Fix typo: should have been testing that X was odd, not V.
[llvm/stm8.git] / lib / Analysis / ValueTracking.cpp
blob72b3f03a93aacefdcbd3f174d135e2aec28193a9
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/GlobalAlias.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Operator.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/PatternMatch.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include <cstring>
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 const unsigned MaxDepth = 6;
35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36 /// unknown returns 0). For vector types, returns the element type's bitwidth.
37 static unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
38 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
45 /// known to be either zero or one and return them in the KnownZero/KnownOne
46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47 /// processing.
48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49 /// we cannot optimize based on the assumption that it is zero without changing
50 /// it to be an explicit zero. If we don't change it to zero, other code could
51 /// optimized based on the contradictory assumption that it is non-zero.
52 /// Because instcombine aggressively folds operations with undef args anyway,
53 /// this won't lose us code quality.
54 ///
55 /// This function is defined on values with integer type, values with pointer
56 /// type (but only if TD is non-null), and vectors of integers. In the case
57 /// where V is a vector, the mask, known zero, and known one values are the
58 /// same width as the vector element, and the bit is set only if it is true
59 /// for all of the elements in the vector.
60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
62 const TargetData *TD, unsigned Depth) {
63 assert(V && "No Value?");
64 assert(Depth <= MaxDepth && "Limit Search Depth");
65 unsigned BitWidth = Mask.getBitWidth();
66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
67 && "Not integer or pointer type!");
68 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
70 (!V->getType()->isIntOrIntVectorTy() ||
71 V->getType()->getScalarSizeInBits() == BitWidth) &&
72 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
82 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
85 KnownOne.clearAllBits();
86 KnownZero = Mask;
87 return;
89 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
92 KnownZero.setAllBits(); KnownOne.setAllBits();
93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
100 return;
102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106 const Type *ObjectType = GV->getType()->getElementType();
107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
121 return;
123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
132 return;
135 KnownZero.clearAllBits(); KnownOne.clearAllBits(); // Start out not knowing anything.
137 if (Depth == MaxDepth || Mask == 0)
138 return; // Limit search depth.
140 Operator *I = dyn_cast<Operator>(V);
141 if (!I) return;
143 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
144 switch (I->getOpcode()) {
145 default: break;
146 case Instruction::And: {
147 // If either the LHS or the RHS are Zero, the result is zero.
148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
149 APInt Mask2(Mask & ~KnownZero);
150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
151 Depth+1);
152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155 // Output known-1 bits are only known if set in both the LHS & RHS.
156 KnownOne &= KnownOne2;
157 // Output known-0 are known to be clear if zero in either the LHS | RHS.
158 KnownZero |= KnownZero2;
159 return;
161 case Instruction::Or: {
162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
163 APInt Mask2(Mask & ~KnownOne);
164 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
165 Depth+1);
166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
169 // Output known-0 bits are only known if clear in both the LHS & RHS.
170 KnownZero &= KnownZero2;
171 // Output known-1 are known to be set if set in either the LHS | RHS.
172 KnownOne |= KnownOne2;
173 return;
175 case Instruction::Xor: {
176 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
177 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
178 Depth+1);
179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
182 // Output known-0 bits are known if clear or set in both the LHS & RHS.
183 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
184 // Output known-1 are known to be set if set in only one of the LHS, RHS.
185 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
186 KnownZero = KnownZeroOut;
187 return;
189 case Instruction::Mul: {
190 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
191 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
192 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
193 Depth+1);
194 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
195 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
197 // If low bits are zero in either operand, output low known-0 bits.
198 // Also compute a conserative estimate for high known-0 bits.
199 // More trickiness is possible, but this is sufficient for the
200 // interesting case of alignment computation.
201 KnownOne.clearAllBits();
202 unsigned TrailZ = KnownZero.countTrailingOnes() +
203 KnownZero2.countTrailingOnes();
204 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
205 KnownZero2.countLeadingOnes(),
206 BitWidth) - BitWidth;
208 TrailZ = std::min(TrailZ, BitWidth);
209 LeadZ = std::min(LeadZ, BitWidth);
210 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
211 APInt::getHighBitsSet(BitWidth, LeadZ);
212 KnownZero &= Mask;
213 return;
215 case Instruction::UDiv: {
216 // For the purposes of computing leading zeros we can conservatively
217 // treat a udiv as a logical right shift by the power of 2 known to
218 // be less than the denominator.
219 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
220 ComputeMaskedBits(I->getOperand(0),
221 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
222 unsigned LeadZ = KnownZero2.countLeadingOnes();
224 KnownOne2.clearAllBits();
225 KnownZero2.clearAllBits();
226 ComputeMaskedBits(I->getOperand(1),
227 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
228 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
229 if (RHSUnknownLeadingOnes != BitWidth)
230 LeadZ = std::min(BitWidth,
231 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
233 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
234 return;
236 case Instruction::Select:
237 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
238 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
239 Depth+1);
240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
241 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
243 // Only known if known in both the LHS and RHS.
244 KnownOne &= KnownOne2;
245 KnownZero &= KnownZero2;
246 return;
247 case Instruction::FPTrunc:
248 case Instruction::FPExt:
249 case Instruction::FPToUI:
250 case Instruction::FPToSI:
251 case Instruction::SIToFP:
252 case Instruction::UIToFP:
253 return; // Can't work with floating point.
254 case Instruction::PtrToInt:
255 case Instruction::IntToPtr:
256 // We can't handle these if we don't know the pointer size.
257 if (!TD) return;
258 // FALL THROUGH and handle them the same as zext/trunc.
259 case Instruction::ZExt:
260 case Instruction::Trunc: {
261 const Type *SrcTy = I->getOperand(0)->getType();
263 unsigned SrcBitWidth;
264 // Note that we handle pointer operands here because of inttoptr/ptrtoint
265 // which fall through here.
266 if (SrcTy->isPointerTy())
267 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
268 else
269 SrcBitWidth = SrcTy->getScalarSizeInBits();
271 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
272 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
273 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
274 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
275 Depth+1);
276 KnownZero = KnownZero.zextOrTrunc(BitWidth);
277 KnownOne = KnownOne.zextOrTrunc(BitWidth);
278 // Any top bits are known to be zero.
279 if (BitWidth > SrcBitWidth)
280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
281 return;
283 case Instruction::BitCast: {
284 const Type *SrcTy = I->getOperand(0)->getType();
285 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
286 // TODO: For now, not handling conversions like:
287 // (bitcast i64 %x to <2 x i32>)
288 !I->getType()->isVectorTy()) {
289 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
290 Depth+1);
291 return;
293 break;
295 case Instruction::SExt: {
296 // Compute the bits in the result that are not present in the input.
297 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
299 APInt MaskIn = Mask.trunc(SrcBitWidth);
300 KnownZero = KnownZero.trunc(SrcBitWidth);
301 KnownOne = KnownOne.trunc(SrcBitWidth);
302 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
303 Depth+1);
304 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
305 KnownZero = KnownZero.zext(BitWidth);
306 KnownOne = KnownOne.zext(BitWidth);
308 // If the sign bit of the input is known set or clear, then we know the
309 // top bits of the result.
310 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
311 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
312 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
313 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
314 return;
316 case Instruction::Shl:
317 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
318 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
320 APInt Mask2(Mask.lshr(ShiftAmt));
321 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
322 Depth+1);
323 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
324 KnownZero <<= ShiftAmt;
325 KnownOne <<= ShiftAmt;
326 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
327 return;
329 break;
330 case Instruction::LShr:
331 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
332 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
333 // Compute the new bits that are at the top now.
334 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
336 // Unsigned shift right.
337 APInt Mask2(Mask.shl(ShiftAmt));
338 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
339 Depth+1);
340 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
341 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
342 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
343 // high bits known zero.
344 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
345 return;
347 break;
348 case Instruction::AShr:
349 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
351 // Compute the new bits that are at the top now.
352 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
354 // Signed shift right.
355 APInt Mask2(Mask.shl(ShiftAmt));
356 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
357 Depth+1);
358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
359 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
360 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
362 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
363 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
364 KnownZero |= HighBits;
365 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
366 KnownOne |= HighBits;
367 return;
369 break;
370 case Instruction::Sub: {
371 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
372 // We know that the top bits of C-X are clear if X contains less bits
373 // than C (i.e. no wrap-around can happen). For example, 20-X is
374 // positive if we can prove that X is >= 0 and < 16.
375 if (!CLHS->getValue().isNegative()) {
376 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
377 // NLZ can't be BitWidth with no sign bit
378 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
379 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
380 TD, Depth+1);
382 // If all of the MaskV bits are known to be zero, then we know the
383 // output top bits are zero, because we now know that the output is
384 // from [0-C].
385 if ((KnownZero2 & MaskV) == MaskV) {
386 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
387 // Top bits known zero.
388 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
393 // fall through
394 case Instruction::Add: {
395 // If one of the operands has trailing zeros, then the bits that the
396 // other operand has in those bit positions will be preserved in the
397 // result. For an add, this works with either operand. For a subtract,
398 // this only works if the known zeros are in the right operand.
399 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
400 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
401 BitWidth - Mask.countLeadingZeros());
402 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
403 Depth+1);
404 assert((LHSKnownZero & LHSKnownOne) == 0 &&
405 "Bits known to be one AND zero?");
406 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
408 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
409 Depth+1);
410 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
411 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
413 // Determine which operand has more trailing zeros, and use that
414 // many bits from the other operand.
415 if (LHSKnownZeroOut > RHSKnownZeroOut) {
416 if (I->getOpcode() == Instruction::Add) {
417 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
418 KnownZero |= KnownZero2 & Mask;
419 KnownOne |= KnownOne2 & Mask;
420 } else {
421 // If the known zeros are in the left operand for a subtract,
422 // fall back to the minimum known zeros in both operands.
423 KnownZero |= APInt::getLowBitsSet(BitWidth,
424 std::min(LHSKnownZeroOut,
425 RHSKnownZeroOut));
427 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
428 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
429 KnownZero |= LHSKnownZero & Mask;
430 KnownOne |= LHSKnownOne & Mask;
432 return;
434 case Instruction::SRem:
435 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
436 APInt RA = Rem->getValue().abs();
437 if (RA.isPowerOf2()) {
438 APInt LowBits = RA - 1;
439 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
440 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
441 Depth+1);
443 // The low bits of the first operand are unchanged by the srem.
444 KnownZero = KnownZero2 & LowBits;
445 KnownOne = KnownOne2 & LowBits;
447 // If the first operand is non-negative or has all low bits zero, then
448 // the upper bits are all zero.
449 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
450 KnownZero |= ~LowBits;
452 // If the first operand is negative and not all low bits are zero, then
453 // the upper bits are all one.
454 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
455 KnownOne |= ~LowBits;
457 KnownZero &= Mask;
458 KnownOne &= Mask;
460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
463 break;
464 case Instruction::URem: {
465 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
466 APInt RA = Rem->getValue();
467 if (RA.isPowerOf2()) {
468 APInt LowBits = (RA - 1);
469 APInt Mask2 = LowBits & Mask;
470 KnownZero |= ~LowBits & Mask;
471 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
472 Depth+1);
473 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
474 break;
478 // Since the result is less than or equal to either operand, any leading
479 // zero bits in either operand must also exist in the result.
480 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
481 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
482 TD, Depth+1);
483 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
484 TD, Depth+1);
486 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
487 KnownZero2.countLeadingOnes());
488 KnownOne.clearAllBits();
489 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
490 break;
493 case Instruction::Alloca: {
494 AllocaInst *AI = cast<AllocaInst>(V);
495 unsigned Align = AI->getAlignment();
496 if (Align == 0 && TD)
497 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
499 if (Align > 0)
500 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
501 CountTrailingZeros_32(Align));
502 break;
504 case Instruction::GetElementPtr: {
505 // Analyze all of the subscripts of this getelementptr instruction
506 // to determine if we can prove known low zero bits.
507 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
508 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
509 ComputeMaskedBits(I->getOperand(0), LocalMask,
510 LocalKnownZero, LocalKnownOne, TD, Depth+1);
511 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
513 gep_type_iterator GTI = gep_type_begin(I);
514 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
515 Value *Index = I->getOperand(i);
516 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
517 // Handle struct member offset arithmetic.
518 if (!TD) return;
519 const StructLayout *SL = TD->getStructLayout(STy);
520 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
521 uint64_t Offset = SL->getElementOffset(Idx);
522 TrailZ = std::min(TrailZ,
523 CountTrailingZeros_64(Offset));
524 } else {
525 // Handle array index arithmetic.
526 const Type *IndexedTy = GTI.getIndexedType();
527 if (!IndexedTy->isSized()) return;
528 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
529 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
530 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
531 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
532 ComputeMaskedBits(Index, LocalMask,
533 LocalKnownZero, LocalKnownOne, TD, Depth+1);
534 TrailZ = std::min(TrailZ,
535 unsigned(CountTrailingZeros_64(TypeSize) +
536 LocalKnownZero.countTrailingOnes()));
540 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
541 break;
543 case Instruction::PHI: {
544 PHINode *P = cast<PHINode>(I);
545 // Handle the case of a simple two-predecessor recurrence PHI.
546 // There's a lot more that could theoretically be done here, but
547 // this is sufficient to catch some interesting cases.
548 if (P->getNumIncomingValues() == 2) {
549 for (unsigned i = 0; i != 2; ++i) {
550 Value *L = P->getIncomingValue(i);
551 Value *R = P->getIncomingValue(!i);
552 Operator *LU = dyn_cast<Operator>(L);
553 if (!LU)
554 continue;
555 unsigned Opcode = LU->getOpcode();
556 // Check for operations that have the property that if
557 // both their operands have low zero bits, the result
558 // will have low zero bits.
559 if (Opcode == Instruction::Add ||
560 Opcode == Instruction::Sub ||
561 Opcode == Instruction::And ||
562 Opcode == Instruction::Or ||
563 Opcode == Instruction::Mul) {
564 Value *LL = LU->getOperand(0);
565 Value *LR = LU->getOperand(1);
566 // Find a recurrence.
567 if (LL == I)
568 L = LR;
569 else if (LR == I)
570 L = LL;
571 else
572 break;
573 // Ok, we have a PHI of the form L op= R. Check for low
574 // zero bits.
575 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
576 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
577 Mask2 = APInt::getLowBitsSet(BitWidth,
578 KnownZero2.countTrailingOnes());
580 // We need to take the minimum number of known bits
581 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
582 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
584 KnownZero = Mask &
585 APInt::getLowBitsSet(BitWidth,
586 std::min(KnownZero2.countTrailingOnes(),
587 KnownZero3.countTrailingOnes()));
588 break;
593 // Otherwise take the unions of the known bit sets of the operands,
594 // taking conservative care to avoid excessive recursion.
595 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
596 KnownZero = APInt::getAllOnesValue(BitWidth);
597 KnownOne = APInt::getAllOnesValue(BitWidth);
598 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
599 // Skip direct self references.
600 if (P->getIncomingValue(i) == P) continue;
602 KnownZero2 = APInt(BitWidth, 0);
603 KnownOne2 = APInt(BitWidth, 0);
604 // Recurse, but cap the recursion to one level, because we don't
605 // want to waste time spinning around in loops.
606 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
607 KnownZero2, KnownOne2, TD, MaxDepth-1);
608 KnownZero &= KnownZero2;
609 KnownOne &= KnownOne2;
610 // If all bits have been ruled out, there's no need to check
611 // more operands.
612 if (!KnownZero && !KnownOne)
613 break;
616 break;
618 case Instruction::Call:
619 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
620 switch (II->getIntrinsicID()) {
621 default: break;
622 case Intrinsic::ctpop:
623 case Intrinsic::ctlz:
624 case Intrinsic::cttz: {
625 unsigned LowBits = Log2_32(BitWidth)+1;
626 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
627 break;
631 break;
635 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
636 /// one. Convenience wrapper around ComputeMaskedBits.
637 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
638 const TargetData *TD, unsigned Depth) {
639 unsigned BitWidth = getBitWidth(V->getType(), TD);
640 if (!BitWidth) {
641 KnownZero = false;
642 KnownOne = false;
643 return;
645 APInt ZeroBits(BitWidth, 0);
646 APInt OneBits(BitWidth, 0);
647 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
648 Depth);
649 KnownOne = OneBits[BitWidth - 1];
650 KnownZero = ZeroBits[BitWidth - 1];
653 /// isPowerOfTwo - Return true if the given value is known to have exactly one
654 /// bit set when defined. For vectors return true if every element is known to
655 /// be a power of two when defined. Supports values with integer or pointer
656 /// types and vectors of integers.
657 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
658 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
659 return CI->getValue().isPowerOf2();
660 // TODO: Handle vector constants.
662 // 1 << X is clearly a power of two if the one is not shifted off the end. If
663 // it is shifted off the end then the result is undefined.
664 if (match(V, m_Shl(m_One(), m_Value())))
665 return true;
667 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
668 // bottom. If it is shifted off the bottom then the result is undefined.
669 ConstantInt *CI;
670 if (match(V, m_LShr(m_ConstantInt(CI), m_Value())) &&
671 CI->getValue().isSignBit())
672 return true;
674 // The remaining tests are all recursive, so bail out if we hit the limit.
675 if (Depth++ == MaxDepth)
676 return false;
678 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
679 return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
681 if (SelectInst *SI = dyn_cast<SelectInst>(V))
682 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
683 isPowerOfTwo(SI->getFalseValue(), TD, Depth);
685 return false;
688 /// isKnownNonZero - Return true if the given value is known to be non-zero
689 /// when defined. For vectors return true if every element is known to be
690 /// non-zero when defined. Supports values with integer or pointer type and
691 /// vectors of integers.
692 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
693 if (Constant *C = dyn_cast<Constant>(V)) {
694 if (C->isNullValue())
695 return false;
696 if (isa<ConstantInt>(C))
697 // Must be non-zero due to null test above.
698 return true;
699 // TODO: Handle vectors
700 return false;
703 // The remaining tests are all recursive, so bail out if we hit the limit.
704 if (Depth++ == MaxDepth)
705 return false;
707 unsigned BitWidth = getBitWidth(V->getType(), TD);
709 // X | Y != 0 if X != 0 or Y != 0.
710 Value *X = 0, *Y = 0;
711 if (match(V, m_Or(m_Value(X), m_Value(Y))))
712 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
714 // ext X != 0 if X != 0.
715 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
716 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
718 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
719 // if the lowest bit is shifted off the end.
720 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
721 APInt KnownZero(BitWidth, 0);
722 APInt KnownOne(BitWidth, 0);
723 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
724 if (KnownOne[0])
725 return true;
727 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
728 // defined if the sign bit is shifted off the end.
729 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
730 bool XKnownNonNegative, XKnownNegative;
731 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
732 if (XKnownNegative)
733 return true;
735 // X + Y.
736 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
737 bool XKnownNonNegative, XKnownNegative;
738 bool YKnownNonNegative, YKnownNegative;
739 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
740 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
742 // If X and Y are both non-negative (as signed values) then their sum is not
743 // zero unless both X and Y are zero.
744 if (XKnownNonNegative && YKnownNonNegative)
745 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
746 return true;
748 // If X and Y are both negative (as signed values) then their sum is not
749 // zero unless both X and Y equal INT_MIN.
750 if (BitWidth && XKnownNegative && YKnownNegative) {
751 APInt KnownZero(BitWidth, 0);
752 APInt KnownOne(BitWidth, 0);
753 APInt Mask = APInt::getSignedMaxValue(BitWidth);
754 // The sign bit of X is set. If some other bit is set then X is not equal
755 // to INT_MIN.
756 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
757 if ((KnownOne & Mask) != 0)
758 return true;
759 // The sign bit of Y is set. If some other bit is set then Y is not equal
760 // to INT_MIN.
761 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
762 if ((KnownOne & Mask) != 0)
763 return true;
766 // The sum of a non-negative number and a power of two is not zero.
767 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
768 return true;
769 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
770 return true;
772 // (C ? X : Y) != 0 if X != 0 and Y != 0.
773 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
774 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
775 isKnownNonZero(SI->getFalseValue(), TD, Depth))
776 return true;
779 if (!BitWidth) return false;
780 APInt KnownZero(BitWidth, 0);
781 APInt KnownOne(BitWidth, 0);
782 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
783 TD, Depth);
784 return KnownOne != 0;
787 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
788 /// this predicate to simplify operations downstream. Mask is known to be zero
789 /// for bits that V cannot have.
791 /// This function is defined on values with integer type, values with pointer
792 /// type (but only if TD is non-null), and vectors of integers. In the case
793 /// where V is a vector, the mask, known zero, and known one values are the
794 /// same width as the vector element, and the bit is set only if it is true
795 /// for all of the elements in the vector.
796 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
797 const TargetData *TD, unsigned Depth) {
798 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
799 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
800 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
801 return (KnownZero & Mask) == Mask;
806 /// ComputeNumSignBits - Return the number of times the sign bit of the
807 /// register is replicated into the other bits. We know that at least 1 bit
808 /// is always equal to the sign bit (itself), but other cases can give us
809 /// information. For example, immediately after an "ashr X, 2", we know that
810 /// the top 3 bits are all equal to each other, so we return 3.
812 /// 'Op' must have a scalar integer type.
814 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
815 unsigned Depth) {
816 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
817 "ComputeNumSignBits requires a TargetData object to operate "
818 "on non-integer values!");
819 const Type *Ty = V->getType();
820 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
821 Ty->getScalarSizeInBits();
822 unsigned Tmp, Tmp2;
823 unsigned FirstAnswer = 1;
825 // Note that ConstantInt is handled by the general ComputeMaskedBits case
826 // below.
828 if (Depth == 6)
829 return 1; // Limit search depth.
831 Operator *U = dyn_cast<Operator>(V);
832 switch (Operator::getOpcode(V)) {
833 default: break;
834 case Instruction::SExt:
835 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
836 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
838 case Instruction::AShr:
839 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
840 // ashr X, C -> adds C sign bits.
841 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
842 Tmp += C->getZExtValue();
843 if (Tmp > TyBits) Tmp = TyBits;
845 // vector ashr X, <C, C, C, C> -> adds C sign bits
846 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
847 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
848 Tmp += CI->getZExtValue();
849 if (Tmp > TyBits) Tmp = TyBits;
852 return Tmp;
853 case Instruction::Shl:
854 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
855 // shl destroys sign bits.
856 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
857 if (C->getZExtValue() >= TyBits || // Bad shift.
858 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
859 return Tmp - C->getZExtValue();
861 break;
862 case Instruction::And:
863 case Instruction::Or:
864 case Instruction::Xor: // NOT is handled here.
865 // Logical binary ops preserve the number of sign bits at the worst.
866 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
867 if (Tmp != 1) {
868 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
869 FirstAnswer = std::min(Tmp, Tmp2);
870 // We computed what we know about the sign bits as our first
871 // answer. Now proceed to the generic code that uses
872 // ComputeMaskedBits, and pick whichever answer is better.
874 break;
876 case Instruction::Select:
877 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
878 if (Tmp == 1) return 1; // Early out.
879 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
880 return std::min(Tmp, Tmp2);
882 case Instruction::Add:
883 // Add can have at most one carry bit. Thus we know that the output
884 // is, at worst, one more bit than the inputs.
885 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
886 if (Tmp == 1) return 1; // Early out.
888 // Special case decrementing a value (ADD X, -1):
889 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
890 if (CRHS->isAllOnesValue()) {
891 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
892 APInt Mask = APInt::getAllOnesValue(TyBits);
893 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
894 Depth+1);
896 // If the input is known to be 0 or 1, the output is 0/-1, which is all
897 // sign bits set.
898 if ((KnownZero | APInt(TyBits, 1)) == Mask)
899 return TyBits;
901 // If we are subtracting one from a positive number, there is no carry
902 // out of the result.
903 if (KnownZero.isNegative())
904 return Tmp;
907 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
908 if (Tmp2 == 1) return 1;
909 return std::min(Tmp, Tmp2)-1;
911 case Instruction::Sub:
912 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
913 if (Tmp2 == 1) return 1;
915 // Handle NEG.
916 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
917 if (CLHS->isNullValue()) {
918 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
919 APInt Mask = APInt::getAllOnesValue(TyBits);
920 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
921 TD, Depth+1);
922 // If the input is known to be 0 or 1, the output is 0/-1, which is all
923 // sign bits set.
924 if ((KnownZero | APInt(TyBits, 1)) == Mask)
925 return TyBits;
927 // If the input is known to be positive (the sign bit is known clear),
928 // the output of the NEG has the same number of sign bits as the input.
929 if (KnownZero.isNegative())
930 return Tmp2;
932 // Otherwise, we treat this like a SUB.
935 // Sub can have at most one carry bit. Thus we know that the output
936 // is, at worst, one more bit than the inputs.
937 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
938 if (Tmp == 1) return 1; // Early out.
939 return std::min(Tmp, Tmp2)-1;
941 case Instruction::PHI: {
942 PHINode *PN = cast<PHINode>(U);
943 // Don't analyze large in-degree PHIs.
944 if (PN->getNumIncomingValues() > 4) break;
946 // Take the minimum of all incoming values. This can't infinitely loop
947 // because of our depth threshold.
948 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
949 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
950 if (Tmp == 1) return Tmp;
951 Tmp = std::min(Tmp,
952 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
954 return Tmp;
957 case Instruction::Trunc:
958 // FIXME: it's tricky to do anything useful for this, but it is an important
959 // case for targets like X86.
960 break;
963 // Finally, if we can prove that the top bits of the result are 0's or 1's,
964 // use this information.
965 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
966 APInt Mask = APInt::getAllOnesValue(TyBits);
967 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
969 if (KnownZero.isNegative()) { // sign bit is 0
970 Mask = KnownZero;
971 } else if (KnownOne.isNegative()) { // sign bit is 1;
972 Mask = KnownOne;
973 } else {
974 // Nothing known.
975 return FirstAnswer;
978 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
979 // the number of identical bits in the top of the input value.
980 Mask = ~Mask;
981 Mask <<= Mask.getBitWidth()-TyBits;
982 // Return # leading zeros. We use 'min' here in case Val was zero before
983 // shifting. We don't want to return '64' as for an i32 "0".
984 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
987 /// ComputeMultiple - This function computes the integer multiple of Base that
988 /// equals V. If successful, it returns true and returns the multiple in
989 /// Multiple. If unsuccessful, it returns false. It looks
990 /// through SExt instructions only if LookThroughSExt is true.
991 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
992 bool LookThroughSExt, unsigned Depth) {
993 const unsigned MaxDepth = 6;
995 assert(V && "No Value?");
996 assert(Depth <= MaxDepth && "Limit Search Depth");
997 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
999 const Type *T = V->getType();
1001 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1003 if (Base == 0)
1004 return false;
1006 if (Base == 1) {
1007 Multiple = V;
1008 return true;
1011 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1012 Constant *BaseVal = ConstantInt::get(T, Base);
1013 if (CO && CO == BaseVal) {
1014 // Multiple is 1.
1015 Multiple = ConstantInt::get(T, 1);
1016 return true;
1019 if (CI && CI->getZExtValue() % Base == 0) {
1020 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1021 return true;
1024 if (Depth == MaxDepth) return false; // Limit search depth.
1026 Operator *I = dyn_cast<Operator>(V);
1027 if (!I) return false;
1029 switch (I->getOpcode()) {
1030 default: break;
1031 case Instruction::SExt:
1032 if (!LookThroughSExt) return false;
1033 // otherwise fall through to ZExt
1034 case Instruction::ZExt:
1035 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1036 LookThroughSExt, Depth+1);
1037 case Instruction::Shl:
1038 case Instruction::Mul: {
1039 Value *Op0 = I->getOperand(0);
1040 Value *Op1 = I->getOperand(1);
1042 if (I->getOpcode() == Instruction::Shl) {
1043 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1044 if (!Op1CI) return false;
1045 // Turn Op0 << Op1 into Op0 * 2^Op1
1046 APInt Op1Int = Op1CI->getValue();
1047 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1048 APInt API(Op1Int.getBitWidth(), 0);
1049 API.setBit(BitToSet);
1050 Op1 = ConstantInt::get(V->getContext(), API);
1053 Value *Mul0 = NULL;
1054 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1055 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1056 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1057 if (Op1C->getType()->getPrimitiveSizeInBits() <
1058 MulC->getType()->getPrimitiveSizeInBits())
1059 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1060 if (Op1C->getType()->getPrimitiveSizeInBits() >
1061 MulC->getType()->getPrimitiveSizeInBits())
1062 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1064 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1065 Multiple = ConstantExpr::getMul(MulC, Op1C);
1066 return true;
1069 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1070 if (Mul0CI->getValue() == 1) {
1071 // V == Base * Op1, so return Op1
1072 Multiple = Op1;
1073 return true;
1077 Value *Mul1 = NULL;
1078 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1079 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1080 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1081 if (Op0C->getType()->getPrimitiveSizeInBits() <
1082 MulC->getType()->getPrimitiveSizeInBits())
1083 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1084 if (Op0C->getType()->getPrimitiveSizeInBits() >
1085 MulC->getType()->getPrimitiveSizeInBits())
1086 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1088 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1089 Multiple = ConstantExpr::getMul(MulC, Op0C);
1090 return true;
1093 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1094 if (Mul1CI->getValue() == 1) {
1095 // V == Base * Op0, so return Op0
1096 Multiple = Op0;
1097 return true;
1103 // We could not determine if V is a multiple of Base.
1104 return false;
1107 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1108 /// value is never equal to -0.0.
1110 /// NOTE: this function will need to be revisited when we support non-default
1111 /// rounding modes!
1113 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1114 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1115 return !CFP->getValueAPF().isNegZero();
1117 if (Depth == 6)
1118 return 1; // Limit search depth.
1120 const Operator *I = dyn_cast<Operator>(V);
1121 if (I == 0) return false;
1123 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1124 if (I->getOpcode() == Instruction::FAdd &&
1125 isa<ConstantFP>(I->getOperand(1)) &&
1126 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1127 return true;
1129 // sitofp and uitofp turn into +0.0 for zero.
1130 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1131 return true;
1133 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1134 // sqrt(-0.0) = -0.0, no other negative results are possible.
1135 if (II->getIntrinsicID() == Intrinsic::sqrt)
1136 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1138 if (const CallInst *CI = dyn_cast<CallInst>(I))
1139 if (const Function *F = CI->getCalledFunction()) {
1140 if (F->isDeclaration()) {
1141 // abs(x) != -0.0
1142 if (F->getName() == "abs") return true;
1143 // fabs[lf](x) != -0.0
1144 if (F->getName() == "fabs") return true;
1145 if (F->getName() == "fabsf") return true;
1146 if (F->getName() == "fabsl") return true;
1147 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1148 F->getName() == "sqrtl")
1149 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1153 return false;
1156 /// isBytewiseValue - If the specified value can be set by repeating the same
1157 /// byte in memory, return the i8 value that it is represented with. This is
1158 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1159 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1160 /// byte store (e.g. i16 0x1234), return null.
1161 Value *llvm::isBytewiseValue(Value *V) {
1162 // All byte-wide stores are splatable, even of arbitrary variables.
1163 if (V->getType()->isIntegerTy(8)) return V;
1165 // Constant float and double values can be handled as integer values if the
1166 // corresponding integer value is "byteable". An important case is 0.0.
1167 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1168 if (CFP->getType()->isFloatTy())
1169 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1170 if (CFP->getType()->isDoubleTy())
1171 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1172 // Don't handle long double formats, which have strange constraints.
1175 // We can handle constant integers that are power of two in size and a
1176 // multiple of 8 bits.
1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1178 unsigned Width = CI->getBitWidth();
1179 if (isPowerOf2_32(Width) && Width > 8) {
1180 // We can handle this value if the recursive binary decomposition is the
1181 // same at all levels.
1182 APInt Val = CI->getValue();
1183 APInt Val2;
1184 while (Val.getBitWidth() != 8) {
1185 unsigned NextWidth = Val.getBitWidth()/2;
1186 Val2 = Val.lshr(NextWidth);
1187 Val2 = Val2.trunc(Val.getBitWidth()/2);
1188 Val = Val.trunc(Val.getBitWidth()/2);
1190 // If the top/bottom halves aren't the same, reject it.
1191 if (Val != Val2)
1192 return 0;
1194 return ConstantInt::get(V->getContext(), Val);
1198 // A ConstantArray is splatable if all its members are equal and also
1199 // splatable.
1200 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1201 if (CA->getNumOperands() == 0)
1202 return 0;
1204 Value *Val = isBytewiseValue(CA->getOperand(0));
1205 if (!Val)
1206 return 0;
1208 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1209 if (CA->getOperand(I-1) != CA->getOperand(I))
1210 return 0;
1212 return Val;
1215 // Conceptually, we could handle things like:
1216 // %a = zext i8 %X to i16
1217 // %b = shl i16 %a, 8
1218 // %c = or i16 %a, %b
1219 // but until there is an example that actually needs this, it doesn't seem
1220 // worth worrying about.
1221 return 0;
1225 // This is the recursive version of BuildSubAggregate. It takes a few different
1226 // arguments. Idxs is the index within the nested struct From that we are
1227 // looking at now (which is of type IndexedType). IdxSkip is the number of
1228 // indices from Idxs that should be left out when inserting into the resulting
1229 // struct. To is the result struct built so far, new insertvalue instructions
1230 // build on that.
1231 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
1232 SmallVector<unsigned, 10> &Idxs,
1233 unsigned IdxSkip,
1234 Instruction *InsertBefore) {
1235 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1236 if (STy) {
1237 // Save the original To argument so we can modify it
1238 Value *OrigTo = To;
1239 // General case, the type indexed by Idxs is a struct
1240 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1241 // Process each struct element recursively
1242 Idxs.push_back(i);
1243 Value *PrevTo = To;
1244 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1245 InsertBefore);
1246 Idxs.pop_back();
1247 if (!To) {
1248 // Couldn't find any inserted value for this index? Cleanup
1249 while (PrevTo != OrigTo) {
1250 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1251 PrevTo = Del->getAggregateOperand();
1252 Del->eraseFromParent();
1254 // Stop processing elements
1255 break;
1258 // If we succesfully found a value for each of our subaggregates
1259 if (To)
1260 return To;
1262 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1263 // the struct's elements had a value that was inserted directly. In the latter
1264 // case, perhaps we can't determine each of the subelements individually, but
1265 // we might be able to find the complete struct somewhere.
1267 // Find the value that is at that particular spot
1268 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
1270 if (!V)
1271 return NULL;
1273 // Insert the value in the new (sub) aggregrate
1274 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
1275 Idxs.end(), "tmp", InsertBefore);
1278 // This helper takes a nested struct and extracts a part of it (which is again a
1279 // struct) into a new value. For example, given the struct:
1280 // { a, { b, { c, d }, e } }
1281 // and the indices "1, 1" this returns
1282 // { c, d }.
1284 // It does this by inserting an insertvalue for each element in the resulting
1285 // struct, as opposed to just inserting a single struct. This will only work if
1286 // each of the elements of the substruct are known (ie, inserted into From by an
1287 // insertvalue instruction somewhere).
1289 // All inserted insertvalue instructions are inserted before InsertBefore
1290 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
1291 const unsigned *idx_end,
1292 Instruction *InsertBefore) {
1293 assert(InsertBefore && "Must have someplace to insert!");
1294 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1295 idx_begin,
1296 idx_end);
1297 Value *To = UndefValue::get(IndexedType);
1298 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1299 unsigned IdxSkip = Idxs.size();
1301 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1304 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1305 /// the scalar value indexed is already around as a register, for example if it
1306 /// were inserted directly into the aggregrate.
1308 /// If InsertBefore is not null, this function will duplicate (modified)
1309 /// insertvalues when a part of a nested struct is extracted.
1310 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
1311 const unsigned *idx_end, Instruction *InsertBefore) {
1312 // Nothing to index? Just return V then (this is useful at the end of our
1313 // recursion)
1314 if (idx_begin == idx_end)
1315 return V;
1316 // We have indices, so V should have an indexable type
1317 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1318 && "Not looking at a struct or array?");
1319 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1320 && "Invalid indices for type?");
1321 const CompositeType *PTy = cast<CompositeType>(V->getType());
1323 if (isa<UndefValue>(V))
1324 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1325 idx_begin,
1326 idx_end));
1327 else if (isa<ConstantAggregateZero>(V))
1328 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
1329 idx_begin,
1330 idx_end));
1331 else if (Constant *C = dyn_cast<Constant>(V)) {
1332 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1333 // Recursively process this constant
1334 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
1335 idx_end, InsertBefore);
1336 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1337 // Loop the indices for the insertvalue instruction in parallel with the
1338 // requested indices
1339 const unsigned *req_idx = idx_begin;
1340 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1341 i != e; ++i, ++req_idx) {
1342 if (req_idx == idx_end) {
1343 if (InsertBefore)
1344 // The requested index identifies a part of a nested aggregate. Handle
1345 // this specially. For example,
1346 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1347 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1348 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1349 // This can be changed into
1350 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1351 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1352 // which allows the unused 0,0 element from the nested struct to be
1353 // removed.
1354 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
1355 else
1356 // We can't handle this without inserting insertvalues
1357 return 0;
1360 // This insert value inserts something else than what we are looking for.
1361 // See if the (aggregrate) value inserted into has the value we are
1362 // looking for, then.
1363 if (*req_idx != *i)
1364 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
1365 InsertBefore);
1367 // If we end up here, the indices of the insertvalue match with those
1368 // requested (though possibly only partially). Now we recursively look at
1369 // the inserted value, passing any remaining indices.
1370 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1371 InsertBefore);
1372 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1373 // If we're extracting a value from an aggregrate that was extracted from
1374 // something else, we can extract from that something else directly instead.
1375 // However, we will need to chain I's indices with the requested indices.
1377 // Calculate the number of indices required
1378 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1379 // Allocate some space to put the new indices in
1380 SmallVector<unsigned, 5> Idxs;
1381 Idxs.reserve(size);
1382 // Add indices from the extract value instruction
1383 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1384 i != e; ++i)
1385 Idxs.push_back(*i);
1387 // Add requested indices
1388 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1389 Idxs.push_back(*i);
1391 assert(Idxs.size() == size
1392 && "Number of indices added not correct?");
1394 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1395 InsertBefore);
1397 // Otherwise, we don't know (such as, extracting from a function return value
1398 // or load instruction)
1399 return 0;
1402 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1403 /// it can be expressed as a base pointer plus a constant offset. Return the
1404 /// base and offset to the caller.
1405 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1406 const TargetData &TD) {
1407 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1408 if (PtrOp == 0) return Ptr;
1410 // Just look through bitcasts.
1411 if (PtrOp->getOpcode() == Instruction::BitCast)
1412 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1414 // If this is a GEP with constant indices, we can look through it.
1415 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1416 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1418 gep_type_iterator GTI = gep_type_begin(GEP);
1419 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1420 ++I, ++GTI) {
1421 ConstantInt *OpC = cast<ConstantInt>(*I);
1422 if (OpC->isZero()) continue;
1424 // Handle a struct and array indices which add their offset to the pointer.
1425 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1426 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1427 } else {
1428 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1429 Offset += OpC->getSExtValue()*Size;
1433 // Re-sign extend from the pointer size if needed to get overflow edge cases
1434 // right.
1435 unsigned PtrSize = TD.getPointerSizeInBits();
1436 if (PtrSize < 64)
1437 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1439 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1443 /// GetConstantStringInfo - This function computes the length of a
1444 /// null-terminated C string pointed to by V. If successful, it returns true
1445 /// and returns the string in Str. If unsuccessful, it returns false.
1446 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
1447 uint64_t Offset,
1448 bool StopAtNul) {
1449 // If V is NULL then return false;
1450 if (V == NULL) return false;
1452 // Look through bitcast instructions.
1453 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1454 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1456 // If the value is not a GEP instruction nor a constant expression with a
1457 // GEP instruction, then return false because ConstantArray can't occur
1458 // any other way
1459 const User *GEP = 0;
1460 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1461 GEP = GEPI;
1462 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1463 if (CE->getOpcode() == Instruction::BitCast)
1464 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1465 if (CE->getOpcode() != Instruction::GetElementPtr)
1466 return false;
1467 GEP = CE;
1470 if (GEP) {
1471 // Make sure the GEP has exactly three arguments.
1472 if (GEP->getNumOperands() != 3)
1473 return false;
1475 // Make sure the index-ee is a pointer to array of i8.
1476 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1477 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1478 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1479 return false;
1481 // Check to make sure that the first operand of the GEP is an integer and
1482 // has value 0 so that we are sure we're indexing into the initializer.
1483 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1484 if (FirstIdx == 0 || !FirstIdx->isZero())
1485 return false;
1487 // If the second index isn't a ConstantInt, then this is a variable index
1488 // into the array. If this occurs, we can't say anything meaningful about
1489 // the string.
1490 uint64_t StartIdx = 0;
1491 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1492 StartIdx = CI->getZExtValue();
1493 else
1494 return false;
1495 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1496 StopAtNul);
1499 // The GEP instruction, constant or instruction, must reference a global
1500 // variable that is a constant and is initialized. The referenced constant
1501 // initializer is the array that we'll use for optimization.
1502 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1503 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1504 return false;
1505 const Constant *GlobalInit = GV->getInitializer();
1507 // Handle the ConstantAggregateZero case
1508 if (isa<ConstantAggregateZero>(GlobalInit)) {
1509 // This is a degenerate case. The initializer is constant zero so the
1510 // length of the string must be zero.
1511 Str.clear();
1512 return true;
1515 // Must be a Constant Array
1516 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1517 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
1518 return false;
1520 // Get the number of elements in the array
1521 uint64_t NumElts = Array->getType()->getNumElements();
1523 if (Offset > NumElts)
1524 return false;
1526 // Traverse the constant array from 'Offset' which is the place the GEP refers
1527 // to in the array.
1528 Str.reserve(NumElts-Offset);
1529 for (unsigned i = Offset; i != NumElts; ++i) {
1530 const Constant *Elt = Array->getOperand(i);
1531 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1532 if (!CI) // This array isn't suitable, non-int initializer.
1533 return false;
1534 if (StopAtNul && CI->isZero())
1535 return true; // we found end of string, success!
1536 Str += (char)CI->getZExtValue();
1539 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1540 return true;
1543 // These next two are very similar to the above, but also look through PHI
1544 // nodes.
1545 // TODO: See if we can integrate these two together.
1547 /// GetStringLengthH - If we can compute the length of the string pointed to by
1548 /// the specified pointer, return 'len+1'. If we can't, return 0.
1549 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1550 // Look through noop bitcast instructions.
1551 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1552 return GetStringLengthH(BCI->getOperand(0), PHIs);
1554 // If this is a PHI node, there are two cases: either we have already seen it
1555 // or we haven't.
1556 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1557 if (!PHIs.insert(PN))
1558 return ~0ULL; // already in the set.
1560 // If it was new, see if all the input strings are the same length.
1561 uint64_t LenSoFar = ~0ULL;
1562 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1563 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1564 if (Len == 0) return 0; // Unknown length -> unknown.
1566 if (Len == ~0ULL) continue;
1568 if (Len != LenSoFar && LenSoFar != ~0ULL)
1569 return 0; // Disagree -> unknown.
1570 LenSoFar = Len;
1573 // Success, all agree.
1574 return LenSoFar;
1577 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1578 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1579 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1580 if (Len1 == 0) return 0;
1581 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1582 if (Len2 == 0) return 0;
1583 if (Len1 == ~0ULL) return Len2;
1584 if (Len2 == ~0ULL) return Len1;
1585 if (Len1 != Len2) return 0;
1586 return Len1;
1589 // If the value is not a GEP instruction nor a constant expression with a
1590 // GEP instruction, then return unknown.
1591 User *GEP = 0;
1592 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1593 GEP = GEPI;
1594 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1595 if (CE->getOpcode() != Instruction::GetElementPtr)
1596 return 0;
1597 GEP = CE;
1598 } else {
1599 return 0;
1602 // Make sure the GEP has exactly three arguments.
1603 if (GEP->getNumOperands() != 3)
1604 return 0;
1606 // Check to make sure that the first operand of the GEP is an integer and
1607 // has value 0 so that we are sure we're indexing into the initializer.
1608 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1609 if (!Idx->isZero())
1610 return 0;
1611 } else
1612 return 0;
1614 // If the second index isn't a ConstantInt, then this is a variable index
1615 // into the array. If this occurs, we can't say anything meaningful about
1616 // the string.
1617 uint64_t StartIdx = 0;
1618 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1619 StartIdx = CI->getZExtValue();
1620 else
1621 return 0;
1623 // The GEP instruction, constant or instruction, must reference a global
1624 // variable that is a constant and is initialized. The referenced constant
1625 // initializer is the array that we'll use for optimization.
1626 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1627 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1628 GV->mayBeOverridden())
1629 return 0;
1630 Constant *GlobalInit = GV->getInitializer();
1632 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1633 // initializer is constant zero so the length of the string must be zero.
1634 if (isa<ConstantAggregateZero>(GlobalInit))
1635 return 1; // Len = 0 offset by 1.
1637 // Must be a Constant Array
1638 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1639 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1640 return false;
1642 // Get the number of elements in the array
1643 uint64_t NumElts = Array->getType()->getNumElements();
1645 // Traverse the constant array from StartIdx (derived above) which is
1646 // the place the GEP refers to in the array.
1647 for (unsigned i = StartIdx; i != NumElts; ++i) {
1648 Constant *Elt = Array->getOperand(i);
1649 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1650 if (!CI) // This array isn't suitable, non-int initializer.
1651 return 0;
1652 if (CI->isZero())
1653 return i-StartIdx+1; // We found end of string, success!
1656 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1659 /// GetStringLength - If we can compute the length of the string pointed to by
1660 /// the specified pointer, return 'len+1'. If we can't, return 0.
1661 uint64_t llvm::GetStringLength(Value *V) {
1662 if (!V->getType()->isPointerTy()) return 0;
1664 SmallPtrSet<PHINode*, 32> PHIs;
1665 uint64_t Len = GetStringLengthH(V, PHIs);
1666 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1667 // an empty string as a length.
1668 return Len == ~0ULL ? 1 : Len;
1671 Value *
1672 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
1673 if (!V->getType()->isPointerTy())
1674 return V;
1675 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1676 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1677 V = GEP->getPointerOperand();
1678 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1679 V = cast<Operator>(V)->getOperand(0);
1680 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1681 if (GA->mayBeOverridden())
1682 return V;
1683 V = GA->getAliasee();
1684 } else {
1685 // See if InstructionSimplify knows any relevant tricks.
1686 if (Instruction *I = dyn_cast<Instruction>(V))
1687 // TODO: Aquire a DominatorTree and use it.
1688 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1689 V = Simplified;
1690 continue;
1693 return V;
1695 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1697 return V;