1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "PHIEliminationUtils.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Function.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
39 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40 cl::Hidden
, cl::desc("Disable critical edge splitting "
41 "during PHI elimination"));
44 class PHIElimination
: public MachineFunctionPass
{
45 MachineRegisterInfo
*MRI
; // Machine register information
48 static char ID
; // Pass identification, replacement for typeid
49 PHIElimination() : MachineFunctionPass(ID
) {
50 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
53 virtual bool runOnMachineFunction(MachineFunction
&Fn
);
54 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const;
57 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
58 /// in predecessor basic blocks.
60 bool EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
61 void LowerAtomicPHINode(MachineBasicBlock
&MBB
,
62 MachineBasicBlock::iterator AfterPHIsIt
);
64 /// analyzePHINodes - Gather information about the PHI nodes in
65 /// here. In particular, we want to map the number of uses of a virtual
66 /// register which is used in a PHI node. We map that to the BB the
67 /// vreg is coming from. This is used later to determine when the vreg
68 /// is killed in the BB.
70 void analyzePHINodes(const MachineFunction
& Fn
);
72 /// Split critical edges where necessary for good coalescer performance.
73 bool SplitPHIEdges(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
74 LiveVariables
&LV
, MachineLoopInfo
*MLI
);
76 typedef std::pair
<unsigned, unsigned> BBVRegPair
;
77 typedef DenseMap
<BBVRegPair
, unsigned> VRegPHIUse
;
79 VRegPHIUse VRegPHIUseCount
;
81 // Defs of PHI sources which are implicit_def.
82 SmallPtrSet
<MachineInstr
*, 4> ImpDefs
;
84 // Map reusable lowered PHI node -> incoming join register.
85 typedef DenseMap
<MachineInstr
*, unsigned,
86 MachineInstrExpressionTrait
> LoweredPHIMap
;
87 LoweredPHIMap LoweredPHIs
;
91 STATISTIC(NumAtomic
, "Number of atomic phis lowered");
92 STATISTIC(NumCriticalEdgesSplit
, "Number of critical edges split");
93 STATISTIC(NumReused
, "Number of reused lowered phis");
95 char PHIElimination::ID
= 0;
96 INITIALIZE_PASS(PHIElimination
, "phi-node-elimination",
97 "Eliminate PHI nodes for register allocation", false, false)
99 char& llvm::PHIEliminationID
= PHIElimination::ID
;
101 void PHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
102 AU
.addPreserved
<LiveVariables
>();
103 AU
.addPreserved
<MachineDominatorTree
>();
104 AU
.addPreserved
<MachineLoopInfo
>();
105 MachineFunctionPass::getAnalysisUsage(AU
);
108 bool PHIElimination::runOnMachineFunction(MachineFunction
&MF
) {
109 MRI
= &MF
.getRegInfo();
111 bool Changed
= false;
113 // Split critical edges to help the coalescer
114 if (!DisableEdgeSplitting
) {
115 if (LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>()) {
116 MachineLoopInfo
*MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
117 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
118 Changed
|= SplitPHIEdges(MF
, *I
, *LV
, MLI
);
122 // Populate VRegPHIUseCount
125 // Eliminate PHI instructions by inserting copies into predecessor blocks.
126 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ++I
)
127 Changed
|= EliminatePHINodes(MF
, *I
);
129 // Remove dead IMPLICIT_DEF instructions.
130 for (SmallPtrSet
<MachineInstr
*, 4>::iterator I
= ImpDefs
.begin(),
131 E
= ImpDefs
.end(); I
!= E
; ++I
) {
132 MachineInstr
*DefMI
= *I
;
133 unsigned DefReg
= DefMI
->getOperand(0).getReg();
134 if (MRI
->use_nodbg_empty(DefReg
))
135 DefMI
->eraseFromParent();
138 // Clean up the lowered PHI instructions.
139 for (LoweredPHIMap::iterator I
= LoweredPHIs
.begin(), E
= LoweredPHIs
.end();
141 MF
.DeleteMachineInstr(I
->first
);
145 VRegPHIUseCount
.clear();
150 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
151 /// predecessor basic blocks.
153 bool PHIElimination::EliminatePHINodes(MachineFunction
&MF
,
154 MachineBasicBlock
&MBB
) {
155 if (MBB
.empty() || !MBB
.front().isPHI())
156 return false; // Quick exit for basic blocks without PHIs.
158 // Get an iterator to the first instruction after the last PHI node (this may
159 // also be the end of the basic block).
160 MachineBasicBlock::iterator AfterPHIsIt
= MBB
.SkipPHIsAndLabels(MBB
.begin());
162 while (MBB
.front().isPHI())
163 LowerAtomicPHINode(MBB
, AfterPHIsIt
);
168 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
169 /// are implicit_def's.
170 static bool isSourceDefinedByImplicitDef(const MachineInstr
*MPhi
,
171 const MachineRegisterInfo
*MRI
) {
172 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2) {
173 unsigned SrcReg
= MPhi
->getOperand(i
).getReg();
174 const MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
175 if (!DefMI
|| !DefMI
->isImplicitDef())
183 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
184 /// under the assuption that it needs to be lowered in a way that supports
185 /// atomic execution of PHIs. This lowering method is always correct all of the
188 void PHIElimination::LowerAtomicPHINode(
189 MachineBasicBlock
&MBB
,
190 MachineBasicBlock::iterator AfterPHIsIt
) {
192 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
193 MachineInstr
*MPhi
= MBB
.remove(MBB
.begin());
195 unsigned NumSrcs
= (MPhi
->getNumOperands() - 1) / 2;
196 unsigned DestReg
= MPhi
->getOperand(0).getReg();
197 assert(MPhi
->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
198 bool isDead
= MPhi
->getOperand(0).isDead();
200 // Create a new register for the incoming PHI arguments.
201 MachineFunction
&MF
= *MBB
.getParent();
202 unsigned IncomingReg
= 0;
203 bool reusedIncoming
= false; // Is IncomingReg reused from an earlier PHI?
205 // Insert a register to register copy at the top of the current block (but
206 // after any remaining phi nodes) which copies the new incoming register
207 // into the phi node destination.
208 const TargetInstrInfo
*TII
= MF
.getTarget().getInstrInfo();
209 if (isSourceDefinedByImplicitDef(MPhi
, MRI
))
210 // If all sources of a PHI node are implicit_def, just emit an
211 // implicit_def instead of a copy.
212 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
213 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
215 // Can we reuse an earlier PHI node? This only happens for critical edges,
216 // typically those created by tail duplication.
217 unsigned &entry
= LoweredPHIs
[MPhi
];
219 // An identical PHI node was already lowered. Reuse the incoming register.
221 reusedIncoming
= true;
223 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg
) << " for " << *MPhi
);
225 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(DestReg
);
226 entry
= IncomingReg
= MF
.getRegInfo().createVirtualRegister(RC
);
228 BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
229 TII
->get(TargetOpcode::COPY
), DestReg
)
230 .addReg(IncomingReg
);
233 // Update live variable information if there is any.
234 LiveVariables
*LV
= getAnalysisIfAvailable
<LiveVariables
>();
236 MachineInstr
*PHICopy
= prior(AfterPHIsIt
);
239 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(IncomingReg
);
241 // Increment use count of the newly created virtual register.
243 LV
->setPHIJoin(IncomingReg
);
245 // When we are reusing the incoming register, it may already have been
246 // killed in this block. The old kill will also have been inserted at
247 // AfterPHIsIt, so it appears before the current PHICopy.
249 if (MachineInstr
*OldKill
= VI
.findKill(&MBB
)) {
250 DEBUG(dbgs() << "Remove old kill from " << *OldKill
);
251 LV
->removeVirtualRegisterKilled(IncomingReg
, OldKill
);
255 // Add information to LiveVariables to know that the incoming value is
256 // killed. Note that because the value is defined in several places (once
257 // each for each incoming block), the "def" block and instruction fields
258 // for the VarInfo is not filled in.
259 LV
->addVirtualRegisterKilled(IncomingReg
, PHICopy
);
262 // Since we are going to be deleting the PHI node, if it is the last use of
263 // any registers, or if the value itself is dead, we need to move this
264 // information over to the new copy we just inserted.
265 LV
->removeVirtualRegistersKilled(MPhi
);
267 // If the result is dead, update LV.
269 LV
->addVirtualRegisterDead(DestReg
, PHICopy
);
270 LV
->removeVirtualRegisterDead(DestReg
, MPhi
);
274 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
275 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
276 --VRegPHIUseCount
[BBVRegPair(MPhi
->getOperand(i
+1).getMBB()->getNumber(),
277 MPhi
->getOperand(i
).getReg())];
279 // Now loop over all of the incoming arguments, changing them to copy into the
280 // IncomingReg register in the corresponding predecessor basic block.
281 SmallPtrSet
<MachineBasicBlock
*, 8> MBBsInsertedInto
;
282 for (int i
= NumSrcs
- 1; i
>= 0; --i
) {
283 unsigned SrcReg
= MPhi
->getOperand(i
*2+1).getReg();
284 unsigned SrcSubReg
= MPhi
->getOperand(i
*2+1).getSubReg();
286 assert(TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
287 "Machine PHI Operands must all be virtual registers!");
289 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
291 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
*2+2).getMBB();
293 // If source is defined by an implicit def, there is no need to insert a
295 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
296 if (DefMI
->isImplicitDef()) {
297 ImpDefs
.insert(DefMI
);
301 // Check to make sure we haven't already emitted the copy for this block.
302 // This can happen because PHI nodes may have multiple entries for the same
304 if (!MBBsInsertedInto
.insert(&opBlock
))
305 continue; // If the copy has already been emitted, we're done.
307 // Find a safe location to insert the copy, this may be the first terminator
308 // in the block (or end()).
309 MachineBasicBlock::iterator InsertPos
=
310 findPHICopyInsertPoint(&opBlock
, &MBB
, SrcReg
);
313 if (!reusedIncoming
&& IncomingReg
)
314 BuildMI(opBlock
, InsertPos
, MPhi
->getDebugLoc(),
315 TII
->get(TargetOpcode::COPY
), IncomingReg
).addReg(SrcReg
, 0, SrcSubReg
);
317 // Now update live variable information if we have it. Otherwise we're done
320 // We want to be able to insert a kill of the register if this PHI (aka, the
321 // copy we just inserted) is the last use of the source value. Live
322 // variable analysis conservatively handles this by saying that the value is
323 // live until the end of the block the PHI entry lives in. If the value
324 // really is dead at the PHI copy, there will be no successor blocks which
325 // have the value live-in.
327 // Also check to see if this register is in use by another PHI node which
328 // has not yet been eliminated. If so, it will be killed at an appropriate
331 // Is it used by any PHI instructions in this block?
332 bool ValueIsUsed
= VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)];
334 // Okay, if we now know that the value is not live out of the block, we can
335 // add a kill marker in this block saying that it kills the incoming value!
336 if (!ValueIsUsed
&& !LV
->isLiveOut(SrcReg
, opBlock
)) {
337 // In our final twist, we have to decide which instruction kills the
338 // register. In most cases this is the copy, however, the first
339 // terminator instruction at the end of the block may also use the value.
340 // In this case, we should mark *it* as being the killing block, not the
342 MachineBasicBlock::iterator KillInst
;
343 MachineBasicBlock::iterator Term
= opBlock
.getFirstTerminator();
344 if (Term
!= opBlock
.end() && Term
->readsRegister(SrcReg
)) {
347 // Check that no other terminators use values.
349 for (MachineBasicBlock::iterator TI
= llvm::next(Term
);
350 TI
!= opBlock
.end(); ++TI
) {
351 if (TI
->isDebugValue())
353 assert(!TI
->readsRegister(SrcReg
) &&
354 "Terminator instructions cannot use virtual registers unless"
355 "they are the first terminator in a block!");
358 } else if (reusedIncoming
|| !IncomingReg
) {
359 // We may have to rewind a bit if we didn't insert a copy this time.
361 while (KillInst
!= opBlock
.begin()) {
363 if (KillInst
->isDebugValue())
365 if (KillInst
->readsRegister(SrcReg
))
369 // We just inserted this copy.
370 KillInst
= prior(InsertPos
);
372 assert(KillInst
->readsRegister(SrcReg
) && "Cannot find kill instruction");
374 // Finally, mark it killed.
375 LV
->addVirtualRegisterKilled(SrcReg
, KillInst
);
377 // This vreg no longer lives all of the way through opBlock.
378 unsigned opBlockNum
= opBlock
.getNumber();
379 LV
->getVarInfo(SrcReg
).AliveBlocks
.reset(opBlockNum
);
383 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
384 if (reusedIncoming
|| !IncomingReg
)
385 MF
.DeleteMachineInstr(MPhi
);
388 /// analyzePHINodes - Gather information about the PHI nodes in here. In
389 /// particular, we want to map the number of uses of a virtual register which is
390 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
391 /// used later to determine when the vreg is killed in the BB.
393 void PHIElimination::analyzePHINodes(const MachineFunction
& MF
) {
394 for (MachineFunction::const_iterator I
= MF
.begin(), E
= MF
.end();
396 for (MachineBasicBlock::const_iterator BBI
= I
->begin(), BBE
= I
->end();
397 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
)
398 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2)
399 ++VRegPHIUseCount
[BBVRegPair(BBI
->getOperand(i
+1).getMBB()->getNumber(),
400 BBI
->getOperand(i
).getReg())];
403 bool PHIElimination::SplitPHIEdges(MachineFunction
&MF
,
404 MachineBasicBlock
&MBB
,
406 MachineLoopInfo
*MLI
) {
407 if (MBB
.empty() || !MBB
.front().isPHI() || MBB
.isLandingPad())
408 return false; // Quick exit for basic blocks without PHIs.
410 bool Changed
= false;
411 for (MachineBasicBlock::const_iterator BBI
= MBB
.begin(), BBE
= MBB
.end();
412 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
413 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2) {
414 unsigned Reg
= BBI
->getOperand(i
).getReg();
415 MachineBasicBlock
*PreMBB
= BBI
->getOperand(i
+1).getMBB();
416 // We break edges when registers are live out from the predecessor block
417 // (not considering PHI nodes). If the register is live in to this block
418 // anyway, we would gain nothing from splitting.
419 // Avoid splitting backedges of loops. It would introduce small
420 // out-of-line blocks into the loop which is very bad for code placement.
421 if (PreMBB
!= &MBB
&&
422 !LV
.isLiveIn(Reg
, MBB
) && LV
.isLiveOut(Reg
, *PreMBB
)) {
424 !(MLI
->getLoopFor(PreMBB
) == MLI
->getLoopFor(&MBB
) &&
425 MLI
->isLoopHeader(&MBB
))) {
426 if (PreMBB
->SplitCriticalEdge(&MBB
, this)) {
428 ++NumCriticalEdgesSplit
;