Add a small missed optimization: turn X == C ? X : Y into X == C ? C : Y. This
[llvm/stm8.git] / lib / CodeGen / PHIElimination.cpp
blob9fd5b0e5770edf0408bf7c0525d31a93f439942e
1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include <algorithm>
35 #include <map>
36 using namespace llvm;
38 static cl::opt<bool>
39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40 cl::Hidden, cl::desc("Disable critical edge splitting "
41 "during PHI elimination"));
43 namespace {
44 class PHIElimination : public MachineFunctionPass {
45 MachineRegisterInfo *MRI; // Machine register information
47 public:
48 static char ID; // Pass identification, replacement for typeid
49 PHIElimination() : MachineFunctionPass(ID) {
50 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
53 virtual bool runOnMachineFunction(MachineFunction &Fn);
54 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
56 private:
57 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
58 /// in predecessor basic blocks.
59 ///
60 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
61 void LowerAtomicPHINode(MachineBasicBlock &MBB,
62 MachineBasicBlock::iterator AfterPHIsIt);
64 /// analyzePHINodes - Gather information about the PHI nodes in
65 /// here. In particular, we want to map the number of uses of a virtual
66 /// register which is used in a PHI node. We map that to the BB the
67 /// vreg is coming from. This is used later to determine when the vreg
68 /// is killed in the BB.
69 ///
70 void analyzePHINodes(const MachineFunction& Fn);
72 /// Split critical edges where necessary for good coalescer performance.
73 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
74 LiveVariables &LV, MachineLoopInfo *MLI);
76 typedef std::pair<unsigned, unsigned> BBVRegPair;
77 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
79 VRegPHIUse VRegPHIUseCount;
81 // Defs of PHI sources which are implicit_def.
82 SmallPtrSet<MachineInstr*, 4> ImpDefs;
84 // Map reusable lowered PHI node -> incoming join register.
85 typedef DenseMap<MachineInstr*, unsigned,
86 MachineInstrExpressionTrait> LoweredPHIMap;
87 LoweredPHIMap LoweredPHIs;
91 STATISTIC(NumAtomic, "Number of atomic phis lowered");
92 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
93 STATISTIC(NumReused, "Number of reused lowered phis");
95 char PHIElimination::ID = 0;
96 INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
97 "Eliminate PHI nodes for register allocation", false, false)
99 char& llvm::PHIEliminationID = PHIElimination::ID;
101 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
102 AU.addPreserved<LiveVariables>();
103 AU.addPreserved<MachineDominatorTree>();
104 AU.addPreserved<MachineLoopInfo>();
105 MachineFunctionPass::getAnalysisUsage(AU);
108 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
109 MRI = &MF.getRegInfo();
111 bool Changed = false;
113 // Split critical edges to help the coalescer
114 if (!DisableEdgeSplitting) {
115 if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
116 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
117 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
118 Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
122 // Populate VRegPHIUseCount
123 analyzePHINodes(MF);
125 // Eliminate PHI instructions by inserting copies into predecessor blocks.
126 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
127 Changed |= EliminatePHINodes(MF, *I);
129 // Remove dead IMPLICIT_DEF instructions.
130 for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
131 E = ImpDefs.end(); I != E; ++I) {
132 MachineInstr *DefMI = *I;
133 unsigned DefReg = DefMI->getOperand(0).getReg();
134 if (MRI->use_nodbg_empty(DefReg))
135 DefMI->eraseFromParent();
138 // Clean up the lowered PHI instructions.
139 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
140 I != E; ++I)
141 MF.DeleteMachineInstr(I->first);
143 LoweredPHIs.clear();
144 ImpDefs.clear();
145 VRegPHIUseCount.clear();
147 return Changed;
150 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
151 /// predecessor basic blocks.
153 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
154 MachineBasicBlock &MBB) {
155 if (MBB.empty() || !MBB.front().isPHI())
156 return false; // Quick exit for basic blocks without PHIs.
158 // Get an iterator to the first instruction after the last PHI node (this may
159 // also be the end of the basic block).
160 MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
162 while (MBB.front().isPHI())
163 LowerAtomicPHINode(MBB, AfterPHIsIt);
165 return true;
168 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
169 /// are implicit_def's.
170 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
171 const MachineRegisterInfo *MRI) {
172 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
173 unsigned SrcReg = MPhi->getOperand(i).getReg();
174 const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
175 if (!DefMI || !DefMI->isImplicitDef())
176 return false;
178 return true;
183 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
184 /// under the assuption that it needs to be lowered in a way that supports
185 /// atomic execution of PHIs. This lowering method is always correct all of the
186 /// time.
188 void PHIElimination::LowerAtomicPHINode(
189 MachineBasicBlock &MBB,
190 MachineBasicBlock::iterator AfterPHIsIt) {
191 ++NumAtomic;
192 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
193 MachineInstr *MPhi = MBB.remove(MBB.begin());
195 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
196 unsigned DestReg = MPhi->getOperand(0).getReg();
197 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
198 bool isDead = MPhi->getOperand(0).isDead();
200 // Create a new register for the incoming PHI arguments.
201 MachineFunction &MF = *MBB.getParent();
202 unsigned IncomingReg = 0;
203 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
205 // Insert a register to register copy at the top of the current block (but
206 // after any remaining phi nodes) which copies the new incoming register
207 // into the phi node destination.
208 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
209 if (isSourceDefinedByImplicitDef(MPhi, MRI))
210 // If all sources of a PHI node are implicit_def, just emit an
211 // implicit_def instead of a copy.
212 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
213 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
214 else {
215 // Can we reuse an earlier PHI node? This only happens for critical edges,
216 // typically those created by tail duplication.
217 unsigned &entry = LoweredPHIs[MPhi];
218 if (entry) {
219 // An identical PHI node was already lowered. Reuse the incoming register.
220 IncomingReg = entry;
221 reusedIncoming = true;
222 ++NumReused;
223 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
224 } else {
225 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
226 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
228 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
229 TII->get(TargetOpcode::COPY), DestReg)
230 .addReg(IncomingReg);
233 // Update live variable information if there is any.
234 LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
235 if (LV) {
236 MachineInstr *PHICopy = prior(AfterPHIsIt);
238 if (IncomingReg) {
239 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
241 // Increment use count of the newly created virtual register.
242 VI.NumUses++;
243 LV->setPHIJoin(IncomingReg);
245 // When we are reusing the incoming register, it may already have been
246 // killed in this block. The old kill will also have been inserted at
247 // AfterPHIsIt, so it appears before the current PHICopy.
248 if (reusedIncoming)
249 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
250 DEBUG(dbgs() << "Remove old kill from " << *OldKill);
251 LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
252 DEBUG(MBB.dump());
255 // Add information to LiveVariables to know that the incoming value is
256 // killed. Note that because the value is defined in several places (once
257 // each for each incoming block), the "def" block and instruction fields
258 // for the VarInfo is not filled in.
259 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
262 // Since we are going to be deleting the PHI node, if it is the last use of
263 // any registers, or if the value itself is dead, we need to move this
264 // information over to the new copy we just inserted.
265 LV->removeVirtualRegistersKilled(MPhi);
267 // If the result is dead, update LV.
268 if (isDead) {
269 LV->addVirtualRegisterDead(DestReg, PHICopy);
270 LV->removeVirtualRegisterDead(DestReg, MPhi);
274 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
275 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
276 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
277 MPhi->getOperand(i).getReg())];
279 // Now loop over all of the incoming arguments, changing them to copy into the
280 // IncomingReg register in the corresponding predecessor basic block.
281 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
282 for (int i = NumSrcs - 1; i >= 0; --i) {
283 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
284 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
286 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
287 "Machine PHI Operands must all be virtual registers!");
289 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
290 // path the PHI.
291 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
293 // If source is defined by an implicit def, there is no need to insert a
294 // copy.
295 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
296 if (DefMI->isImplicitDef()) {
297 ImpDefs.insert(DefMI);
298 continue;
301 // Check to make sure we haven't already emitted the copy for this block.
302 // This can happen because PHI nodes may have multiple entries for the same
303 // basic block.
304 if (!MBBsInsertedInto.insert(&opBlock))
305 continue; // If the copy has already been emitted, we're done.
307 // Find a safe location to insert the copy, this may be the first terminator
308 // in the block (or end()).
309 MachineBasicBlock::iterator InsertPos =
310 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
312 // Insert the copy.
313 if (!reusedIncoming && IncomingReg)
314 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
315 TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
317 // Now update live variable information if we have it. Otherwise we're done
318 if (!LV) continue;
320 // We want to be able to insert a kill of the register if this PHI (aka, the
321 // copy we just inserted) is the last use of the source value. Live
322 // variable analysis conservatively handles this by saying that the value is
323 // live until the end of the block the PHI entry lives in. If the value
324 // really is dead at the PHI copy, there will be no successor blocks which
325 // have the value live-in.
327 // Also check to see if this register is in use by another PHI node which
328 // has not yet been eliminated. If so, it will be killed at an appropriate
329 // point later.
331 // Is it used by any PHI instructions in this block?
332 bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
334 // Okay, if we now know that the value is not live out of the block, we can
335 // add a kill marker in this block saying that it kills the incoming value!
336 if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
337 // In our final twist, we have to decide which instruction kills the
338 // register. In most cases this is the copy, however, the first
339 // terminator instruction at the end of the block may also use the value.
340 // In this case, we should mark *it* as being the killing block, not the
341 // copy.
342 MachineBasicBlock::iterator KillInst;
343 MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
344 if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
345 KillInst = Term;
347 // Check that no other terminators use values.
348 #ifndef NDEBUG
349 for (MachineBasicBlock::iterator TI = llvm::next(Term);
350 TI != opBlock.end(); ++TI) {
351 if (TI->isDebugValue())
352 continue;
353 assert(!TI->readsRegister(SrcReg) &&
354 "Terminator instructions cannot use virtual registers unless"
355 "they are the first terminator in a block!");
357 #endif
358 } else if (reusedIncoming || !IncomingReg) {
359 // We may have to rewind a bit if we didn't insert a copy this time.
360 KillInst = Term;
361 while (KillInst != opBlock.begin()) {
362 --KillInst;
363 if (KillInst->isDebugValue())
364 continue;
365 if (KillInst->readsRegister(SrcReg))
366 break;
368 } else {
369 // We just inserted this copy.
370 KillInst = prior(InsertPos);
372 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
374 // Finally, mark it killed.
375 LV->addVirtualRegisterKilled(SrcReg, KillInst);
377 // This vreg no longer lives all of the way through opBlock.
378 unsigned opBlockNum = opBlock.getNumber();
379 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
383 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
384 if (reusedIncoming || !IncomingReg)
385 MF.DeleteMachineInstr(MPhi);
388 /// analyzePHINodes - Gather information about the PHI nodes in here. In
389 /// particular, we want to map the number of uses of a virtual register which is
390 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
391 /// used later to determine when the vreg is killed in the BB.
393 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
394 for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
395 I != E; ++I)
396 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
397 BBI != BBE && BBI->isPHI(); ++BBI)
398 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
399 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
400 BBI->getOperand(i).getReg())];
403 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
404 MachineBasicBlock &MBB,
405 LiveVariables &LV,
406 MachineLoopInfo *MLI) {
407 if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
408 return false; // Quick exit for basic blocks without PHIs.
410 bool Changed = false;
411 for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
412 BBI != BBE && BBI->isPHI(); ++BBI) {
413 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
414 unsigned Reg = BBI->getOperand(i).getReg();
415 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
416 // We break edges when registers are live out from the predecessor block
417 // (not considering PHI nodes). If the register is live in to this block
418 // anyway, we would gain nothing from splitting.
419 // Avoid splitting backedges of loops. It would introduce small
420 // out-of-line blocks into the loop which is very bad for code placement.
421 if (PreMBB != &MBB &&
422 !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
423 if (!MLI ||
424 !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
425 MLI->isLoopHeader(&MBB))) {
426 if (PreMBB->SplitCriticalEdge(&MBB, this)) {
427 Changed = true;
428 ++NumCriticalEdgesSplit;
434 return Changed;