP:
793 case Instruction::SIToFP:
794 case Instruction::FPToUI:
795 case Instruction::FPToSI:
796 case Instruction::PtrToInt:
797 case Instruction::IntToPtr:
798 case Instruction::BitCast:
799 return ConstantExpr::getCast(getOpcode(), Op, getType());
800 case Instruction::Select:
801 Op0 = (OpNo == 0) ? Op : getOperand(0);
802 Op1 = (OpNo == 1) ? Op : getOperand(1);
803 Op2 = (OpNo == 2) ? Op : getOperand(2);
804 return ConstantExpr::getSelect(Op0, Op1, Op2);
805 case Instruction::InsertElement:
806 Op0 = (OpNo == 0) ? Op : getOperand(0);
807 Op1 = (OpNo == 1) ? Op : getOperand(1);
808 Op2 = (OpNo == 2) ? Op : getOperand(2);
809 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
810 case Instruction::ExtractElement:
811 Op0 = (OpNo == 0) ? Op : getOperand(0);
812 Op1 = (OpNo == 1) ? Op : getOperand(1);
813 return ConstantExpr::getExtractElement(Op0, Op1);
814 case Instruction::ShuffleVector:
815 Op0 = (OpNo == 0) ? Op : getOperand(0);
816 Op1 = (OpNo == 1) ? Op : getOperand(1);
817 Op2 = (OpNo == 2) ? Op : getOperand(2);
818 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
819 case Instruction::GetElementPtr: {
820 SmallVector<Constant*, 8> Ops;
821 Ops.resize(getNumOperands()-1);
822 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
823 Ops[i-1] = getOperand(i);
824 if (OpNo == 0)
825 return cast<GEPOperator>(this)->isInBounds() ?
826 ConstantExpr::getInBoundsGetElementPtr(Op, &Ops[0], Ops.size()) :
827 ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
828 Ops[OpNo-1] = Op;
829 return cast<GEPOperator>(this)->isInBounds() ?
830 ConstantExpr::getInBoundsGetElementPtr(getOperand(0), &Ops[0],Ops.size()):
831 ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
833 default:
834 assert(getNumOperands() == 2 && "Must be binary operator?");
835 Op0 = (OpNo == 0) ? Op : getOperand(0);
836 Op1 = (OpNo == 1) ? Op : getOperand(1);
837 return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
841 /// getWithOperands - This returns the current constant expression with the
842 /// operands replaced with the specified values. The specified array must
843 /// have the same number of operands as our current one.
844 Constant *ConstantExpr::
845 getWithOperands(ArrayRef<Constant*> Ops, const Type *Ty) const {
846 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
847 bool AnyChange = Ty != getType();
848 for (unsigned i = 0; i != Ops.size(); ++i)
849 AnyChange |= Ops[i] != getOperand(i);
851 if (!AnyChange) // No operands changed, return self.
852 return const_cast<ConstantExpr*>(this);
854 switch (getOpcode()) {
855 case Instruction::Trunc:
856 case Instruction::ZExt:
857 case Instruction::SExt:
858 case Instruction::FPTrunc:
859 case Instruction::FPExt:
860 case Instruction::UIToFP:
861 case Instruction::SIToFP:
862 case Instruction::FPToUI:
863 case Instruction::FPToSI:
864 case Instruction::PtrToInt:
865 case Instruction::IntToPtr:
866 case Instruction::BitCast:
867 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
868 case Instruction::Select:
869 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
870 case Instruction::InsertElement:
871 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
872 case Instruction::ExtractElement:
873 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
874 case Instruction::ShuffleVector:
875 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
876 case Instruction::GetElementPtr:
877 return cast<GEPOperator>(this)->isInBounds() ?
878 ConstantExpr::getInBoundsGetElementPtr(Ops[0], &Ops[1], Ops.size()-1) :
879 ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
880 case Instruction::ICmp:
881 case Instruction::FCmp:
882 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
883 default:
884 assert(getNumOperands() == 2 && "Must be binary operator?");
885 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
890 //===----------------------------------------------------------------------===//
891 // isValueValidForType implementations
893 bool ConstantInt::isValueValidForType(const Type *Ty, uint64_t Val) {
894 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
895 if (Ty == Type::getInt1Ty(Ty->getContext()))
896 return Val == 0 || Val == 1;
897 if (NumBits >= 64)
898 return true; // always true, has to fit in largest type
899 uint64_t Max = (1ll << NumBits) - 1;
900 return Val <= Max;
903 bool ConstantInt::isValueValidForType(const Type *Ty, int64_t Val) {
904 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
905 if (Ty == Type::getInt1Ty(Ty->getContext()))
906 return Val == 0 || Val == 1 || Val == -1;
907 if (NumBits >= 64)
908 return true; // always true, has to fit in largest type
909 int64_t Min = -(1ll << (NumBits-1));
910 int64_t Max = (1ll << (NumBits-1)) - 1;
911 return (Val >= Min && Val <= Max);
914 bool ConstantFP::isValueValidForType(const Type *Ty, const APFloat& Val) {
915 // convert modifies in place, so make a copy.
916 APFloat Val2 = APFloat(Val);
917 bool losesInfo;
918 switch (Ty->getTypeID()) {
919 default:
920 return false; // These can't be represented as floating point!
922 // FIXME rounding mode needs to be more flexible
923 case Type::FloatTyID: {
924 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
925 return true;
926 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
927 return !losesInfo;
929 case Type::DoubleTyID: {
930 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
931 &Val2.getSemantics() == &APFloat::IEEEdouble)
932 return true;
933 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
934 return !losesInfo;
936 case Type::X86_FP80TyID:
937 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
938 &Val2.getSemantics() == &APFloat::IEEEdouble ||
939 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
940 case Type::FP128TyID:
941 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
942 &Val2.getSemantics() == &APFloat::IEEEdouble ||
943 &Val2.getSemantics() == &APFloat::IEEEquad;
944 case Type::PPC_FP128TyID:
945 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
946 &Val2.getSemantics() == &APFloat::IEEEdouble ||
947 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
951 //===----------------------------------------------------------------------===//
952 // Factory Function Implementation
954 ConstantAggregateZero* ConstantAggregateZero::get(const Type* Ty) {
955 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
956 "Cannot create an aggregate zero of non-aggregate type!");
958 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
959 return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
962 /// destroyConstant - Remove the constant from the constant table...
964 void ConstantAggregateZero::destroyConstant() {
965 getType()->getContext().pImpl->AggZeroConstants.remove(this);
966 destroyConstantImpl();
969 /// destroyConstant - Remove the constant from the constant table...
971 void ConstantArray::destroyConstant() {
972 getType()->getContext().pImpl->ArrayConstants.remove(this);
973 destroyConstantImpl();
976 /// isString - This method returns true if the array is an array of i8, and
977 /// if the elements of the array are all ConstantInt's.
978 bool ConstantArray::isString() const {
979 // Check the element type for i8...
980 if (!getType()->getElementType()->isIntegerTy(8))
981 return false;
982 // Check the elements to make sure they are all integers, not constant
983 // expressions.
984 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
985 if (!isa<ConstantInt>(getOperand(i)))
986 return false;
987 return true;
990 /// isCString - This method returns true if the array is a string (see
991 /// isString) and it ends in a null byte \\0 and does not contains any other
992 /// null bytes except its terminator.
993 bool ConstantArray::isCString() const {
994 // Check the element type for i8...
995 if (!getType()->getElementType()->isIntegerTy(8))
996 return false;
998 // Last element must be a null.
999 if (!getOperand(getNumOperands()-1)->isNullValue())
1000 return false;
1001 // Other elements must be non-null integers.
1002 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
1003 if (!isa<ConstantInt>(getOperand(i)))
1004 return false;
1005 if (getOperand(i)->isNullValue())
1006 return false;
1008 return true;
1012 /// convertToString - Helper function for getAsString() and getAsCString().
1013 static std::string convertToString(const User *U, unsigned len)
1015 std::string Result;
1016 Result.reserve(len);
1017 for (unsigned i = 0; i != len; ++i)
1018 Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue());
1019 return Result;
1022 /// getAsString - If this array is isString(), then this method converts the
1023 /// array to an std::string and returns it. Otherwise, it asserts out.
1025 std::string ConstantArray::getAsString() const {
1026 assert(isString() && "Not a string!");
1027 return convertToString(this, getNumOperands());
1031 /// getAsCString - If this array is isCString(), then this method converts the
1032 /// array (without the trailing null byte) to an std::string and returns it.
1033 /// Otherwise, it asserts out.
1035 std::string ConstantArray::getAsCString() const {
1036 assert(isCString() && "Not a string!");
1037 return convertToString(this, getNumOperands() - 1);
1041 //---- ConstantStruct::get() implementation...
1044 namespace llvm {
1048 // destroyConstant - Remove the constant from the constant table...
1050 void ConstantStruct::destroyConstant() {
1051 getType()->getContext().pImpl->StructConstants.remove(this);
1052 destroyConstantImpl();
1055 // destroyConstant - Remove the constant from the constant table...
1057 void ConstantVector::destroyConstant() {
1058 getType()->getContext().pImpl->VectorConstants.remove(this);
1059 destroyConstantImpl();
1062 /// This function will return true iff every element in this vector constant
1063 /// is set to all ones.
1064 /// @returns true iff this constant's emements are all set to all ones.
1065 /// @brief Determine if the value is all ones.
1066 bool ConstantVector::isAllOnesValue() const {
1067 // Check out first element.
1068 const Constant *Elt = getOperand(0);
1069 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1070 if (!CI || !CI->isAllOnesValue()) return false;
1071 // Then make sure all remaining elements point to the same value.
1072 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1073 if (getOperand(I) != Elt) return false;
1075 return true;
1078 /// getSplatValue - If this is a splat constant, where all of the
1079 /// elements have the same value, return that value. Otherwise return null.
1080 Constant *ConstantVector::getSplatValue() const {
1081 // Check out first element.
1082 Constant *Elt = getOperand(0);
1083 // Then make sure all remaining elements point to the same value.
1084 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1085 if (getOperand(I) != Elt) return 0;
1086 return Elt;
1089 //---- ConstantPointerNull::get() implementation.
1092 ConstantPointerNull *ConstantPointerNull::get(const PointerType *Ty) {
1093 return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
1096 // destroyConstant - Remove the constant from the constant table...
1098 void ConstantPointerNull::destroyConstant() {
1099 getType()->getContext().pImpl->NullPtrConstants.remove(this);
1100 destroyConstantImpl();
1104 //---- UndefValue::get() implementation.
1107 UndefValue *UndefValue::get(const Type *Ty) {
1108 return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1111 // destroyConstant - Remove the constant from the constant table.
1113 void UndefValue::destroyConstant() {
1114 getType()->getContext().pImpl->UndefValueConstants.remove(this);
1115 destroyConstantImpl();
1118 //---- BlockAddress::get() implementation.
1121 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1122 assert(BB->getParent() != 0 && "Block must have a parent");
1123 return get(BB->getParent(), BB);
1126 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1127 BlockAddress *&BA =
1128 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1129 if (BA == 0)
1130 BA = new BlockAddress(F, BB);
1132 assert(BA->getFunction() == F && "Basic block moved between functions");
1133 return BA;
1136 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1137 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1138 &Op<0>(), 2) {
1139 setOperand(0, F);
1140 setOperand(1, BB);
1141 BB->AdjustBlockAddressRefCount(1);
1145 // destroyConstant - Remove the constant from the constant table.
1147 void BlockAddress::destroyConstant() {
1148 getFunction()->getType()->getContext().pImpl
1149 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1150 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1151 destroyConstantImpl();
1154 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1155 // This could be replacing either the Basic Block or the Function. In either
1156 // case, we have to remove the map entry.
1157 Function *NewF = getFunction();
1158 BasicBlock *NewBB = getBasicBlock();
1160 if (U == &Op<0>())
1161 NewF = cast<Function>(To);
1162 else
1163 NewBB = cast<BasicBlock>(To);
1165 // See if the 'new' entry already exists, if not, just update this in place
1166 // and return early.
1167 BlockAddress *&NewBA =
1168 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1169 if (NewBA == 0) {
1170 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1172 // Remove the old entry, this can't cause the map to rehash (just a
1173 // tombstone will get added).
1174 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1175 getBasicBlock()));
1176 NewBA = this;
1177 setOperand(0, NewF);
1178 setOperand(1, NewBB);
1179 getBasicBlock()->AdjustBlockAddressRefCount(1);
1180 return;
1183 // Otherwise, I do need to replace this with an existing value.
1184 assert(NewBA != this && "I didn't contain From!");
1186 // Everyone using this now uses the replacement.
1187 uncheckedReplaceAllUsesWith(NewBA);
1189 destroyConstant();
1192 //---- ConstantExpr::get() implementations.
1195 /// This is a utility function to handle folding of casts and lookup of the
1196 /// cast in the ExprConstants map. It is used by the various get* methods below.
1197 static inline Constant *getFoldedCast(
1198 Instruction::CastOps opc, Constant *C, const Type *Ty) {
1199 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1200 // Fold a few common cases
1201 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1202 return FC;
1204 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1206 // Look up the constant in the table first to ensure uniqueness
1207 std::vector<Constant*> argVec(1, C);
1208 ExprMapKeyType Key(opc, argVec);
1210 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1213 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, const Type *Ty) {
1214 Instruction::CastOps opc = Instruction::CastOps(oc);
1215 assert(Instruction::isCast(opc) && "opcode out of range");
1216 assert(C && Ty && "Null arguments to getCast");
1217 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1219 switch (opc) {
1220 default:
1221 llvm_unreachable("Invalid cast opcode");
1222 break;
1223 case Instruction::Trunc: return getTrunc(C, Ty);
1224 case Instruction::ZExt: return getZExt(C, Ty);
1225 case Instruction::SExt: return getSExt(C, Ty);
1226 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1227 case Instruction::FPExt: return getFPExtend(C, Ty);
1228 case Instruction::UIToFP: return getUIToFP(C, Ty);
1229 case Instruction::SIToFP: return getSIToFP(C, Ty);
1230 case Instruction::FPToUI: return getFPToUI(C, Ty);
1231 case Instruction::FPToSI: return getFPToSI(C, Ty);
1232 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1233 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1234 case Instruction::BitCast: return getBitCast(C, Ty);
1236 return 0;
1239 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, const Type *Ty) {
1240 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1241 return getBitCast(C, Ty);
1242 return getZExt(C, Ty);
1245 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, const Type *Ty) {
1246 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1247 return getBitCast(C, Ty);
1248 return getSExt(C, Ty);
1251 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, const Type *Ty) {
1252 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1253 return getBitCast(C, Ty);
1254 return getTrunc(C, Ty);
1257 Constant *ConstantExpr::getPointerCast(Constant *S, const Type *Ty) {
1258 assert(S->getType()->isPointerTy() && "Invalid cast");
1259 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1261 if (Ty->isIntegerTy())
1262 return getPtrToInt(S, Ty);
1263 return getBitCast(S, Ty);
1266 Constant *ConstantExpr::getIntegerCast(Constant *C, const Type *Ty,
1267 bool isSigned) {
1268 assert(C->getType()->isIntOrIntVectorTy() &&
1269 Ty->isIntOrIntVectorTy() && "Invalid cast");
1270 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1271 unsigned DstBits = Ty->getScalarSizeInBits();
1272 Instruction::CastOps opcode =
1273 (SrcBits == DstBits ? Instruction::BitCast :
1274 (SrcBits > DstBits ? Instruction::Trunc :
1275 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1276 return getCast(opcode, C, Ty);
1279 Constant *ConstantExpr::getFPCast(Constant *C, const Type *Ty) {
1280 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1281 "Invalid cast");
1282 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1283 unsigned DstBits = Ty->getScalarSizeInBits();
1284 if (SrcBits == DstBits)
1285 return C; // Avoid a useless cast
1286 Instruction::CastOps opcode =
1287 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1288 return getCast(opcode, C, Ty);
1291 Constant *ConstantExpr::getTrunc(Constant *C, const Type *Ty) {
1292 #ifndef NDEBUG
1293 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1294 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1295 #endif
1296 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1297 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1298 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1299 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1300 "SrcTy must be larger than DestTy for Trunc!");
1302 return getFoldedCast(Instruction::Trunc, C, Ty);
1305 Constant *ConstantExpr::getSExt(Constant *C, const Type *Ty) {
1306 #ifndef NDEBUG
1307 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1308 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1309 #endif
1310 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1311 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1312 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1313 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1314 "SrcTy must be smaller than DestTy for SExt!");
1316 return getFoldedCast(Instruction::SExt, C, Ty);
1319 Constant *ConstantExpr::getZExt(Constant *C, const Type *Ty) {
1320 #ifndef NDEBUG
1321 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1322 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1323 #endif
1324 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1325 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1326 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1327 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1328 "SrcTy must be smaller than DestTy for ZExt!");
1330 return getFoldedCast(Instruction::ZExt, C, Ty);
1333 Constant *ConstantExpr::getFPTrunc(Constant *C, const Type *Ty) {
1334 #ifndef NDEBUG
1335 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1336 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1337 #endif
1338 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1339 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1340 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1341 "This is an illegal floating point truncation!");
1342 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1345 Constant *ConstantExpr::getFPExtend(Constant *C, const Type *Ty) {
1346 #ifndef NDEBUG
1347 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1348 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1349 #endif
1350 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1351 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1352 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1353 "This is an illegal floating point extension!");
1354 return getFoldedCast(Instruction::FPExt, C, Ty);
1357 Constant *ConstantExpr::getUIToFP(Constant *C, const Type *Ty) {
1358 #ifndef NDEBUG
1359 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1360 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1361 #endif
1362 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1363 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1364 "This is an illegal uint to floating point cast!");
1365 return getFoldedCast(Instruction::UIToFP, C, Ty);
1368 Constant *ConstantExpr::getSIToFP(Constant *C, const Type *Ty) {
1369 #ifndef NDEBUG
1370 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1371 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1372 #endif
1373 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1374 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1375 "This is an illegal sint to floating point cast!");
1376 return getFoldedCast(Instruction::SIToFP, C, Ty);
1379 Constant *ConstantExpr::getFPToUI(Constant *C, const Type *Ty) {
1380 #ifndef NDEBUG
1381 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1382 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1383 #endif
1384 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1385 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1386 "This is an illegal floating point to uint cast!");
1387 return getFoldedCast(Instruction::FPToUI, C, Ty);
1390 Constant *ConstantExpr::getFPToSI(Constant *C, const Type *Ty) {
1391 #ifndef NDEBUG
1392 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1393 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1394 #endif
1395 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1396 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1397 "This is an illegal floating point to sint cast!");
1398 return getFoldedCast(Instruction::FPToSI, C, Ty);
1401 Constant *ConstantExpr::getPtrToInt(Constant *C, const Type *DstTy) {
1402 assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
1403 assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
1404 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1407 Constant *ConstantExpr::getIntToPtr(Constant *C, const Type *DstTy) {
1408 assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
1409 assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
1410 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1413 Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
1414 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1415 "Invalid constantexpr bitcast!");
1417 // It is common to ask for a bitcast of a value to its own type, handle this
1418 // speedily.
1419 if (C->getType() == DstTy) return C;
1421 return getFoldedCast(Instruction::BitCast, C, DstTy);
1424 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1425 unsigned Flags) {
1426 // Check the operands for consistency first.
1427 assert(Opcode >= Instruction::BinaryOpsBegin &&
1428 Opcode < Instruction::BinaryOpsEnd &&
1429 "Invalid opcode in binary constant expression");
1430 assert(C1->getType() == C2->getType() &&
1431 "Operand types in binary constant expression should match");
1433 #ifndef NDEBUG
1434 switch (Opcode) {
1435 case Instruction::Add:
1436 case Instruction::Sub:
1437 case Instruction::Mul:
1438 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1439 assert(C1->getType()->isIntOrIntVectorTy() &&
1440 "Tried to create an integer operation on a non-integer type!");
1441 break;
1442 case Instruction::FAdd:
1443 case Instruction::FSub:
1444 case Instruction::FMul:
1445 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1446 assert(C1->getType()->isFPOrFPVectorTy() &&
1447 "Tried to create a floating-point operation on a "
1448 "non-floating-point type!");
1449 break;
1450 case Instruction::UDiv:
1451 case Instruction::SDiv:
1452 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1453 assert(C1->getType()->isIntOrIntVectorTy() &&
1454 "Tried to create an arithmetic operation on a non-arithmetic type!");
1455 break;
1456 case Instruction::FDiv:
1457 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1458 assert(C1->getType()->isFPOrFPVectorTy() &&
1459 "Tried to create an arithmetic operation on a non-arithmetic type!");
1460 break;
1461 case Instruction::URem:
1462 case Instruction::SRem:
1463 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1464 assert(C1->getType()->isIntOrIntVectorTy() &&
1465 "Tried to create an arithmetic operation on a non-arithmetic type!");
1466 break;
1467 case Instruction::FRem:
1468 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1469 assert(C1->getType()->isFPOrFPVectorTy() &&
1470 "Tried to create an arithmetic operation on a non-arithmetic type!");
1471 break;
1472 case Instruction::And:
1473 case Instruction::Or:
1474 case Instruction::Xor:
1475 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1476 assert(C1->getType()->isIntOrIntVectorTy() &&
1477 "Tried to create a logical operation on a non-integral type!");
1478 break;
1479 case Instruction::Shl:
1480 case Instruction::LShr:
1481 case Instruction::AShr:
1482 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1483 assert(C1->getType()->isIntOrIntVectorTy() &&
1484 "Tried to create a shift operation on a non-integer type!");
1485 break;
1486 default:
1487 break;
1489 #endif
1491 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1492 return FC; // Fold a few common cases.
1494 std::vector<Constant*> argVec(1, C1);
1495 argVec.push_back(C2);
1496 ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1498 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1499 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1502 Constant *ConstantExpr::getSizeOf(const Type* Ty) {
1503 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1504 // Note that a non-inbounds gep is used, as null isn't within any object.
1505 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1506 Constant *GEP = getGetElementPtr(
1507 Constant::getNullValue(PointerType::getUnqual(Ty)), &GEPIdx, 1);
1508 return getPtrToInt(GEP,
1509 Type::getInt64Ty(Ty->getContext()));
1512 Constant *ConstantExpr::getAlignOf(const Type* Ty) {
1513 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1514 // Note that a non-inbounds gep is used, as null isn't within any object.
1515 const Type *AligningTy =
1516 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1517 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1518 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1519 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1520 Constant *Indices[2] = { Zero, One };
1521 Constant *GEP = getGetElementPtr(NullPtr, Indices, 2);
1522 return getPtrToInt(GEP,
1523 Type::getInt64Ty(Ty->getContext()));
1526 Constant *ConstantExpr::getOffsetOf(const StructType* STy, unsigned FieldNo) {
1527 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1528 FieldNo));
1531 Constant *ConstantExpr::getOffsetOf(const Type* Ty, Constant *FieldNo) {
1532 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1533 // Note that a non-inbounds gep is used, as null isn't within any object.
1534 Constant *GEPIdx[] = {
1535 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1536 FieldNo
1538 Constant *GEP = getGetElementPtr(
1539 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx, 2);
1540 return getPtrToInt(GEP,
1541 Type::getInt64Ty(Ty->getContext()));
1544 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1545 Constant *C1, Constant *C2) {
1546 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1548 switch (Predicate) {
1549 default: llvm_unreachable("Invalid CmpInst predicate");
1550 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1551 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1552 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1553 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1554 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1555 case CmpInst::FCMP_TRUE:
1556 return getFCmp(Predicate, C1, C2);
1558 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1559 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1560 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1561 case CmpInst::ICMP_SLE:
1562 return getICmp(Predicate, C1, C2);
1566 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1567 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1569 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1570 return SC; // Fold common cases
1572 std::vector<Constant*> argVec(3, C);
1573 argVec[1] = V1;
1574 argVec[2] = V2;
1575 ExprMapKeyType Key(Instruction::Select, argVec);
1577 LLVMContextImpl *pImpl = C->getContext().pImpl;
1578 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1581 Constant *ConstantExpr::getGetElementPtr(Constant *C, Value* const *Idxs,
1582 unsigned NumIdx, bool InBounds) {
1583 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs, NumIdx))
1584 return FC; // Fold a few common cases.
1586 // Get the result type of the getelementptr!
1587 const Type *Ty =
1588 GetElementPtrInst::getIndexedType(C->getType(), Idxs, Idxs+NumIdx);
1589 assert(Ty && "GEP indices invalid!");
1590 unsigned AS = cast<PointerType>(C->getType())->getAddressSpace();
1591 Type *ReqTy = Ty->getPointerTo(AS);
1593 assert(C->getType()->isPointerTy() &&
1594 "Non-pointer type for constant GetElementPtr expression");
1595 // Look up the constant in the table first to ensure uniqueness
1596 std::vector<Constant*> ArgVec;
1597 ArgVec.reserve(NumIdx+1);
1598 ArgVec.push_back(C);
1599 for (unsigned i = 0; i != NumIdx; ++i)
1600 ArgVec.push_back(cast<Constant>(Idxs[i]));
1601 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1602 InBounds ? GEPOperator::IsInBounds : 0);
1604 LLVMContextImpl *pImpl = C->getContext().pImpl;
1605 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1608 Constant *
1609 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1610 assert(LHS->getType() == RHS->getType());
1611 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1612 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1614 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1615 return FC; // Fold a few common cases...
1617 // Look up the constant in the table first to ensure uniqueness
1618 std::vector<Constant*> ArgVec;
1619 ArgVec.push_back(LHS);
1620 ArgVec.push_back(RHS);
1621 // Get the key type with both the opcode and predicate
1622 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1624 const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1625 if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1626 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1628 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1629 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1632 Constant *
1633 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1634 assert(LHS->getType() == RHS->getType());
1635 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1637 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1638 return FC; // Fold a few common cases...
1640 // Look up the constant in the table first to ensure uniqueness
1641 std::vector<Constant*> ArgVec;
1642 ArgVec.push_back(LHS);
1643 ArgVec.push_back(RHS);
1644 // Get the key type with both the opcode and predicate
1645 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1647 const Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1648 if (const VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1649 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1651 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1652 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1655 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1656 assert(Val->getType()->isVectorTy() &&
1657 "Tried to create extractelement operation on non-vector type!");
1658 assert(Idx->getType()->isIntegerTy(32) &&
1659 "Extractelement index must be i32 type!");
1661 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1662 return FC; // Fold a few common cases.
1664 // Look up the constant in the table first to ensure uniqueness
1665 std::vector<Constant*> ArgVec(1, Val);
1666 ArgVec.push_back(Idx);
1667 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1669 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1670 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
1671 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1674 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1675 Constant *Idx) {
1676 assert(Val->getType()->isVectorTy() &&
1677 "Tried to create insertelement operation on non-vector type!");
1678 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1679 && "Insertelement types must match!");
1680 assert(Idx->getType()->isIntegerTy(32) &&
1681 "Insertelement index must be i32 type!");
1683 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1684 return FC; // Fold a few common cases.
1685 // Look up the constant in the table first to ensure uniqueness
1686 std::vector<Constant*> ArgVec(1, Val);
1687 ArgVec.push_back(Elt);
1688 ArgVec.push_back(Idx);
1689 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1691 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1692 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1695 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1696 Constant *Mask) {
1697 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1698 "Invalid shuffle vector constant expr operands!");
1700 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1701 return FC; // Fold a few common cases.
1703 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1704 const Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1705 const Type *ShufTy = VectorType::get(EltTy, NElts);
1707 // Look up the constant in the table first to ensure uniqueness
1708 std::vector<Constant*> ArgVec(1, V1);
1709 ArgVec.push_back(V2);
1710 ArgVec.push_back(Mask);
1711 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1713 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1714 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1717 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1718 const unsigned *Idxs, unsigned NumIdx) {
1719 assert(Agg->getType()->isFirstClassType() &&
1720 "Tried to create insertelement operation on non-first-class type!");
1722 const Type *ReqTy = Agg->getType();
1723 (void)ReqTy;
1724 #ifndef NDEBUG
1725 const Type *ValTy =
1726 ExtractValueInst::getIndexedType(Agg->getType(), Idxs, Idxs+NumIdx);
1727 assert(ValTy == Val->getType() && "insertvalue indices invalid!");
1728 #endif
1730 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs,
1731 Idxs+NumIdx) == Val->getType() &&
1732 "insertvalue indices invalid!");
1733 assert(Agg->getType() == ReqTy &&
1734 "insertvalue type invalid!");
1735 assert(Agg->getType()->isFirstClassType() &&
1736 "Non-first-class type for constant InsertValue expression");
1737 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs, NumIdx);
1738 assert(FC && "InsertValue constant expr couldn't be folded!");
1739 return FC;
1742 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1743 const unsigned *Idxs, unsigned NumIdx) {
1744 assert(Agg->getType()->isFirstClassType() &&
1745 "Tried to create extractelement operation on non-first-class type!");
1747 const Type *ReqTy =
1748 ExtractValueInst::getIndexedType(Agg->getType(), Idxs, Idxs+NumIdx);
1749 (void)ReqTy;
1750 assert(ReqTy && "extractvalue indices invalid!");
1752 assert(Agg->getType()->isFirstClassType() &&
1753 "Non-first-class type for constant extractvalue expression");
1754 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs, NumIdx);
1755 assert(FC && "ExtractValue constant expr couldn't be folded!");
1756 return FC;
1759 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1760 assert(C->getType()->isIntOrIntVectorTy() &&
1761 "Cannot NEG a nonintegral value!");
1762 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1763 C, HasNUW, HasNSW);
1766 Constant *ConstantExpr::getFNeg(Constant *C) {
1767 assert(C->getType()->isFPOrFPVectorTy() &&
1768 "Cannot FNEG a non-floating-point value!");
1769 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1772 Constant *ConstantExpr::getNot(Constant *C) {
1773 assert(C->getType()->isIntOrIntVectorTy() &&
1774 "Cannot NOT a nonintegral value!");
1775 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1778 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1779 bool HasNUW, bool HasNSW) {
1780 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1781 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1782 return get(Instruction::Add, C1, C2, Flags);
1785 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1786 return get(Instruction::FAdd, C1, C2);
1789 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1790 bool HasNUW, bool HasNSW) {
1791 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1792 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1793 return get(Instruction::Sub, C1, C2, Flags);
1796 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1797 return get(Instruction::FSub, C1, C2);
1800 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1801 bool HasNUW, bool HasNSW) {
1802 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1803 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1804 return get(Instruction::Mul, C1, C2, Flags);
1807 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1808 return get(Instruction::FMul, C1, C2);
1811 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1812 return get(Instruction::UDiv, C1, C2,
1813 isExact ? PossiblyExactOperator::IsExact : 0);
1816 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1817 return get(Instruction::SDiv, C1, C2,
1818 isExact ? PossiblyExactOperator::IsExact : 0);
1821 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1822 return get(Instruction::FDiv, C1, C2);
1825 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1826 return get(Instruction::URem, C1, C2);
1829 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1830 return get(Instruction::SRem, C1, C2);
1833 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1834 return get(Instruction::FRem, C1, C2);
1837 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1838 return get(Instruction::And, C1, C2);
1841 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1842 return get(Instruction::Or, C1, C2);
1845 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1846 return get(Instruction::Xor, C1, C2);
1849 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1850 bool HasNUW, bool HasNSW) {
1851 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1852 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1853 return get(Instruction::Shl, C1, C2, Flags);
1856 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
1857 return get(Instruction::LShr, C1, C2,
1858 isExact ? PossiblyExactOperator::IsExact : 0);
1861 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
1862 return get(Instruction::AShr, C1, C2,
1863 isExact ? PossiblyExactOperator::IsExact : 0);
1866 // destroyConstant - Remove the constant from the constant table...
1868 void ConstantExpr::destroyConstant() {
1869 getType()->getContext().pImpl->ExprConstants.remove(this);
1870 destroyConstantImpl();
1873 const char *ConstantExpr::getOpcodeName() const {
1874 return Instruction::getOpcodeName(getOpcode());
1879 GetElementPtrConstantExpr::
1880 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
1881 const Type *DestTy)
1882 : ConstantExpr(DestTy, Instruction::GetElementPtr,
1883 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
1884 - (IdxList.size()+1), IdxList.size()+1) {
1885 OperandList[0] = C;
1886 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
1887 OperandList[i+1] = IdxList[i];
1891 //===----------------------------------------------------------------------===//
1892 // replaceUsesOfWithOnConstant implementations
1894 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1895 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1896 /// etc.
1898 /// Note that we intentionally replace all uses of From with To here. Consider
1899 /// a large array that uses 'From' 1000 times. By handling this case all here,
1900 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1901 /// single invocation handles all 1000 uses. Handling them one at a time would
1902 /// work, but would be really slow because it would have to unique each updated
1903 /// array instance.
1905 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1906 Use *U) {
1907 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1908 Constant *ToC = cast<Constant>(To);
1910 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1912 std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
1913 Lookup.first.first = cast<ArrayType>(getType());
1914 Lookup.second = this;
1916 std::vector<Constant*> &Values = Lookup.first.second;
1917 Values.reserve(getNumOperands()); // Build replacement array.
1919 // Fill values with the modified operands of the constant array. Also,
1920 // compute whether this turns into an all-zeros array.
1921 bool isAllZeros = false;
1922 unsigned NumUpdated = 0;
1923 if (!ToC->isNullValue()) {
1924 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1925 Constant *Val = cast<Constant>(O->get());
1926 if (Val == From) {
1927 Val = ToC;
1928 ++NumUpdated;
1930 Values.push_back(Val);
1932 } else {
1933 isAllZeros = true;
1934 for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1935 Constant *Val = cast<Constant>(O->get());
1936 if (Val == From) {
1937 Val = ToC;
1938 ++NumUpdated;
1940 Values.push_back(Val);
1941 if (isAllZeros) isAllZeros = Val->isNullValue();
1945 Constant *Replacement = 0;
1946 if (isAllZeros) {
1947 Replacement = ConstantAggregateZero::get(getType());
1948 } else {
1949 // Check to see if we have this array type already.
1950 bool Exists;
1951 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1952 pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1954 if (Exists) {
1955 Replacement = I->second;
1956 } else {
1957 // Okay, the new shape doesn't exist in the system yet. Instead of
1958 // creating a new constant array, inserting it, replaceallusesof'ing the
1959 // old with the new, then deleting the old... just update the current one
1960 // in place!
1961 pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1963 // Update to the new value. Optimize for the case when we have a single
1964 // operand that we're changing, but handle bulk updates efficiently.
1965 if (NumUpdated == 1) {
1966 unsigned OperandToUpdate = U - OperandList;
1967 assert(getOperand(OperandToUpdate) == From &&
1968 "ReplaceAllUsesWith broken!");
1969 setOperand(OperandToUpdate, ToC);
1970 } else {
1971 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1972 if (getOperand(i) == From)
1973 setOperand(i, ToC);
1975 return;
1979 // Otherwise, I do need to replace this with an existing value.
1980 assert(Replacement != this && "I didn't contain From!");
1982 // Everyone using this now uses the replacement.
1983 uncheckedReplaceAllUsesWith(Replacement);
1985 // Delete the old constant!
1986 destroyConstant();
1989 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1990 Use *U) {
1991 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1992 Constant *ToC = cast<Constant>(To);
1994 unsigned OperandToUpdate = U-OperandList;
1995 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1997 std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
1998 Lookup.first.first = cast<StructType>(getType());
1999 Lookup.second = this;
2000 std::vector<Constant*> &Values = Lookup.first.second;
2001 Values.reserve(getNumOperands()); // Build replacement struct.
2004 // Fill values with the modified operands of the constant struct. Also,
2005 // compute whether this turns into an all-zeros struct.
2006 bool isAllZeros = false;
2007 if (!ToC->isNullValue()) {
2008 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2009 Values.push_back(cast<Constant>(O->get()));
2010 } else {
2011 isAllZeros = true;
2012 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2013 Constant *Val = cast<Constant>(O->get());
2014 Values.push_back(Val);
2015 if (isAllZeros) isAllZeros = Val->isNullValue();
2018 Values[OperandToUpdate] = ToC;
2020 LLVMContextImpl *pImpl = getContext().pImpl;
2022 Constant *Replacement = 0;
2023 if (isAllZeros) {
2024 Replacement = ConstantAggregateZero::get(getType());
2025 } else {
2026 // Check to see if we have this struct type already.
2027 bool Exists;
2028 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2029 pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
2031 if (Exists) {
2032 Replacement = I->second;
2033 } else {
2034 // Okay, the new shape doesn't exist in the system yet. Instead of
2035 // creating a new constant struct, inserting it, replaceallusesof'ing the
2036 // old with the new, then deleting the old... just update the current one
2037 // in place!
2038 pImpl->StructConstants.MoveConstantToNewSlot(this, I);
2040 // Update to the new value.
2041 setOperand(OperandToUpdate, ToC);
2042 return;
2046 assert(Replacement != this && "I didn't contain From!");
2048 // Everyone using this now uses the replacement.
2049 uncheckedReplaceAllUsesWith(Replacement);
2051 // Delete the old constant!
2052 destroyConstant();
2055 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2056 Use *U) {
2057 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2059 std::vector<Constant*> Values;
2060 Values.reserve(getNumOperands()); // Build replacement array...
2061 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2062 Constant *Val = getOperand(i);
2063 if (Val == From) Val = cast<Constant>(To);
2064 Values.push_back(Val);
2067 Constant *Replacement = get(Values);
2068 assert(Replacement != this && "I didn't contain From!");
2070 // Everyone using this now uses the replacement.
2071 uncheckedReplaceAllUsesWith(Replacement);
2073 // Delete the old constant!
2074 destroyConstant();
2077 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2078 Use *U) {
2079 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2080 Constant *To = cast<Constant>(ToV);
2082 Constant *Replacement = 0;
2083 if (getOpcode() == Instruction::GetElementPtr) {
2084 SmallVector<Constant*, 8> Indices;
2085 Constant *Pointer = getOperand(0);
2086 Indices.reserve(getNumOperands()-1);
2087 if (Pointer == From) Pointer = To;
2089 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2090 Constant *Val = getOperand(i);
2091 if (Val == From) Val = To;
2092 Indices.push_back(Val);
2094 Replacement = ConstantExpr::getGetElementPtr(Pointer,
2095 &Indices[0], Indices.size(),
2096 cast<GEPOperator>(this)->isInBounds());
2097 } else if (getOpcode() == Instruction::ExtractValue) {
2098 Constant *Agg = getOperand(0);
2099 if (Agg == From) Agg = To;
2101 ArrayRef<unsigned> Indices = getIndices();
2102 Replacement = ConstantExpr::getExtractValue(Agg,
2103 &Indices[0], Indices.size());
2104 } else if (getOpcode() == Instruction::InsertValue) {
2105 Constant *Agg = getOperand(0);
2106 Constant *Val = getOperand(1);
2107 if (Agg == From) Agg = To;
2108 if (Val == From) Val = To;
2110 ArrayRef<unsigned> Indices = getIndices();
2111 Replacement = ConstantExpr::getInsertValue(Agg, Val,
2112 &Indices[0], Indices.size());
2113 } else if (isCast()) {
2114 assert(getOperand(0) == From && "Cast only has one use!");
2115 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2116 } else if (getOpcode() == Instruction::Select) {
2117 Constant *C1 = getOperand(0);
2118 Constant *C2 = getOperand(1);
2119 Constant *C3 = getOperand(2);
2120 if (C1 == From) C1 = To;
2121 if (C2 == From) C2 = To;
2122 if (C3 == From) C3 = To;
2123 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2124 } else if (getOpcode() == Instruction::ExtractElement) {
2125 Constant *C1 = getOperand(0);
2126 Constant *C2 = getOperand(1);
2127 if (C1 == From) C1 = To;
2128 if (C2 == From) C2 = To;
2129 Replacement = ConstantExpr::getExtractElement(C1, C2);
2130 } else if (getOpcode() == Instruction::InsertElement) {
2131 Constant *C1 = getOperand(0);
2132 Constant *C2 = getOperand(1);
2133 Constant *C3 = getOperand(1);
2134 if (C1 == From) C1 = To;
2135 if (C2 == From) C2 = To;
2136 if (C3 == From) C3 = To;
2137 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2138 } else if (getOpcode() == Instruction::ShuffleVector) {
2139 Constant *C1 = getOperand(0);
2140 Constant *C2 = getOperand(1);
2141 Constant *C3 = getOperand(2);
2142 if (C1 == From) C1 = To;
2143 if (C2 == From) C2 = To;
2144 if (C3 == From) C3 = To;
2145 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2146 } else if (isCompare()) {
2147 Constant *C1 = getOperand(0);
2148 Constant *C2 = getOperand(1);
2149 if (C1 == From) C1 = To;
2150 if (C2 == From) C2 = To;
2151 if (getOpcode() == Instruction::ICmp)
2152 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2153 else {
2154 assert(getOpcode() == Instruction::FCmp);
2155 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2157 } else if (getNumOperands() == 2) {
2158 Constant *C1 = getOperand(0);
2159 Constant *C2 = getOperand(1);
2160 if (C1 == From) C1 = To;
2161 if (C2 == From) C2 = To;
2162 Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
2163 } else {
2164 llvm_unreachable("Unknown ConstantExpr type!");
2165 return;
2168 assert(Replacement != this && "I didn't contain From!");
2170 // Everyone using this now uses the replacement.
2171 uncheckedReplaceAllUsesWith(Replacement);
2173 // Delete the old constant!
2174 destroyConstant();