Add a small missed optimization: turn X == C ? X : Y into X == C ? C : Y. This
[llvm/stm8.git] / docs / LangRef.html
blob15ecf86d4f86142bf172c97dd2a2abfe53b3218a
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11 </head>
13 <body>
15 <div class="doc_title"> LLVM Language Reference Manual </div>
16 <ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a>
24 <ol>
25 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
28 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
29 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
36 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
37 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
41 </ol>
42 </li>
43 <li><a href="#callingconv">Calling Conventions</a></li>
44 <li><a href="#namedtypes">Named Types</a></li>
45 <li><a href="#globalvars">Global Variables</a></li>
46 <li><a href="#functionstructure">Functions</a></li>
47 <li><a href="#aliasstructure">Aliases</a></li>
48 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
49 <li><a href="#paramattrs">Parameter Attributes</a></li>
50 <li><a href="#fnattrs">Function Attributes</a></li>
51 <li><a href="#gc">Garbage Collector Names</a></li>
52 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
53 <li><a href="#datalayout">Data Layout</a></li>
54 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
55 <li><a href="#volatile">Volatile Memory Accesses</a></li>
56 </ol>
57 </li>
58 <li><a href="#typesystem">Type System</a>
59 <ol>
60 <li><a href="#t_classifications">Type Classifications</a></li>
61 <li><a href="#t_primitive">Primitive Types</a>
62 <ol>
63 <li><a href="#t_integer">Integer Type</a></li>
64 <li><a href="#t_floating">Floating Point Types</a></li>
65 <li><a href="#t_x86mmx">X86mmx Type</a></li>
66 <li><a href="#t_void">Void Type</a></li>
67 <li><a href="#t_label">Label Type</a></li>
68 <li><a href="#t_metadata">Metadata Type</a></li>
69 </ol>
70 </li>
71 <li><a href="#t_derived">Derived Types</a>
72 <ol>
73 <li><a href="#t_aggregate">Aggregate Types</a>
74 <ol>
75 <li><a href="#t_array">Array Type</a></li>
76 <li><a href="#t_struct">Structure Type</a></li>
77 <li><a href="#t_pstruct">Packed Structure Type</a></li>
78 <li><a href="#t_vector">Vector Type</a></li>
79 </ol>
80 </li>
81 <li><a href="#t_function">Function Type</a></li>
82 <li><a href="#t_pointer">Pointer Type</a></li>
83 <li><a href="#t_opaque">Opaque Type</a></li>
84 </ol>
85 </li>
86 <li><a href="#t_uprefs">Type Up-references</a></li>
87 </ol>
88 </li>
89 <li><a href="#constants">Constants</a>
90 <ol>
91 <li><a href="#simpleconstants">Simple Constants</a></li>
92 <li><a href="#complexconstants">Complex Constants</a></li>
93 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
95 <li><a href="#trapvalues">Trap Values</a></li>
96 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
97 <li><a href="#constantexprs">Constant Expressions</a></li>
98 </ol>
99 </li>
100 <li><a href="#othervalues">Other Values</a>
101 <ol>
102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
104 </ol>
105 </li>
106 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
107 <ol>
108 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
109 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
110 Global Variable</a></li>
111 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
112 Global Variable</a></li>
113 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
114 Global Variable</a></li>
115 </ol>
116 </li>
117 <li><a href="#instref">Instruction Reference</a>
118 <ol>
119 <li><a href="#terminators">Terminator Instructions</a>
120 <ol>
121 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
122 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
123 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
124 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
125 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
126 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
127 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
128 </ol>
129 </li>
130 <li><a href="#binaryops">Binary Operations</a>
131 <ol>
132 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
133 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
134 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
135 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
136 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
137 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
138 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
139 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
140 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
141 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
142 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
143 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
144 </ol>
145 </li>
146 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
147 <ol>
148 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
149 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
150 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
151 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
152 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
153 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
154 </ol>
155 </li>
156 <li><a href="#vectorops">Vector Operations</a>
157 <ol>
158 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
159 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
160 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
161 </ol>
162 </li>
163 <li><a href="#aggregateops">Aggregate Operations</a>
164 <ol>
165 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
166 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
167 </ol>
168 </li>
169 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
170 <ol>
171 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
172 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
173 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
174 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
175 </ol>
176 </li>
177 <li><a href="#convertops">Conversion Operations</a>
178 <ol>
179 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
180 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
184 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
185 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
186 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
187 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
188 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
189 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
190 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
191 </ol>
192 </li>
193 <li><a href="#otherops">Other Operations</a>
194 <ol>
195 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
196 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
197 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
198 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
199 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
200 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
201 </ol>
202 </li>
203 </ol>
204 </li>
205 <li><a href="#intrinsics">Intrinsic Functions</a>
206 <ol>
207 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
208 <ol>
209 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
210 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
211 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
212 </ol>
213 </li>
214 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
215 <ol>
216 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
217 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
218 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
219 </ol>
220 </li>
221 <li><a href="#int_codegen">Code Generator Intrinsics</a>
222 <ol>
223 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
224 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
225 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
226 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
227 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
228 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
229 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
230 </ol>
231 </li>
232 <li><a href="#int_libc">Standard C Library Intrinsics</a>
233 <ol>
234 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
239 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
242 </ol>
243 </li>
244 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
245 <ol>
246 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
247 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
248 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
249 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
250 </ol>
251 </li>
252 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
253 <ol>
254 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
259 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
260 </ol>
261 </li>
262 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
263 <ol>
264 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
265 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
266 </ol>
267 </li>
268 <li><a href="#int_debugger">Debugger intrinsics</a></li>
269 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
270 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
271 <ol>
272 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
273 </ol>
274 </li>
275 <li><a href="#int_atomics">Atomic intrinsics</a>
276 <ol>
277 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
278 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
279 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
280 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
281 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
282 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
283 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
284 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
285 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
286 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
287 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
288 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
289 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
290 </ol>
291 </li>
292 <li><a href="#int_memorymarkers">Memory Use Markers</a>
293 <ol>
294 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
295 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
296 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
297 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
298 </ol>
299 </li>
300 <li><a href="#int_general">General intrinsics</a>
301 <ol>
302 <li><a href="#int_var_annotation">
303 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
304 <li><a href="#int_annotation">
305 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
306 <li><a href="#int_trap">
307 '<tt>llvm.trap</tt>' Intrinsic</a></li>
308 <li><a href="#int_stackprotector">
309 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
310 <li><a href="#int_objectsize">
311 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
312 </ol>
313 </li>
314 </ol>
315 </li>
316 </ol>
318 <div class="doc_author">
319 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
320 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
321 </div>
323 <!-- *********************************************************************** -->
324 <div class="doc_section"> <a name="abstract">Abstract </a></div>
325 <!-- *********************************************************************** -->
327 <div class="doc_text">
329 <p>This document is a reference manual for the LLVM assembly language. LLVM is
330 a Static Single Assignment (SSA) based representation that provides type
331 safety, low-level operations, flexibility, and the capability of representing
332 'all' high-level languages cleanly. It is the common code representation
333 used throughout all phases of the LLVM compilation strategy.</p>
335 </div>
337 <!-- *********************************************************************** -->
338 <div class="doc_section"> <a name="introduction">Introduction</a> </div>
339 <!-- *********************************************************************** -->
341 <div class="doc_text">
343 <p>The LLVM code representation is designed to be used in three different forms:
344 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
345 for fast loading by a Just-In-Time compiler), and as a human readable
346 assembly language representation. This allows LLVM to provide a powerful
347 intermediate representation for efficient compiler transformations and
348 analysis, while providing a natural means to debug and visualize the
349 transformations. The three different forms of LLVM are all equivalent. This
350 document describes the human readable representation and notation.</p>
352 <p>The LLVM representation aims to be light-weight and low-level while being
353 expressive, typed, and extensible at the same time. It aims to be a
354 "universal IR" of sorts, by being at a low enough level that high-level ideas
355 may be cleanly mapped to it (similar to how microprocessors are "universal
356 IR's", allowing many source languages to be mapped to them). By providing
357 type information, LLVM can be used as the target of optimizations: for
358 example, through pointer analysis, it can be proven that a C automatic
359 variable is never accessed outside of the current function, allowing it to
360 be promoted to a simple SSA value instead of a memory location.</p>
362 </div>
364 <!-- _______________________________________________________________________ -->
365 <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
367 <div class="doc_text">
369 <p>It is important to note that this document describes 'well formed' LLVM
370 assembly language. There is a difference between what the parser accepts and
371 what is considered 'well formed'. For example, the following instruction is
372 syntactically okay, but not well formed:</p>
374 <pre class="doc_code">
375 %x = <a href="#i_add">add</a> i32 1, %x
376 </pre>
378 <p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
379 LLVM infrastructure provides a verification pass that may be used to verify
380 that an LLVM module is well formed. This pass is automatically run by the
381 parser after parsing input assembly and by the optimizer before it outputs
382 bitcode. The violations pointed out by the verifier pass indicate bugs in
383 transformation passes or input to the parser.</p>
385 </div>
387 <!-- Describe the typesetting conventions here. -->
389 <!-- *********************************************************************** -->
390 <div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
391 <!-- *********************************************************************** -->
393 <div class="doc_text">
395 <p>LLVM identifiers come in two basic types: global and local. Global
396 identifiers (functions, global variables) begin with the <tt>'@'</tt>
397 character. Local identifiers (register names, types) begin with
398 the <tt>'%'</tt> character. Additionally, there are three different formats
399 for identifiers, for different purposes:</p>
401 <ol>
402 <li>Named values are represented as a string of characters with their prefix.
403 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
404 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
405 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
406 other characters in their names can be surrounded with quotes. Special
407 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
408 ASCII code for the character in hexadecimal. In this way, any character
409 can be used in a name value, even quotes themselves.</li>
411 <li>Unnamed values are represented as an unsigned numeric value with their
412 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
414 <li>Constants, which are described in a <a href="#constants">section about
415 constants</a>, below.</li>
416 </ol>
418 <p>LLVM requires that values start with a prefix for two reasons: Compilers
419 don't need to worry about name clashes with reserved words, and the set of
420 reserved words may be expanded in the future without penalty. Additionally,
421 unnamed identifiers allow a compiler to quickly come up with a temporary
422 variable without having to avoid symbol table conflicts.</p>
424 <p>Reserved words in LLVM are very similar to reserved words in other
425 languages. There are keywords for different opcodes
426 ('<tt><a href="#i_add">add</a></tt>',
427 '<tt><a href="#i_bitcast">bitcast</a></tt>',
428 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
429 ('<tt><a href="#t_void">void</a></tt>',
430 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
431 reserved words cannot conflict with variable names, because none of them
432 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
434 <p>Here is an example of LLVM code to multiply the integer variable
435 '<tt>%X</tt>' by 8:</p>
437 <p>The easy way:</p>
439 <pre class="doc_code">
440 %result = <a href="#i_mul">mul</a> i32 %X, 8
441 </pre>
443 <p>After strength reduction:</p>
445 <pre class="doc_code">
446 %result = <a href="#i_shl">shl</a> i32 %X, i8 3
447 </pre>
449 <p>And the hard way:</p>
451 <pre class="doc_code">
452 %0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
453 %1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
454 %result = <a href="#i_add">add</a> i32 %1, %1
455 </pre>
457 <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
458 lexical features of LLVM:</p>
460 <ol>
461 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
462 line.</li>
464 <li>Unnamed temporaries are created when the result of a computation is not
465 assigned to a named value.</li>
467 <li>Unnamed temporaries are numbered sequentially</li>
468 </ol>
470 <p>It also shows a convention that we follow in this document. When
471 demonstrating instructions, we will follow an instruction with a comment that
472 defines the type and name of value produced. Comments are shown in italic
473 text.</p>
475 </div>
477 <!-- *********************************************************************** -->
478 <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
479 <!-- *********************************************************************** -->
481 <!-- ======================================================================= -->
482 <div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
483 </div>
485 <div class="doc_text">
487 <p>LLVM programs are composed of "Module"s, each of which is a translation unit
488 of the input programs. Each module consists of functions, global variables,
489 and symbol table entries. Modules may be combined together with the LLVM
490 linker, which merges function (and global variable) definitions, resolves
491 forward declarations, and merges symbol table entries. Here is an example of
492 the "hello world" module:</p>
494 <pre class="doc_code">
495 <i>; Declare the string constant as a global constant.</i>&nbsp;
496 <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
498 <i>; External declaration of the puts function</i>&nbsp;
499 <a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
501 <i>; Definition of main function</i>
502 define i32 @main() { <i>; i32()* </i>&nbsp;
503 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
504 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
506 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
507 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
508 <a href="#i_ret">ret</a> i32 0&nbsp;
511 <i>; Named metadata</i>
512 !1 = metadata !{i32 41}
513 !foo = !{!1, null}
514 </pre>
516 <p>This example is made up of a <a href="#globalvars">global variable</a> named
517 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
518 a <a href="#functionstructure">function definition</a> for
519 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
520 "<tt>foo"</tt>.</p>
522 <p>In general, a module is made up of a list of global values, where both
523 functions and global variables are global values. Global values are
524 represented by a pointer to a memory location (in this case, a pointer to an
525 array of char, and a pointer to a function), and have one of the
526 following <a href="#linkage">linkage types</a>.</p>
528 </div>
530 <!-- ======================================================================= -->
531 <div class="doc_subsection">
532 <a name="linkage">Linkage Types</a>
533 </div>
535 <div class="doc_text">
537 <p>All Global Variables and Functions have one of the following types of
538 linkage:</p>
540 <dl>
541 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
542 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
543 by objects in the current module. In particular, linking code into a
544 module with an private global value may cause the private to be renamed as
545 necessary to avoid collisions. Because the symbol is private to the
546 module, all references can be updated. This doesn't show up in any symbol
547 table in the object file.</dd>
549 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
550 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
551 assembler and evaluated by the linker. Unlike normal strong symbols, they
552 are removed by the linker from the final linked image (executable or
553 dynamic library).</dd>
555 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
556 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
557 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
558 linker. The symbols are removed by the linker from the final linked image
559 (executable or dynamic library).</dd>
561 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
562 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
563 of the object is not taken. For instance, functions that had an inline
564 definition, but the compiler decided not to inline it. Note,
565 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
566 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
567 visibility. The symbols are removed by the linker from the final linked
568 image (executable or dynamic library).</dd>
570 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
571 <dd>Similar to private, but the value shows as a local symbol
572 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
573 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
575 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
576 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
577 into the object file corresponding to the LLVM module. They exist to
578 allow inlining and other optimizations to take place given knowledge of
579 the definition of the global, which is known to be somewhere outside the
580 module. Globals with <tt>available_externally</tt> linkage are allowed to
581 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
582 This linkage type is only allowed on definitions, not declarations.</dd>
584 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
585 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
586 the same name when linkage occurs. This can be used to implement
587 some forms of inline functions, templates, or other code which must be
588 generated in each translation unit that uses it, but where the body may
589 be overridden with a more definitive definition later. Unreferenced
590 <tt>linkonce</tt> globals are allowed to be discarded. Note that
591 <tt>linkonce</tt> linkage does not actually allow the optimizer to
592 inline the body of this function into callers because it doesn't know if
593 this definition of the function is the definitive definition within the
594 program or whether it will be overridden by a stronger definition.
595 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
596 linkage.</dd>
598 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
599 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
600 <tt>linkonce</tt> linkage, except that unreferenced globals with
601 <tt>weak</tt> linkage may not be discarded. This is used for globals that
602 are declared "weak" in C source code.</dd>
604 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
605 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
606 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
607 global scope.
608 Symbols with "<tt>common</tt>" linkage are merged in the same way as
609 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
610 <tt>common</tt> symbols may not have an explicit section,
611 must have a zero initializer, and may not be marked '<a
612 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
613 have common linkage.</dd>
616 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
617 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
618 pointer to array type. When two global variables with appending linkage
619 are linked together, the two global arrays are appended together. This is
620 the LLVM, typesafe, equivalent of having the system linker append together
621 "sections" with identical names when .o files are linked.</dd>
623 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
624 <dd>The semantics of this linkage follow the ELF object file model: the symbol
625 is weak until linked, if not linked, the symbol becomes null instead of
626 being an undefined reference.</dd>
628 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
629 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
630 <dd>Some languages allow differing globals to be merged, such as two functions
631 with different semantics. Other languages, such as <tt>C++</tt>, ensure
632 that only equivalent globals are ever merged (the "one definition rule"
633 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
634 and <tt>weak_odr</tt> linkage types to indicate that the global will only
635 be merged with equivalent globals. These linkage types are otherwise the
636 same as their non-<tt>odr</tt> versions.</dd>
638 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
639 <dd>If none of the above identifiers are used, the global is externally
640 visible, meaning that it participates in linkage and can be used to
641 resolve external symbol references.</dd>
642 </dl>
644 <p>The next two types of linkage are targeted for Microsoft Windows platform
645 only. They are designed to support importing (exporting) symbols from (to)
646 DLLs (Dynamic Link Libraries).</p>
648 <dl>
649 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
650 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
651 or variable via a global pointer to a pointer that is set up by the DLL
652 exporting the symbol. On Microsoft Windows targets, the pointer name is
653 formed by combining <code>__imp_</code> and the function or variable
654 name.</dd>
656 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
657 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
658 pointer to a pointer in a DLL, so that it can be referenced with the
659 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
660 name is formed by combining <code>__imp_</code> and the function or
661 variable name.</dd>
662 </dl>
664 <p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
665 another module defined a "<tt>.LC0</tt>" variable and was linked with this
666 one, one of the two would be renamed, preventing a collision. Since
667 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
668 declarations), they are accessible outside of the current module.</p>
670 <p>It is illegal for a function <i>declaration</i> to have any linkage type
671 other than "externally visible", <tt>dllimport</tt>
672 or <tt>extern_weak</tt>.</p>
674 <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
675 or <tt>weak_odr</tt> linkages.</p>
677 </div>
679 <!-- ======================================================================= -->
680 <div class="doc_subsection">
681 <a name="callingconv">Calling Conventions</a>
682 </div>
684 <div class="doc_text">
686 <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
687 and <a href="#i_invoke">invokes</a> can all have an optional calling
688 convention specified for the call. The calling convention of any pair of
689 dynamic caller/callee must match, or the behavior of the program is
690 undefined. The following calling conventions are supported by LLVM, and more
691 may be added in the future:</p>
693 <dl>
694 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
695 <dd>This calling convention (the default if no other calling convention is
696 specified) matches the target C calling conventions. This calling
697 convention supports varargs function calls and tolerates some mismatch in
698 the declared prototype and implemented declaration of the function (as
699 does normal C).</dd>
701 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
702 <dd>This calling convention attempts to make calls as fast as possible
703 (e.g. by passing things in registers). This calling convention allows the
704 target to use whatever tricks it wants to produce fast code for the
705 target, without having to conform to an externally specified ABI
706 (Application Binary Interface).
707 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
708 when this or the GHC convention is used.</a> This calling convention
709 does not support varargs and requires the prototype of all callees to
710 exactly match the prototype of the function definition.</dd>
712 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
713 <dd>This calling convention attempts to make code in the caller as efficient
714 as possible under the assumption that the call is not commonly executed.
715 As such, these calls often preserve all registers so that the call does
716 not break any live ranges in the caller side. This calling convention
717 does not support varargs and requires the prototype of all callees to
718 exactly match the prototype of the function definition.</dd>
720 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
721 <dd>This calling convention has been implemented specifically for use by the
722 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
723 It passes everything in registers, going to extremes to achieve this by
724 disabling callee save registers. This calling convention should not be
725 used lightly but only for specific situations such as an alternative to
726 the <em>register pinning</em> performance technique often used when
727 implementing functional programming languages.At the moment only X86
728 supports this convention and it has the following limitations:
729 <ul>
730 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
731 floating point types are supported.</li>
732 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
733 6 floating point parameters.</li>
734 </ul>
735 This calling convention supports
736 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
737 requires both the caller and callee are using it.
738 </dd>
740 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
741 <dd>Any calling convention may be specified by number, allowing
742 target-specific calling conventions to be used. Target specific calling
743 conventions start at 64.</dd>
744 </dl>
746 <p>More calling conventions can be added/defined on an as-needed basis, to
747 support Pascal conventions or any other well-known target-independent
748 convention.</p>
750 </div>
752 <!-- ======================================================================= -->
753 <div class="doc_subsection">
754 <a name="visibility">Visibility Styles</a>
755 </div>
757 <div class="doc_text">
759 <p>All Global Variables and Functions have one of the following visibility
760 styles:</p>
762 <dl>
763 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
764 <dd>On targets that use the ELF object file format, default visibility means
765 that the declaration is visible to other modules and, in shared libraries,
766 means that the declared entity may be overridden. On Darwin, default
767 visibility means that the declaration is visible to other modules. Default
768 visibility corresponds to "external linkage" in the language.</dd>
770 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
771 <dd>Two declarations of an object with hidden visibility refer to the same
772 object if they are in the same shared object. Usually, hidden visibility
773 indicates that the symbol will not be placed into the dynamic symbol
774 table, so no other module (executable or shared library) can reference it
775 directly.</dd>
777 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
778 <dd>On ELF, protected visibility indicates that the symbol will be placed in
779 the dynamic symbol table, but that references within the defining module
780 will bind to the local symbol. That is, the symbol cannot be overridden by
781 another module.</dd>
782 </dl>
784 </div>
786 <!-- ======================================================================= -->
787 <div class="doc_subsection">
788 <a name="namedtypes">Named Types</a>
789 </div>
791 <div class="doc_text">
793 <p>LLVM IR allows you to specify name aliases for certain types. This can make
794 it easier to read the IR and make the IR more condensed (particularly when
795 recursive types are involved). An example of a name specification is:</p>
797 <pre class="doc_code">
798 %mytype = type { %mytype*, i32 }
799 </pre>
801 <p>You may give a name to any <a href="#typesystem">type</a> except
802 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
803 is expected with the syntax "%mytype".</p>
805 <p>Note that type names are aliases for the structural type that they indicate,
806 and that you can therefore specify multiple names for the same type. This
807 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
808 uses structural typing, the name is not part of the type. When printing out
809 LLVM IR, the printer will pick <em>one name</em> to render all types of a
810 particular shape. This means that if you have code where two different
811 source types end up having the same LLVM type, that the dumper will sometimes
812 print the "wrong" or unexpected type. This is an important design point and
813 isn't going to change.</p>
815 </div>
817 <!-- ======================================================================= -->
818 <div class="doc_subsection">
819 <a name="globalvars">Global Variables</a>
820 </div>
822 <div class="doc_text">
824 <p>Global variables define regions of memory allocated at compilation time
825 instead of run-time. Global variables may optionally be initialized, may
826 have an explicit section to be placed in, and may have an optional explicit
827 alignment specified. A variable may be defined as "thread_local", which
828 means that it will not be shared by threads (each thread will have a
829 separated copy of the variable). A variable may be defined as a global
830 "constant," which indicates that the contents of the variable
831 will <b>never</b> be modified (enabling better optimization, allowing the
832 global data to be placed in the read-only section of an executable, etc).
833 Note that variables that need runtime initialization cannot be marked
834 "constant" as there is a store to the variable.</p>
836 <p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
837 constant, even if the final definition of the global is not. This capability
838 can be used to enable slightly better optimization of the program, but
839 requires the language definition to guarantee that optimizations based on the
840 'constantness' are valid for the translation units that do not include the
841 definition.</p>
843 <p>As SSA values, global variables define pointer values that are in scope
844 (i.e. they dominate) all basic blocks in the program. Global variables
845 always define a pointer to their "content" type because they describe a
846 region of memory, and all memory objects in LLVM are accessed through
847 pointers.</p>
849 <p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
850 that the address is not significant, only the content. Constants marked
851 like this can be merged with other constants if they have the same
852 initializer. Note that a constant with significant address <em>can</em>
853 be merged with a <tt>unnamed_addr</tt> constant, the result being a
854 constant whose address is significant.</p>
856 <p>A global variable may be declared to reside in a target-specific numbered
857 address space. For targets that support them, address spaces may affect how
858 optimizations are performed and/or what target instructions are used to
859 access the variable. The default address space is zero. The address space
860 qualifier must precede any other attributes.</p>
862 <p>LLVM allows an explicit section to be specified for globals. If the target
863 supports it, it will emit globals to the section specified.</p>
865 <p>An explicit alignment may be specified for a global, which must be a power
866 of 2. If not present, or if the alignment is set to zero, the alignment of
867 the global is set by the target to whatever it feels convenient. If an
868 explicit alignment is specified, the global is forced to have exactly that
869 alignment. Targets and optimizers are not allowed to over-align the global
870 if the global has an assigned section. In this case, the extra alignment
871 could be observable: for example, code could assume that the globals are
872 densely packed in their section and try to iterate over them as an array,
873 alignment padding would break this iteration.</p>
875 <p>For example, the following defines a global in a numbered address space with
876 an initializer, section, and alignment:</p>
878 <pre class="doc_code">
879 @G = addrspace(5) constant float 1.0, section "foo", align 4
880 </pre>
882 </div>
885 <!-- ======================================================================= -->
886 <div class="doc_subsection">
887 <a name="functionstructure">Functions</a>
888 </div>
890 <div class="doc_text">
892 <p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
893 optional <a href="#linkage">linkage type</a>, an optional
894 <a href="#visibility">visibility style</a>, an optional
895 <a href="#callingconv">calling convention</a>,
896 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
897 <a href="#paramattrs">parameter attribute</a> for the return type, a function
898 name, a (possibly empty) argument list (each with optional
899 <a href="#paramattrs">parameter attributes</a>), optional
900 <a href="#fnattrs">function attributes</a>, an optional section, an optional
901 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
902 curly brace, a list of basic blocks, and a closing curly brace.</p>
904 <p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
905 optional <a href="#linkage">linkage type</a>, an optional
906 <a href="#visibility">visibility style</a>, an optional
907 <a href="#callingconv">calling convention</a>,
908 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
909 <a href="#paramattrs">parameter attribute</a> for the return type, a function
910 name, a possibly empty list of arguments, an optional alignment, and an
911 optional <a href="#gc">garbage collector name</a>.</p>
913 <p>A function definition contains a list of basic blocks, forming the CFG
914 (Control Flow Graph) for the function. Each basic block may optionally start
915 with a label (giving the basic block a symbol table entry), contains a list
916 of instructions, and ends with a <a href="#terminators">terminator</a>
917 instruction (such as a branch or function return).</p>
919 <p>The first basic block in a function is special in two ways: it is immediately
920 executed on entrance to the function, and it is not allowed to have
921 predecessor basic blocks (i.e. there can not be any branches to the entry
922 block of a function). Because the block can have no predecessors, it also
923 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
925 <p>LLVM allows an explicit section to be specified for functions. If the target
926 supports it, it will emit functions to the section specified.</p>
928 <p>An explicit alignment may be specified for a function. If not present, or if
929 the alignment is set to zero, the alignment of the function is set by the
930 target to whatever it feels convenient. If an explicit alignment is
931 specified, the function is forced to have at least that much alignment. All
932 alignments must be a power of 2.</p>
934 <p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
935 be significant and two identical functions can be merged</p>.
937 <h5>Syntax:</h5>
938 <pre class="doc_code">
939 define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
940 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
941 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
942 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
943 [<a href="#gc">gc</a>] { ... }
944 </pre>
946 </div>
948 <!-- ======================================================================= -->
949 <div class="doc_subsection">
950 <a name="aliasstructure">Aliases</a>
951 </div>
953 <div class="doc_text">
955 <p>Aliases act as "second name" for the aliasee value (which can be either
956 function, global variable, another alias or bitcast of global value). Aliases
957 may have an optional <a href="#linkage">linkage type</a>, and an
958 optional <a href="#visibility">visibility style</a>.</p>
960 <h5>Syntax:</h5>
961 <pre class="doc_code">
962 @&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
963 </pre>
965 </div>
967 <!-- ======================================================================= -->
968 <div class="doc_subsection">
969 <a name="namedmetadatastructure">Named Metadata</a>
970 </div>
972 <div class="doc_text">
974 <p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
975 nodes</a> (but not metadata strings) are the only valid operands for
976 a named metadata.</p>
978 <h5>Syntax:</h5>
979 <pre class="doc_code">
980 ; Some unnamed metadata nodes, which are referenced by the named metadata.
981 !0 = metadata !{metadata !"zero"}
982 !1 = metadata !{metadata !"one"}
983 !2 = metadata !{metadata !"two"}
984 ; A named metadata.
985 !name = !{!0, !1, !2}
986 </pre>
988 </div>
990 <!-- ======================================================================= -->
991 <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
993 <div class="doc_text">
995 <p>The return type and each parameter of a function type may have a set of
996 <i>parameter attributes</i> associated with them. Parameter attributes are
997 used to communicate additional information about the result or parameters of
998 a function. Parameter attributes are considered to be part of the function,
999 not of the function type, so functions with different parameter attributes
1000 can have the same function type.</p>
1002 <p>Parameter attributes are simple keywords that follow the type specified. If
1003 multiple parameter attributes are needed, they are space separated. For
1004 example:</p>
1006 <pre class="doc_code">
1007 declare i32 @printf(i8* noalias nocapture, ...)
1008 declare i32 @atoi(i8 zeroext)
1009 declare signext i8 @returns_signed_char()
1010 </pre>
1012 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
1013 <tt>readonly</tt>) come immediately after the argument list.</p>
1015 <p>Currently, only the following parameter attributes are defined:</p>
1017 <dl>
1018 <dt><tt><b>zeroext</b></tt></dt>
1019 <dd>This indicates to the code generator that the parameter or return value
1020 should be zero-extended to the extent required by the target's ABI (which
1021 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1022 parameter) or the callee (for a return value).</dd>
1024 <dt><tt><b>signext</b></tt></dt>
1025 <dd>This indicates to the code generator that the parameter or return value
1026 should be sign-extended to the extent required by the target's ABI (which
1027 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1028 return value).</dd>
1030 <dt><tt><b>inreg</b></tt></dt>
1031 <dd>This indicates that this parameter or return value should be treated in a
1032 special target-dependent fashion during while emitting code for a function
1033 call or return (usually, by putting it in a register as opposed to memory,
1034 though some targets use it to distinguish between two different kinds of
1035 registers). Use of this attribute is target-specific.</dd>
1037 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
1038 <dd><p>This indicates that the pointer parameter should really be passed by
1039 value to the function. The attribute implies that a hidden copy of the
1040 pointee
1041 is made between the caller and the callee, so the callee is unable to
1042 modify the value in the callee. This attribute is only valid on LLVM
1043 pointer arguments. It is generally used to pass structs and arrays by
1044 value, but is also valid on pointers to scalars. The copy is considered
1045 to belong to the caller not the callee (for example,
1046 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1047 <tt>byval</tt> parameters). This is not a valid attribute for return
1048 values.</p>
1050 <p>The byval attribute also supports specifying an alignment with
1051 the align attribute. It indicates the alignment of the stack slot to
1052 form and the known alignment of the pointer specified to the call site. If
1053 the alignment is not specified, then the code generator makes a
1054 target-specific assumption.</p></dd>
1056 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
1057 <dd>This indicates that the pointer parameter specifies the address of a
1058 structure that is the return value of the function in the source program.
1059 This pointer must be guaranteed by the caller to be valid: loads and
1060 stores to the structure may be assumed by the callee to not to trap. This
1061 may only be applied to the first parameter. This is not a valid attribute
1062 for return values. </dd>
1064 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
1065 <dd>This indicates that pointer values
1066 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
1067 value do not alias pointer values which are not <i>based</i> on it,
1068 ignoring certain "irrelevant" dependencies.
1069 For a call to the parent function, dependencies between memory
1070 references from before or after the call and from those during the call
1071 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1072 return value used in that call.
1073 The caller shares the responsibility with the callee for ensuring that
1074 these requirements are met.
1075 For further details, please see the discussion of the NoAlias response in
1076 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1077 <br>
1078 Note that this definition of <tt>noalias</tt> is intentionally
1079 similar to the definition of <tt>restrict</tt> in C99 for function
1080 arguments, though it is slightly weaker.
1081 <br>
1082 For function return values, C99's <tt>restrict</tt> is not meaningful,
1083 while LLVM's <tt>noalias</tt> is.
1084 </dd>
1086 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
1087 <dd>This indicates that the callee does not make any copies of the pointer
1088 that outlive the callee itself. This is not a valid attribute for return
1089 values.</dd>
1091 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
1092 <dd>This indicates that the pointer parameter can be excised using the
1093 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1094 attribute for return values.</dd>
1095 </dl>
1097 </div>
1099 <!-- ======================================================================= -->
1100 <div class="doc_subsection">
1101 <a name="gc">Garbage Collector Names</a>
1102 </div>
1104 <div class="doc_text">
1106 <p>Each function may specify a garbage collector name, which is simply a
1107 string:</p>
1109 <pre class="doc_code">
1110 define void @f() gc "name" { ... }
1111 </pre>
1113 <p>The compiler declares the supported values of <i>name</i>. Specifying a
1114 collector which will cause the compiler to alter its output in order to
1115 support the named garbage collection algorithm.</p>
1117 </div>
1119 <!-- ======================================================================= -->
1120 <div class="doc_subsection">
1121 <a name="fnattrs">Function Attributes</a>
1122 </div>
1124 <div class="doc_text">
1126 <p>Function attributes are set to communicate additional information about a
1127 function. Function attributes are considered to be part of the function, not
1128 of the function type, so functions with different parameter attributes can
1129 have the same function type.</p>
1131 <p>Function attributes are simple keywords that follow the type specified. If
1132 multiple attributes are needed, they are space separated. For example:</p>
1134 <pre class="doc_code">
1135 define void @f() noinline { ... }
1136 define void @f() alwaysinline { ... }
1137 define void @f() alwaysinline optsize { ... }
1138 define void @f() optsize { ... }
1139 </pre>
1141 <dl>
1142 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1143 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1144 the backend should forcibly align the stack pointer. Specify the
1145 desired alignment, which must be a power of two, in parentheses.
1147 <dt><tt><b>alwaysinline</b></tt></dt>
1148 <dd>This attribute indicates that the inliner should attempt to inline this
1149 function into callers whenever possible, ignoring any active inlining size
1150 threshold for this caller.</dd>
1152 <dt><tt><b>hotpatch</b></tt></dt>
1153 <dd>This attribute indicates that the function should be 'hotpatchable',
1154 meaning the function can be patched and/or hooked even while it is
1155 loaded into memory. On x86, the function prologue will be preceded
1156 by six bytes of padding and will begin with a two-byte instruction.
1157 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1158 higher were compiled in this fashion.</dd>
1160 <dt><tt><b>inlinehint</b></tt></dt>
1161 <dd>This attribute indicates that the source code contained a hint that inlining
1162 this function is desirable (such as the "inline" keyword in C/C++). It
1163 is just a hint; it imposes no requirements on the inliner.</dd>
1165 <dt><tt><b>naked</b></tt></dt>
1166 <dd>This attribute disables prologue / epilogue emission for the function.
1167 This can have very system-specific consequences.</dd>
1169 <dt><tt><b>noimplicitfloat</b></tt></dt>
1170 <dd>This attributes disables implicit floating point instructions.</dd>
1172 <dt><tt><b>noinline</b></tt></dt>
1173 <dd>This attribute indicates that the inliner should never inline this
1174 function in any situation. This attribute may not be used together with
1175 the <tt>alwaysinline</tt> attribute.</dd>
1177 <dt><tt><b>noredzone</b></tt></dt>
1178 <dd>This attribute indicates that the code generator should not use a red
1179 zone, even if the target-specific ABI normally permits it.</dd>
1181 <dt><tt><b>noreturn</b></tt></dt>
1182 <dd>This function attribute indicates that the function never returns
1183 normally. This produces undefined behavior at runtime if the function
1184 ever does dynamically return.</dd>
1186 <dt><tt><b>nounwind</b></tt></dt>
1187 <dd>This function attribute indicates that the function never returns with an
1188 unwind or exceptional control flow. If the function does unwind, its
1189 runtime behavior is undefined.</dd>
1191 <dt><tt><b>optsize</b></tt></dt>
1192 <dd>This attribute suggests that optimization passes and code generator passes
1193 make choices that keep the code size of this function low, and otherwise
1194 do optimizations specifically to reduce code size.</dd>
1196 <dt><tt><b>readnone</b></tt></dt>
1197 <dd>This attribute indicates that the function computes its result (or decides
1198 to unwind an exception) based strictly on its arguments, without
1199 dereferencing any pointer arguments or otherwise accessing any mutable
1200 state (e.g. memory, control registers, etc) visible to caller functions.
1201 It does not write through any pointer arguments
1202 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1203 changes any state visible to callers. This means that it cannot unwind
1204 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1205 could use the <tt>unwind</tt> instruction.</dd>
1207 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
1208 <dd>This attribute indicates that the function does not write through any
1209 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1210 arguments) or otherwise modify any state (e.g. memory, control registers,
1211 etc) visible to caller functions. It may dereference pointer arguments
1212 and read state that may be set in the caller. A readonly function always
1213 returns the same value (or unwinds an exception identically) when called
1214 with the same set of arguments and global state. It cannot unwind an
1215 exception by calling the <tt>C++</tt> exception throwing methods, but may
1216 use the <tt>unwind</tt> instruction.</dd>
1218 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
1219 <dd>This attribute indicates that the function should emit a stack smashing
1220 protector. It is in the form of a "canary"&mdash;a random value placed on
1221 the stack before the local variables that's checked upon return from the
1222 function to see if it has been overwritten. A heuristic is used to
1223 determine if a function needs stack protectors or not.<br>
1224 <br>
1225 If a function that has an <tt>ssp</tt> attribute is inlined into a
1226 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1227 function will have an <tt>ssp</tt> attribute.</dd>
1229 <dt><tt><b>sspreq</b></tt></dt>
1230 <dd>This attribute indicates that the function should <em>always</em> emit a
1231 stack smashing protector. This overrides
1232 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1233 <br>
1234 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1235 function that doesn't have an <tt>sspreq</tt> attribute or which has
1236 an <tt>ssp</tt> attribute, then the resulting function will have
1237 an <tt>sspreq</tt> attribute.</dd>
1238 </dl>
1240 </div>
1242 <!-- ======================================================================= -->
1243 <div class="doc_subsection">
1244 <a name="moduleasm">Module-Level Inline Assembly</a>
1245 </div>
1247 <div class="doc_text">
1249 <p>Modules may contain "module-level inline asm" blocks, which corresponds to
1250 the GCC "file scope inline asm" blocks. These blocks are internally
1251 concatenated by LLVM and treated as a single unit, but may be separated in
1252 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
1254 <pre class="doc_code">
1255 module asm "inline asm code goes here"
1256 module asm "more can go here"
1257 </pre>
1259 <p>The strings can contain any character by escaping non-printable characters.
1260 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1261 for the number.</p>
1263 <p>The inline asm code is simply printed to the machine code .s file when
1264 assembly code is generated.</p>
1266 </div>
1268 <!-- ======================================================================= -->
1269 <div class="doc_subsection">
1270 <a name="datalayout">Data Layout</a>
1271 </div>
1273 <div class="doc_text">
1275 <p>A module may specify a target specific data layout string that specifies how
1276 data is to be laid out in memory. The syntax for the data layout is
1277 simply:</p>
1279 <pre class="doc_code">
1280 target datalayout = "<i>layout specification</i>"
1281 </pre>
1283 <p>The <i>layout specification</i> consists of a list of specifications
1284 separated by the minus sign character ('-'). Each specification starts with
1285 a letter and may include other information after the letter to define some
1286 aspect of the data layout. The specifications accepted are as follows:</p>
1288 <dl>
1289 <dt><tt>E</tt></dt>
1290 <dd>Specifies that the target lays out data in big-endian form. That is, the
1291 bits with the most significance have the lowest address location.</dd>
1293 <dt><tt>e</tt></dt>
1294 <dd>Specifies that the target lays out data in little-endian form. That is,
1295 the bits with the least significance have the lowest address
1296 location.</dd>
1298 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1299 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1300 <i>preferred</i> alignments. All sizes are in bits. Specifying
1301 the <i>pref</i> alignment is optional. If omitted, the
1302 preceding <tt>:</tt> should be omitted too.</dd>
1304 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1305 <dd>This specifies the alignment for an integer type of a given bit
1306 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1308 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1309 <dd>This specifies the alignment for a vector type of a given bit
1310 <i>size</i>.</dd>
1312 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1313 <dd>This specifies the alignment for a floating point type of a given bit
1314 <i>size</i>. Only values of <i>size</i> that are supported by the target
1315 will work. 32 (float) and 64 (double) are supported on all targets;
1316 80 or 128 (different flavors of long double) are also supported on some
1317 targets.
1319 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1320 <dd>This specifies the alignment for an aggregate type of a given bit
1321 <i>size</i>.</dd>
1323 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1324 <dd>This specifies the alignment for a stack object of a given bit
1325 <i>size</i>.</dd>
1327 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1328 <dd>This specifies a set of native integer widths for the target CPU
1329 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1330 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
1331 this set are considered to support most general arithmetic
1332 operations efficiently.</dd>
1333 </dl>
1335 <p>When constructing the data layout for a given target, LLVM starts with a
1336 default set of specifications which are then (possibly) overridden by the
1337 specifications in the <tt>datalayout</tt> keyword. The default specifications
1338 are given in this list:</p>
1340 <ul>
1341 <li><tt>E</tt> - big endian</li>
1342 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
1343 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1344 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1345 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1346 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1347 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1348 alignment of 64-bits</li>
1349 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1350 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1351 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1352 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1353 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1354 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1355 </ul>
1357 <p>When LLVM is determining the alignment for a given type, it uses the
1358 following rules:</p>
1360 <ol>
1361 <li>If the type sought is an exact match for one of the specifications, that
1362 specification is used.</li>
1364 <li>If no match is found, and the type sought is an integer type, then the
1365 smallest integer type that is larger than the bitwidth of the sought type
1366 is used. If none of the specifications are larger than the bitwidth then
1367 the the largest integer type is used. For example, given the default
1368 specifications above, the i7 type will use the alignment of i8 (next
1369 largest) while both i65 and i256 will use the alignment of i64 (largest
1370 specified).</li>
1372 <li>If no match is found, and the type sought is a vector type, then the
1373 largest vector type that is smaller than the sought vector type will be
1374 used as a fall back. This happens because &lt;128 x double&gt; can be
1375 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1376 </ol>
1378 </div>
1380 <!-- ======================================================================= -->
1381 <div class="doc_subsection">
1382 <a name="pointeraliasing">Pointer Aliasing Rules</a>
1383 </div>
1385 <div class="doc_text">
1387 <p>Any memory access must be done through a pointer value associated
1388 with an address range of the memory access, otherwise the behavior
1389 is undefined. Pointer values are associated with address ranges
1390 according to the following rules:</p>
1392 <ul>
1393 <li>A pointer value is associated with the addresses associated with
1394 any value it is <i>based</i> on.
1395 <li>An address of a global variable is associated with the address
1396 range of the variable's storage.</li>
1397 <li>The result value of an allocation instruction is associated with
1398 the address range of the allocated storage.</li>
1399 <li>A null pointer in the default address-space is associated with
1400 no address.</li>
1401 <li>An integer constant other than zero or a pointer value returned
1402 from a function not defined within LLVM may be associated with address
1403 ranges allocated through mechanisms other than those provided by
1404 LLVM. Such ranges shall not overlap with any ranges of addresses
1405 allocated by mechanisms provided by LLVM.</li>
1406 </ul>
1408 <p>A pointer value is <i>based</i> on another pointer value according
1409 to the following rules:</p>
1411 <ul>
1412 <li>A pointer value formed from a
1413 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1414 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1415 <li>The result value of a
1416 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1417 of the <tt>bitcast</tt>.</li>
1418 <li>A pointer value formed by an
1419 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1420 pointer values that contribute (directly or indirectly) to the
1421 computation of the pointer's value.</li>
1422 <li>The "<i>based</i> on" relationship is transitive.</li>
1423 </ul>
1425 <p>Note that this definition of <i>"based"</i> is intentionally
1426 similar to the definition of <i>"based"</i> in C99, though it is
1427 slightly weaker.</p>
1429 <p>LLVM IR does not associate types with memory. The result type of a
1430 <tt><a href="#i_load">load</a></tt> merely indicates the size and
1431 alignment of the memory from which to load, as well as the
1432 interpretation of the value. The first operand type of a
1433 <tt><a href="#i_store">store</a></tt> similarly only indicates the size
1434 and alignment of the store.</p>
1436 <p>Consequently, type-based alias analysis, aka TBAA, aka
1437 <tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1438 LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1439 additional information which specialized optimization passes may use
1440 to implement type-based alias analysis.</p>
1442 </div>
1444 <!-- ======================================================================= -->
1445 <div class="doc_subsection">
1446 <a name="volatile">Volatile Memory Accesses</a>
1447 </div>
1449 <div class="doc_text">
1451 <p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1452 href="#i_store"><tt>store</tt></a>s, and <a
1453 href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1454 The optimizers must not change the number of volatile operations or change their
1455 order of execution relative to other volatile operations. The optimizers
1456 <i>may</i> change the order of volatile operations relative to non-volatile
1457 operations. This is not Java's "volatile" and has no cross-thread
1458 synchronization behavior.</p>
1460 </div>
1462 <!-- *********************************************************************** -->
1463 <div class="doc_section"> <a name="typesystem">Type System</a> </div>
1464 <!-- *********************************************************************** -->
1466 <div class="doc_text">
1468 <p>The LLVM type system is one of the most important features of the
1469 intermediate representation. Being typed enables a number of optimizations
1470 to be performed on the intermediate representation directly, without having
1471 to do extra analyses on the side before the transformation. A strong type
1472 system makes it easier to read the generated code and enables novel analyses
1473 and transformations that are not feasible to perform on normal three address
1474 code representations.</p>
1476 </div>
1478 <!-- ======================================================================= -->
1479 <div class="doc_subsection"> <a name="t_classifications">Type
1480 Classifications</a> </div>
1482 <div class="doc_text">
1484 <p>The types fall into a few useful classifications:</p>
1486 <table border="1" cellspacing="0" cellpadding="4">
1487 <tbody>
1488 <tr><th>Classification</th><th>Types</th></tr>
1489 <tr>
1490 <td><a href="#t_integer">integer</a></td>
1491 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1492 </tr>
1493 <tr>
1494 <td><a href="#t_floating">floating point</a></td>
1495 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1496 </tr>
1497 <tr>
1498 <td><a name="t_firstclass">first class</a></td>
1499 <td><a href="#t_integer">integer</a>,
1500 <a href="#t_floating">floating point</a>,
1501 <a href="#t_pointer">pointer</a>,
1502 <a href="#t_vector">vector</a>,
1503 <a href="#t_struct">structure</a>,
1504 <a href="#t_array">array</a>,
1505 <a href="#t_label">label</a>,
1506 <a href="#t_metadata">metadata</a>.
1507 </td>
1508 </tr>
1509 <tr>
1510 <td><a href="#t_primitive">primitive</a></td>
1511 <td><a href="#t_label">label</a>,
1512 <a href="#t_void">void</a>,
1513 <a href="#t_integer">integer</a>,
1514 <a href="#t_floating">floating point</a>,
1515 <a href="#t_x86mmx">x86mmx</a>,
1516 <a href="#t_metadata">metadata</a>.</td>
1517 </tr>
1518 <tr>
1519 <td><a href="#t_derived">derived</a></td>
1520 <td><a href="#t_array">array</a>,
1521 <a href="#t_function">function</a>,
1522 <a href="#t_pointer">pointer</a>,
1523 <a href="#t_struct">structure</a>,
1524 <a href="#t_pstruct">packed structure</a>,
1525 <a href="#t_vector">vector</a>,
1526 <a href="#t_opaque">opaque</a>.
1527 </td>
1528 </tr>
1529 </tbody>
1530 </table>
1532 <p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1533 important. Values of these types are the only ones which can be produced by
1534 instructions.</p>
1536 </div>
1538 <!-- ======================================================================= -->
1539 <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
1541 <div class="doc_text">
1543 <p>The primitive types are the fundamental building blocks of the LLVM
1544 system.</p>
1546 </div>
1548 <!-- _______________________________________________________________________ -->
1549 <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1551 <div class="doc_text">
1553 <h5>Overview:</h5>
1554 <p>The integer type is a very simple type that simply specifies an arbitrary
1555 bit width for the integer type desired. Any bit width from 1 bit to
1556 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1558 <h5>Syntax:</h5>
1559 <pre>
1561 </pre>
1563 <p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1564 value.</p>
1566 <h5>Examples:</h5>
1567 <table class="layout">
1568 <tr class="layout">
1569 <td class="left"><tt>i1</tt></td>
1570 <td class="left">a single-bit integer.</td>
1571 </tr>
1572 <tr class="layout">
1573 <td class="left"><tt>i32</tt></td>
1574 <td class="left">a 32-bit integer.</td>
1575 </tr>
1576 <tr class="layout">
1577 <td class="left"><tt>i1942652</tt></td>
1578 <td class="left">a really big integer of over 1 million bits.</td>
1579 </tr>
1580 </table>
1582 </div>
1584 <!-- _______________________________________________________________________ -->
1585 <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1587 <div class="doc_text">
1589 <table>
1590 <tbody>
1591 <tr><th>Type</th><th>Description</th></tr>
1592 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1593 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1594 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1595 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1596 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1597 </tbody>
1598 </table>
1600 </div>
1602 <!-- _______________________________________________________________________ -->
1603 <div class="doc_subsubsection"> <a name="t_x86mmx">X86mmx Type</a> </div>
1605 <div class="doc_text">
1607 <h5>Overview:</h5>
1608 <p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1610 <h5>Syntax:</h5>
1611 <pre>
1612 x86mmx
1613 </pre>
1615 </div>
1617 <!-- _______________________________________________________________________ -->
1618 <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1620 <div class="doc_text">
1622 <h5>Overview:</h5>
1623 <p>The void type does not represent any value and has no size.</p>
1625 <h5>Syntax:</h5>
1626 <pre>
1627 void
1628 </pre>
1630 </div>
1632 <!-- _______________________________________________________________________ -->
1633 <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1635 <div class="doc_text">
1637 <h5>Overview:</h5>
1638 <p>The label type represents code labels.</p>
1640 <h5>Syntax:</h5>
1641 <pre>
1642 label
1643 </pre>
1645 </div>
1647 <!-- _______________________________________________________________________ -->
1648 <div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1650 <div class="doc_text">
1652 <h5>Overview:</h5>
1653 <p>The metadata type represents embedded metadata. No derived types may be
1654 created from metadata except for <a href="#t_function">function</a>
1655 arguments.
1657 <h5>Syntax:</h5>
1658 <pre>
1659 metadata
1660 </pre>
1662 </div>
1665 <!-- ======================================================================= -->
1666 <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1668 <div class="doc_text">
1670 <p>The real power in LLVM comes from the derived types in the system. This is
1671 what allows a programmer to represent arrays, functions, pointers, and other
1672 useful types. Each of these types contain one or more element types which
1673 may be a primitive type, or another derived type. For example, it is
1674 possible to have a two dimensional array, using an array as the element type
1675 of another array.</p>
1678 </div>
1680 <!-- _______________________________________________________________________ -->
1681 <div class="doc_subsubsection"> <a name="t_aggregate">Aggregate Types</a> </div>
1683 <div class="doc_text">
1685 <p>Aggregate Types are a subset of derived types that can contain multiple
1686 member types. <a href="#t_array">Arrays</a>,
1687 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1688 aggregate types.</p>
1690 </div>
1692 <!-- _______________________________________________________________________ -->
1693 <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1695 <div class="doc_text">
1697 <h5>Overview:</h5>
1698 <p>The array type is a very simple derived type that arranges elements
1699 sequentially in memory. The array type requires a size (number of elements)
1700 and an underlying data type.</p>
1702 <h5>Syntax:</h5>
1703 <pre>
1704 [&lt;# elements&gt; x &lt;elementtype&gt;]
1705 </pre>
1707 <p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1708 be any type with a size.</p>
1710 <h5>Examples:</h5>
1711 <table class="layout">
1712 <tr class="layout">
1713 <td class="left"><tt>[40 x i32]</tt></td>
1714 <td class="left">Array of 40 32-bit integer values.</td>
1715 </tr>
1716 <tr class="layout">
1717 <td class="left"><tt>[41 x i32]</tt></td>
1718 <td class="left">Array of 41 32-bit integer values.</td>
1719 </tr>
1720 <tr class="layout">
1721 <td class="left"><tt>[4 x i8]</tt></td>
1722 <td class="left">Array of 4 8-bit integer values.</td>
1723 </tr>
1724 </table>
1725 <p>Here are some examples of multidimensional arrays:</p>
1726 <table class="layout">
1727 <tr class="layout">
1728 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1729 <td class="left">3x4 array of 32-bit integer values.</td>
1730 </tr>
1731 <tr class="layout">
1732 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1733 <td class="left">12x10 array of single precision floating point values.</td>
1734 </tr>
1735 <tr class="layout">
1736 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1737 <td class="left">2x3x4 array of 16-bit integer values.</td>
1738 </tr>
1739 </table>
1741 <p>There is no restriction on indexing beyond the end of the array implied by
1742 a static type (though there are restrictions on indexing beyond the bounds
1743 of an allocated object in some cases). This means that single-dimension
1744 'variable sized array' addressing can be implemented in LLVM with a zero
1745 length array type. An implementation of 'pascal style arrays' in LLVM could
1746 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
1748 </div>
1750 <!-- _______________________________________________________________________ -->
1751 <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1753 <div class="doc_text">
1755 <h5>Overview:</h5>
1756 <p>The function type can be thought of as a function signature. It consists of
1757 a return type and a list of formal parameter types. The return type of a
1758 function type is a first class type or a void type.</p>
1760 <h5>Syntax:</h5>
1761 <pre>
1762 &lt;returntype&gt; (&lt;parameter list&gt;)
1763 </pre>
1765 <p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1766 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1767 which indicates that the function takes a variable number of arguments.
1768 Variable argument functions can access their arguments with
1769 the <a href="#int_varargs">variable argument handling intrinsic</a>
1770 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
1771 <a href="#t_label">label</a>.</p>
1773 <h5>Examples:</h5>
1774 <table class="layout">
1775 <tr class="layout">
1776 <td class="left"><tt>i32 (i32)</tt></td>
1777 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1778 </td>
1779 </tr><tr class="layout">
1780 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
1781 </tt></td>
1782 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1783 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1784 returning <tt>float</tt>.
1785 </td>
1786 </tr><tr class="layout">
1787 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1788 <td class="left">A vararg function that takes at least one
1789 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1790 which returns an integer. This is the signature for <tt>printf</tt> in
1791 LLVM.
1792 </td>
1793 </tr><tr class="layout">
1794 <td class="left"><tt>{i32, i32} (i32)</tt></td>
1795 <td class="left">A function taking an <tt>i32</tt>, returning a
1796 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
1797 </td>
1798 </tr>
1799 </table>
1801 </div>
1803 <!-- _______________________________________________________________________ -->
1804 <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1806 <div class="doc_text">
1808 <h5>Overview:</h5>
1809 <p>The structure type is used to represent a collection of data members together
1810 in memory. The packing of the field types is defined to match the ABI of the
1811 underlying processor. The elements of a structure may be any type that has a
1812 size.</p>
1814 <p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1815 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1816 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1817 Structures in registers are accessed using the
1818 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1819 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
1820 <h5>Syntax:</h5>
1821 <pre>
1822 { &lt;type list&gt; }
1823 </pre>
1825 <h5>Examples:</h5>
1826 <table class="layout">
1827 <tr class="layout">
1828 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1829 <td class="left">A triple of three <tt>i32</tt> values</td>
1830 </tr><tr class="layout">
1831 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1832 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1833 second element is a <a href="#t_pointer">pointer</a> to a
1834 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1835 an <tt>i32</tt>.</td>
1836 </tr>
1837 </table>
1839 </div>
1841 <!-- _______________________________________________________________________ -->
1842 <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1843 </div>
1845 <div class="doc_text">
1847 <h5>Overview:</h5>
1848 <p>The packed structure type is used to represent a collection of data members
1849 together in memory. There is no padding between fields. Further, the
1850 alignment of a packed structure is 1 byte. The elements of a packed
1851 structure may be any type that has a size.</p>
1853 <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1854 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1855 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1857 <h5>Syntax:</h5>
1858 <pre>
1859 &lt; { &lt;type list&gt; } &gt;
1860 </pre>
1862 <h5>Examples:</h5>
1863 <table class="layout">
1864 <tr class="layout">
1865 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1866 <td class="left">A triple of three <tt>i32</tt> values</td>
1867 </tr><tr class="layout">
1868 <td class="left">
1869 <tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
1870 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1871 second element is a <a href="#t_pointer">pointer</a> to a
1872 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1873 an <tt>i32</tt>.</td>
1874 </tr>
1875 </table>
1877 </div>
1879 <!-- _______________________________________________________________________ -->
1880 <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1882 <div class="doc_text">
1884 <h5>Overview:</h5>
1885 <p>The pointer type is used to specify memory locations.
1886 Pointers are commonly used to reference objects in memory.</p>
1888 <p>Pointer types may have an optional address space attribute defining the
1889 numbered address space where the pointed-to object resides. The default
1890 address space is number zero. The semantics of non-zero address
1891 spaces are target-specific.</p>
1893 <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1894 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
1896 <h5>Syntax:</h5>
1897 <pre>
1898 &lt;type&gt; *
1899 </pre>
1901 <h5>Examples:</h5>
1902 <table class="layout">
1903 <tr class="layout">
1904 <td class="left"><tt>[4 x i32]*</tt></td>
1905 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1906 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1907 </tr>
1908 <tr class="layout">
1909 <td class="left"><tt>i32 (i32*) *</tt></td>
1910 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
1911 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1912 <tt>i32</tt>.</td>
1913 </tr>
1914 <tr class="layout">
1915 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1916 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1917 that resides in address space #5.</td>
1918 </tr>
1919 </table>
1921 </div>
1923 <!-- _______________________________________________________________________ -->
1924 <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1926 <div class="doc_text">
1928 <h5>Overview:</h5>
1929 <p>A vector type is a simple derived type that represents a vector of elements.
1930 Vector types are used when multiple primitive data are operated in parallel
1931 using a single instruction (SIMD). A vector type requires a size (number of
1932 elements) and an underlying primitive data type. Vector types are considered
1933 <a href="#t_firstclass">first class</a>.</p>
1935 <h5>Syntax:</h5>
1936 <pre>
1937 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1938 </pre>
1940 <p>The number of elements is a constant integer value larger than 0; elementtype
1941 may be any integer or floating point type. Vectors of size zero are not
1942 allowed, and pointers are not allowed as the element type.</p>
1944 <h5>Examples:</h5>
1945 <table class="layout">
1946 <tr class="layout">
1947 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1948 <td class="left">Vector of 4 32-bit integer values.</td>
1949 </tr>
1950 <tr class="layout">
1951 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1952 <td class="left">Vector of 8 32-bit floating-point values.</td>
1953 </tr>
1954 <tr class="layout">
1955 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1956 <td class="left">Vector of 2 64-bit integer values.</td>
1957 </tr>
1958 </table>
1960 </div>
1962 <!-- _______________________________________________________________________ -->
1963 <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1964 <div class="doc_text">
1966 <h5>Overview:</h5>
1967 <p>Opaque types are used to represent unknown types in the system. This
1968 corresponds (for example) to the C notion of a forward declared structure
1969 type. In LLVM, opaque types can eventually be resolved to any type (not just
1970 a structure type).</p>
1972 <h5>Syntax:</h5>
1973 <pre>
1974 opaque
1975 </pre>
1977 <h5>Examples:</h5>
1978 <table class="layout">
1979 <tr class="layout">
1980 <td class="left"><tt>opaque</tt></td>
1981 <td class="left">An opaque type.</td>
1982 </tr>
1983 </table>
1985 </div>
1987 <!-- ======================================================================= -->
1988 <div class="doc_subsection">
1989 <a name="t_uprefs">Type Up-references</a>
1990 </div>
1992 <div class="doc_text">
1994 <h5>Overview:</h5>
1995 <p>An "up reference" allows you to refer to a lexically enclosing type without
1996 requiring it to have a name. For instance, a structure declaration may
1997 contain a pointer to any of the types it is lexically a member of. Example
1998 of up references (with their equivalent as named type declarations)
1999 include:</p>
2001 <pre>
2002 { \2 * } %x = type { %x* }
2003 { \2 }* %y = type { %y }*
2004 \1* %z = type %z*
2005 </pre>
2007 <p>An up reference is needed by the asmprinter for printing out cyclic types
2008 when there is no declared name for a type in the cycle. Because the
2009 asmprinter does not want to print out an infinite type string, it needs a
2010 syntax to handle recursive types that have no names (all names are optional
2011 in llvm IR).</p>
2013 <h5>Syntax:</h5>
2014 <pre>
2015 \&lt;level&gt;
2016 </pre>
2018 <p>The level is the count of the lexical type that is being referred to.</p>
2020 <h5>Examples:</h5>
2021 <table class="layout">
2022 <tr class="layout">
2023 <td class="left"><tt>\1*</tt></td>
2024 <td class="left">Self-referential pointer.</td>
2025 </tr>
2026 <tr class="layout">
2027 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
2028 <td class="left">Recursive structure where the upref refers to the out-most
2029 structure.</td>
2030 </tr>
2031 </table>
2033 </div>
2035 <!-- *********************************************************************** -->
2036 <div class="doc_section"> <a name="constants">Constants</a> </div>
2037 <!-- *********************************************************************** -->
2039 <div class="doc_text">
2041 <p>LLVM has several different basic types of constants. This section describes
2042 them all and their syntax.</p>
2044 </div>
2046 <!-- ======================================================================= -->
2047 <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
2049 <div class="doc_text">
2051 <dl>
2052 <dt><b>Boolean constants</b></dt>
2053 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
2054 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
2056 <dt><b>Integer constants</b></dt>
2057 <dd>Standard integers (such as '4') are constants of
2058 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2059 with integer types.</dd>
2061 <dt><b>Floating point constants</b></dt>
2062 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
2063 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2064 notation (see below). The assembler requires the exact decimal value of a
2065 floating-point constant. For example, the assembler accepts 1.25 but
2066 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2067 constants must have a <a href="#t_floating">floating point</a> type. </dd>
2069 <dt><b>Null pointer constants</b></dt>
2070 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
2071 and must be of <a href="#t_pointer">pointer type</a>.</dd>
2072 </dl>
2074 <p>The one non-intuitive notation for constants is the hexadecimal form of
2075 floating point constants. For example, the form '<tt>double
2076 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2077 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2078 constants are required (and the only time that they are generated by the
2079 disassembler) is when a floating point constant must be emitted but it cannot
2080 be represented as a decimal floating point number in a reasonable number of
2081 digits. For example, NaN's, infinities, and other special values are
2082 represented in their IEEE hexadecimal format so that assembly and disassembly
2083 do not cause any bits to change in the constants.</p>
2085 <p>When using the hexadecimal form, constants of types float and double are
2086 represented using the 16-digit form shown above (which matches the IEEE754
2087 representation for double); float values must, however, be exactly
2088 representable as IEE754 single precision. Hexadecimal format is always used
2089 for long double, and there are three forms of long double. The 80-bit format
2090 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2091 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2092 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2093 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2094 currently supported target uses this format. Long doubles will only work if
2095 they match the long double format on your target. All hexadecimal formats
2096 are big-endian (sign bit at the left).</p>
2098 <p>There are no constants of type x86mmx.</p>
2099 </div>
2101 <!-- ======================================================================= -->
2102 <div class="doc_subsection">
2103 <a name="aggregateconstants"></a> <!-- old anchor -->
2104 <a name="complexconstants">Complex Constants</a>
2105 </div>
2107 <div class="doc_text">
2109 <p>Complex constants are a (potentially recursive) combination of simple
2110 constants and smaller complex constants.</p>
2112 <dl>
2113 <dt><b>Structure constants</b></dt>
2114 <dd>Structure constants are represented with notation similar to structure
2115 type definitions (a comma separated list of elements, surrounded by braces
2116 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2117 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2118 Structure constants must have <a href="#t_struct">structure type</a>, and
2119 the number and types of elements must match those specified by the
2120 type.</dd>
2122 <dt><b>Array constants</b></dt>
2123 <dd>Array constants are represented with notation similar to array type
2124 definitions (a comma separated list of elements, surrounded by square
2125 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2126 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2127 the number and types of elements must match those specified by the
2128 type.</dd>
2130 <dt><b>Vector constants</b></dt>
2131 <dd>Vector constants are represented with notation similar to vector type
2132 definitions (a comma separated list of elements, surrounded by
2133 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2134 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2135 have <a href="#t_vector">vector type</a>, and the number and types of
2136 elements must match those specified by the type.</dd>
2138 <dt><b>Zero initialization</b></dt>
2139 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
2140 value to zero of <em>any</em> type, including scalar and
2141 <a href="#t_aggregate">aggregate</a> types.
2142 This is often used to avoid having to print large zero initializers
2143 (e.g. for large arrays) and is always exactly equivalent to using explicit
2144 zero initializers.</dd>
2146 <dt><b>Metadata node</b></dt>
2147 <dd>A metadata node is a structure-like constant with
2148 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2149 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2150 be interpreted as part of the instruction stream, metadata is a place to
2151 attach additional information such as debug info.</dd>
2152 </dl>
2154 </div>
2156 <!-- ======================================================================= -->
2157 <div class="doc_subsection">
2158 <a name="globalconstants">Global Variable and Function Addresses</a>
2159 </div>
2161 <div class="doc_text">
2163 <p>The addresses of <a href="#globalvars">global variables</a>
2164 and <a href="#functionstructure">functions</a> are always implicitly valid
2165 (link-time) constants. These constants are explicitly referenced when
2166 the <a href="#identifiers">identifier for the global</a> is used and always
2167 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2168 legal LLVM file:</p>
2170 <pre class="doc_code">
2171 @X = global i32 17
2172 @Y = global i32 42
2173 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2174 </pre>
2176 </div>
2178 <!-- ======================================================================= -->
2179 <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
2180 <div class="doc_text">
2182 <p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
2183 indicates that the user of the value may receive an unspecified bit-pattern.
2184 Undefined values may be of any type (other than '<tt>label</tt>'
2185 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
2187 <p>Undefined values are useful because they indicate to the compiler that the
2188 program is well defined no matter what value is used. This gives the
2189 compiler more freedom to optimize. Here are some examples of (potentially
2190 surprising) transformations that are valid (in pseudo IR):</p>
2193 <pre class="doc_code">
2194 %A = add %X, undef
2195 %B = sub %X, undef
2196 %C = xor %X, undef
2197 Safe:
2198 %A = undef
2199 %B = undef
2200 %C = undef
2201 </pre>
2203 <p>This is safe because all of the output bits are affected by the undef bits.
2204 Any output bit can have a zero or one depending on the input bits.</p>
2206 <pre class="doc_code">
2207 %A = or %X, undef
2208 %B = and %X, undef
2209 Safe:
2210 %A = -1
2211 %B = 0
2212 Unsafe:
2213 %A = undef
2214 %B = undef
2215 </pre>
2217 <p>These logical operations have bits that are not always affected by the input.
2218 For example, if <tt>%X</tt> has a zero bit, then the output of the
2219 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2220 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2221 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2222 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2223 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2224 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2225 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
2227 <pre class="doc_code">
2228 %A = select undef, %X, %Y
2229 %B = select undef, 42, %Y
2230 %C = select %X, %Y, undef
2231 Safe:
2232 %A = %X (or %Y)
2233 %B = 42 (or %Y)
2234 %C = %Y
2235 Unsafe:
2236 %A = undef
2237 %B = undef
2238 %C = undef
2239 </pre>
2241 <p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2242 branch) conditions can go <em>either way</em>, but they have to come from one
2243 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2244 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2245 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2246 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2247 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2248 eliminated.</p>
2250 <pre class="doc_code">
2251 %A = xor undef, undef
2253 %B = undef
2254 %C = xor %B, %B
2256 %D = undef
2257 %E = icmp lt %D, 4
2258 %F = icmp gte %D, 4
2260 Safe:
2261 %A = undef
2262 %B = undef
2263 %C = undef
2264 %D = undef
2265 %E = undef
2266 %F = undef
2267 </pre>
2269 <p>This example points out that two '<tt>undef</tt>' operands are not
2270 necessarily the same. This can be surprising to people (and also matches C
2271 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2272 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2273 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2274 its value over its "live range". This is true because the variable doesn't
2275 actually <em>have a live range</em>. Instead, the value is logically read
2276 from arbitrary registers that happen to be around when needed, so the value
2277 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2278 need to have the same semantics or the core LLVM "replace all uses with"
2279 concept would not hold.</p>
2281 <pre class="doc_code">
2282 %A = fdiv undef, %X
2283 %B = fdiv %X, undef
2284 Safe:
2285 %A = undef
2286 b: unreachable
2287 </pre>
2289 <p>These examples show the crucial difference between an <em>undefined
2290 value</em> and <em>undefined behavior</em>. An undefined value (like
2291 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2292 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2293 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2294 defined on SNaN's. However, in the second example, we can make a more
2295 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2296 arbitrary value, we are allowed to assume that it could be zero. Since a
2297 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2298 the operation does not execute at all. This allows us to delete the divide and
2299 all code after it. Because the undefined operation "can't happen", the
2300 optimizer can assume that it occurs in dead code.</p>
2302 <pre class="doc_code">
2303 a: store undef -> %X
2304 b: store %X -> undef
2305 Safe:
2306 a: &lt;deleted&gt;
2307 b: unreachable
2308 </pre>
2310 <p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2311 undefined value can be assumed to not have any effect; we can assume that the
2312 value is overwritten with bits that happen to match what was already there.
2313 However, a store <em>to</em> an undefined location could clobber arbitrary
2314 memory, therefore, it has undefined behavior.</p>
2316 </div>
2318 <!-- ======================================================================= -->
2319 <div class="doc_subsection"><a name="trapvalues">Trap Values</a></div>
2320 <div class="doc_text">
2322 <p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
2323 instead of representing an unspecified bit pattern, they represent the
2324 fact that an instruction or constant expression which cannot evoke side
2325 effects has nevertheless detected a condition which results in undefined
2326 behavior.</p>
2328 <p>There is currently no way of representing a trap value in the IR; they
2329 only exist when produced by operations such as
2330 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
2332 <p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
2334 <ul>
2335 <li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2336 their operands.</li>
2338 <li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2339 to their dynamic predecessor basic block.</li>
2341 <li>Function arguments depend on the corresponding actual argument values in
2342 the dynamic callers of their functions.</li>
2344 <li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2345 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2346 control back to them.</li>
2348 <li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2349 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2350 or exception-throwing call instructions that dynamically transfer control
2351 back to them.</li>
2353 <li>Non-volatile loads and stores depend on the most recent stores to all of the
2354 referenced memory addresses, following the order in the IR
2355 (including loads and stores implied by intrinsics such as
2356 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2358 <!-- TODO: In the case of multiple threads, this only applies if the store
2359 "happens-before" the load or store. -->
2361 <!-- TODO: floating-point exception state -->
2363 <li>An instruction with externally visible side effects depends on the most
2364 recent preceding instruction with externally visible side effects, following
2365 the order in the IR. (This includes
2366 <a href="#volatile">volatile operations</a>.)</li>
2368 <li>An instruction <i>control-depends</i> on a
2369 <a href="#terminators">terminator instruction</a>
2370 if the terminator instruction has multiple successors and the instruction
2371 is always executed when control transfers to one of the successors, and
2372 may not be executed when control is transfered to another.</li>
2374 <li>Dependence is transitive.</li>
2376 </ul>
2378 <p>Whenever a trap value is generated, all values which depend on it evaluate
2379 to trap. If they have side effects, the evoke their side effects as if each
2380 operand with a trap value were undef. If they have externally-visible side
2381 effects, the behavior is undefined.</p>
2383 <p>Here are some examples:</p>
2385 <pre class="doc_code">
2386 entry:
2387 %trap = sub nuw i32 0, 1 ; Results in a trap value.
2388 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2389 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2390 store i32 0, i32* %trap_yet_again ; undefined behavior
2392 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2393 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2395 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2397 %narrowaddr = bitcast i32* @g to i16*
2398 %wideaddr = bitcast i32* @g to i64*
2399 %trap3 = load 16* %narrowaddr ; Returns a trap value.
2400 %trap4 = load i64* %widaddr ; Returns a trap value.
2402 %cmp = icmp i32 slt %trap, 0 ; Returns a trap value.
2403 %br i1 %cmp, %true, %end ; Branch to either destination.
2405 true:
2406 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2407 ; it has undefined behavior.
2408 br label %end
2410 end:
2411 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2412 ; Both edges into this PHI are
2413 ; control-dependent on %cmp, so this
2414 ; always results in a trap value.
2416 volatile store i32 0, i32* @g ; %end is control-equivalent to %entry
2417 ; so this is defined (ignoring earlier
2418 ; undefined behavior in this example).
2419 </pre>
2421 </div>
2423 <!-- ======================================================================= -->
2424 <div class="doc_subsection"><a name="blockaddress">Addresses of Basic
2425 Blocks</a></div>
2426 <div class="doc_text">
2428 <p><b><tt>blockaddress(@function, %block)</tt></b></p>
2430 <p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2431 basic block in the specified function, and always has an i8* type. Taking
2432 the address of the entry block is illegal.</p>
2434 <p>This value only has defined behavior when used as an operand to the
2435 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2436 comparisons against null. Pointer equality tests between labels addresses
2437 results in undefined behavior &mdash; though, again, comparison against null
2438 is ok, and no label is equal to the null pointer. This may be passed around
2439 as an opaque pointer sized value as long as the bits are not inspected. This
2440 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2441 long as the original value is reconstituted before the <tt>indirectbr</tt>
2442 instruction.</p>
2444 <p>Finally, some targets may provide defined semantics when using the value as
2445 the operand to an inline assembly, but that is target specific.</p>
2447 </div>
2450 <!-- ======================================================================= -->
2451 <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
2452 </div>
2454 <div class="doc_text">
2456 <p>Constant expressions are used to allow expressions involving other constants
2457 to be used as constants. Constant expressions may be of
2458 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2459 operation that does not have side effects (e.g. load and call are not
2460 supported). The following is the syntax for constant expressions:</p>
2462 <dl>
2463 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
2464 <dd>Truncate a constant to another type. The bit size of CST must be larger
2465 than the bit size of TYPE. Both types must be integers.</dd>
2467 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
2468 <dd>Zero extend a constant to another type. The bit size of CST must be
2469 smaller than the bit size of TYPE. Both types must be integers.</dd>
2471 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
2472 <dd>Sign extend a constant to another type. The bit size of CST must be
2473 smaller than the bit size of TYPE. Both types must be integers.</dd>
2475 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
2476 <dd>Truncate a floating point constant to another floating point type. The
2477 size of CST must be larger than the size of TYPE. Both types must be
2478 floating point.</dd>
2480 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
2481 <dd>Floating point extend a constant to another type. The size of CST must be
2482 smaller or equal to the size of TYPE. Both types must be floating
2483 point.</dd>
2485 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
2486 <dd>Convert a floating point constant to the corresponding unsigned integer
2487 constant. TYPE must be a scalar or vector integer type. CST must be of
2488 scalar or vector floating point type. Both CST and TYPE must be scalars,
2489 or vectors of the same number of elements. If the value won't fit in the
2490 integer type, the results are undefined.</dd>
2492 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
2493 <dd>Convert a floating point constant to the corresponding signed integer
2494 constant. TYPE must be a scalar or vector integer type. CST must be of
2495 scalar or vector floating point type. Both CST and TYPE must be scalars,
2496 or vectors of the same number of elements. If the value won't fit in the
2497 integer type, the results are undefined.</dd>
2499 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
2500 <dd>Convert an unsigned integer constant to the corresponding floating point
2501 constant. TYPE must be a scalar or vector floating point type. CST must be
2502 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2503 vectors of the same number of elements. If the value won't fit in the
2504 floating point type, the results are undefined.</dd>
2506 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
2507 <dd>Convert a signed integer constant to the corresponding floating point
2508 constant. TYPE must be a scalar or vector floating point type. CST must be
2509 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2510 vectors of the same number of elements. If the value won't fit in the
2511 floating point type, the results are undefined.</dd>
2513 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
2514 <dd>Convert a pointer typed constant to the corresponding integer constant
2515 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2516 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2517 make it fit in <tt>TYPE</tt>.</dd>
2519 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
2520 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2521 type. CST must be of integer type. The CST value is zero extended,
2522 truncated, or unchanged to make it fit in a pointer size. This one is
2523 <i>really</i> dangerous!</dd>
2525 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
2526 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2527 are the same as those for the <a href="#i_bitcast">bitcast
2528 instruction</a>.</dd>
2530 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2531 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2532 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2533 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2534 instruction, the index list may have zero or more indexes, which are
2535 required to make sense for the type of "CSTPTR".</dd>
2537 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
2538 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2540 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
2541 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2543 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
2544 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2546 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
2547 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2548 constants.</dd>
2550 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
2551 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2552 constants.</dd>
2554 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
2555 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2556 constants.</dd>
2558 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2559 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2560 constants. The index list is interpreted in a similar manner as indices in
2561 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2562 index value must be specified.</dd>
2564 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2565 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2566 constants. The index list is interpreted in a similar manner as indices in
2567 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2568 index value must be specified.</dd>
2570 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
2571 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2572 be any of the <a href="#binaryops">binary</a>
2573 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2574 on operands are the same as those for the corresponding instruction
2575 (e.g. no bitwise operations on floating point values are allowed).</dd>
2576 </dl>
2578 </div>
2580 <!-- *********************************************************************** -->
2581 <div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2582 <!-- *********************************************************************** -->
2584 <!-- ======================================================================= -->
2585 <div class="doc_subsection">
2586 <a name="inlineasm">Inline Assembler Expressions</a>
2587 </div>
2589 <div class="doc_text">
2591 <p>LLVM supports inline assembler expressions (as opposed
2592 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2593 a special value. This value represents the inline assembler as a string
2594 (containing the instructions to emit), a list of operand constraints (stored
2595 as a string), a flag that indicates whether or not the inline asm
2596 expression has side effects, and a flag indicating whether the function
2597 containing the asm needs to align its stack conservatively. An example
2598 inline assembler expression is:</p>
2600 <pre class="doc_code">
2601 i32 (i32) asm "bswap $0", "=r,r"
2602 </pre>
2604 <p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2605 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2606 have:</p>
2608 <pre class="doc_code">
2609 %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2610 </pre>
2612 <p>Inline asms with side effects not visible in the constraint list must be
2613 marked as having side effects. This is done through the use of the
2614 '<tt>sideeffect</tt>' keyword, like so:</p>
2616 <pre class="doc_code">
2617 call void asm sideeffect "eieio", ""()
2618 </pre>
2620 <p>In some cases inline asms will contain code that will not work unless the
2621 stack is aligned in some way, such as calls or SSE instructions on x86,
2622 yet will not contain code that does that alignment within the asm.
2623 The compiler should make conservative assumptions about what the asm might
2624 contain and should generate its usual stack alignment code in the prologue
2625 if the '<tt>alignstack</tt>' keyword is present:</p>
2627 <pre class="doc_code">
2628 call void asm alignstack "eieio", ""()
2629 </pre>
2631 <p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2632 first.</p>
2634 <p>TODO: The format of the asm and constraints string still need to be
2635 documented here. Constraints on what can be done (e.g. duplication, moving,
2636 etc need to be documented). This is probably best done by reference to
2637 another document that covers inline asm from a holistic perspective.</p>
2638 </div>
2640 <div class="doc_subsubsection">
2641 <a name="inlineasm_md">Inline Asm Metadata</a>
2642 </div>
2644 <div class="doc_text">
2646 <p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
2647 attached to it that contains a list of constant integers. If present, the
2648 code generator will use the integer as the location cookie value when report
2649 errors through the LLVMContext error reporting mechanisms. This allows a
2650 front-end to correlate backend errors that occur with inline asm back to the
2651 source code that produced it. For example:</p>
2653 <pre class="doc_code">
2654 call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2656 !42 = !{ i32 1234567 }
2657 </pre>
2659 <p>It is up to the front-end to make sense of the magic numbers it places in the
2660 IR. If the MDNode contains multiple constants, the code generator will use
2661 the one that corresponds to the line of the asm that the error occurs on.</p>
2663 </div>
2665 <!-- ======================================================================= -->
2666 <div class="doc_subsection"><a name="metadata">Metadata Nodes and Metadata
2667 Strings</a>
2668 </div>
2670 <div class="doc_text">
2672 <p>LLVM IR allows metadata to be attached to instructions in the program that
2673 can convey extra information about the code to the optimizers and code
2674 generator. One example application of metadata is source-level debug
2675 information. There are two metadata primitives: strings and nodes. All
2676 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2677 preceding exclamation point ('<tt>!</tt>').</p>
2679 <p>A metadata string is a string surrounded by double quotes. It can contain
2680 any character by escaping non-printable characters with "\xx" where "xx" is
2681 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2683 <p>Metadata nodes are represented with notation similar to structure constants
2684 (a comma separated list of elements, surrounded by braces and preceded by an
2685 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2686 10}</tt>". Metadata nodes can have any values as their operand.</p>
2688 <p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2689 metadata nodes, which can be looked up in the module symbol table. For
2690 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2692 <p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
2693 function is using two metadata arguments.</p>
2695 <div class="doc_code">
2696 <pre>
2697 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2698 </pre>
2699 </div>
2701 <p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2702 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
2704 <div class="doc_code">
2705 <pre>
2706 %indvar.next = add i64 %indvar, 1, !dbg !21
2707 </pre>
2708 </div>
2710 </div>
2713 <!-- *********************************************************************** -->
2714 <div class="doc_section">
2715 <a name="intrinsic_globals">Intrinsic Global Variables</a>
2716 </div>
2717 <!-- *********************************************************************** -->
2719 <p>LLVM has a number of "magic" global variables that contain data that affect
2720 code generation or other IR semantics. These are documented here. All globals
2721 of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2722 section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2723 by LLVM.</p>
2725 <!-- ======================================================================= -->
2726 <div class="doc_subsection">
2727 <a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
2728 </div>
2730 <div class="doc_text">
2732 <p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2733 href="#linkage_appending">appending linkage</a>. This array contains a list of
2734 pointers to global variables and functions which may optionally have a pointer
2735 cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2737 <pre>
2738 @X = global i8 4
2739 @Y = global i32 123
2741 @llvm.used = appending global [2 x i8*] [
2742 i8* @X,
2743 i8* bitcast (i32* @Y to i8*)
2744 ], section "llvm.metadata"
2745 </pre>
2747 <p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2748 compiler, assembler, and linker are required to treat the symbol as if there is
2749 a reference to the global that it cannot see. For example, if a variable has
2750 internal linkage and no references other than that from the <tt>@llvm.used</tt>
2751 list, it cannot be deleted. This is commonly used to represent references from
2752 inline asms and other things the compiler cannot "see", and corresponds to
2753 "attribute((used))" in GNU C.</p>
2755 <p>On some targets, the code generator must emit a directive to the assembler or
2756 object file to prevent the assembler and linker from molesting the symbol.</p>
2758 </div>
2760 <!-- ======================================================================= -->
2761 <div class="doc_subsection">
2762 <a name="intg_compiler_used">The '<tt>llvm.compiler.used</tt>' Global Variable</a>
2763 </div>
2765 <div class="doc_text">
2767 <p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2768 <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2769 touching the symbol. On targets that support it, this allows an intelligent
2770 linker to optimize references to the symbol without being impeded as it would be
2771 by <tt>@llvm.used</tt>.</p>
2773 <p>This is a rare construct that should only be used in rare circumstances, and
2774 should not be exposed to source languages.</p>
2776 </div>
2778 <!-- ======================================================================= -->
2779 <div class="doc_subsection">
2780 <a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
2781 </div>
2783 <div class="doc_text">
2784 <pre>
2785 %0 = type { i32, void ()* }
2786 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2787 </pre>
2788 <p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2789 </p>
2791 </div>
2793 <!-- ======================================================================= -->
2794 <div class="doc_subsection">
2795 <a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
2796 </div>
2798 <div class="doc_text">
2799 <pre>
2800 %0 = type { i32, void ()* }
2801 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2802 </pre>
2804 <p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2805 </p>
2807 </div>
2810 <!-- *********************************************************************** -->
2811 <div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2812 <!-- *********************************************************************** -->
2814 <div class="doc_text">
2816 <p>The LLVM instruction set consists of several different classifications of
2817 instructions: <a href="#terminators">terminator
2818 instructions</a>, <a href="#binaryops">binary instructions</a>,
2819 <a href="#bitwiseops">bitwise binary instructions</a>,
2820 <a href="#memoryops">memory instructions</a>, and
2821 <a href="#otherops">other instructions</a>.</p>
2823 </div>
2825 <!-- ======================================================================= -->
2826 <div class="doc_subsection"> <a name="terminators">Terminator
2827 Instructions</a> </div>
2829 <div class="doc_text">
2831 <p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2832 in a program ends with a "Terminator" instruction, which indicates which
2833 block should be executed after the current block is finished. These
2834 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2835 control flow, not values (the one exception being the
2836 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2838 <p>There are seven different terminator instructions: the
2839 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2840 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2841 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
2842 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
2843 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2844 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2845 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
2847 </div>
2849 <!-- _______________________________________________________________________ -->
2850 <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2851 Instruction</a> </div>
2853 <div class="doc_text">
2855 <h5>Syntax:</h5>
2856 <pre>
2857 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
2858 ret void <i>; Return from void function</i>
2859 </pre>
2861 <h5>Overview:</h5>
2862 <p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2863 a value) from a function back to the caller.</p>
2865 <p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2866 value and then causes control flow, and one that just causes control flow to
2867 occur.</p>
2869 <h5>Arguments:</h5>
2870 <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2871 return value. The type of the return value must be a
2872 '<a href="#t_firstclass">first class</a>' type.</p>
2874 <p>A function is not <a href="#wellformed">well formed</a> if it it has a
2875 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2876 value or a return value with a type that does not match its type, or if it
2877 has a void return type and contains a '<tt>ret</tt>' instruction with a
2878 return value.</p>
2880 <h5>Semantics:</h5>
2881 <p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2882 the calling function's context. If the caller is a
2883 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2884 instruction after the call. If the caller was an
2885 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2886 the beginning of the "normal" destination block. If the instruction returns
2887 a value, that value shall set the call or invoke instruction's return
2888 value.</p>
2890 <h5>Example:</h5>
2891 <pre>
2892 ret i32 5 <i>; Return an integer value of 5</i>
2893 ret void <i>; Return from a void function</i>
2894 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
2895 </pre>
2897 </div>
2898 <!-- _______________________________________________________________________ -->
2899 <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
2901 <div class="doc_text">
2903 <h5>Syntax:</h5>
2904 <pre>
2905 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
2906 </pre>
2908 <h5>Overview:</h5>
2909 <p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2910 different basic block in the current function. There are two forms of this
2911 instruction, corresponding to a conditional branch and an unconditional
2912 branch.</p>
2914 <h5>Arguments:</h5>
2915 <p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2916 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2917 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2918 target.</p>
2920 <h5>Semantics:</h5>
2921 <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
2922 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2923 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2924 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
2926 <h5>Example:</h5>
2927 <pre>
2928 Test:
2929 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
2930 br i1 %cond, label %IfEqual, label %IfUnequal
2931 IfEqual:
2932 <a href="#i_ret">ret</a> i32 1
2933 IfUnequal:
2934 <a href="#i_ret">ret</a> i32 0
2935 </pre>
2937 </div>
2939 <!-- _______________________________________________________________________ -->
2940 <div class="doc_subsubsection">
2941 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2942 </div>
2944 <div class="doc_text">
2946 <h5>Syntax:</h5>
2947 <pre>
2948 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2949 </pre>
2951 <h5>Overview:</h5>
2952 <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2953 several different places. It is a generalization of the '<tt>br</tt>'
2954 instruction, allowing a branch to occur to one of many possible
2955 destinations.</p>
2957 <h5>Arguments:</h5>
2958 <p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2959 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
2960 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
2961 The table is not allowed to contain duplicate constant entries.</p>
2963 <h5>Semantics:</h5>
2964 <p>The <tt>switch</tt> instruction specifies a table of values and
2965 destinations. When the '<tt>switch</tt>' instruction is executed, this table
2966 is searched for the given value. If the value is found, control flow is
2967 transferred to the corresponding destination; otherwise, control flow is
2968 transferred to the default destination.</p>
2970 <h5>Implementation:</h5>
2971 <p>Depending on properties of the target machine and the particular
2972 <tt>switch</tt> instruction, this instruction may be code generated in
2973 different ways. For example, it could be generated as a series of chained
2974 conditional branches or with a lookup table.</p>
2976 <h5>Example:</h5>
2977 <pre>
2978 <i>; Emulate a conditional br instruction</i>
2979 %Val = <a href="#i_zext">zext</a> i1 %value to i32
2980 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
2982 <i>; Emulate an unconditional br instruction</i>
2983 switch i32 0, label %dest [ ]
2985 <i>; Implement a jump table:</i>
2986 switch i32 %val, label %otherwise [ i32 0, label %onzero
2987 i32 1, label %onone
2988 i32 2, label %ontwo ]
2989 </pre>
2991 </div>
2994 <!-- _______________________________________________________________________ -->
2995 <div class="doc_subsubsection">
2996 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
2997 </div>
2999 <div class="doc_text">
3001 <h5>Syntax:</h5>
3002 <pre>
3003 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
3004 </pre>
3006 <h5>Overview:</h5>
3008 <p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
3009 within the current function, whose address is specified by
3010 "<tt>address</tt>". Address must be derived from a <a
3011 href="#blockaddress">blockaddress</a> constant.</p>
3013 <h5>Arguments:</h5>
3015 <p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3016 rest of the arguments indicate the full set of possible destinations that the
3017 address may point to. Blocks are allowed to occur multiple times in the
3018 destination list, though this isn't particularly useful.</p>
3020 <p>This destination list is required so that dataflow analysis has an accurate
3021 understanding of the CFG.</p>
3023 <h5>Semantics:</h5>
3025 <p>Control transfers to the block specified in the address argument. All
3026 possible destination blocks must be listed in the label list, otherwise this
3027 instruction has undefined behavior. This implies that jumps to labels
3028 defined in other functions have undefined behavior as well.</p>
3030 <h5>Implementation:</h5>
3032 <p>This is typically implemented with a jump through a register.</p>
3034 <h5>Example:</h5>
3035 <pre>
3036 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3037 </pre>
3039 </div>
3042 <!-- _______________________________________________________________________ -->
3043 <div class="doc_subsubsection">
3044 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3045 </div>
3047 <div class="doc_text">
3049 <h5>Syntax:</h5>
3050 <pre>
3051 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
3052 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
3053 </pre>
3055 <h5>Overview:</h5>
3056 <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
3057 function, with the possibility of control flow transfer to either the
3058 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3059 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3060 control flow will return to the "normal" label. If the callee (or any
3061 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3062 instruction, control is interrupted and continued at the dynamically nearest
3063 "exception" label.</p>
3065 <h5>Arguments:</h5>
3066 <p>This instruction requires several arguments:</p>
3068 <ol>
3069 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3070 convention</a> the call should use. If none is specified, the call
3071 defaults to using C calling conventions.</li>
3073 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
3074 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3075 '<tt>inreg</tt>' attributes are valid here.</li>
3077 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
3078 function value being invoked. In most cases, this is a direct function
3079 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3080 off an arbitrary pointer to function value.</li>
3082 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
3083 function to be invoked. </li>
3085 <li>'<tt>function args</tt>': argument list whose types match the function
3086 signature argument types and parameter attributes. All arguments must be
3087 of <a href="#t_firstclass">first class</a> type. If the function
3088 signature indicates the function accepts a variable number of arguments,
3089 the extra arguments can be specified.</li>
3091 <li>'<tt>normal label</tt>': the label reached when the called function
3092 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
3094 <li>'<tt>exception label</tt>': the label reached when a callee returns with
3095 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
3097 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
3098 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3099 '<tt>readnone</tt>' attributes are valid here.</li>
3100 </ol>
3102 <h5>Semantics:</h5>
3103 <p>This instruction is designed to operate as a standard
3104 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3105 primary difference is that it establishes an association with a label, which
3106 is used by the runtime library to unwind the stack.</p>
3108 <p>This instruction is used in languages with destructors to ensure that proper
3109 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3110 exception. Additionally, this is important for implementation of
3111 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
3113 <p>For the purposes of the SSA form, the definition of the value returned by the
3114 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3115 block to the "normal" label. If the callee unwinds then no return value is
3116 available.</p>
3118 <p>Note that the code generator does not yet completely support unwind, and
3119 that the invoke/unwind semantics are likely to change in future versions.</p>
3121 <h5>Example:</h5>
3122 <pre>
3123 %retval = invoke i32 @Test(i32 15) to label %Continue
3124 unwind label %TestCleanup <i>; {i32}:retval set</i>
3125 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
3126 unwind label %TestCleanup <i>; {i32}:retval set</i>
3127 </pre>
3129 </div>
3131 <!-- _______________________________________________________________________ -->
3133 <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
3134 Instruction</a> </div>
3136 <div class="doc_text">
3138 <h5>Syntax:</h5>
3139 <pre>
3140 unwind
3141 </pre>
3143 <h5>Overview:</h5>
3144 <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
3145 at the first callee in the dynamic call stack which used
3146 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3147 This is primarily used to implement exception handling.</p>
3149 <h5>Semantics:</h5>
3150 <p>The '<tt>unwind</tt>' instruction causes execution of the current function to
3151 immediately halt. The dynamic call stack is then searched for the
3152 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3153 Once found, execution continues at the "exceptional" destination block
3154 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3155 instruction in the dynamic call chain, undefined behavior results.</p>
3157 <p>Note that the code generator does not yet completely support unwind, and
3158 that the invoke/unwind semantics are likely to change in future versions.</p>
3160 </div>
3162 <!-- _______________________________________________________________________ -->
3164 <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
3165 Instruction</a> </div>
3167 <div class="doc_text">
3169 <h5>Syntax:</h5>
3170 <pre>
3171 unreachable
3172 </pre>
3174 <h5>Overview:</h5>
3175 <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
3176 instruction is used to inform the optimizer that a particular portion of the
3177 code is not reachable. This can be used to indicate that the code after a
3178 no-return function cannot be reached, and other facts.</p>
3180 <h5>Semantics:</h5>
3181 <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
3183 </div>
3185 <!-- ======================================================================= -->
3186 <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
3188 <div class="doc_text">
3190 <p>Binary operators are used to do most of the computation in a program. They
3191 require two operands of the same type, execute an operation on them, and
3192 produce a single value. The operands might represent multiple data, as is
3193 the case with the <a href="#t_vector">vector</a> data type. The result value
3194 has the same type as its operands.</p>
3196 <p>There are several different binary operators:</p>
3198 </div>
3200 <!-- _______________________________________________________________________ -->
3201 <div class="doc_subsubsection">
3202 <a name="i_add">'<tt>add</tt>' Instruction</a>
3203 </div>
3205 <div class="doc_text">
3207 <h5>Syntax:</h5>
3208 <pre>
3209 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3210 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3211 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3212 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3213 </pre>
3215 <h5>Overview:</h5>
3216 <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
3218 <h5>Arguments:</h5>
3219 <p>The two arguments to the '<tt>add</tt>' instruction must
3220 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3221 integer values. Both arguments must have identical types.</p>
3223 <h5>Semantics:</h5>
3224 <p>The value produced is the integer sum of the two operands.</p>
3226 <p>If the sum has unsigned overflow, the result returned is the mathematical
3227 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
3229 <p>Because LLVM integers use a two's complement representation, this instruction
3230 is appropriate for both signed and unsigned integers.</p>
3232 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3233 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3234 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3235 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3236 respectively, occurs.</p>
3238 <h5>Example:</h5>
3239 <pre>
3240 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
3241 </pre>
3243 </div>
3245 <!-- _______________________________________________________________________ -->
3246 <div class="doc_subsubsection">
3247 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3248 </div>
3250 <div class="doc_text">
3252 <h5>Syntax:</h5>
3253 <pre>
3254 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3255 </pre>
3257 <h5>Overview:</h5>
3258 <p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3260 <h5>Arguments:</h5>
3261 <p>The two arguments to the '<tt>fadd</tt>' instruction must be
3262 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3263 floating point values. Both arguments must have identical types.</p>
3265 <h5>Semantics:</h5>
3266 <p>The value produced is the floating point sum of the two operands.</p>
3268 <h5>Example:</h5>
3269 <pre>
3270 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3271 </pre>
3273 </div>
3275 <!-- _______________________________________________________________________ -->
3276 <div class="doc_subsubsection">
3277 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3278 </div>
3280 <div class="doc_text">
3282 <h5>Syntax:</h5>
3283 <pre>
3284 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3285 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3286 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3287 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3288 </pre>
3290 <h5>Overview:</h5>
3291 <p>The '<tt>sub</tt>' instruction returns the difference of its two
3292 operands.</p>
3294 <p>Note that the '<tt>sub</tt>' instruction is used to represent the
3295 '<tt>neg</tt>' instruction present in most other intermediate
3296 representations.</p>
3298 <h5>Arguments:</h5>
3299 <p>The two arguments to the '<tt>sub</tt>' instruction must
3300 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3301 integer values. Both arguments must have identical types.</p>
3303 <h5>Semantics:</h5>
3304 <p>The value produced is the integer difference of the two operands.</p>
3306 <p>If the difference has unsigned overflow, the result returned is the
3307 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3308 result.</p>
3310 <p>Because LLVM integers use a two's complement representation, this instruction
3311 is appropriate for both signed and unsigned integers.</p>
3313 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3314 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3315 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
3316 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3317 respectively, occurs.</p>
3319 <h5>Example:</h5>
3320 <pre>
3321 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
3322 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
3323 </pre>
3325 </div>
3327 <!-- _______________________________________________________________________ -->
3328 <div class="doc_subsubsection">
3329 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
3330 </div>
3332 <div class="doc_text">
3334 <h5>Syntax:</h5>
3335 <pre>
3336 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3337 </pre>
3339 <h5>Overview:</h5>
3340 <p>The '<tt>fsub</tt>' instruction returns the difference of its two
3341 operands.</p>
3343 <p>Note that the '<tt>fsub</tt>' instruction is used to represent the
3344 '<tt>fneg</tt>' instruction present in most other intermediate
3345 representations.</p>
3347 <h5>Arguments:</h5>
3348 <p>The two arguments to the '<tt>fsub</tt>' instruction must be
3349 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3350 floating point values. Both arguments must have identical types.</p>
3352 <h5>Semantics:</h5>
3353 <p>The value produced is the floating point difference of the two operands.</p>
3355 <h5>Example:</h5>
3356 <pre>
3357 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3358 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3359 </pre>
3361 </div>
3363 <!-- _______________________________________________________________________ -->
3364 <div class="doc_subsubsection">
3365 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
3366 </div>
3368 <div class="doc_text">
3370 <h5>Syntax:</h5>
3371 <pre>
3372 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3373 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3374 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3375 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3376 </pre>
3378 <h5>Overview:</h5>
3379 <p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
3381 <h5>Arguments:</h5>
3382 <p>The two arguments to the '<tt>mul</tt>' instruction must
3383 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3384 integer values. Both arguments must have identical types.</p>
3386 <h5>Semantics:</h5>
3387 <p>The value produced is the integer product of the two operands.</p>
3389 <p>If the result of the multiplication has unsigned overflow, the result
3390 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3391 width of the result.</p>
3393 <p>Because LLVM integers use a two's complement representation, and the result
3394 is the same width as the operands, this instruction returns the correct
3395 result for both signed and unsigned integers. If a full product
3396 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3397 be sign-extended or zero-extended as appropriate to the width of the full
3398 product.</p>
3400 <p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3401 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3402 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
3403 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3404 respectively, occurs.</p>
3406 <h5>Example:</h5>
3407 <pre>
3408 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
3409 </pre>
3411 </div>
3413 <!-- _______________________________________________________________________ -->
3414 <div class="doc_subsubsection">
3415 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
3416 </div>
3418 <div class="doc_text">
3420 <h5>Syntax:</h5>
3421 <pre>
3422 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3423 </pre>
3425 <h5>Overview:</h5>
3426 <p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
3428 <h5>Arguments:</h5>
3429 <p>The two arguments to the '<tt>fmul</tt>' instruction must be
3430 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3431 floating point values. Both arguments must have identical types.</p>
3433 <h5>Semantics:</h5>
3434 <p>The value produced is the floating point product of the two operands.</p>
3436 <h5>Example:</h5>
3437 <pre>
3438 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
3439 </pre>
3441 </div>
3443 <!-- _______________________________________________________________________ -->
3444 <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
3445 </a></div>
3447 <div class="doc_text">
3449 <h5>Syntax:</h5>
3450 <pre>
3451 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3452 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3453 </pre>
3455 <h5>Overview:</h5>
3456 <p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
3458 <h5>Arguments:</h5>
3459 <p>The two arguments to the '<tt>udiv</tt>' instruction must be
3460 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3461 values. Both arguments must have identical types.</p>
3463 <h5>Semantics:</h5>
3464 <p>The value produced is the unsigned integer quotient of the two operands.</p>
3466 <p>Note that unsigned integer division and signed integer division are distinct
3467 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3469 <p>Division by zero leads to undefined behavior.</p>
3471 <p>If the <tt>exact</tt> keyword is present, the result value of the
3472 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3473 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3476 <h5>Example:</h5>
3477 <pre>
3478 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
3479 </pre>
3481 </div>
3483 <!-- _______________________________________________________________________ -->
3484 <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
3485 </a> </div>
3487 <div class="doc_text">
3489 <h5>Syntax:</h5>
3490 <pre>
3491 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3492 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3493 </pre>
3495 <h5>Overview:</h5>
3496 <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
3498 <h5>Arguments:</h5>
3499 <p>The two arguments to the '<tt>sdiv</tt>' instruction must be
3500 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3501 values. Both arguments must have identical types.</p>
3503 <h5>Semantics:</h5>
3504 <p>The value produced is the signed integer quotient of the two operands rounded
3505 towards zero.</p>
3507 <p>Note that signed integer division and unsigned integer division are distinct
3508 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3510 <p>Division by zero leads to undefined behavior. Overflow also leads to
3511 undefined behavior; this is a rare case, but can occur, for example, by doing
3512 a 32-bit division of -2147483648 by -1.</p>
3514 <p>If the <tt>exact</tt> keyword is present, the result value of the
3515 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
3516 be rounded.</p>
3518 <h5>Example:</h5>
3519 <pre>
3520 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
3521 </pre>
3523 </div>
3525 <!-- _______________________________________________________________________ -->
3526 <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
3527 Instruction</a> </div>
3529 <div class="doc_text">
3531 <h5>Syntax:</h5>
3532 <pre>
3533 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3534 </pre>
3536 <h5>Overview:</h5>
3537 <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
3539 <h5>Arguments:</h5>
3540 <p>The two arguments to the '<tt>fdiv</tt>' instruction must be
3541 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3542 floating point values. Both arguments must have identical types.</p>
3544 <h5>Semantics:</h5>
3545 <p>The value produced is the floating point quotient of the two operands.</p>
3547 <h5>Example:</h5>
3548 <pre>
3549 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
3550 </pre>
3552 </div>
3554 <!-- _______________________________________________________________________ -->
3555 <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3556 </div>
3558 <div class="doc_text">
3560 <h5>Syntax:</h5>
3561 <pre>
3562 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3563 </pre>
3565 <h5>Overview:</h5>
3566 <p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3567 division of its two arguments.</p>
3569 <h5>Arguments:</h5>
3570 <p>The two arguments to the '<tt>urem</tt>' instruction must be
3571 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3572 values. Both arguments must have identical types.</p>
3574 <h5>Semantics:</h5>
3575 <p>This instruction returns the unsigned integer <i>remainder</i> of a division.
3576 This instruction always performs an unsigned division to get the
3577 remainder.</p>
3579 <p>Note that unsigned integer remainder and signed integer remainder are
3580 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3582 <p>Taking the remainder of a division by zero leads to undefined behavior.</p>
3584 <h5>Example:</h5>
3585 <pre>
3586 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3587 </pre>
3589 </div>
3591 <!-- _______________________________________________________________________ -->
3592 <div class="doc_subsubsection">
3593 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
3594 </div>
3596 <div class="doc_text">
3598 <h5>Syntax:</h5>
3599 <pre>
3600 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3601 </pre>
3603 <h5>Overview:</h5>
3604 <p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3605 division of its two operands. This instruction can also take
3606 <a href="#t_vector">vector</a> versions of the values in which case the
3607 elements must be integers.</p>
3609 <h5>Arguments:</h5>
3610 <p>The two arguments to the '<tt>srem</tt>' instruction must be
3611 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3612 values. Both arguments must have identical types.</p>
3614 <h5>Semantics:</h5>
3615 <p>This instruction returns the <i>remainder</i> of a division (where the result
3616 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3617 <i>modulo</i> operator (where the result is either zero or has the same sign
3618 as the divisor, <tt>op2</tt>) of a value.
3619 For more information about the difference,
3620 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3621 Math Forum</a>. For a table of how this is implemented in various languages,
3622 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3623 Wikipedia: modulo operation</a>.</p>
3625 <p>Note that signed integer remainder and unsigned integer remainder are
3626 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3628 <p>Taking the remainder of a division by zero leads to undefined behavior.
3629 Overflow also leads to undefined behavior; this is a rare case, but can
3630 occur, for example, by taking the remainder of a 32-bit division of
3631 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3632 lets srem be implemented using instructions that return both the result of
3633 the division and the remainder.)</p>
3635 <h5>Example:</h5>
3636 <pre>
3637 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
3638 </pre>
3640 </div>
3642 <!-- _______________________________________________________________________ -->
3643 <div class="doc_subsubsection">
3644 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
3646 <div class="doc_text">
3648 <h5>Syntax:</h5>
3649 <pre>
3650 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3651 </pre>
3653 <h5>Overview:</h5>
3654 <p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3655 its two operands.</p>
3657 <h5>Arguments:</h5>
3658 <p>The two arguments to the '<tt>frem</tt>' instruction must be
3659 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3660 floating point values. Both arguments must have identical types.</p>
3662 <h5>Semantics:</h5>
3663 <p>This instruction returns the <i>remainder</i> of a division. The remainder
3664 has the same sign as the dividend.</p>
3666 <h5>Example:</h5>
3667 <pre>
3668 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
3669 </pre>
3671 </div>
3673 <!-- ======================================================================= -->
3674 <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
3675 Operations</a> </div>
3677 <div class="doc_text">
3679 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3680 program. They are generally very efficient instructions and can commonly be
3681 strength reduced from other instructions. They require two operands of the
3682 same type, execute an operation on them, and produce a single value. The
3683 resulting value is the same type as its operands.</p>
3685 </div>
3687 <!-- _______________________________________________________________________ -->
3688 <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
3689 Instruction</a> </div>
3691 <div class="doc_text">
3693 <h5>Syntax:</h5>
3694 <pre>
3695 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3696 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3697 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3698 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3699 </pre>
3701 <h5>Overview:</h5>
3702 <p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3703 a specified number of bits.</p>
3705 <h5>Arguments:</h5>
3706 <p>Both arguments to the '<tt>shl</tt>' instruction must be the
3707 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3708 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3710 <h5>Semantics:</h5>
3711 <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3712 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3713 is (statically or dynamically) negative or equal to or larger than the number
3714 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3715 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3716 shift amount in <tt>op2</tt>.</p>
3718 <p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3719 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
3720 the <tt>nsw</tt> keyword is present, then the shift produces a
3721 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3722 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3723 they would if the shift were expressed as a mul instruction with the same
3724 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3726 <h5>Example:</h5>
3727 <pre>
3728 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3729 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3730 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
3731 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
3732 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
3733 </pre>
3735 </div>
3737 <!-- _______________________________________________________________________ -->
3738 <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
3739 Instruction</a> </div>
3741 <div class="doc_text">
3743 <h5>Syntax:</h5>
3744 <pre>
3745 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3746 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3747 </pre>
3749 <h5>Overview:</h5>
3750 <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3751 operand shifted to the right a specified number of bits with zero fill.</p>
3753 <h5>Arguments:</h5>
3754 <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
3755 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3756 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3758 <h5>Semantics:</h5>
3759 <p>This instruction always performs a logical shift right operation. The most
3760 significant bits of the result will be filled with zero bits after the shift.
3761 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3762 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3763 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3764 shift amount in <tt>op2</tt>.</p>
3766 <p>If the <tt>exact</tt> keyword is present, the result value of the
3767 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3768 shifted out are non-zero.</p>
3771 <h5>Example:</h5>
3772 <pre>
3773 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3774 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3775 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3776 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
3777 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
3778 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
3779 </pre>
3781 </div>
3783 <!-- _______________________________________________________________________ -->
3784 <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3785 Instruction</a> </div>
3786 <div class="doc_text">
3788 <h5>Syntax:</h5>
3789 <pre>
3790 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3791 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3792 </pre>
3794 <h5>Overview:</h5>
3795 <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3796 operand shifted to the right a specified number of bits with sign
3797 extension.</p>
3799 <h5>Arguments:</h5>
3800 <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
3801 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3802 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
3804 <h5>Semantics:</h5>
3805 <p>This instruction always performs an arithmetic shift right operation, The
3806 most significant bits of the result will be filled with the sign bit
3807 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3808 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3809 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3810 the corresponding shift amount in <tt>op2</tt>.</p>
3812 <p>If the <tt>exact</tt> keyword is present, the result value of the
3813 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3814 shifted out are non-zero.</p>
3816 <h5>Example:</h5>
3817 <pre>
3818 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3819 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3820 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3821 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
3822 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
3823 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
3824 </pre>
3826 </div>
3828 <!-- _______________________________________________________________________ -->
3829 <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3830 Instruction</a> </div>
3832 <div class="doc_text">
3834 <h5>Syntax:</h5>
3835 <pre>
3836 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3837 </pre>
3839 <h5>Overview:</h5>
3840 <p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3841 operands.</p>
3843 <h5>Arguments:</h5>
3844 <p>The two arguments to the '<tt>and</tt>' instruction must be
3845 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3846 values. Both arguments must have identical types.</p>
3848 <h5>Semantics:</h5>
3849 <p>The truth table used for the '<tt>and</tt>' instruction is:</p>
3851 <table border="1" cellspacing="0" cellpadding="4">
3852 <tbody>
3853 <tr>
3854 <td>In0</td>
3855 <td>In1</td>
3856 <td>Out</td>
3857 </tr>
3858 <tr>
3859 <td>0</td>
3860 <td>0</td>
3861 <td>0</td>
3862 </tr>
3863 <tr>
3864 <td>0</td>
3865 <td>1</td>
3866 <td>0</td>
3867 </tr>
3868 <tr>
3869 <td>1</td>
3870 <td>0</td>
3871 <td>0</td>
3872 </tr>
3873 <tr>
3874 <td>1</td>
3875 <td>1</td>
3876 <td>1</td>
3877 </tr>
3878 </tbody>
3879 </table>
3881 <h5>Example:</h5>
3882 <pre>
3883 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
3884 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3885 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
3886 </pre>
3887 </div>
3888 <!-- _______________________________________________________________________ -->
3889 <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
3891 <div class="doc_text">
3893 <h5>Syntax:</h5>
3894 <pre>
3895 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3896 </pre>
3898 <h5>Overview:</h5>
3899 <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3900 two operands.</p>
3902 <h5>Arguments:</h5>
3903 <p>The two arguments to the '<tt>or</tt>' instruction must be
3904 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3905 values. Both arguments must have identical types.</p>
3907 <h5>Semantics:</h5>
3908 <p>The truth table used for the '<tt>or</tt>' instruction is:</p>
3910 <table border="1" cellspacing="0" cellpadding="4">
3911 <tbody>
3912 <tr>
3913 <td>In0</td>
3914 <td>In1</td>
3915 <td>Out</td>
3916 </tr>
3917 <tr>
3918 <td>0</td>
3919 <td>0</td>
3920 <td>0</td>
3921 </tr>
3922 <tr>
3923 <td>0</td>
3924 <td>1</td>
3925 <td>1</td>
3926 </tr>
3927 <tr>
3928 <td>1</td>
3929 <td>0</td>
3930 <td>1</td>
3931 </tr>
3932 <tr>
3933 <td>1</td>
3934 <td>1</td>
3935 <td>1</td>
3936 </tr>
3937 </tbody>
3938 </table>
3940 <h5>Example:</h5>
3941 <pre>
3942 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3943 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3944 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
3945 </pre>
3947 </div>
3949 <!-- _______________________________________________________________________ -->
3950 <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3951 Instruction</a> </div>
3953 <div class="doc_text">
3955 <h5>Syntax:</h5>
3956 <pre>
3957 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3958 </pre>
3960 <h5>Overview:</h5>
3961 <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
3962 its two operands. The <tt>xor</tt> is used to implement the "one's
3963 complement" operation, which is the "~" operator in C.</p>
3965 <h5>Arguments:</h5>
3966 <p>The two arguments to the '<tt>xor</tt>' instruction must be
3967 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3968 values. Both arguments must have identical types.</p>
3970 <h5>Semantics:</h5>
3971 <p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
3973 <table border="1" cellspacing="0" cellpadding="4">
3974 <tbody>
3975 <tr>
3976 <td>In0</td>
3977 <td>In1</td>
3978 <td>Out</td>
3979 </tr>
3980 <tr>
3981 <td>0</td>
3982 <td>0</td>
3983 <td>0</td>
3984 </tr>
3985 <tr>
3986 <td>0</td>
3987 <td>1</td>
3988 <td>1</td>
3989 </tr>
3990 <tr>
3991 <td>1</td>
3992 <td>0</td>
3993 <td>1</td>
3994 </tr>
3995 <tr>
3996 <td>1</td>
3997 <td>1</td>
3998 <td>0</td>
3999 </tr>
4000 </tbody>
4001 </table>
4003 <h5>Example:</h5>
4004 <pre>
4005 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
4006 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4007 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4008 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
4009 </pre>
4011 </div>
4013 <!-- ======================================================================= -->
4014 <div class="doc_subsection">
4015 <a name="vectorops">Vector Operations</a>
4016 </div>
4018 <div class="doc_text">
4020 <p>LLVM supports several instructions to represent vector operations in a
4021 target-independent manner. These instructions cover the element-access and
4022 vector-specific operations needed to process vectors effectively. While LLVM
4023 does directly support these vector operations, many sophisticated algorithms
4024 will want to use target-specific intrinsics to take full advantage of a
4025 specific target.</p>
4027 </div>
4029 <!-- _______________________________________________________________________ -->
4030 <div class="doc_subsubsection">
4031 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
4032 </div>
4034 <div class="doc_text">
4036 <h5>Syntax:</h5>
4037 <pre>
4038 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
4039 </pre>
4041 <h5>Overview:</h5>
4042 <p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4043 from a vector at a specified index.</p>
4046 <h5>Arguments:</h5>
4047 <p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4048 of <a href="#t_vector">vector</a> type. The second operand is an index
4049 indicating the position from which to extract the element. The index may be
4050 a variable.</p>
4052 <h5>Semantics:</h5>
4053 <p>The result is a scalar of the same type as the element type of
4054 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4055 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4056 results are undefined.</p>
4058 <h5>Example:</h5>
4059 <pre>
4060 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
4061 </pre>
4063 </div>
4065 <!-- _______________________________________________________________________ -->
4066 <div class="doc_subsubsection">
4067 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4068 </div>
4070 <div class="doc_text">
4072 <h5>Syntax:</h5>
4073 <pre>
4074 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
4075 </pre>
4077 <h5>Overview:</h5>
4078 <p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4079 vector at a specified index.</p>
4081 <h5>Arguments:</h5>
4082 <p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4083 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4084 whose type must equal the element type of the first operand. The third
4085 operand is an index indicating the position at which to insert the value.
4086 The index may be a variable.</p>
4088 <h5>Semantics:</h5>
4089 <p>The result is a vector of the same type as <tt>val</tt>. Its element values
4090 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4091 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4092 results are undefined.</p>
4094 <h5>Example:</h5>
4095 <pre>
4096 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
4097 </pre>
4099 </div>
4101 <!-- _______________________________________________________________________ -->
4102 <div class="doc_subsubsection">
4103 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4104 </div>
4106 <div class="doc_text">
4108 <h5>Syntax:</h5>
4109 <pre>
4110 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
4111 </pre>
4113 <h5>Overview:</h5>
4114 <p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4115 from two input vectors, returning a vector with the same element type as the
4116 input and length that is the same as the shuffle mask.</p>
4118 <h5>Arguments:</h5>
4119 <p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4120 with types that match each other. The third argument is a shuffle mask whose
4121 element type is always 'i32'. The result of the instruction is a vector
4122 whose length is the same as the shuffle mask and whose element type is the
4123 same as the element type of the first two operands.</p>
4125 <p>The shuffle mask operand is required to be a constant vector with either
4126 constant integer or undef values.</p>
4128 <h5>Semantics:</h5>
4129 <p>The elements of the two input vectors are numbered from left to right across
4130 both of the vectors. The shuffle mask operand specifies, for each element of
4131 the result vector, which element of the two input vectors the result element
4132 gets. The element selector may be undef (meaning "don't care") and the
4133 second operand may be undef if performing a shuffle from only one vector.</p>
4135 <h5>Example:</h5>
4136 <pre>
4137 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4138 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
4139 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
4140 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
4141 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
4142 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
4143 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4144 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
4145 </pre>
4147 </div>
4149 <!-- ======================================================================= -->
4150 <div class="doc_subsection">
4151 <a name="aggregateops">Aggregate Operations</a>
4152 </div>
4154 <div class="doc_text">
4156 <p>LLVM supports several instructions for working with
4157 <a href="#t_aggregate">aggregate</a> values.</p>
4159 </div>
4161 <!-- _______________________________________________________________________ -->
4162 <div class="doc_subsubsection">
4163 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4164 </div>
4166 <div class="doc_text">
4168 <h5>Syntax:</h5>
4169 <pre>
4170 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4171 </pre>
4173 <h5>Overview:</h5>
4174 <p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4175 from an <a href="#t_aggregate">aggregate</a> value.</p>
4177 <h5>Arguments:</h5>
4178 <p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
4179 of <a href="#t_struct">struct</a> or
4180 <a href="#t_array">array</a> type. The operands are constant indices to
4181 specify which value to extract in a similar manner as indices in a
4182 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
4183 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4184 <ul>
4185 <li>Since the value being indexed is not a pointer, the first index is
4186 omitted and assumed to be zero.</li>
4187 <li>At least one index must be specified.</li>
4188 <li>Not only struct indices but also array indices must be in
4189 bounds.</li>
4190 </ul>
4192 <h5>Semantics:</h5>
4193 <p>The result is the value at the position in the aggregate specified by the
4194 index operands.</p>
4196 <h5>Example:</h5>
4197 <pre>
4198 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
4199 </pre>
4201 </div>
4203 <!-- _______________________________________________________________________ -->
4204 <div class="doc_subsubsection">
4205 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4206 </div>
4208 <div class="doc_text">
4210 <h5>Syntax:</h5>
4211 <pre>
4212 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
4213 </pre>
4215 <h5>Overview:</h5>
4216 <p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4217 in an <a href="#t_aggregate">aggregate</a> value.</p>
4219 <h5>Arguments:</h5>
4220 <p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
4221 of <a href="#t_struct">struct</a> or
4222 <a href="#t_array">array</a> type. The second operand is a first-class
4223 value to insert. The following operands are constant indices indicating
4224 the position at which to insert the value in a similar manner as indices in a
4225 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
4226 value to insert must have the same type as the value identified by the
4227 indices.</p>
4229 <h5>Semantics:</h5>
4230 <p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4231 that of <tt>val</tt> except that the value at the position specified by the
4232 indices is that of <tt>elt</tt>.</p>
4234 <h5>Example:</h5>
4235 <pre>
4236 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4237 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
4238 </pre>
4240 </div>
4243 <!-- ======================================================================= -->
4244 <div class="doc_subsection">
4245 <a name="memoryops">Memory Access and Addressing Operations</a>
4246 </div>
4248 <div class="doc_text">
4250 <p>A key design point of an SSA-based representation is how it represents
4251 memory. In LLVM, no memory locations are in SSA form, which makes things
4252 very simple. This section describes how to read, write, and allocate
4253 memory in LLVM.</p>
4255 </div>
4257 <!-- _______________________________________________________________________ -->
4258 <div class="doc_subsubsection">
4259 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4260 </div>
4262 <div class="doc_text">
4264 <h5>Syntax:</h5>
4265 <pre>
4266 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
4267 </pre>
4269 <h5>Overview:</h5>
4270 <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
4271 currently executing function, to be automatically released when this function
4272 returns to its caller. The object is always allocated in the generic address
4273 space (address space zero).</p>
4275 <h5>Arguments:</h5>
4276 <p>The '<tt>alloca</tt>' instruction
4277 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4278 runtime stack, returning a pointer of the appropriate type to the program.
4279 If "NumElements" is specified, it is the number of elements allocated,
4280 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4281 specified, the value result of the allocation is guaranteed to be aligned to
4282 at least that boundary. If not specified, or if zero, the target can choose
4283 to align the allocation on any convenient boundary compatible with the
4284 type.</p>
4286 <p>'<tt>type</tt>' may be any sized type.</p>
4288 <h5>Semantics:</h5>
4289 <p>Memory is allocated; a pointer is returned. The operation is undefined if
4290 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4291 memory is automatically released when the function returns. The
4292 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4293 variables that must have an address available. When the function returns
4294 (either with the <tt><a href="#i_ret">ret</a></tt>
4295 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4296 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
4298 <h5>Example:</h5>
4299 <pre>
4300 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4301 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4302 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4303 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
4304 </pre>
4306 </div>
4308 <!-- _______________________________________________________________________ -->
4309 <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
4310 Instruction</a> </div>
4312 <div class="doc_text">
4314 <h5>Syntax:</h5>
4315 <pre>
4316 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4317 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4318 !&lt;index&gt; = !{ i32 1 }
4319 </pre>
4321 <h5>Overview:</h5>
4322 <p>The '<tt>load</tt>' instruction is used to read from memory.</p>
4324 <h5>Arguments:</h5>
4325 <p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4326 from which to load. The pointer must point to
4327 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4328 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
4329 number or order of execution of this <tt>load</tt> with other <a
4330 href="#volatile">volatile operations</a>.</p>
4332 <p>The optional constant <tt>align</tt> argument specifies the alignment of the
4333 operation (that is, the alignment of the memory address). A value of 0 or an
4334 omitted <tt>align</tt> argument means that the operation has the preferential
4335 alignment for the target. It is the responsibility of the code emitter to
4336 ensure that the alignment information is correct. Overestimating the
4337 alignment results in undefined behavior. Underestimating the alignment may
4338 produce less efficient code. An alignment of 1 is always safe.</p>
4340 <p>The optional <tt>!nontemporal</tt> metadata must reference a single
4341 metatadata name &lt;index&gt; corresponding to a metadata node with
4342 one <tt>i32</tt> entry of value 1. The existence of
4343 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4344 and code generator that this load is not expected to be reused in the cache.
4345 The code generator may select special instructions to save cache bandwidth,
4346 such as the <tt>MOVNT</tt> instruction on x86.</p>
4348 <h5>Semantics:</h5>
4349 <p>The location of memory pointed to is loaded. If the value being loaded is of
4350 scalar type then the number of bytes read does not exceed the minimum number
4351 of bytes needed to hold all bits of the type. For example, loading an
4352 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4353 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4354 is undefined if the value was not originally written using a store of the
4355 same type.</p>
4357 <h5>Examples:</h5>
4358 <pre>
4359 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4360 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
4361 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
4362 </pre>
4364 </div>
4366 <!-- _______________________________________________________________________ -->
4367 <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
4368 Instruction</a> </div>
4370 <div class="doc_text">
4372 <h5>Syntax:</h5>
4373 <pre>
4374 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4375 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4376 </pre>
4378 <h5>Overview:</h5>
4379 <p>The '<tt>store</tt>' instruction is used to write to memory.</p>
4381 <h5>Arguments:</h5>
4382 <p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4383 and an address at which to store it. The type of the
4384 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4385 the <a href="#t_firstclass">first class</a> type of the
4386 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4387 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4388 order of execution of this <tt>store</tt> with other <a
4389 href="#volatile">volatile operations</a>.</p>
4391 <p>The optional constant "align" argument specifies the alignment of the
4392 operation (that is, the alignment of the memory address). A value of 0 or an
4393 omitted "align" argument means that the operation has the preferential
4394 alignment for the target. It is the responsibility of the code emitter to
4395 ensure that the alignment information is correct. Overestimating the
4396 alignment results in an undefined behavior. Underestimating the alignment may
4397 produce less efficient code. An alignment of 1 is always safe.</p>
4399 <p>The optional !nontemporal metadata must reference a single metatadata
4400 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
4401 value 1. The existence of the !nontemporal metatadata on the
4402 instruction tells the optimizer and code generator that this load is
4403 not expected to be reused in the cache. The code generator may
4404 select special instructions to save cache bandwidth, such as the
4405 MOVNT instruction on x86.</p>
4408 <h5>Semantics:</h5>
4409 <p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4410 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4411 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4412 does not exceed the minimum number of bytes needed to hold all bits of the
4413 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4414 writing a value of a type like <tt>i20</tt> with a size that is not an
4415 integral number of bytes, it is unspecified what happens to the extra bits
4416 that do not belong to the type, but they will typically be overwritten.</p>
4418 <h5>Example:</h5>
4419 <pre>
4420 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4421 store i32 3, i32* %ptr <i>; yields {void}</i>
4422 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
4423 </pre>
4425 </div>
4427 <!-- _______________________________________________________________________ -->
4428 <div class="doc_subsubsection">
4429 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
4430 </div>
4432 <div class="doc_text">
4434 <h5>Syntax:</h5>
4435 <pre>
4436 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4437 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
4438 </pre>
4440 <h5>Overview:</h5>
4441 <p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
4442 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4443 It performs address calculation only and does not access memory.</p>
4445 <h5>Arguments:</h5>
4446 <p>The first argument is always a pointer, and forms the basis of the
4447 calculation. The remaining arguments are indices that indicate which of the
4448 elements of the aggregate object are indexed. The interpretation of each
4449 index is dependent on the type being indexed into. The first index always
4450 indexes the pointer value given as the first argument, the second index
4451 indexes a value of the type pointed to (not necessarily the value directly
4452 pointed to, since the first index can be non-zero), etc. The first type
4453 indexed into must be a pointer value, subsequent types can be arrays,
4454 vectors, and structs. Note that subsequent types being indexed into
4455 can never be pointers, since that would require loading the pointer before
4456 continuing calculation.</p>
4458 <p>The type of each index argument depends on the type it is indexing into.
4459 When indexing into a (optionally packed) structure, only <tt>i32</tt>
4460 integer <b>constants</b> are allowed. When indexing into an array, pointer
4461 or vector, integers of any width are allowed, and they are not required to be
4462 constant.</p>
4464 <p>For example, let's consider a C code fragment and how it gets compiled to
4465 LLVM:</p>
4467 <pre class="doc_code">
4468 struct RT {
4469 char A;
4470 int B[10][20];
4471 char C;
4473 struct ST {
4474 int X;
4475 double Y;
4476 struct RT Z;
4479 int *foo(struct ST *s) {
4480 return &amp;s[1].Z.B[5][13];
4482 </pre>
4484 <p>The LLVM code generated by the GCC frontend is:</p>
4486 <pre class="doc_code">
4487 %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4488 %ST = <a href="#namedtypes">type</a> { i32, double, %RT }
4490 define i32* @foo(%ST* %s) {
4491 entry:
4492 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4493 ret i32* %reg
4495 </pre>
4497 <h5>Semantics:</h5>
4498 <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
4499 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4500 }</tt>' type, a structure. The second index indexes into the third element
4501 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4502 i8 }</tt>' type, another structure. The third index indexes into the second
4503 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4504 array. The two dimensions of the array are subscripted into, yielding an
4505 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4506 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
4508 <p>Note that it is perfectly legal to index partially through a structure,
4509 returning a pointer to an inner element. Because of this, the LLVM code for
4510 the given testcase is equivalent to:</p>
4512 <pre>
4513 define i32* @foo(%ST* %s) {
4514 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
4515 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4516 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
4517 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4518 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4519 ret i32* %t5
4521 </pre>
4523 <p>If the <tt>inbounds</tt> keyword is present, the result value of the
4524 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4525 base pointer is not an <i>in bounds</i> address of an allocated object,
4526 or if any of the addresses that would be formed by successive addition of
4527 the offsets implied by the indices to the base address with infinitely
4528 precise arithmetic are not an <i>in bounds</i> address of that allocated
4529 object. The <i>in bounds</i> addresses for an allocated object are all
4530 the addresses that point into the object, plus the address one byte past
4531 the end.</p>
4533 <p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4534 the base address with silently-wrapping two's complement arithmetic, and
4535 the result value of the <tt>getelementptr</tt> may be outside the object
4536 pointed to by the base pointer. The result value may not necessarily be
4537 used to access memory though, even if it happens to point into allocated
4538 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4539 section for more information.</p>
4541 <p>The getelementptr instruction is often confusing. For some more insight into
4542 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
4544 <h5>Example:</h5>
4545 <pre>
4546 <i>; yields [12 x i8]*:aptr</i>
4547 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4548 <i>; yields i8*:vptr</i>
4549 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
4550 <i>; yields i8*:eptr</i>
4551 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
4552 <i>; yields i32*:iptr</i>
4553 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
4554 </pre>
4556 </div>
4558 <!-- ======================================================================= -->
4559 <div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
4560 </div>
4562 <div class="doc_text">
4564 <p>The instructions in this category are the conversion instructions (casting)
4565 which all take a single operand and a type. They perform various bit
4566 conversions on the operand.</p>
4568 </div>
4570 <!-- _______________________________________________________________________ -->
4571 <div class="doc_subsubsection">
4572 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
4573 </div>
4574 <div class="doc_text">
4576 <h5>Syntax:</h5>
4577 <pre>
4578 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4579 </pre>
4581 <h5>Overview:</h5>
4582 <p>The '<tt>trunc</tt>' instruction truncates its operand to the
4583 type <tt>ty2</tt>.</p>
4585 <h5>Arguments:</h5>
4586 <p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
4587 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4588 of the same number of integers.
4589 The bit size of the <tt>value</tt> must be larger than
4590 the bit size of the destination type, <tt>ty2</tt>.
4591 Equal sized types are not allowed.</p>
4593 <h5>Semantics:</h5>
4594 <p>The '<tt>trunc</tt>' instruction truncates the high order bits
4595 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4596 source size must be larger than the destination size, <tt>trunc</tt> cannot
4597 be a <i>no-op cast</i>. It will always truncate bits.</p>
4599 <h5>Example:</h5>
4600 <pre>
4601 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4602 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4603 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
4604 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
4605 </pre>
4607 </div>
4609 <!-- _______________________________________________________________________ -->
4610 <div class="doc_subsubsection">
4611 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
4612 </div>
4613 <div class="doc_text">
4615 <h5>Syntax:</h5>
4616 <pre>
4617 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4618 </pre>
4620 <h5>Overview:</h5>
4621 <p>The '<tt>zext</tt>' instruction zero extends its operand to type
4622 <tt>ty2</tt>.</p>
4625 <h5>Arguments:</h5>
4626 <p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
4627 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4628 of the same number of integers.
4629 The bit size of the <tt>value</tt> must be smaller than
4630 the bit size of the destination type,
4631 <tt>ty2</tt>.</p>
4633 <h5>Semantics:</h5>
4634 <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
4635 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
4637 <p>When zero extending from i1, the result will always be either 0 or 1.</p>
4639 <h5>Example:</h5>
4640 <pre>
4641 %X = zext i32 257 to i64 <i>; yields i64:257</i>
4642 %Y = zext i1 true to i32 <i>; yields i32:1</i>
4643 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
4644 </pre>
4646 </div>
4648 <!-- _______________________________________________________________________ -->
4649 <div class="doc_subsubsection">
4650 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
4651 </div>
4652 <div class="doc_text">
4654 <h5>Syntax:</h5>
4655 <pre>
4656 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4657 </pre>
4659 <h5>Overview:</h5>
4660 <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4662 <h5>Arguments:</h5>
4663 <p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
4664 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4665 of the same number of integers.
4666 The bit size of the <tt>value</tt> must be smaller than
4667 the bit size of the destination type,
4668 <tt>ty2</tt>.</p>
4670 <h5>Semantics:</h5>
4671 <p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4672 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4673 of the type <tt>ty2</tt>.</p>
4675 <p>When sign extending from i1, the extension always results in -1 or 0.</p>
4677 <h5>Example:</h5>
4678 <pre>
4679 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
4680 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
4681 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
4682 </pre>
4684 </div>
4686 <!-- _______________________________________________________________________ -->
4687 <div class="doc_subsubsection">
4688 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
4689 </div>
4691 <div class="doc_text">
4693 <h5>Syntax:</h5>
4694 <pre>
4695 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4696 </pre>
4698 <h5>Overview:</h5>
4699 <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4700 <tt>ty2</tt>.</p>
4702 <h5>Arguments:</h5>
4703 <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4704 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4705 to cast it to. The size of <tt>value</tt> must be larger than the size of
4706 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4707 <i>no-op cast</i>.</p>
4709 <h5>Semantics:</h5>
4710 <p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4711 <a href="#t_floating">floating point</a> type to a smaller
4712 <a href="#t_floating">floating point</a> type. If the value cannot fit
4713 within the destination type, <tt>ty2</tt>, then the results are
4714 undefined.</p>
4716 <h5>Example:</h5>
4717 <pre>
4718 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4719 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4720 </pre>
4722 </div>
4724 <!-- _______________________________________________________________________ -->
4725 <div class="doc_subsubsection">
4726 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4727 </div>
4728 <div class="doc_text">
4730 <h5>Syntax:</h5>
4731 <pre>
4732 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4733 </pre>
4735 <h5>Overview:</h5>
4736 <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4737 floating point value.</p>
4739 <h5>Arguments:</h5>
4740 <p>The '<tt>fpext</tt>' instruction takes a
4741 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4742 a <a href="#t_floating">floating point</a> type to cast it to. The source
4743 type must be smaller than the destination type.</p>
4745 <h5>Semantics:</h5>
4746 <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
4747 <a href="#t_floating">floating point</a> type to a larger
4748 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4749 used to make a <i>no-op cast</i> because it always changes bits. Use
4750 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
4752 <h5>Example:</h5>
4753 <pre>
4754 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4755 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4756 </pre>
4758 </div>
4760 <!-- _______________________________________________________________________ -->
4761 <div class="doc_subsubsection">
4762 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
4763 </div>
4764 <div class="doc_text">
4766 <h5>Syntax:</h5>
4767 <pre>
4768 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4769 </pre>
4771 <h5>Overview:</h5>
4772 <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
4773 unsigned integer equivalent of type <tt>ty2</tt>.</p>
4775 <h5>Arguments:</h5>
4776 <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4777 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4778 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4779 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4780 vector integer type with the same number of elements as <tt>ty</tt></p>
4782 <h5>Semantics:</h5>
4783 <p>The '<tt>fptoui</tt>' instruction converts its
4784 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4785 towards zero) unsigned integer value. If the value cannot fit
4786 in <tt>ty2</tt>, the results are undefined.</p>
4788 <h5>Example:</h5>
4789 <pre>
4790 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
4791 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
4792 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
4793 </pre>
4795 </div>
4797 <!-- _______________________________________________________________________ -->
4798 <div class="doc_subsubsection">
4799 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
4800 </div>
4801 <div class="doc_text">
4803 <h5>Syntax:</h5>
4804 <pre>
4805 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4806 </pre>
4808 <h5>Overview:</h5>
4809 <p>The '<tt>fptosi</tt>' instruction converts
4810 <a href="#t_floating">floating point</a> <tt>value</tt> to
4811 type <tt>ty2</tt>.</p>
4813 <h5>Arguments:</h5>
4814 <p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4815 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4816 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4817 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4818 vector integer type with the same number of elements as <tt>ty</tt></p>
4820 <h5>Semantics:</h5>
4821 <p>The '<tt>fptosi</tt>' instruction converts its
4822 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4823 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4824 the results are undefined.</p>
4826 <h5>Example:</h5>
4827 <pre>
4828 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
4829 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
4830 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
4831 </pre>
4833 </div>
4835 <!-- _______________________________________________________________________ -->
4836 <div class="doc_subsubsection">
4837 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
4838 </div>
4839 <div class="doc_text">
4841 <h5>Syntax:</h5>
4842 <pre>
4843 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4844 </pre>
4846 <h5>Overview:</h5>
4847 <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
4848 integer and converts that value to the <tt>ty2</tt> type.</p>
4850 <h5>Arguments:</h5>
4851 <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4852 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4853 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4854 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4855 floating point type with the same number of elements as <tt>ty</tt></p>
4857 <h5>Semantics:</h5>
4858 <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
4859 integer quantity and converts it to the corresponding floating point
4860 value. If the value cannot fit in the floating point value, the results are
4861 undefined.</p>
4863 <h5>Example:</h5>
4864 <pre>
4865 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
4866 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
4867 </pre>
4869 </div>
4871 <!-- _______________________________________________________________________ -->
4872 <div class="doc_subsubsection">
4873 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
4874 </div>
4875 <div class="doc_text">
4877 <h5>Syntax:</h5>
4878 <pre>
4879 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4880 </pre>
4882 <h5>Overview:</h5>
4883 <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4884 and converts that value to the <tt>ty2</tt> type.</p>
4886 <h5>Arguments:</h5>
4887 <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4888 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4889 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4890 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4891 floating point type with the same number of elements as <tt>ty</tt></p>
4893 <h5>Semantics:</h5>
4894 <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4895 quantity and converts it to the corresponding floating point value. If the
4896 value cannot fit in the floating point value, the results are undefined.</p>
4898 <h5>Example:</h5>
4899 <pre>
4900 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
4901 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
4902 </pre>
4904 </div>
4906 <!-- _______________________________________________________________________ -->
4907 <div class="doc_subsubsection">
4908 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4909 </div>
4910 <div class="doc_text">
4912 <h5>Syntax:</h5>
4913 <pre>
4914 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4915 </pre>
4917 <h5>Overview:</h5>
4918 <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4919 the integer type <tt>ty2</tt>.</p>
4921 <h5>Arguments:</h5>
4922 <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
4923 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
4924 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
4926 <h5>Semantics:</h5>
4927 <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4928 <tt>ty2</tt> by interpreting the pointer value as an integer and either
4929 truncating or zero extending that value to the size of the integer type. If
4930 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4931 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
4932 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4933 change.</p>
4935 <h5>Example:</h5>
4936 <pre>
4937 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4938 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
4939 </pre>
4941 </div>
4943 <!-- _______________________________________________________________________ -->
4944 <div class="doc_subsubsection">
4945 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4946 </div>
4947 <div class="doc_text">
4949 <h5>Syntax:</h5>
4950 <pre>
4951 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4952 </pre>
4954 <h5>Overview:</h5>
4955 <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
4956 pointer type, <tt>ty2</tt>.</p>
4958 <h5>Arguments:</h5>
4959 <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
4960 value to cast, and a type to cast it to, which must be a
4961 <a href="#t_pointer">pointer</a> type.</p>
4963 <h5>Semantics:</h5>
4964 <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4965 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
4966 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4967 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
4968 than the size of a pointer then a zero extension is done. If they are the
4969 same size, nothing is done (<i>no-op cast</i>).</p>
4971 <h5>Example:</h5>
4972 <pre>
4973 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4974 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4975 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
4976 </pre>
4978 </div>
4980 <!-- _______________________________________________________________________ -->
4981 <div class="doc_subsubsection">
4982 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
4983 </div>
4984 <div class="doc_text">
4986 <h5>Syntax:</h5>
4987 <pre>
4988 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4989 </pre>
4991 <h5>Overview:</h5>
4992 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
4993 <tt>ty2</tt> without changing any bits.</p>
4995 <h5>Arguments:</h5>
4996 <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
4997 non-aggregate first class value, and a type to cast it to, which must also be
4998 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
4999 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5000 identical. If the source type is a pointer, the destination type must also be
5001 a pointer. This instruction supports bitwise conversion of vectors to
5002 integers and to vectors of other types (as long as they have the same
5003 size).</p>
5005 <h5>Semantics:</h5>
5006 <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5007 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5008 this conversion. The conversion is done as if the <tt>value</tt> had been
5009 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5010 be converted to other pointer types with this instruction. To convert
5011 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5012 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
5014 <h5>Example:</h5>
5015 <pre>
5016 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
5017 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
5018 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
5019 </pre>
5021 </div>
5023 <!-- ======================================================================= -->
5024 <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
5026 <div class="doc_text">
5028 <p>The instructions in this category are the "miscellaneous" instructions, which
5029 defy better classification.</p>
5031 </div>
5033 <!-- _______________________________________________________________________ -->
5034 <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5035 </div>
5037 <div class="doc_text">
5039 <h5>Syntax:</h5>
5040 <pre>
5041 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5042 </pre>
5044 <h5>Overview:</h5>
5045 <p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5046 boolean values based on comparison of its two integer, integer vector, or
5047 pointer operands.</p>
5049 <h5>Arguments:</h5>
5050 <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
5051 the condition code indicating the kind of comparison to perform. It is not a
5052 value, just a keyword. The possible condition code are:</p>
5054 <ol>
5055 <li><tt>eq</tt>: equal</li>
5056 <li><tt>ne</tt>: not equal </li>
5057 <li><tt>ugt</tt>: unsigned greater than</li>
5058 <li><tt>uge</tt>: unsigned greater or equal</li>
5059 <li><tt>ult</tt>: unsigned less than</li>
5060 <li><tt>ule</tt>: unsigned less or equal</li>
5061 <li><tt>sgt</tt>: signed greater than</li>
5062 <li><tt>sge</tt>: signed greater or equal</li>
5063 <li><tt>slt</tt>: signed less than</li>
5064 <li><tt>sle</tt>: signed less or equal</li>
5065 </ol>
5067 <p>The remaining two arguments must be <a href="#t_integer">integer</a> or
5068 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5069 typed. They must also be identical types.</p>
5071 <h5>Semantics:</h5>
5072 <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5073 condition code given as <tt>cond</tt>. The comparison performed always yields
5074 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
5075 result, as follows:</p>
5077 <ol>
5078 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
5079 <tt>false</tt> otherwise. No sign interpretation is necessary or
5080 performed.</li>
5082 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
5083 <tt>false</tt> otherwise. No sign interpretation is necessary or
5084 performed.</li>
5086 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
5087 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5089 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
5090 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5091 to <tt>op2</tt>.</li>
5093 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
5094 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5096 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
5097 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5099 <li><tt>sgt</tt>: interprets the operands as signed values and yields
5100 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5102 <li><tt>sge</tt>: interprets the operands as signed values and yields
5103 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5104 to <tt>op2</tt>.</li>
5106 <li><tt>slt</tt>: interprets the operands as signed values and yields
5107 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5109 <li><tt>sle</tt>: interprets the operands as signed values and yields
5110 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5111 </ol>
5113 <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
5114 values are compared as if they were integers.</p>
5116 <p>If the operands are integer vectors, then they are compared element by
5117 element. The result is an <tt>i1</tt> vector with the same number of elements
5118 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
5120 <h5>Example:</h5>
5121 <pre>
5122 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
5123 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5124 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5125 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5126 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5127 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
5128 </pre>
5130 <p>Note that the code generator does not yet support vector types with
5131 the <tt>icmp</tt> instruction.</p>
5133 </div>
5135 <!-- _______________________________________________________________________ -->
5136 <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5137 </div>
5139 <div class="doc_text">
5141 <h5>Syntax:</h5>
5142 <pre>
5143 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
5144 </pre>
5146 <h5>Overview:</h5>
5147 <p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5148 values based on comparison of its operands.</p>
5150 <p>If the operands are floating point scalars, then the result type is a boolean
5151 (<a href="#t_integer"><tt>i1</tt></a>).</p>
5153 <p>If the operands are floating point vectors, then the result type is a vector
5154 of boolean with the same number of elements as the operands being
5155 compared.</p>
5157 <h5>Arguments:</h5>
5158 <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
5159 the condition code indicating the kind of comparison to perform. It is not a
5160 value, just a keyword. The possible condition code are:</p>
5162 <ol>
5163 <li><tt>false</tt>: no comparison, always returns false</li>
5164 <li><tt>oeq</tt>: ordered and equal</li>
5165 <li><tt>ogt</tt>: ordered and greater than </li>
5166 <li><tt>oge</tt>: ordered and greater than or equal</li>
5167 <li><tt>olt</tt>: ordered and less than </li>
5168 <li><tt>ole</tt>: ordered and less than or equal</li>
5169 <li><tt>one</tt>: ordered and not equal</li>
5170 <li><tt>ord</tt>: ordered (no nans)</li>
5171 <li><tt>ueq</tt>: unordered or equal</li>
5172 <li><tt>ugt</tt>: unordered or greater than </li>
5173 <li><tt>uge</tt>: unordered or greater than or equal</li>
5174 <li><tt>ult</tt>: unordered or less than </li>
5175 <li><tt>ule</tt>: unordered or less than or equal</li>
5176 <li><tt>une</tt>: unordered or not equal</li>
5177 <li><tt>uno</tt>: unordered (either nans)</li>
5178 <li><tt>true</tt>: no comparison, always returns true</li>
5179 </ol>
5181 <p><i>Ordered</i> means that neither operand is a QNAN while
5182 <i>unordered</i> means that either operand may be a QNAN.</p>
5184 <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5185 a <a href="#t_floating">floating point</a> type or
5186 a <a href="#t_vector">vector</a> of floating point type. They must have
5187 identical types.</p>
5189 <h5>Semantics:</h5>
5190 <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
5191 according to the condition code given as <tt>cond</tt>. If the operands are
5192 vectors, then the vectors are compared element by element. Each comparison
5193 performed always yields an <a href="#t_integer">i1</a> result, as
5194 follows:</p>
5196 <ol>
5197 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
5199 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5200 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5202 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5203 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5205 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5206 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5208 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5209 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5211 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5212 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5214 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
5215 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5217 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
5219 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
5220 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5222 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
5223 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5225 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
5226 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5228 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
5229 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5231 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
5232 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5234 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
5235 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5237 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
5239 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5240 </ol>
5242 <h5>Example:</h5>
5243 <pre>
5244 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
5245 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5246 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5247 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
5248 </pre>
5250 <p>Note that the code generator does not yet support vector types with
5251 the <tt>fcmp</tt> instruction.</p>
5253 </div>
5255 <!-- _______________________________________________________________________ -->
5256 <div class="doc_subsubsection">
5257 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
5258 </div>
5260 <div class="doc_text">
5262 <h5>Syntax:</h5>
5263 <pre>
5264 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5265 </pre>
5267 <h5>Overview:</h5>
5268 <p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5269 SSA graph representing the function.</p>
5271 <h5>Arguments:</h5>
5272 <p>The type of the incoming values is specified with the first type field. After
5273 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5274 one pair for each predecessor basic block of the current block. Only values
5275 of <a href="#t_firstclass">first class</a> type may be used as the value
5276 arguments to the PHI node. Only labels may be used as the label
5277 arguments.</p>
5279 <p>There must be no non-phi instructions between the start of a basic block and
5280 the PHI instructions: i.e. PHI instructions must be first in a basic
5281 block.</p>
5283 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
5284 occur on the edge from the corresponding predecessor block to the current
5285 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5286 value on the same edge).</p>
5288 <h5>Semantics:</h5>
5289 <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
5290 specified by the pair corresponding to the predecessor basic block that
5291 executed just prior to the current block.</p>
5293 <h5>Example:</h5>
5294 <pre>
5295 Loop: ; Infinite loop that counts from 0 on up...
5296 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5297 %nextindvar = add i32 %indvar, 1
5298 br label %Loop
5299 </pre>
5301 </div>
5303 <!-- _______________________________________________________________________ -->
5304 <div class="doc_subsubsection">
5305 <a name="i_select">'<tt>select</tt>' Instruction</a>
5306 </div>
5308 <div class="doc_text">
5310 <h5>Syntax:</h5>
5311 <pre>
5312 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5314 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
5315 </pre>
5317 <h5>Overview:</h5>
5318 <p>The '<tt>select</tt>' instruction is used to choose one value based on a
5319 condition, without branching.</p>
5322 <h5>Arguments:</h5>
5323 <p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5324 values indicating the condition, and two values of the
5325 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5326 vectors and the condition is a scalar, then entire vectors are selected, not
5327 individual elements.</p>
5329 <h5>Semantics:</h5>
5330 <p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5331 first value argument; otherwise, it returns the second value argument.</p>
5333 <p>If the condition is a vector of i1, then the value arguments must be vectors
5334 of the same size, and the selection is done element by element.</p>
5336 <h5>Example:</h5>
5337 <pre>
5338 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
5339 </pre>
5341 <p>Note that the code generator does not yet support conditions
5342 with vector type.</p>
5344 </div>
5346 <!-- _______________________________________________________________________ -->
5347 <div class="doc_subsubsection">
5348 <a name="i_call">'<tt>call</tt>' Instruction</a>
5349 </div>
5351 <div class="doc_text">
5353 <h5>Syntax:</h5>
5354 <pre>
5355 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
5356 </pre>
5358 <h5>Overview:</h5>
5359 <p>The '<tt>call</tt>' instruction represents a simple function call.</p>
5361 <h5>Arguments:</h5>
5362 <p>This instruction requires several arguments:</p>
5364 <ol>
5365 <li>The optional "tail" marker indicates that the callee function does not
5366 access any allocas or varargs in the caller. Note that calls may be
5367 marked "tail" even if they do not occur before
5368 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5369 present, the function call is eligible for tail call optimization,
5370 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
5371 optimized into a jump</a>. The code generator may optimize calls marked
5372 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5373 sibling call optimization</a> when the caller and callee have
5374 matching signatures, or 2) forced tail call optimization when the
5375 following extra requirements are met:
5376 <ul>
5377 <li>Caller and callee both have the calling
5378 convention <tt>fastcc</tt>.</li>
5379 <li>The call is in tail position (ret immediately follows call and ret
5380 uses value of call or is void).</li>
5381 <li>Option <tt>-tailcallopt</tt> is enabled,
5382 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
5383 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5384 constraints are met.</a></li>
5385 </ul>
5386 </li>
5388 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5389 convention</a> the call should use. If none is specified, the call
5390 defaults to using C calling conventions. The calling convention of the
5391 call must match the calling convention of the target function, or else the
5392 behavior is undefined.</li>
5394 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5395 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5396 '<tt>inreg</tt>' attributes are valid here.</li>
5398 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5399 type of the return value. Functions that return no value are marked
5400 <tt><a href="#t_void">void</a></tt>.</li>
5402 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5403 being invoked. The argument types must match the types implied by this
5404 signature. This type can be omitted if the function is not varargs and if
5405 the function type does not return a pointer to a function.</li>
5407 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5408 be invoked. In most cases, this is a direct function invocation, but
5409 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5410 to function value.</li>
5412 <li>'<tt>function args</tt>': argument list whose types match the function
5413 signature argument types and parameter attributes. All arguments must be
5414 of <a href="#t_firstclass">first class</a> type. If the function
5415 signature indicates the function accepts a variable number of arguments,
5416 the extra arguments can be specified.</li>
5418 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5419 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5420 '<tt>readnone</tt>' attributes are valid here.</li>
5421 </ol>
5423 <h5>Semantics:</h5>
5424 <p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5425 a specified function, with its incoming arguments bound to the specified
5426 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5427 function, control flow continues with the instruction after the function
5428 call, and the return value of the function is bound to the result
5429 argument.</p>
5431 <h5>Example:</h5>
5432 <pre>
5433 %retval = call i32 @test(i32 %argc)
5434 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
5435 %X = tail call i32 @foo() <i>; yields i32</i>
5436 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5437 call void %foo(i8 97 signext)
5439 %struct.A = type { i32, i8 }
5440 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
5441 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5442 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
5443 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
5444 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
5445 </pre>
5447 <p>llvm treats calls to some functions with names and arguments that match the
5448 standard C99 library as being the C99 library functions, and may perform
5449 optimizations or generate code for them under that assumption. This is
5450 something we'd like to change in the future to provide better support for
5451 freestanding environments and non-C-based languages.</p>
5453 </div>
5455 <!-- _______________________________________________________________________ -->
5456 <div class="doc_subsubsection">
5457 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
5458 </div>
5460 <div class="doc_text">
5462 <h5>Syntax:</h5>
5463 <pre>
5464 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
5465 </pre>
5467 <h5>Overview:</h5>
5468 <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
5469 the "variable argument" area of a function call. It is used to implement the
5470 <tt>va_arg</tt> macro in C.</p>
5472 <h5>Arguments:</h5>
5473 <p>This instruction takes a <tt>va_list*</tt> value and the type of the
5474 argument. It returns a value of the specified argument type and increments
5475 the <tt>va_list</tt> to point to the next argument. The actual type
5476 of <tt>va_list</tt> is target specific.</p>
5478 <h5>Semantics:</h5>
5479 <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5480 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5481 to the next argument. For more information, see the variable argument
5482 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
5484 <p>It is legal for this instruction to be called in a function which does not
5485 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5486 function.</p>
5488 <p><tt>va_arg</tt> is an LLVM instruction instead of
5489 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5490 argument.</p>
5492 <h5>Example:</h5>
5493 <p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5495 <p>Note that the code generator does not yet fully support va_arg on many
5496 targets. Also, it does not currently support va_arg with aggregate types on
5497 any target.</p>
5499 </div>
5501 <!-- *********************************************************************** -->
5502 <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
5503 <!-- *********************************************************************** -->
5505 <div class="doc_text">
5507 <p>LLVM supports the notion of an "intrinsic function". These functions have
5508 well known names and semantics and are required to follow certain
5509 restrictions. Overall, these intrinsics represent an extension mechanism for
5510 the LLVM language that does not require changing all of the transformations
5511 in LLVM when adding to the language (or the bitcode reader/writer, the
5512 parser, etc...).</p>
5514 <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
5515 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5516 begin with this prefix. Intrinsic functions must always be external
5517 functions: you cannot define the body of intrinsic functions. Intrinsic
5518 functions may only be used in call or invoke instructions: it is illegal to
5519 take the address of an intrinsic function. Additionally, because intrinsic
5520 functions are part of the LLVM language, it is required if any are added that
5521 they be documented here.</p>
5523 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5524 family of functions that perform the same operation but on different data
5525 types. Because LLVM can represent over 8 million different integer types,
5526 overloading is used commonly to allow an intrinsic function to operate on any
5527 integer type. One or more of the argument types or the result type can be
5528 overloaded to accept any integer type. Argument types may also be defined as
5529 exactly matching a previous argument's type or the result type. This allows
5530 an intrinsic function which accepts multiple arguments, but needs all of them
5531 to be of the same type, to only be overloaded with respect to a single
5532 argument or the result.</p>
5534 <p>Overloaded intrinsics will have the names of its overloaded argument types
5535 encoded into its function name, each preceded by a period. Only those types
5536 which are overloaded result in a name suffix. Arguments whose type is matched
5537 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5538 can take an integer of any width and returns an integer of exactly the same
5539 integer width. This leads to a family of functions such as
5540 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5541 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5542 suffix is required. Because the argument's type is matched against the return
5543 type, it does not require its own name suffix.</p>
5545 <p>To learn how to add an intrinsic function, please see the
5546 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
5548 </div>
5550 <!-- ======================================================================= -->
5551 <div class="doc_subsection">
5552 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
5553 </div>
5555 <div class="doc_text">
5557 <p>Variable argument support is defined in LLVM with
5558 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5559 intrinsic functions. These functions are related to the similarly named
5560 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
5562 <p>All of these functions operate on arguments that use a target-specific value
5563 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5564 not define what this type is, so all transformations should be prepared to
5565 handle these functions regardless of the type used.</p>
5567 <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
5568 instruction and the variable argument handling intrinsic functions are
5569 used.</p>
5571 <pre class="doc_code">
5572 define i32 @test(i32 %X, ...) {
5573 ; Initialize variable argument processing
5574 %ap = alloca i8*
5575 %ap2 = bitcast i8** %ap to i8*
5576 call void @llvm.va_start(i8* %ap2)
5578 ; Read a single integer argument
5579 %tmp = va_arg i8** %ap, i32
5581 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5582 %aq = alloca i8*
5583 %aq2 = bitcast i8** %aq to i8*
5584 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5585 call void @llvm.va_end(i8* %aq2)
5587 ; Stop processing of arguments.
5588 call void @llvm.va_end(i8* %ap2)
5589 ret i32 %tmp
5592 declare void @llvm.va_start(i8*)
5593 declare void @llvm.va_copy(i8*, i8*)
5594 declare void @llvm.va_end(i8*)
5595 </pre>
5597 </div>
5599 <!-- _______________________________________________________________________ -->
5600 <div class="doc_subsubsection">
5601 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
5602 </div>
5605 <div class="doc_text">
5607 <h5>Syntax:</h5>
5608 <pre>
5609 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5610 </pre>
5612 <h5>Overview:</h5>
5613 <p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5614 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
5616 <h5>Arguments:</h5>
5617 <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
5619 <h5>Semantics:</h5>
5620 <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
5621 macro available in C. In a target-dependent way, it initializes
5622 the <tt>va_list</tt> element to which the argument points, so that the next
5623 call to <tt>va_arg</tt> will produce the first variable argument passed to
5624 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5625 need to know the last argument of the function as the compiler can figure
5626 that out.</p>
5628 </div>
5630 <!-- _______________________________________________________________________ -->
5631 <div class="doc_subsubsection">
5632 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
5633 </div>
5635 <div class="doc_text">
5637 <h5>Syntax:</h5>
5638 <pre>
5639 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5640 </pre>
5642 <h5>Overview:</h5>
5643 <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
5644 which has been initialized previously
5645 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5646 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
5648 <h5>Arguments:</h5>
5649 <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
5651 <h5>Semantics:</h5>
5652 <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
5653 macro available in C. In a target-dependent way, it destroys
5654 the <tt>va_list</tt> element to which the argument points. Calls
5655 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5656 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5657 with calls to <tt>llvm.va_end</tt>.</p>
5659 </div>
5661 <!-- _______________________________________________________________________ -->
5662 <div class="doc_subsubsection">
5663 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
5664 </div>
5666 <div class="doc_text">
5668 <h5>Syntax:</h5>
5669 <pre>
5670 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
5671 </pre>
5673 <h5>Overview:</h5>
5674 <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5675 from the source argument list to the destination argument list.</p>
5677 <h5>Arguments:</h5>
5678 <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
5679 The second argument is a pointer to a <tt>va_list</tt> element to copy
5680 from.</p>
5682 <h5>Semantics:</h5>
5683 <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5684 macro available in C. In a target-dependent way, it copies the
5685 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5686 element. This intrinsic is necessary because
5687 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5688 arbitrarily complex and require, for example, memory allocation.</p>
5690 </div>
5692 <!-- ======================================================================= -->
5693 <div class="doc_subsection">
5694 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5695 </div>
5697 <div class="doc_text">
5699 <p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
5700 Collection</a> (GC) requires the implementation and generation of these
5701 intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5702 roots on the stack</a>, as well as garbage collector implementations that
5703 require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5704 barriers. Front-ends for type-safe garbage collected languages should generate
5705 these intrinsics to make use of the LLVM garbage collectors. For more details,
5706 see <a href="GarbageCollection.html">Accurate Garbage Collection with
5707 LLVM</a>.</p>
5709 <p>The garbage collection intrinsics only operate on objects in the generic
5710 address space (address space zero).</p>
5712 </div>
5714 <!-- _______________________________________________________________________ -->
5715 <div class="doc_subsubsection">
5716 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
5717 </div>
5719 <div class="doc_text">
5721 <h5>Syntax:</h5>
5722 <pre>
5723 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5724 </pre>
5726 <h5>Overview:</h5>
5727 <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
5728 the code generator, and allows some metadata to be associated with it.</p>
5730 <h5>Arguments:</h5>
5731 <p>The first argument specifies the address of a stack object that contains the
5732 root pointer. The second pointer (which must be either a constant or a
5733 global value address) contains the meta-data to be associated with the
5734 root.</p>
5736 <h5>Semantics:</h5>
5737 <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
5738 location. At compile-time, the code generator generates information to allow
5739 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5740 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5741 algorithm</a>.</p>
5743 </div>
5745 <!-- _______________________________________________________________________ -->
5746 <div class="doc_subsubsection">
5747 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
5748 </div>
5750 <div class="doc_text">
5752 <h5>Syntax:</h5>
5753 <pre>
5754 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5755 </pre>
5757 <h5>Overview:</h5>
5758 <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5759 locations, allowing garbage collector implementations that require read
5760 barriers.</p>
5762 <h5>Arguments:</h5>
5763 <p>The second argument is the address to read from, which should be an address
5764 allocated from the garbage collector. The first object is a pointer to the
5765 start of the referenced object, if needed by the language runtime (otherwise
5766 null).</p>
5768 <h5>Semantics:</h5>
5769 <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5770 instruction, but may be replaced with substantially more complex code by the
5771 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5772 may only be used in a function which <a href="#gc">specifies a GC
5773 algorithm</a>.</p>
5775 </div>
5777 <!-- _______________________________________________________________________ -->
5778 <div class="doc_subsubsection">
5779 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
5780 </div>
5782 <div class="doc_text">
5784 <h5>Syntax:</h5>
5785 <pre>
5786 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5787 </pre>
5789 <h5>Overview:</h5>
5790 <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5791 locations, allowing garbage collector implementations that require write
5792 barriers (such as generational or reference counting collectors).</p>
5794 <h5>Arguments:</h5>
5795 <p>The first argument is the reference to store, the second is the start of the
5796 object to store it to, and the third is the address of the field of Obj to
5797 store to. If the runtime does not require a pointer to the object, Obj may
5798 be null.</p>
5800 <h5>Semantics:</h5>
5801 <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5802 instruction, but may be replaced with substantially more complex code by the
5803 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5804 may only be used in a function which <a href="#gc">specifies a GC
5805 algorithm</a>.</p>
5807 </div>
5809 <!-- ======================================================================= -->
5810 <div class="doc_subsection">
5811 <a name="int_codegen">Code Generator Intrinsics</a>
5812 </div>
5814 <div class="doc_text">
5816 <p>These intrinsics are provided by LLVM to expose special features that may
5817 only be implemented with code generator support.</p>
5819 </div>
5821 <!-- _______________________________________________________________________ -->
5822 <div class="doc_subsubsection">
5823 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
5824 </div>
5826 <div class="doc_text">
5828 <h5>Syntax:</h5>
5829 <pre>
5830 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
5831 </pre>
5833 <h5>Overview:</h5>
5834 <p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5835 target-specific value indicating the return address of the current function
5836 or one of its callers.</p>
5838 <h5>Arguments:</h5>
5839 <p>The argument to this intrinsic indicates which function to return the address
5840 for. Zero indicates the calling function, one indicates its caller, etc.
5841 The argument is <b>required</b> to be a constant integer value.</p>
5843 <h5>Semantics:</h5>
5844 <p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5845 indicating the return address of the specified call frame, or zero if it
5846 cannot be identified. The value returned by this intrinsic is likely to be
5847 incorrect or 0 for arguments other than zero, so it should only be used for
5848 debugging purposes.</p>
5850 <p>Note that calling this intrinsic does not prevent function inlining or other
5851 aggressive transformations, so the value returned may not be that of the
5852 obvious source-language caller.</p>
5854 </div>
5856 <!-- _______________________________________________________________________ -->
5857 <div class="doc_subsubsection">
5858 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
5859 </div>
5861 <div class="doc_text">
5863 <h5>Syntax:</h5>
5864 <pre>
5865 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
5866 </pre>
5868 <h5>Overview:</h5>
5869 <p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5870 target-specific frame pointer value for the specified stack frame.</p>
5872 <h5>Arguments:</h5>
5873 <p>The argument to this intrinsic indicates which function to return the frame
5874 pointer for. Zero indicates the calling function, one indicates its caller,
5875 etc. The argument is <b>required</b> to be a constant integer value.</p>
5877 <h5>Semantics:</h5>
5878 <p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5879 indicating the frame address of the specified call frame, or zero if it
5880 cannot be identified. The value returned by this intrinsic is likely to be
5881 incorrect or 0 for arguments other than zero, so it should only be used for
5882 debugging purposes.</p>
5884 <p>Note that calling this intrinsic does not prevent function inlining or other
5885 aggressive transformations, so the value returned may not be that of the
5886 obvious source-language caller.</p>
5888 </div>
5890 <!-- _______________________________________________________________________ -->
5891 <div class="doc_subsubsection">
5892 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
5893 </div>
5895 <div class="doc_text">
5897 <h5>Syntax:</h5>
5898 <pre>
5899 declare i8* @llvm.stacksave()
5900 </pre>
5902 <h5>Overview:</h5>
5903 <p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
5904 of the function stack, for use
5905 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
5906 useful for implementing language features like scoped automatic variable
5907 sized arrays in C99.</p>
5909 <h5>Semantics:</h5>
5910 <p>This intrinsic returns a opaque pointer value that can be passed
5911 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
5912 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
5913 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
5914 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
5915 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
5916 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
5918 </div>
5920 <!-- _______________________________________________________________________ -->
5921 <div class="doc_subsubsection">
5922 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
5923 </div>
5925 <div class="doc_text">
5927 <h5>Syntax:</h5>
5928 <pre>
5929 declare void @llvm.stackrestore(i8* %ptr)
5930 </pre>
5932 <h5>Overview:</h5>
5933 <p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5934 the function stack to the state it was in when the
5935 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
5936 executed. This is useful for implementing language features like scoped
5937 automatic variable sized arrays in C99.</p>
5939 <h5>Semantics:</h5>
5940 <p>See the description
5941 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
5943 </div>
5945 <!-- _______________________________________________________________________ -->
5946 <div class="doc_subsubsection">
5947 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
5948 </div>
5950 <div class="doc_text">
5952 <h5>Syntax:</h5>
5953 <pre>
5954 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
5955 </pre>
5957 <h5>Overview:</h5>
5958 <p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
5959 insert a prefetch instruction if supported; otherwise, it is a noop.
5960 Prefetches have no effect on the behavior of the program but can change its
5961 performance characteristics.</p>
5963 <h5>Arguments:</h5>
5964 <p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
5965 specifier determining if the fetch should be for a read (0) or write (1),
5966 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
5967 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
5968 and <tt>locality</tt> arguments must be constant integers.</p>
5970 <h5>Semantics:</h5>
5971 <p>This intrinsic does not modify the behavior of the program. In particular,
5972 prefetches cannot trap and do not produce a value. On targets that support
5973 this intrinsic, the prefetch can provide hints to the processor cache for
5974 better performance.</p>
5976 </div>
5978 <!-- _______________________________________________________________________ -->
5979 <div class="doc_subsubsection">
5980 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
5981 </div>
5983 <div class="doc_text">
5985 <h5>Syntax:</h5>
5986 <pre>
5987 declare void @llvm.pcmarker(i32 &lt;id&gt;)
5988 </pre>
5990 <h5>Overview:</h5>
5991 <p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
5992 Counter (PC) in a region of code to simulators and other tools. The method
5993 is target specific, but it is expected that the marker will use exported
5994 symbols to transmit the PC of the marker. The marker makes no guarantees
5995 that it will remain with any specific instruction after optimizations. It is
5996 possible that the presence of a marker will inhibit optimizations. The
5997 intended use is to be inserted after optimizations to allow correlations of
5998 simulation runs.</p>
6000 <h5>Arguments:</h5>
6001 <p><tt>id</tt> is a numerical id identifying the marker.</p>
6003 <h5>Semantics:</h5>
6004 <p>This intrinsic does not modify the behavior of the program. Backends that do
6005 not support this intrinsic may ignore it.</p>
6007 </div>
6009 <!-- _______________________________________________________________________ -->
6010 <div class="doc_subsubsection">
6011 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
6012 </div>
6014 <div class="doc_text">
6016 <h5>Syntax:</h5>
6017 <pre>
6018 declare i64 @llvm.readcyclecounter()
6019 </pre>
6021 <h5>Overview:</h5>
6022 <p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6023 counter register (or similar low latency, high accuracy clocks) on those
6024 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6025 should map to RPCC. As the backing counters overflow quickly (on the order
6026 of 9 seconds on alpha), this should only be used for small timings.</p>
6028 <h5>Semantics:</h5>
6029 <p>When directly supported, reading the cycle counter should not modify any
6030 memory. Implementations are allowed to either return a application specific
6031 value or a system wide value. On backends without support, this is lowered
6032 to a constant 0.</p>
6034 </div>
6036 <!-- ======================================================================= -->
6037 <div class="doc_subsection">
6038 <a name="int_libc">Standard C Library Intrinsics</a>
6039 </div>
6041 <div class="doc_text">
6043 <p>LLVM provides intrinsics for a few important standard C library functions.
6044 These intrinsics allow source-language front-ends to pass information about
6045 the alignment of the pointer arguments to the code generator, providing
6046 opportunity for more efficient code generation.</p>
6048 </div>
6050 <!-- _______________________________________________________________________ -->
6051 <div class="doc_subsubsection">
6052 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
6053 </div>
6055 <div class="doc_text">
6057 <h5>Syntax:</h5>
6058 <p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
6059 integer bit width and for different address spaces. Not all targets support
6060 all bit widths however.</p>
6062 <pre>
6063 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6064 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6065 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6066 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6067 </pre>
6069 <h5>Overview:</h5>
6070 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6071 source location to the destination location.</p>
6073 <p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
6074 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6075 and the pointers can be in specified address spaces.</p>
6077 <h5>Arguments:</h5>
6079 <p>The first argument is a pointer to the destination, the second is a pointer
6080 to the source. The third argument is an integer argument specifying the
6081 number of bytes to copy, the fourth argument is the alignment of the
6082 source and destination locations, and the fifth is a boolean indicating a
6083 volatile access.</p>
6085 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6086 then the caller guarantees that both the source and destination pointers are
6087 aligned to that boundary.</p>
6089 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6090 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6091 The detailed access behavior is not very cleanly specified and it is unwise
6092 to depend on it.</p>
6094 <h5>Semantics:</h5>
6096 <p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6097 source location to the destination location, which are not allowed to
6098 overlap. It copies "len" bytes of memory over. If the argument is known to
6099 be aligned to some boundary, this can be specified as the fourth argument,
6100 otherwise it should be set to 0 or 1.</p>
6102 </div>
6104 <!-- _______________________________________________________________________ -->
6105 <div class="doc_subsubsection">
6106 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
6107 </div>
6109 <div class="doc_text">
6111 <h5>Syntax:</h5>
6112 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
6113 width and for different address space. Not all targets support all bit
6114 widths however.</p>
6116 <pre>
6117 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6118 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6119 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
6120 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6121 </pre>
6123 <h5>Overview:</h5>
6124 <p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6125 source location to the destination location. It is similar to the
6126 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6127 overlap.</p>
6129 <p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
6130 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6131 and the pointers can be in specified address spaces.</p>
6133 <h5>Arguments:</h5>
6135 <p>The first argument is a pointer to the destination, the second is a pointer
6136 to the source. The third argument is an integer argument specifying the
6137 number of bytes to copy, the fourth argument is the alignment of the
6138 source and destination locations, and the fifth is a boolean indicating a
6139 volatile access.</p>
6141 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6142 then the caller guarantees that the source and destination pointers are
6143 aligned to that boundary.</p>
6145 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6146 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6147 The detailed access behavior is not very cleanly specified and it is unwise
6148 to depend on it.</p>
6150 <h5>Semantics:</h5>
6152 <p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6153 source location to the destination location, which may overlap. It copies
6154 "len" bytes of memory over. If the argument is known to be aligned to some
6155 boundary, this can be specified as the fourth argument, otherwise it should
6156 be set to 0 or 1.</p>
6158 </div>
6160 <!-- _______________________________________________________________________ -->
6161 <div class="doc_subsubsection">
6162 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
6163 </div>
6165 <div class="doc_text">
6167 <h5>Syntax:</h5>
6168 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
6169 width and for different address spaces. However, not all targets support all
6170 bit widths.</p>
6172 <pre>
6173 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6174 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6175 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
6176 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
6177 </pre>
6179 <h5>Overview:</h5>
6180 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6181 particular byte value.</p>
6183 <p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
6184 intrinsic does not return a value and takes extra alignment/volatile
6185 arguments. Also, the destination can be in an arbitrary address space.</p>
6187 <h5>Arguments:</h5>
6188 <p>The first argument is a pointer to the destination to fill, the second is the
6189 byte value with which to fill it, the third argument is an integer argument
6190 specifying the number of bytes to fill, and the fourth argument is the known
6191 alignment of the destination location.</p>
6193 <p>If the call to this intrinsic has an alignment value that is not 0 or 1,
6194 then the caller guarantees that the destination pointer is aligned to that
6195 boundary.</p>
6197 <p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6198 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6199 The detailed access behavior is not very cleanly specified and it is unwise
6200 to depend on it.</p>
6202 <h5>Semantics:</h5>
6203 <p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6204 at the destination location. If the argument is known to be aligned to some
6205 boundary, this can be specified as the fourth argument, otherwise it should
6206 be set to 0 or 1.</p>
6208 </div>
6210 <!-- _______________________________________________________________________ -->
6211 <div class="doc_subsubsection">
6212 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
6213 </div>
6215 <div class="doc_text">
6217 <h5>Syntax:</h5>
6218 <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6219 floating point or vector of floating point type. Not all targets support all
6220 types however.</p>
6222 <pre>
6223 declare float @llvm.sqrt.f32(float %Val)
6224 declare double @llvm.sqrt.f64(double %Val)
6225 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6226 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6227 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6228 </pre>
6230 <h5>Overview:</h5>
6231 <p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6232 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6233 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6234 behavior for negative numbers other than -0.0 (which allows for better
6235 optimization, because there is no need to worry about errno being
6236 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
6238 <h5>Arguments:</h5>
6239 <p>The argument and return value are floating point numbers of the same
6240 type.</p>
6242 <h5>Semantics:</h5>
6243 <p>This function returns the sqrt of the specified operand if it is a
6244 nonnegative floating point number.</p>
6246 </div>
6248 <!-- _______________________________________________________________________ -->
6249 <div class="doc_subsubsection">
6250 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
6251 </div>
6253 <div class="doc_text">
6255 <h5>Syntax:</h5>
6256 <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6257 floating point or vector of floating point type. Not all targets support all
6258 types however.</p>
6260 <pre>
6261 declare float @llvm.powi.f32(float %Val, i32 %power)
6262 declare double @llvm.powi.f64(double %Val, i32 %power)
6263 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6264 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6265 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6266 </pre>
6268 <h5>Overview:</h5>
6269 <p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6270 specified (positive or negative) power. The order of evaluation of
6271 multiplications is not defined. When a vector of floating point type is
6272 used, the second argument remains a scalar integer value.</p>
6274 <h5>Arguments:</h5>
6275 <p>The second argument is an integer power, and the first is a value to raise to
6276 that power.</p>
6278 <h5>Semantics:</h5>
6279 <p>This function returns the first value raised to the second power with an
6280 unspecified sequence of rounding operations.</p>
6282 </div>
6284 <!-- _______________________________________________________________________ -->
6285 <div class="doc_subsubsection">
6286 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
6287 </div>
6289 <div class="doc_text">
6291 <h5>Syntax:</h5>
6292 <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6293 floating point or vector of floating point type. Not all targets support all
6294 types however.</p>
6296 <pre>
6297 declare float @llvm.sin.f32(float %Val)
6298 declare double @llvm.sin.f64(double %Val)
6299 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6300 declare fp128 @llvm.sin.f128(fp128 %Val)
6301 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6302 </pre>
6304 <h5>Overview:</h5>
6305 <p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
6307 <h5>Arguments:</h5>
6308 <p>The argument and return value are floating point numbers of the same
6309 type.</p>
6311 <h5>Semantics:</h5>
6312 <p>This function returns the sine of the specified operand, returning the same
6313 values as the libm <tt>sin</tt> functions would, and handles error conditions
6314 in the same way.</p>
6316 </div>
6318 <!-- _______________________________________________________________________ -->
6319 <div class="doc_subsubsection">
6320 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
6321 </div>
6323 <div class="doc_text">
6325 <h5>Syntax:</h5>
6326 <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6327 floating point or vector of floating point type. Not all targets support all
6328 types however.</p>
6330 <pre>
6331 declare float @llvm.cos.f32(float %Val)
6332 declare double @llvm.cos.f64(double %Val)
6333 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6334 declare fp128 @llvm.cos.f128(fp128 %Val)
6335 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6336 </pre>
6338 <h5>Overview:</h5>
6339 <p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
6341 <h5>Arguments:</h5>
6342 <p>The argument and return value are floating point numbers of the same
6343 type.</p>
6345 <h5>Semantics:</h5>
6346 <p>This function returns the cosine of the specified operand, returning the same
6347 values as the libm <tt>cos</tt> functions would, and handles error conditions
6348 in the same way.</p>
6350 </div>
6352 <!-- _______________________________________________________________________ -->
6353 <div class="doc_subsubsection">
6354 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
6355 </div>
6357 <div class="doc_text">
6359 <h5>Syntax:</h5>
6360 <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6361 floating point or vector of floating point type. Not all targets support all
6362 types however.</p>
6364 <pre>
6365 declare float @llvm.pow.f32(float %Val, float %Power)
6366 declare double @llvm.pow.f64(double %Val, double %Power)
6367 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6368 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6369 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6370 </pre>
6372 <h5>Overview:</h5>
6373 <p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6374 specified (positive or negative) power.</p>
6376 <h5>Arguments:</h5>
6377 <p>The second argument is a floating point power, and the first is a value to
6378 raise to that power.</p>
6380 <h5>Semantics:</h5>
6381 <p>This function returns the first value raised to the second power, returning
6382 the same values as the libm <tt>pow</tt> functions would, and handles error
6383 conditions in the same way.</p>
6385 </div>
6387 <!-- ======================================================================= -->
6388 <div class="doc_subsection">
6389 <a name="int_manip">Bit Manipulation Intrinsics</a>
6390 </div>
6392 <div class="doc_text">
6394 <p>LLVM provides intrinsics for a few important bit manipulation operations.
6395 These allow efficient code generation for some algorithms.</p>
6397 </div>
6399 <!-- _______________________________________________________________________ -->
6400 <div class="doc_subsubsection">
6401 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
6402 </div>
6404 <div class="doc_text">
6406 <h5>Syntax:</h5>
6407 <p>This is an overloaded intrinsic function. You can use bswap on any integer
6408 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6410 <pre>
6411 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6412 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6413 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
6414 </pre>
6416 <h5>Overview:</h5>
6417 <p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6418 values with an even number of bytes (positive multiple of 16 bits). These
6419 are useful for performing operations on data that is not in the target's
6420 native byte order.</p>
6422 <h5>Semantics:</h5>
6423 <p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6424 and low byte of the input i16 swapped. Similarly,
6425 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6426 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6427 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6428 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6429 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6430 more, respectively).</p>
6432 </div>
6434 <!-- _______________________________________________________________________ -->
6435 <div class="doc_subsubsection">
6436 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
6437 </div>
6439 <div class="doc_text">
6441 <h5>Syntax:</h5>
6442 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
6443 width. Not all targets support all bit widths however.</p>
6445 <pre>
6446 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
6447 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
6448 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
6449 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6450 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
6451 </pre>
6453 <h5>Overview:</h5>
6454 <p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6455 in a value.</p>
6457 <h5>Arguments:</h5>
6458 <p>The only argument is the value to be counted. The argument may be of any
6459 integer type. The return type must match the argument type.</p>
6461 <h5>Semantics:</h5>
6462 <p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
6464 </div>
6466 <!-- _______________________________________________________________________ -->
6467 <div class="doc_subsubsection">
6468 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
6469 </div>
6471 <div class="doc_text">
6473 <h5>Syntax:</h5>
6474 <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6475 integer bit width. Not all targets support all bit widths however.</p>
6477 <pre>
6478 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6479 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
6480 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
6481 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6482 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
6483 </pre>
6485 <h5>Overview:</h5>
6486 <p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6487 leading zeros in a variable.</p>
6489 <h5>Arguments:</h5>
6490 <p>The only argument is the value to be counted. The argument may be of any
6491 integer type. The return type must match the argument type.</p>
6493 <h5>Semantics:</h5>
6494 <p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6495 zeros in a variable. If the src == 0 then the result is the size in bits of
6496 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
6498 </div>
6500 <!-- _______________________________________________________________________ -->
6501 <div class="doc_subsubsection">
6502 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
6503 </div>
6505 <div class="doc_text">
6507 <h5>Syntax:</h5>
6508 <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6509 integer bit width. Not all targets support all bit widths however.</p>
6511 <pre>
6512 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6513 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
6514 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
6515 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6516 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
6517 </pre>
6519 <h5>Overview:</h5>
6520 <p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6521 trailing zeros.</p>
6523 <h5>Arguments:</h5>
6524 <p>The only argument is the value to be counted. The argument may be of any
6525 integer type. The return type must match the argument type.</p>
6527 <h5>Semantics:</h5>
6528 <p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6529 zeros in a variable. If the src == 0 then the result is the size in bits of
6530 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
6532 </div>
6534 <!-- ======================================================================= -->
6535 <div class="doc_subsection">
6536 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6537 </div>
6539 <div class="doc_text">
6541 <p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
6543 </div>
6545 <!-- _______________________________________________________________________ -->
6546 <div class="doc_subsubsection">
6547 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
6548 </div>
6550 <div class="doc_text">
6552 <h5>Syntax:</h5>
6553 <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
6554 on any integer bit width.</p>
6556 <pre>
6557 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6558 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6559 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6560 </pre>
6562 <h5>Overview:</h5>
6563 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6564 a signed addition of the two arguments, and indicate whether an overflow
6565 occurred during the signed summation.</p>
6567 <h5>Arguments:</h5>
6568 <p>The arguments (%a and %b) and the first element of the result structure may
6569 be of integer types of any bit width, but they must have the same bit
6570 width. The second element of the result structure must be of
6571 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6572 undergo signed addition.</p>
6574 <h5>Semantics:</h5>
6575 <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6576 a signed addition of the two variables. They return a structure &mdash; the
6577 first element of which is the signed summation, and the second element of
6578 which is a bit specifying if the signed summation resulted in an
6579 overflow.</p>
6581 <h5>Examples:</h5>
6582 <pre>
6583 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6584 %sum = extractvalue {i32, i1} %res, 0
6585 %obit = extractvalue {i32, i1} %res, 1
6586 br i1 %obit, label %overflow, label %normal
6587 </pre>
6589 </div>
6591 <!-- _______________________________________________________________________ -->
6592 <div class="doc_subsubsection">
6593 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
6594 </div>
6596 <div class="doc_text">
6598 <h5>Syntax:</h5>
6599 <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
6600 on any integer bit width.</p>
6602 <pre>
6603 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6604 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6605 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6606 </pre>
6608 <h5>Overview:</h5>
6609 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6610 an unsigned addition of the two arguments, and indicate whether a carry
6611 occurred during the unsigned summation.</p>
6613 <h5>Arguments:</h5>
6614 <p>The arguments (%a and %b) and the first element of the result structure may
6615 be of integer types of any bit width, but they must have the same bit
6616 width. The second element of the result structure must be of
6617 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6618 undergo unsigned addition.</p>
6620 <h5>Semantics:</h5>
6621 <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6622 an unsigned addition of the two arguments. They return a structure &mdash;
6623 the first element of which is the sum, and the second element of which is a
6624 bit specifying if the unsigned summation resulted in a carry.</p>
6626 <h5>Examples:</h5>
6627 <pre>
6628 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6629 %sum = extractvalue {i32, i1} %res, 0
6630 %obit = extractvalue {i32, i1} %res, 1
6631 br i1 %obit, label %carry, label %normal
6632 </pre>
6634 </div>
6636 <!-- _______________________________________________________________________ -->
6637 <div class="doc_subsubsection">
6638 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
6639 </div>
6641 <div class="doc_text">
6643 <h5>Syntax:</h5>
6644 <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
6645 on any integer bit width.</p>
6647 <pre>
6648 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6649 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6650 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6651 </pre>
6653 <h5>Overview:</h5>
6654 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6655 a signed subtraction of the two arguments, and indicate whether an overflow
6656 occurred during the signed subtraction.</p>
6658 <h5>Arguments:</h5>
6659 <p>The arguments (%a and %b) and the first element of the result structure may
6660 be of integer types of any bit width, but they must have the same bit
6661 width. The second element of the result structure must be of
6662 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6663 undergo signed subtraction.</p>
6665 <h5>Semantics:</h5>
6666 <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6667 a signed subtraction of the two arguments. They return a structure &mdash;
6668 the first element of which is the subtraction, and the second element of
6669 which is a bit specifying if the signed subtraction resulted in an
6670 overflow.</p>
6672 <h5>Examples:</h5>
6673 <pre>
6674 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6675 %sum = extractvalue {i32, i1} %res, 0
6676 %obit = extractvalue {i32, i1} %res, 1
6677 br i1 %obit, label %overflow, label %normal
6678 </pre>
6680 </div>
6682 <!-- _______________________________________________________________________ -->
6683 <div class="doc_subsubsection">
6684 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
6685 </div>
6687 <div class="doc_text">
6689 <h5>Syntax:</h5>
6690 <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
6691 on any integer bit width.</p>
6693 <pre>
6694 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6695 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6696 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6697 </pre>
6699 <h5>Overview:</h5>
6700 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6701 an unsigned subtraction of the two arguments, and indicate whether an
6702 overflow occurred during the unsigned subtraction.</p>
6704 <h5>Arguments:</h5>
6705 <p>The arguments (%a and %b) and the first element of the result structure may
6706 be of integer types of any bit width, but they must have the same bit
6707 width. The second element of the result structure must be of
6708 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6709 undergo unsigned subtraction.</p>
6711 <h5>Semantics:</h5>
6712 <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6713 an unsigned subtraction of the two arguments. They return a structure &mdash;
6714 the first element of which is the subtraction, and the second element of
6715 which is a bit specifying if the unsigned subtraction resulted in an
6716 overflow.</p>
6718 <h5>Examples:</h5>
6719 <pre>
6720 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6721 %sum = extractvalue {i32, i1} %res, 0
6722 %obit = extractvalue {i32, i1} %res, 1
6723 br i1 %obit, label %overflow, label %normal
6724 </pre>
6726 </div>
6728 <!-- _______________________________________________________________________ -->
6729 <div class="doc_subsubsection">
6730 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
6731 </div>
6733 <div class="doc_text">
6735 <h5>Syntax:</h5>
6736 <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
6737 on any integer bit width.</p>
6739 <pre>
6740 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6741 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6742 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6743 </pre>
6745 <h5>Overview:</h5>
6747 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6748 a signed multiplication of the two arguments, and indicate whether an
6749 overflow occurred during the signed multiplication.</p>
6751 <h5>Arguments:</h5>
6752 <p>The arguments (%a and %b) and the first element of the result structure may
6753 be of integer types of any bit width, but they must have the same bit
6754 width. The second element of the result structure must be of
6755 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6756 undergo signed multiplication.</p>
6758 <h5>Semantics:</h5>
6759 <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6760 a signed multiplication of the two arguments. They return a structure &mdash;
6761 the first element of which is the multiplication, and the second element of
6762 which is a bit specifying if the signed multiplication resulted in an
6763 overflow.</p>
6765 <h5>Examples:</h5>
6766 <pre>
6767 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6768 %sum = extractvalue {i32, i1} %res, 0
6769 %obit = extractvalue {i32, i1} %res, 1
6770 br i1 %obit, label %overflow, label %normal
6771 </pre>
6773 </div>
6775 <!-- _______________________________________________________________________ -->
6776 <div class="doc_subsubsection">
6777 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6778 </div>
6780 <div class="doc_text">
6782 <h5>Syntax:</h5>
6783 <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6784 on any integer bit width.</p>
6786 <pre>
6787 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6788 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6789 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6790 </pre>
6792 <h5>Overview:</h5>
6793 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6794 a unsigned multiplication of the two arguments, and indicate whether an
6795 overflow occurred during the unsigned multiplication.</p>
6797 <h5>Arguments:</h5>
6798 <p>The arguments (%a and %b) and the first element of the result structure may
6799 be of integer types of any bit width, but they must have the same bit
6800 width. The second element of the result structure must be of
6801 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6802 undergo unsigned multiplication.</p>
6804 <h5>Semantics:</h5>
6805 <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6806 an unsigned multiplication of the two arguments. They return a structure
6807 &mdash; the first element of which is the multiplication, and the second
6808 element of which is a bit specifying if the unsigned multiplication resulted
6809 in an overflow.</p>
6811 <h5>Examples:</h5>
6812 <pre>
6813 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6814 %sum = extractvalue {i32, i1} %res, 0
6815 %obit = extractvalue {i32, i1} %res, 1
6816 br i1 %obit, label %overflow, label %normal
6817 </pre>
6819 </div>
6821 <!-- ======================================================================= -->
6822 <div class="doc_subsection">
6823 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
6824 </div>
6826 <div class="doc_text">
6828 <p>Half precision floating point is a storage-only format. This means that it is
6829 a dense encoding (in memory) but does not support computation in the
6830 format.</p>
6832 <p>This means that code must first load the half-precision floating point
6833 value as an i16, then convert it to float with <a
6834 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6835 Computation can then be performed on the float value (including extending to
6836 double etc). To store the value back to memory, it is first converted to
6837 float if needed, then converted to i16 with
6838 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6839 storing as an i16 value.</p>
6840 </div>
6842 <!-- _______________________________________________________________________ -->
6843 <div class="doc_subsubsection">
6844 <a name="int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a>
6845 </div>
6847 <div class="doc_text">
6849 <h5>Syntax:</h5>
6850 <pre>
6851 declare i16 @llvm.convert.to.fp16(f32 %a)
6852 </pre>
6854 <h5>Overview:</h5>
6855 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6856 a conversion from single precision floating point format to half precision
6857 floating point format.</p>
6859 <h5>Arguments:</h5>
6860 <p>The intrinsic function contains single argument - the value to be
6861 converted.</p>
6863 <h5>Semantics:</h5>
6864 <p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6865 a conversion from single precision floating point format to half precision
6866 floating point format. The return value is an <tt>i16</tt> which
6867 contains the converted number.</p>
6869 <h5>Examples:</h5>
6870 <pre>
6871 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6872 store i16 %res, i16* @x, align 2
6873 </pre>
6875 </div>
6877 <!-- _______________________________________________________________________ -->
6878 <div class="doc_subsubsection">
6879 <a name="int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a>
6880 </div>
6882 <div class="doc_text">
6884 <h5>Syntax:</h5>
6885 <pre>
6886 declare f32 @llvm.convert.from.fp16(i16 %a)
6887 </pre>
6889 <h5>Overview:</h5>
6890 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
6891 a conversion from half precision floating point format to single precision
6892 floating point format.</p>
6894 <h5>Arguments:</h5>
6895 <p>The intrinsic function contains single argument - the value to be
6896 converted.</p>
6898 <h5>Semantics:</h5>
6899 <p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
6900 conversion from half single precision floating point format to single
6901 precision floating point format. The input half-float value is represented by
6902 an <tt>i16</tt> value.</p>
6904 <h5>Examples:</h5>
6905 <pre>
6906 %a = load i16* @x, align 2
6907 %res = call f32 @llvm.convert.from.fp16(i16 %a)
6908 </pre>
6910 </div>
6912 <!-- ======================================================================= -->
6913 <div class="doc_subsection">
6914 <a name="int_debugger">Debugger Intrinsics</a>
6915 </div>
6917 <div class="doc_text">
6919 <p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
6920 prefix), are described in
6921 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
6922 Level Debugging</a> document.</p>
6924 </div>
6926 <!-- ======================================================================= -->
6927 <div class="doc_subsection">
6928 <a name="int_eh">Exception Handling Intrinsics</a>
6929 </div>
6931 <div class="doc_text">
6933 <p>The LLVM exception handling intrinsics (which all start with
6934 <tt>llvm.eh.</tt> prefix), are described in
6935 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6936 Handling</a> document.</p>
6938 </div>
6940 <!-- ======================================================================= -->
6941 <div class="doc_subsection">
6942 <a name="int_trampoline">Trampoline Intrinsic</a>
6943 </div>
6945 <div class="doc_text">
6947 <p>This intrinsic makes it possible to excise one parameter, marked with
6948 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
6949 The result is a callable
6950 function pointer lacking the nest parameter - the caller does not need to
6951 provide a value for it. Instead, the value to use is stored in advance in a
6952 "trampoline", a block of memory usually allocated on the stack, which also
6953 contains code to splice the nest value into the argument list. This is used
6954 to implement the GCC nested function address extension.</p>
6956 <p>For example, if the function is
6957 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
6958 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
6959 follows:</p>
6961 <pre class="doc_code">
6962 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6963 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6964 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
6965 %fp = bitcast i8* %p to i32 (i32, i32)*
6966 </pre>
6968 <p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
6969 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
6971 </div>
6973 <!-- _______________________________________________________________________ -->
6974 <div class="doc_subsubsection">
6975 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6976 </div>
6978 <div class="doc_text">
6980 <h5>Syntax:</h5>
6981 <pre>
6982 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
6983 </pre>
6985 <h5>Overview:</h5>
6986 <p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
6987 function pointer suitable for executing it.</p>
6989 <h5>Arguments:</h5>
6990 <p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6991 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
6992 sufficiently aligned block of memory; this memory is written to by the
6993 intrinsic. Note that the size and the alignment are target-specific - LLVM
6994 currently provides no portable way of determining them, so a front-end that
6995 generates this intrinsic needs to have some target-specific knowledge.
6996 The <tt>func</tt> argument must hold a function bitcast to
6997 an <tt>i8*</tt>.</p>
6999 <h5>Semantics:</h5>
7000 <p>The block of memory pointed to by <tt>tramp</tt> is filled with target
7001 dependent code, turning it into a function. A pointer to this function is
7002 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
7003 function pointer type</a> before being called. The new function's signature
7004 is the same as that of <tt>func</tt> with any arguments marked with
7005 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
7006 is allowed, and it must be of pointer type. Calling the new function is
7007 equivalent to calling <tt>func</tt> with the same argument list, but
7008 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
7009 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
7010 by <tt>tramp</tt> is modified, then the effect of any later call to the
7011 returned function pointer is undefined.</p>
7013 </div>
7015 <!-- ======================================================================= -->
7016 <div class="doc_subsection">
7017 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
7018 </div>
7020 <div class="doc_text">
7022 <p>These intrinsic functions expand the "universal IR" of LLVM to represent
7023 hardware constructs for atomic operations and memory synchronization. This
7024 provides an interface to the hardware, not an interface to the programmer. It
7025 is aimed at a low enough level to allow any programming models or APIs
7026 (Application Programming Interfaces) which need atomic behaviors to map
7027 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7028 hardware provides a "universal IR" for source languages, it also provides a
7029 starting point for developing a "universal" atomic operation and
7030 synchronization IR.</p>
7032 <p>These do <em>not</em> form an API such as high-level threading libraries,
7033 software transaction memory systems, atomic primitives, and intrinsic
7034 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7035 application libraries. The hardware interface provided by LLVM should allow
7036 a clean implementation of all of these APIs and parallel programming models.
7037 No one model or paradigm should be selected above others unless the hardware
7038 itself ubiquitously does so.</p>
7040 </div>
7042 <!-- _______________________________________________________________________ -->
7043 <div class="doc_subsubsection">
7044 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
7045 </div>
7046 <div class="doc_text">
7047 <h5>Syntax:</h5>
7048 <pre>
7049 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
7050 </pre>
7052 <h5>Overview:</h5>
7053 <p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7054 specific pairs of memory access types.</p>
7056 <h5>Arguments:</h5>
7057 <p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7058 The first four arguments enables a specific barrier as listed below. The
7059 fifth argument specifies that the barrier applies to io or device or uncached
7060 memory.</p>
7062 <ul>
7063 <li><tt>ll</tt>: load-load barrier</li>
7064 <li><tt>ls</tt>: load-store barrier</li>
7065 <li><tt>sl</tt>: store-load barrier</li>
7066 <li><tt>ss</tt>: store-store barrier</li>
7067 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7068 </ul>
7070 <h5>Semantics:</h5>
7071 <p>This intrinsic causes the system to enforce some ordering constraints upon
7072 the loads and stores of the program. This barrier does not
7073 indicate <em>when</em> any events will occur, it only enforces
7074 an <em>order</em> in which they occur. For any of the specified pairs of load
7075 and store operations (f.ex. load-load, or store-load), all of the first
7076 operations preceding the barrier will complete before any of the second
7077 operations succeeding the barrier begin. Specifically the semantics for each
7078 pairing is as follows:</p>
7080 <ul>
7081 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7082 after the barrier begins.</li>
7083 <li><tt>ls</tt>: All loads before the barrier must complete before any
7084 store after the barrier begins.</li>
7085 <li><tt>ss</tt>: All stores before the barrier must complete before any
7086 store after the barrier begins.</li>
7087 <li><tt>sl</tt>: All stores before the barrier must complete before any
7088 load after the barrier begins.</li>
7089 </ul>
7091 <p>These semantics are applied with a logical "and" behavior when more than one
7092 is enabled in a single memory barrier intrinsic.</p>
7094 <p>Backends may implement stronger barriers than those requested when they do
7095 not support as fine grained a barrier as requested. Some architectures do
7096 not need all types of barriers and on such architectures, these become
7097 noops.</p>
7099 <h5>Example:</h5>
7100 <pre>
7101 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7102 %ptr = bitcast i8* %mallocP to i32*
7103 store i32 4, %ptr
7105 %result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
7106 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
7107 <i>; guarantee the above finishes</i>
7108 store i32 8, %ptr <i>; before this begins</i>
7109 </pre>
7111 </div>
7113 <!-- _______________________________________________________________________ -->
7114 <div class="doc_subsubsection">
7115 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
7116 </div>
7118 <div class="doc_text">
7120 <h5>Syntax:</h5>
7121 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7122 any integer bit width and for different address spaces. Not all targets
7123 support all bit widths however.</p>
7125 <pre>
7126 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7127 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7128 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7129 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
7130 </pre>
7132 <h5>Overview:</h5>
7133 <p>This loads a value in memory and compares it to a given value. If they are
7134 equal, it stores a new value into the memory.</p>
7136 <h5>Arguments:</h5>
7137 <p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7138 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7139 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7140 this integer type. While any bit width integer may be used, targets may only
7141 lower representations they support in hardware.</p>
7143 <h5>Semantics:</h5>
7144 <p>This entire intrinsic must be executed atomically. It first loads the value
7145 in memory pointed to by <tt>ptr</tt> and compares it with the
7146 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7147 memory. The loaded value is yielded in all cases. This provides the
7148 equivalent of an atomic compare-and-swap operation within the SSA
7149 framework.</p>
7151 <h5>Examples:</h5>
7152 <pre>
7153 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7154 %ptr = bitcast i8* %mallocP to i32*
7155 store i32 4, %ptr
7157 %val1 = add i32 4, 4
7158 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
7159 <i>; yields {i32}:result1 = 4</i>
7160 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7161 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7163 %val2 = add i32 1, 1
7164 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
7165 <i>; yields {i32}:result2 = 8</i>
7166 %stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7168 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7169 </pre>
7171 </div>
7173 <!-- _______________________________________________________________________ -->
7174 <div class="doc_subsubsection">
7175 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
7176 </div>
7177 <div class="doc_text">
7178 <h5>Syntax:</h5>
7180 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7181 integer bit width. Not all targets support all bit widths however.</p>
7183 <pre>
7184 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7185 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7186 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7187 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
7188 </pre>
7190 <h5>Overview:</h5>
7191 <p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7192 the value from memory. It then stores the value in <tt>val</tt> in the memory
7193 at <tt>ptr</tt>.</p>
7195 <h5>Arguments:</h5>
7196 <p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7197 the <tt>val</tt> argument and the result must be integers of the same bit
7198 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7199 integer type. The targets may only lower integer representations they
7200 support.</p>
7202 <h5>Semantics:</h5>
7203 <p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7204 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7205 equivalent of an atomic swap operation within the SSA framework.</p>
7207 <h5>Examples:</h5>
7208 <pre>
7209 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7210 %ptr = bitcast i8* %mallocP to i32*
7211 store i32 4, %ptr
7213 %val1 = add i32 4, 4
7214 %result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
7215 <i>; yields {i32}:result1 = 4</i>
7216 %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7217 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7219 %val2 = add i32 1, 1
7220 %result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
7221 <i>; yields {i32}:result2 = 8</i>
7223 %stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7224 %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7225 </pre>
7227 </div>
7229 <!-- _______________________________________________________________________ -->
7230 <div class="doc_subsubsection">
7231 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
7233 </div>
7235 <div class="doc_text">
7237 <h5>Syntax:</h5>
7238 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7239 any integer bit width. Not all targets support all bit widths however.</p>
7241 <pre>
7242 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7243 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7244 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7245 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7246 </pre>
7248 <h5>Overview:</h5>
7249 <p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7250 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7252 <h5>Arguments:</h5>
7253 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7254 and the second an integer value. The result is also an integer value. These
7255 integer types can have any bit width, but they must all have the same bit
7256 width. The targets may only lower integer representations they support.</p>
7258 <h5>Semantics:</h5>
7259 <p>This intrinsic does a series of operations atomically. It first loads the
7260 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7261 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
7263 <h5>Examples:</h5>
7264 <pre>
7265 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7266 %ptr = bitcast i8* %mallocP to i32*
7267 store i32 4, %ptr
7268 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
7269 <i>; yields {i32}:result1 = 4</i>
7270 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
7271 <i>; yields {i32}:result2 = 8</i>
7272 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
7273 <i>; yields {i32}:result3 = 10</i>
7274 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
7275 </pre>
7277 </div>
7279 <!-- _______________________________________________________________________ -->
7280 <div class="doc_subsubsection">
7281 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
7283 </div>
7285 <div class="doc_text">
7287 <h5>Syntax:</h5>
7288 <p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7289 any integer bit width and for different address spaces. Not all targets
7290 support all bit widths however.</p>
7292 <pre>
7293 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7294 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7295 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7296 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7297 </pre>
7299 <h5>Overview:</h5>
7300 <p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
7301 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7303 <h5>Arguments:</h5>
7304 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7305 and the second an integer value. The result is also an integer value. These
7306 integer types can have any bit width, but they must all have the same bit
7307 width. The targets may only lower integer representations they support.</p>
7309 <h5>Semantics:</h5>
7310 <p>This intrinsic does a series of operations atomically. It first loads the
7311 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7312 result to <tt>ptr</tt>. It yields the original value stored
7313 at <tt>ptr</tt>.</p>
7315 <h5>Examples:</h5>
7316 <pre>
7317 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7318 %ptr = bitcast i8* %mallocP to i32*
7319 store i32 8, %ptr
7320 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
7321 <i>; yields {i32}:result1 = 8</i>
7322 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
7323 <i>; yields {i32}:result2 = 4</i>
7324 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
7325 <i>; yields {i32}:result3 = 2</i>
7326 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7327 </pre>
7329 </div>
7331 <!-- _______________________________________________________________________ -->
7332 <div class="doc_subsubsection">
7333 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
7334 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
7335 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
7336 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
7337 </div>
7339 <div class="doc_text">
7341 <h5>Syntax:</h5>
7342 <p>These are overloaded intrinsics. You can
7343 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7344 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7345 bit width and for different address spaces. Not all targets support all bit
7346 widths however.</p>
7348 <pre>
7349 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7350 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7351 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7352 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7353 </pre>
7355 <pre>
7356 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7357 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7358 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7359 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7360 </pre>
7362 <pre>
7363 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7364 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7365 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7366 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7367 </pre>
7369 <pre>
7370 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7371 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7372 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7373 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7374 </pre>
7376 <h5>Overview:</h5>
7377 <p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7378 the value stored in memory at <tt>ptr</tt>. It yields the original value
7379 at <tt>ptr</tt>.</p>
7381 <h5>Arguments:</h5>
7382 <p>These intrinsics take two arguments, the first a pointer to an integer value
7383 and the second an integer value. The result is also an integer value. These
7384 integer types can have any bit width, but they must all have the same bit
7385 width. The targets may only lower integer representations they support.</p>
7387 <h5>Semantics:</h5>
7388 <p>These intrinsics does a series of operations atomically. They first load the
7389 value stored at <tt>ptr</tt>. They then do the bitwise
7390 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7391 original value stored at <tt>ptr</tt>.</p>
7393 <h5>Examples:</h5>
7394 <pre>
7395 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7396 %ptr = bitcast i8* %mallocP to i32*
7397 store i32 0x0F0F, %ptr
7398 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
7399 <i>; yields {i32}:result0 = 0x0F0F</i>
7400 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
7401 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
7402 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
7403 <i>; yields {i32}:result2 = 0xF0</i>
7404 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
7405 <i>; yields {i32}:result3 = FF</i>
7406 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7407 </pre>
7409 </div>
7411 <!-- _______________________________________________________________________ -->
7412 <div class="doc_subsubsection">
7413 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
7414 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
7415 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
7416 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
7417 </div>
7419 <div class="doc_text">
7421 <h5>Syntax:</h5>
7422 <p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7423 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7424 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7425 address spaces. Not all targets support all bit widths however.</p>
7427 <pre>
7428 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7429 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7430 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7431 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7432 </pre>
7434 <pre>
7435 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7436 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7437 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7438 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7439 </pre>
7441 <pre>
7442 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7443 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7444 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7445 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7446 </pre>
7448 <pre>
7449 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7450 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7451 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7452 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
7453 </pre>
7455 <h5>Overview:</h5>
7456 <p>These intrinsics takes the signed or unsigned minimum or maximum of
7457 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7458 original value at <tt>ptr</tt>.</p>
7460 <h5>Arguments:</h5>
7461 <p>These intrinsics take two arguments, the first a pointer to an integer value
7462 and the second an integer value. The result is also an integer value. These
7463 integer types can have any bit width, but they must all have the same bit
7464 width. The targets may only lower integer representations they support.</p>
7466 <h5>Semantics:</h5>
7467 <p>These intrinsics does a series of operations atomically. They first load the
7468 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7469 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7470 yield the original value stored at <tt>ptr</tt>.</p>
7472 <h5>Examples:</h5>
7473 <pre>
7474 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7475 %ptr = bitcast i8* %mallocP to i32*
7476 store i32 7, %ptr
7477 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
7478 <i>; yields {i32}:result0 = 7</i>
7479 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
7480 <i>; yields {i32}:result1 = -2</i>
7481 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
7482 <i>; yields {i32}:result2 = 8</i>
7483 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
7484 <i>; yields {i32}:result3 = 8</i>
7485 %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7486 </pre>
7488 </div>
7491 <!-- ======================================================================= -->
7492 <div class="doc_subsection">
7493 <a name="int_memorymarkers">Memory Use Markers</a>
7494 </div>
7496 <div class="doc_text">
7498 <p>This class of intrinsics exists to information about the lifetime of memory
7499 objects and ranges where variables are immutable.</p>
7501 </div>
7503 <!-- _______________________________________________________________________ -->
7504 <div class="doc_subsubsection">
7505 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
7506 </div>
7508 <div class="doc_text">
7510 <h5>Syntax:</h5>
7511 <pre>
7512 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7513 </pre>
7515 <h5>Overview:</h5>
7516 <p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7517 object's lifetime.</p>
7519 <h5>Arguments:</h5>
7520 <p>The first argument is a constant integer representing the size of the
7521 object, or -1 if it is variable sized. The second argument is a pointer to
7522 the object.</p>
7524 <h5>Semantics:</h5>
7525 <p>This intrinsic indicates that before this point in the code, the value of the
7526 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7527 never be used and has an undefined value. A load from the pointer that
7528 precedes this intrinsic can be replaced with
7529 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7531 </div>
7533 <!-- _______________________________________________________________________ -->
7534 <div class="doc_subsubsection">
7535 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
7536 </div>
7538 <div class="doc_text">
7540 <h5>Syntax:</h5>
7541 <pre>
7542 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7543 </pre>
7545 <h5>Overview:</h5>
7546 <p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7547 object's lifetime.</p>
7549 <h5>Arguments:</h5>
7550 <p>The first argument is a constant integer representing the size of the
7551 object, or -1 if it is variable sized. The second argument is a pointer to
7552 the object.</p>
7554 <h5>Semantics:</h5>
7555 <p>This intrinsic indicates that after this point in the code, the value of the
7556 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7557 never be used and has an undefined value. Any stores into the memory object
7558 following this intrinsic may be removed as dead.
7560 </div>
7562 <!-- _______________________________________________________________________ -->
7563 <div class="doc_subsubsection">
7564 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
7565 </div>
7567 <div class="doc_text">
7569 <h5>Syntax:</h5>
7570 <pre>
7571 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7572 </pre>
7574 <h5>Overview:</h5>
7575 <p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7576 a memory object will not change.</p>
7578 <h5>Arguments:</h5>
7579 <p>The first argument is a constant integer representing the size of the
7580 object, or -1 if it is variable sized. The second argument is a pointer to
7581 the object.</p>
7583 <h5>Semantics:</h5>
7584 <p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7585 the return value, the referenced memory location is constant and
7586 unchanging.</p>
7588 </div>
7590 <!-- _______________________________________________________________________ -->
7591 <div class="doc_subsubsection">
7592 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
7593 </div>
7595 <div class="doc_text">
7597 <h5>Syntax:</h5>
7598 <pre>
7599 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7600 </pre>
7602 <h5>Overview:</h5>
7603 <p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7604 a memory object are mutable.</p>
7606 <h5>Arguments:</h5>
7607 <p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
7608 The second argument is a constant integer representing the size of the
7609 object, or -1 if it is variable sized and the third argument is a pointer
7610 to the object.</p>
7612 <h5>Semantics:</h5>
7613 <p>This intrinsic indicates that the memory is mutable again.</p>
7615 </div>
7617 <!-- ======================================================================= -->
7618 <div class="doc_subsection">
7619 <a name="int_general">General Intrinsics</a>
7620 </div>
7622 <div class="doc_text">
7624 <p>This class of intrinsics is designed to be generic and has no specific
7625 purpose.</p>
7627 </div>
7629 <!-- _______________________________________________________________________ -->
7630 <div class="doc_subsubsection">
7631 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7632 </div>
7634 <div class="doc_text">
7636 <h5>Syntax:</h5>
7637 <pre>
7638 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7639 </pre>
7641 <h5>Overview:</h5>
7642 <p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
7644 <h5>Arguments:</h5>
7645 <p>The first argument is a pointer to a value, the second is a pointer to a
7646 global string, the third is a pointer to a global string which is the source
7647 file name, and the last argument is the line number.</p>
7649 <h5>Semantics:</h5>
7650 <p>This intrinsic allows annotation of local variables with arbitrary strings.
7651 This can be useful for special purpose optimizations that want to look for
7652 these annotations. These have no other defined use, they are ignored by code
7653 generation and optimization.</p>
7655 </div>
7657 <!-- _______________________________________________________________________ -->
7658 <div class="doc_subsubsection">
7659 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
7660 </div>
7662 <div class="doc_text">
7664 <h5>Syntax:</h5>
7665 <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7666 any integer bit width.</p>
7668 <pre>
7669 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7670 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7671 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7672 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7673 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7674 </pre>
7676 <h5>Overview:</h5>
7677 <p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
7679 <h5>Arguments:</h5>
7680 <p>The first argument is an integer value (result of some expression), the
7681 second is a pointer to a global string, the third is a pointer to a global
7682 string which is the source file name, and the last argument is the line
7683 number. It returns the value of the first argument.</p>
7685 <h5>Semantics:</h5>
7686 <p>This intrinsic allows annotations to be put on arbitrary expressions with
7687 arbitrary strings. This can be useful for special purpose optimizations that
7688 want to look for these annotations. These have no other defined use, they
7689 are ignored by code generation and optimization.</p>
7691 </div>
7693 <!-- _______________________________________________________________________ -->
7694 <div class="doc_subsubsection">
7695 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7696 </div>
7698 <div class="doc_text">
7700 <h5>Syntax:</h5>
7701 <pre>
7702 declare void @llvm.trap()
7703 </pre>
7705 <h5>Overview:</h5>
7706 <p>The '<tt>llvm.trap</tt>' intrinsic.</p>
7708 <h5>Arguments:</h5>
7709 <p>None.</p>
7711 <h5>Semantics:</h5>
7712 <p>This intrinsics is lowered to the target dependent trap instruction. If the
7713 target does not have a trap instruction, this intrinsic will be lowered to
7714 the call of the <tt>abort()</tt> function.</p>
7716 </div>
7718 <!-- _______________________________________________________________________ -->
7719 <div class="doc_subsubsection">
7720 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
7721 </div>
7723 <div class="doc_text">
7725 <h5>Syntax:</h5>
7726 <pre>
7727 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
7728 </pre>
7730 <h5>Overview:</h5>
7731 <p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7732 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7733 ensure that it is placed on the stack before local variables.</p>
7735 <h5>Arguments:</h5>
7736 <p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7737 arguments. The first argument is the value loaded from the stack
7738 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7739 that has enough space to hold the value of the guard.</p>
7741 <h5>Semantics:</h5>
7742 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
7743 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7744 stack. This is to ensure that if a local variable on the stack is
7745 overwritten, it will destroy the value of the guard. When the function exits,
7746 the guard on the stack is checked against the original guard. If they are
7747 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7748 function.</p>
7750 </div>
7752 <!-- _______________________________________________________________________ -->
7753 <div class="doc_subsubsection">
7754 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
7755 </div>
7757 <div class="doc_text">
7759 <h5>Syntax:</h5>
7760 <pre>
7761 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7762 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
7763 </pre>
7765 <h5>Overview:</h5>
7766 <p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7767 the optimizers to determine at compile time whether a) an operation (like
7768 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7769 runtime check for overflow isn't necessary. An object in this context means
7770 an allocation of a specific class, structure, array, or other object.</p>
7772 <h5>Arguments:</h5>
7773 <p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
7774 argument is a pointer to or into the <tt>object</tt>. The second argument
7775 is a boolean 0 or 1. This argument determines whether you want the
7776 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
7777 1, variables are not allowed.</p>
7779 <h5>Semantics:</h5>
7780 <p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
7781 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7782 depending on the <tt>type</tt> argument, if the size cannot be determined at
7783 compile time.</p>
7785 </div>
7787 <!-- *********************************************************************** -->
7788 <hr>
7789 <address>
7790 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
7791 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
7792 <a href="http://validator.w3.org/check/referer"><img
7793 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
7795 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
7796 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
7797 Last modified: $Date$
7798 </address>
7800 </body>
7801 </html>