Remove trailing whitespace.
[llvm/stm8.git] / lib / Transforms / Scalar / JumpThreading.cpp
blobcb93ae84a5e1a36f6a60ebdf4eda12904103320e
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
38 STATISTIC(NumThreads, "Number of jumps threaded");
39 STATISTIC(NumFolds, "Number of terminators folded");
40 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
42 static cl::opt<unsigned>
43 Threshold("jump-threading-threshold",
44 cl::desc("Max block size to duplicate for jump threading"),
45 cl::init(6), cl::Hidden);
47 namespace {
48 /// This pass performs 'jump threading', which looks at blocks that have
49 /// multiple predecessors and multiple successors. If one or more of the
50 /// predecessors of the block can be proven to always jump to one of the
51 /// successors, we forward the edge from the predecessor to the successor by
52 /// duplicating the contents of this block.
53 ///
54 /// An example of when this can occur is code like this:
55 ///
56 /// if () { ...
57 /// X = 4;
58 /// }
59 /// if (X < 3) {
60 ///
61 /// In this case, the unconditional branch at the end of the first if can be
62 /// revectored to the false side of the second if.
63 ///
64 class JumpThreading : public FunctionPass {
65 TargetData *TD;
66 LazyValueInfo *LVI;
67 #ifdef NDEBUG
68 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
69 #else
70 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
71 #endif
72 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
74 // RAII helper for updating the recursion stack.
75 struct RecursionSetRemover {
76 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
77 std::pair<Value*, BasicBlock*> ThePair;
79 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
80 std::pair<Value*, BasicBlock*> P)
81 : TheSet(S), ThePair(P) { }
83 ~RecursionSetRemover() {
84 TheSet.erase(ThePair);
87 public:
88 static char ID; // Pass identification
89 JumpThreading() : FunctionPass(ID) {
90 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
93 bool runOnFunction(Function &F);
95 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
96 AU.addRequired<LazyValueInfo>();
97 AU.addPreserved<LazyValueInfo>();
100 void FindLoopHeaders(Function &F);
101 bool ProcessBlock(BasicBlock *BB);
102 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
103 BasicBlock *SuccBB);
104 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
105 const SmallVectorImpl<BasicBlock *> &PredBBs);
107 typedef SmallVectorImpl<std::pair<ConstantInt*,
108 BasicBlock*> > PredValueInfo;
110 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
111 PredValueInfo &Result);
112 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
115 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
116 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
118 bool ProcessBranchOnPHI(PHINode *PN);
119 bool ProcessBranchOnXOR(BinaryOperator *BO);
121 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
125 char JumpThreading::ID = 0;
126 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
127 "Jump Threading", false, false)
128 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
129 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
130 "Jump Threading", false, false)
132 // Public interface to the Jump Threading pass
133 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
135 /// runOnFunction - Top level algorithm.
137 bool JumpThreading::runOnFunction(Function &F) {
138 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
139 TD = getAnalysisIfAvailable<TargetData>();
140 LVI = &getAnalysis<LazyValueInfo>();
142 FindLoopHeaders(F);
144 bool Changed, EverChanged = false;
145 do {
146 Changed = false;
147 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
148 BasicBlock *BB = I;
149 // Thread all of the branches we can over this block.
150 while (ProcessBlock(BB))
151 Changed = true;
153 ++I;
155 // If the block is trivially dead, zap it. This eliminates the successor
156 // edges which simplifies the CFG.
157 if (pred_begin(BB) == pred_end(BB) &&
158 BB != &BB->getParent()->getEntryBlock()) {
159 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName()
160 << "' with terminator: " << *BB->getTerminator() << '\n');
161 LoopHeaders.erase(BB);
162 LVI->eraseBlock(BB);
163 DeleteDeadBlock(BB);
164 Changed = true;
165 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
166 // Can't thread an unconditional jump, but if the block is "almost
167 // empty", we can replace uses of it with uses of the successor and make
168 // this dead.
169 if (BI->isUnconditional() &&
170 BB != &BB->getParent()->getEntryBlock()) {
171 BasicBlock::iterator BBI = BB->getFirstNonPHI();
172 // Ignore dbg intrinsics.
173 while (isa<DbgInfoIntrinsic>(BBI))
174 ++BBI;
175 // If the terminator is the only non-phi instruction, try to nuke it.
176 if (BBI->isTerminator()) {
177 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
178 // block, we have to make sure it isn't in the LoopHeaders set. We
179 // reinsert afterward if needed.
180 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
181 BasicBlock *Succ = BI->getSuccessor(0);
183 // FIXME: It is always conservatively correct to drop the info
184 // for a block even if it doesn't get erased. This isn't totally
185 // awesome, but it allows us to use AssertingVH to prevent nasty
186 // dangling pointer issues within LazyValueInfo.
187 LVI->eraseBlock(BB);
188 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
189 Changed = true;
190 // If we deleted BB and BB was the header of a loop, then the
191 // successor is now the header of the loop.
192 BB = Succ;
195 if (ErasedFromLoopHeaders)
196 LoopHeaders.insert(BB);
201 EverChanged |= Changed;
202 } while (Changed);
204 LoopHeaders.clear();
205 return EverChanged;
208 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
209 /// thread across it.
210 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
211 /// Ignore PHI nodes, these will be flattened when duplication happens.
212 BasicBlock::const_iterator I = BB->getFirstNonPHI();
214 // FIXME: THREADING will delete values that are just used to compute the
215 // branch, so they shouldn't count against the duplication cost.
218 // Sum up the cost of each instruction until we get to the terminator. Don't
219 // include the terminator because the copy won't include it.
220 unsigned Size = 0;
221 for (; !isa<TerminatorInst>(I); ++I) {
222 // Debugger intrinsics don't incur code size.
223 if (isa<DbgInfoIntrinsic>(I)) continue;
225 // If this is a pointer->pointer bitcast, it is free.
226 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
227 continue;
229 // All other instructions count for at least one unit.
230 ++Size;
232 // Calls are more expensive. If they are non-intrinsic calls, we model them
233 // as having cost of 4. If they are a non-vector intrinsic, we model them
234 // as having cost of 2 total, and if they are a vector intrinsic, we model
235 // them as having cost 1.
236 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
237 if (!isa<IntrinsicInst>(CI))
238 Size += 3;
239 else if (!CI->getType()->isVectorTy())
240 Size += 1;
244 // Threading through a switch statement is particularly profitable. If this
245 // block ends in a switch, decrease its cost to make it more likely to happen.
246 if (isa<SwitchInst>(I))
247 Size = Size > 6 ? Size-6 : 0;
249 return Size;
252 /// FindLoopHeaders - We do not want jump threading to turn proper loop
253 /// structures into irreducible loops. Doing this breaks up the loop nesting
254 /// hierarchy and pessimizes later transformations. To prevent this from
255 /// happening, we first have to find the loop headers. Here we approximate this
256 /// by finding targets of backedges in the CFG.
258 /// Note that there definitely are cases when we want to allow threading of
259 /// edges across a loop header. For example, threading a jump from outside the
260 /// loop (the preheader) to an exit block of the loop is definitely profitable.
261 /// It is also almost always profitable to thread backedges from within the loop
262 /// to exit blocks, and is often profitable to thread backedges to other blocks
263 /// within the loop (forming a nested loop). This simple analysis is not rich
264 /// enough to track all of these properties and keep it up-to-date as the CFG
265 /// mutates, so we don't allow any of these transformations.
267 void JumpThreading::FindLoopHeaders(Function &F) {
268 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
269 FindFunctionBackedges(F, Edges);
271 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
272 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
275 // Helper method for ComputeValueKnownInPredecessors. If Value is a
276 // ConstantInt, push it. If it's an undef, push 0. Otherwise, do nothing.
277 static void PushConstantIntOrUndef(SmallVectorImpl<std::pair<ConstantInt*,
278 BasicBlock*> > &Result,
279 Constant *Value, BasicBlock* BB){
280 if (ConstantInt *FoldedCInt = dyn_cast<ConstantInt>(Value))
281 Result.push_back(std::make_pair(FoldedCInt, BB));
282 else if (isa<UndefValue>(Value))
283 Result.push_back(std::make_pair((ConstantInt*)0, BB));
286 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
287 /// if we can infer that the value is a known ConstantInt in any of our
288 /// predecessors. If so, return the known list of value and pred BB in the
289 /// result vector. If a value is known to be undef, it is returned as null.
291 /// This returns true if there were any known values.
293 bool JumpThreading::
294 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
295 // This method walks up use-def chains recursively. Because of this, we could
296 // get into an infinite loop going around loops in the use-def chain. To
297 // prevent this, keep track of what (value, block) pairs we've already visited
298 // and terminate the search if we loop back to them
299 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
300 return false;
302 // An RAII help to remove this pair from the recursion set once the recursion
303 // stack pops back out again.
304 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
306 // If V is a constantint, then it is known in all predecessors.
307 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
308 ConstantInt *CI = dyn_cast<ConstantInt>(V);
310 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
311 Result.push_back(std::make_pair(CI, *PI));
313 return true;
316 // If V is a non-instruction value, or an instruction in a different block,
317 // then it can't be derived from a PHI.
318 Instruction *I = dyn_cast<Instruction>(V);
319 if (I == 0 || I->getParent() != BB) {
321 // Okay, if this is a live-in value, see if it has a known value at the end
322 // of any of our predecessors.
324 // FIXME: This should be an edge property, not a block end property.
325 /// TODO: Per PR2563, we could infer value range information about a
326 /// predecessor based on its terminator.
328 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
329 // "I" is a non-local compare-with-a-constant instruction. This would be
330 // able to handle value inequalities better, for example if the compare is
331 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
332 // Perhaps getConstantOnEdge should be smart enough to do this?
334 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
335 BasicBlock *P = *PI;
336 // If the value is known by LazyValueInfo to be a constant in a
337 // predecessor, use that information to try to thread this block.
338 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
339 if (PredCst == 0 ||
340 (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
341 continue;
343 Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
346 return !Result.empty();
349 /// If I is a PHI node, then we know the incoming values for any constants.
350 if (PHINode *PN = dyn_cast<PHINode>(I)) {
351 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
352 Value *InVal = PN->getIncomingValue(i);
353 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
354 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
355 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
356 } else {
357 Constant *CI = LVI->getConstantOnEdge(InVal,
358 PN->getIncomingBlock(i), BB);
359 // LVI returns null is no value could be determined.
360 if (!CI) continue;
361 PushConstantIntOrUndef(Result, CI, PN->getIncomingBlock(i));
365 return !Result.empty();
368 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
370 // Handle some boolean conditions.
371 if (I->getType()->getPrimitiveSizeInBits() == 1) {
372 // X | true -> true
373 // X & false -> false
374 if (I->getOpcode() == Instruction::Or ||
375 I->getOpcode() == Instruction::And) {
376 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
377 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
379 if (LHSVals.empty() && RHSVals.empty())
380 return false;
382 ConstantInt *InterestingVal;
383 if (I->getOpcode() == Instruction::Or)
384 InterestingVal = ConstantInt::getTrue(I->getContext());
385 else
386 InterestingVal = ConstantInt::getFalse(I->getContext());
388 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
390 // Scan for the sentinel. If we find an undef, force it to the
391 // interesting value: x|undef -> true and x&undef -> false.
392 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
393 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
394 Result.push_back(LHSVals[i]);
395 Result.back().first = InterestingVal;
396 LHSKnownBBs.insert(LHSVals[i].second);
398 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
399 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
400 // If we already inferred a value for this block on the LHS, don't
401 // re-add it.
402 if (!LHSKnownBBs.count(RHSVals[i].second)) {
403 Result.push_back(RHSVals[i]);
404 Result.back().first = InterestingVal;
408 return !Result.empty();
411 // Handle the NOT form of XOR.
412 if (I->getOpcode() == Instruction::Xor &&
413 isa<ConstantInt>(I->getOperand(1)) &&
414 cast<ConstantInt>(I->getOperand(1))->isOne()) {
415 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
416 if (Result.empty())
417 return false;
419 // Invert the known values.
420 for (unsigned i = 0, e = Result.size(); i != e; ++i)
421 if (Result[i].first)
422 Result[i].first =
423 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
425 return true;
428 // Try to simplify some other binary operator values.
429 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
430 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
431 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
432 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals);
434 // Try to use constant folding to simplify the binary operator.
435 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
436 Constant *V = LHSVals[i].first;
437 if (V == 0) V = UndefValue::get(BO->getType());
438 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
440 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
444 return !Result.empty();
447 // Handle compare with phi operand, where the PHI is defined in this block.
448 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
449 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
450 if (PN && PN->getParent() == BB) {
451 // We can do this simplification if any comparisons fold to true or false.
452 // See if any do.
453 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
454 BasicBlock *PredBB = PN->getIncomingBlock(i);
455 Value *LHS = PN->getIncomingValue(i);
456 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
458 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
459 if (Res == 0) {
460 if (!isa<Constant>(RHS))
461 continue;
463 LazyValueInfo::Tristate
464 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
465 cast<Constant>(RHS), PredBB, BB);
466 if (ResT == LazyValueInfo::Unknown)
467 continue;
468 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
471 if (Constant *ConstRes = dyn_cast<Constant>(Res))
472 PushConstantIntOrUndef(Result, ConstRes, PredBB);
475 return !Result.empty();
479 // If comparing a live-in value against a constant, see if we know the
480 // live-in value on any predecessors.
481 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
482 if (!isa<Instruction>(Cmp->getOperand(0)) ||
483 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
484 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
486 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
487 BasicBlock *P = *PI;
488 // If the value is known by LazyValueInfo to be a constant in a
489 // predecessor, use that information to try to thread this block.
490 LazyValueInfo::Tristate Res =
491 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
492 RHSCst, P, BB);
493 if (Res == LazyValueInfo::Unknown)
494 continue;
496 Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
497 Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
500 return !Result.empty();
503 // Try to find a constant value for the LHS of a comparison,
504 // and evaluate it statically if we can.
505 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
506 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals;
507 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
509 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
510 Constant *V = LHSVals[i].first;
511 if (V == 0) V = UndefValue::get(CmpConst->getType());
512 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
513 V, CmpConst);
514 PushConstantIntOrUndef(Result, Folded, LHSVals[i].second);
517 return !Result.empty();
522 // If all else fails, see if LVI can figure out a constant value for us.
523 Constant *CI = LVI->getConstant(V, BB);
524 ConstantInt *CInt = dyn_cast_or_null<ConstantInt>(CI);
525 if (CInt) {
526 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
527 Result.push_back(std::make_pair(CInt, *PI));
530 return !Result.empty();
535 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
536 /// in an undefined jump, decide which block is best to revector to.
538 /// Since we can pick an arbitrary destination, we pick the successor with the
539 /// fewest predecessors. This should reduce the in-degree of the others.
541 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
542 TerminatorInst *BBTerm = BB->getTerminator();
543 unsigned MinSucc = 0;
544 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
545 // Compute the successor with the minimum number of predecessors.
546 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
547 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
548 TestBB = BBTerm->getSuccessor(i);
549 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
550 if (NumPreds < MinNumPreds)
551 MinSucc = i;
554 return MinSucc;
557 /// ProcessBlock - If there are any predecessors whose control can be threaded
558 /// through to a successor, transform them now.
559 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
560 // If the block is trivially dead, just return and let the caller nuke it.
561 // This simplifies other transformations.
562 if (pred_begin(BB) == pred_end(BB) &&
563 BB != &BB->getParent()->getEntryBlock())
564 return false;
566 // If this block has a single predecessor, and if that pred has a single
567 // successor, merge the blocks. This encourages recursive jump threading
568 // because now the condition in this block can be threaded through
569 // predecessors of our predecessor block.
570 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
571 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
572 SinglePred != BB) {
573 // If SinglePred was a loop header, BB becomes one.
574 if (LoopHeaders.erase(SinglePred))
575 LoopHeaders.insert(BB);
577 // Remember if SinglePred was the entry block of the function. If so, we
578 // will need to move BB back to the entry position.
579 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
580 LVI->eraseBlock(SinglePred);
581 MergeBasicBlockIntoOnlyPred(BB);
583 if (isEntry && BB != &BB->getParent()->getEntryBlock())
584 BB->moveBefore(&BB->getParent()->getEntryBlock());
585 return true;
589 // Look to see if the terminator is a branch of switch, if not we can't thread
590 // it.
591 Value *Condition;
592 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
593 // Can't thread an unconditional jump.
594 if (BI->isUnconditional()) return false;
595 Condition = BI->getCondition();
596 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
597 Condition = SI->getCondition();
598 else
599 return false; // Must be an invoke.
601 // If the terminator of this block is branching on a constant, simplify the
602 // terminator to an unconditional branch. This can occur due to threading in
603 // other blocks.
604 if (isa<ConstantInt>(Condition)) {
605 DEBUG(dbgs() << " In block '" << BB->getName()
606 << "' folding terminator: " << *BB->getTerminator() << '\n');
607 ++NumFolds;
608 ConstantFoldTerminator(BB);
609 return true;
612 // If the terminator is branching on an undef, we can pick any of the
613 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
614 if (isa<UndefValue>(Condition)) {
615 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
617 // Fold the branch/switch.
618 TerminatorInst *BBTerm = BB->getTerminator();
619 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
620 if (i == BestSucc) continue;
621 BBTerm->getSuccessor(i)->removePredecessor(BB, true);
624 DEBUG(dbgs() << " In block '" << BB->getName()
625 << "' folding undef terminator: " << *BBTerm << '\n');
626 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
627 BBTerm->eraseFromParent();
628 return true;
631 Instruction *CondInst = dyn_cast<Instruction>(Condition);
633 // All the rest of our checks depend on the condition being an instruction.
634 if (CondInst == 0) {
635 // FIXME: Unify this with code below.
636 if (ProcessThreadableEdges(Condition, BB))
637 return true;
638 return false;
642 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
643 // For a comparison where the LHS is outside this block, it's possible
644 // that we've branched on it before. Used LVI to see if we can simplify
645 // the branch based on that.
646 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
647 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
648 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
649 if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
650 (!isa<Instruction>(CondCmp->getOperand(0)) ||
651 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
652 // For predecessor edge, determine if the comparison is true or false
653 // on that edge. If they're all true or all false, we can simplify the
654 // branch.
655 // FIXME: We could handle mixed true/false by duplicating code.
656 LazyValueInfo::Tristate Baseline =
657 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
658 CondConst, *PI, BB);
659 if (Baseline != LazyValueInfo::Unknown) {
660 // Check that all remaining incoming values match the first one.
661 while (++PI != PE) {
662 LazyValueInfo::Tristate Ret =
663 LVI->getPredicateOnEdge(CondCmp->getPredicate(),
664 CondCmp->getOperand(0), CondConst, *PI, BB);
665 if (Ret != Baseline) break;
668 // If we terminated early, then one of the values didn't match.
669 if (PI == PE) {
670 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
671 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
672 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
673 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
674 CondBr->eraseFromParent();
675 return true;
681 // Check for some cases that are worth simplifying. Right now we want to look
682 // for loads that are used by a switch or by the condition for the branch. If
683 // we see one, check to see if it's partially redundant. If so, insert a PHI
684 // which can then be used to thread the values.
686 Value *SimplifyValue = CondInst;
687 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
688 if (isa<Constant>(CondCmp->getOperand(1)))
689 SimplifyValue = CondCmp->getOperand(0);
691 // TODO: There are other places where load PRE would be profitable, such as
692 // more complex comparisons.
693 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
694 if (SimplifyPartiallyRedundantLoad(LI))
695 return true;
698 // Handle a variety of cases where we are branching on something derived from
699 // a PHI node in the current block. If we can prove that any predecessors
700 // compute a predictable value based on a PHI node, thread those predecessors.
702 if (ProcessThreadableEdges(CondInst, BB))
703 return true;
705 // If this is an otherwise-unfoldable branch on a phi node in the current
706 // block, see if we can simplify.
707 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
708 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
709 return ProcessBranchOnPHI(PN);
712 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
713 if (CondInst->getOpcode() == Instruction::Xor &&
714 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
715 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
718 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
719 // "(X == 4)", thread through this block.
721 return false;
724 /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
725 /// block that jump on exactly the same condition. This means that we almost
726 /// always know the direction of the edge in the DESTBB:
727 /// PREDBB:
728 /// br COND, DESTBB, BBY
729 /// DESTBB:
730 /// br COND, BBZ, BBW
732 /// If DESTBB has multiple predecessors, we can't just constant fold the branch
733 /// in DESTBB, we have to thread over it.
734 bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
735 BasicBlock *BB) {
736 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
738 // If both successors of PredBB go to DESTBB, we don't know anything. We can
739 // fold the branch to an unconditional one, which allows other recursive
740 // simplifications.
741 bool BranchDir;
742 if (PredBI->getSuccessor(1) != BB)
743 BranchDir = true;
744 else if (PredBI->getSuccessor(0) != BB)
745 BranchDir = false;
746 else {
747 DEBUG(dbgs() << " In block '" << PredBB->getName()
748 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
749 ++NumFolds;
750 ConstantFoldTerminator(PredBB);
751 return true;
754 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
756 // If the dest block has one predecessor, just fix the branch condition to a
757 // constant and fold it.
758 if (BB->getSinglePredecessor()) {
759 DEBUG(dbgs() << " In block '" << BB->getName()
760 << "' folding condition to '" << BranchDir << "': "
761 << *BB->getTerminator() << '\n');
762 ++NumFolds;
763 Value *OldCond = DestBI->getCondition();
764 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
765 BranchDir));
766 // Delete dead instructions before we fold the branch. Folding the branch
767 // can eliminate edges from the CFG which can end up deleting OldCond.
768 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
769 ConstantFoldTerminator(BB);
770 return true;
774 // Next, figure out which successor we are threading to.
775 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
777 SmallVector<BasicBlock*, 2> Preds;
778 Preds.push_back(PredBB);
780 // Ok, try to thread it!
781 return ThreadEdge(BB, Preds, SuccBB);
784 /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
785 /// block that switch on exactly the same condition. This means that we almost
786 /// always know the direction of the edge in the DESTBB:
787 /// PREDBB:
788 /// switch COND [... DESTBB, BBY ... ]
789 /// DESTBB:
790 /// switch COND [... BBZ, BBW ]
792 /// Optimizing switches like this is very important, because simplifycfg builds
793 /// switches out of repeated 'if' conditions.
794 bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
795 BasicBlock *DestBB) {
796 // Can't thread edge to self.
797 if (PredBB == DestBB)
798 return false;
800 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
801 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
803 // There are a variety of optimizations that we can potentially do on these
804 // blocks: we order them from most to least preferable.
806 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
807 // directly to their destination. This does not introduce *any* code size
808 // growth. Skip debug info first.
809 BasicBlock::iterator BBI = DestBB->begin();
810 while (isa<DbgInfoIntrinsic>(BBI))
811 BBI++;
813 // FIXME: Thread if it just contains a PHI.
814 if (isa<SwitchInst>(BBI)) {
815 bool MadeChange = false;
816 // Ignore the default edge for now.
817 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
818 ConstantInt *DestVal = DestSI->getCaseValue(i);
819 BasicBlock *DestSucc = DestSI->getSuccessor(i);
821 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
822 // PredSI has an explicit case for it. If so, forward. If it is covered
823 // by the default case, we can't update PredSI.
824 unsigned PredCase = PredSI->findCaseValue(DestVal);
825 if (PredCase == 0) continue;
827 // If PredSI doesn't go to DestBB on this value, then it won't reach the
828 // case on this condition.
829 if (PredSI->getSuccessor(PredCase) != DestBB &&
830 DestSI->getSuccessor(i) != DestBB)
831 continue;
833 // Do not forward this if it already goes to this destination, this would
834 // be an infinite loop.
835 if (PredSI->getSuccessor(PredCase) == DestSucc)
836 continue;
838 // Otherwise, we're safe to make the change. Make sure that the edge from
839 // DestSI to DestSucc is not critical and has no PHI nodes.
840 DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
841 DEBUG(dbgs() << "THROUGH: " << *DestSI);
843 // If the destination has PHI nodes, just split the edge for updating
844 // simplicity.
845 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
846 SplitCriticalEdge(DestSI, i, this);
847 DestSucc = DestSI->getSuccessor(i);
849 FoldSingleEntryPHINodes(DestSucc);
850 PredSI->setSuccessor(PredCase, DestSucc);
851 MadeChange = true;
854 if (MadeChange)
855 return true;
858 return false;
862 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
863 /// load instruction, eliminate it by replacing it with a PHI node. This is an
864 /// important optimization that encourages jump threading, and needs to be run
865 /// interlaced with other jump threading tasks.
866 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
867 // Don't hack volatile loads.
868 if (LI->isVolatile()) return false;
870 // If the load is defined in a block with exactly one predecessor, it can't be
871 // partially redundant.
872 BasicBlock *LoadBB = LI->getParent();
873 if (LoadBB->getSinglePredecessor())
874 return false;
876 Value *LoadedPtr = LI->getOperand(0);
878 // If the loaded operand is defined in the LoadBB, it can't be available.
879 // TODO: Could do simple PHI translation, that would be fun :)
880 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
881 if (PtrOp->getParent() == LoadBB)
882 return false;
884 // Scan a few instructions up from the load, to see if it is obviously live at
885 // the entry to its block.
886 BasicBlock::iterator BBIt = LI;
888 if (Value *AvailableVal =
889 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
890 // If the value if the load is locally available within the block, just use
891 // it. This frequently occurs for reg2mem'd allocas.
892 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
894 // If the returned value is the load itself, replace with an undef. This can
895 // only happen in dead loops.
896 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
897 LI->replaceAllUsesWith(AvailableVal);
898 LI->eraseFromParent();
899 return true;
902 // Otherwise, if we scanned the whole block and got to the top of the block,
903 // we know the block is locally transparent to the load. If not, something
904 // might clobber its value.
905 if (BBIt != LoadBB->begin())
906 return false;
909 SmallPtrSet<BasicBlock*, 8> PredsScanned;
910 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
911 AvailablePredsTy AvailablePreds;
912 BasicBlock *OneUnavailablePred = 0;
914 // If we got here, the loaded value is transparent through to the start of the
915 // block. Check to see if it is available in any of the predecessor blocks.
916 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
917 PI != PE; ++PI) {
918 BasicBlock *PredBB = *PI;
920 // If we already scanned this predecessor, skip it.
921 if (!PredsScanned.insert(PredBB))
922 continue;
924 // Scan the predecessor to see if the value is available in the pred.
925 BBIt = PredBB->end();
926 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
927 if (!PredAvailable) {
928 OneUnavailablePred = PredBB;
929 continue;
932 // If so, this load is partially redundant. Remember this info so that we
933 // can create a PHI node.
934 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
937 // If the loaded value isn't available in any predecessor, it isn't partially
938 // redundant.
939 if (AvailablePreds.empty()) return false;
941 // Okay, the loaded value is available in at least one (and maybe all!)
942 // predecessors. If the value is unavailable in more than one unique
943 // predecessor, we want to insert a merge block for those common predecessors.
944 // This ensures that we only have to insert one reload, thus not increasing
945 // code size.
946 BasicBlock *UnavailablePred = 0;
948 // If there is exactly one predecessor where the value is unavailable, the
949 // already computed 'OneUnavailablePred' block is it. If it ends in an
950 // unconditional branch, we know that it isn't a critical edge.
951 if (PredsScanned.size() == AvailablePreds.size()+1 &&
952 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
953 UnavailablePred = OneUnavailablePred;
954 } else if (PredsScanned.size() != AvailablePreds.size()) {
955 // Otherwise, we had multiple unavailable predecessors or we had a critical
956 // edge from the one.
957 SmallVector<BasicBlock*, 8> PredsToSplit;
958 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
960 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
961 AvailablePredSet.insert(AvailablePreds[i].first);
963 // Add all the unavailable predecessors to the PredsToSplit list.
964 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
965 PI != PE; ++PI) {
966 BasicBlock *P = *PI;
967 // If the predecessor is an indirect goto, we can't split the edge.
968 if (isa<IndirectBrInst>(P->getTerminator()))
969 return false;
971 if (!AvailablePredSet.count(P))
972 PredsToSplit.push_back(P);
975 // Split them out to their own block.
976 UnavailablePred =
977 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
978 "thread-pre-split", this);
981 // If the value isn't available in all predecessors, then there will be
982 // exactly one where it isn't available. Insert a load on that edge and add
983 // it to the AvailablePreds list.
984 if (UnavailablePred) {
985 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
986 "Can't handle critical edge here!");
987 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
988 LI->getAlignment(),
989 UnavailablePred->getTerminator());
990 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
993 // Now we know that each predecessor of this block has a value in
994 // AvailablePreds, sort them for efficient access as we're walking the preds.
995 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
997 // Create a PHI node at the start of the block for the PRE'd load value.
998 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
999 PN->takeName(LI);
1001 // Insert new entries into the PHI for each predecessor. A single block may
1002 // have multiple entries here.
1003 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
1004 ++PI) {
1005 BasicBlock *P = *PI;
1006 AvailablePredsTy::iterator I =
1007 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1008 std::make_pair(P, (Value*)0));
1010 assert(I != AvailablePreds.end() && I->first == P &&
1011 "Didn't find entry for predecessor!");
1013 PN->addIncoming(I->second, I->first);
1016 //cerr << "PRE: " << *LI << *PN << "\n";
1018 LI->replaceAllUsesWith(PN);
1019 LI->eraseFromParent();
1021 return true;
1024 /// FindMostPopularDest - The specified list contains multiple possible
1025 /// threadable destinations. Pick the one that occurs the most frequently in
1026 /// the list.
1027 static BasicBlock *
1028 FindMostPopularDest(BasicBlock *BB,
1029 const SmallVectorImpl<std::pair<BasicBlock*,
1030 BasicBlock*> > &PredToDestList) {
1031 assert(!PredToDestList.empty());
1033 // Determine popularity. If there are multiple possible destinations, we
1034 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1035 // blocks with known and real destinations to threading undef. We'll handle
1036 // them later if interesting.
1037 DenseMap<BasicBlock*, unsigned> DestPopularity;
1038 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1039 if (PredToDestList[i].second)
1040 DestPopularity[PredToDestList[i].second]++;
1042 // Find the most popular dest.
1043 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1044 BasicBlock *MostPopularDest = DPI->first;
1045 unsigned Popularity = DPI->second;
1046 SmallVector<BasicBlock*, 4> SamePopularity;
1048 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1049 // If the popularity of this entry isn't higher than the popularity we've
1050 // seen so far, ignore it.
1051 if (DPI->second < Popularity)
1052 ; // ignore.
1053 else if (DPI->second == Popularity) {
1054 // If it is the same as what we've seen so far, keep track of it.
1055 SamePopularity.push_back(DPI->first);
1056 } else {
1057 // If it is more popular, remember it.
1058 SamePopularity.clear();
1059 MostPopularDest = DPI->first;
1060 Popularity = DPI->second;
1064 // Okay, now we know the most popular destination. If there is more than
1065 // destination, we need to determine one. This is arbitrary, but we need
1066 // to make a deterministic decision. Pick the first one that appears in the
1067 // successor list.
1068 if (!SamePopularity.empty()) {
1069 SamePopularity.push_back(MostPopularDest);
1070 TerminatorInst *TI = BB->getTerminator();
1071 for (unsigned i = 0; ; ++i) {
1072 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1074 if (std::find(SamePopularity.begin(), SamePopularity.end(),
1075 TI->getSuccessor(i)) == SamePopularity.end())
1076 continue;
1078 MostPopularDest = TI->getSuccessor(i);
1079 break;
1083 // Okay, we have finally picked the most popular destination.
1084 return MostPopularDest;
1087 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
1088 // If threading this would thread across a loop header, don't even try to
1089 // thread the edge.
1090 if (LoopHeaders.count(BB))
1091 return false;
1093 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
1094 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
1095 return false;
1097 assert(!PredValues.empty() &&
1098 "ComputeValueKnownInPredecessors returned true with no values");
1100 DEBUG(dbgs() << "IN BB: " << *BB;
1101 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1102 dbgs() << " BB '" << BB->getName() << "': FOUND condition = ";
1103 if (PredValues[i].first)
1104 dbgs() << *PredValues[i].first;
1105 else
1106 dbgs() << "UNDEF";
1107 dbgs() << " for pred '" << PredValues[i].second->getName()
1108 << "'.\n";
1111 // Decide what we want to thread through. Convert our list of known values to
1112 // a list of known destinations for each pred. This also discards duplicate
1113 // predecessors and keeps track of the undefined inputs (which are represented
1114 // as a null dest in the PredToDestList).
1115 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1116 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1118 BasicBlock *OnlyDest = 0;
1119 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1121 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1122 BasicBlock *Pred = PredValues[i].second;
1123 if (!SeenPreds.insert(Pred))
1124 continue; // Duplicate predecessor entry.
1126 // If the predecessor ends with an indirect goto, we can't change its
1127 // destination.
1128 if (isa<IndirectBrInst>(Pred->getTerminator()))
1129 continue;
1131 ConstantInt *Val = PredValues[i].first;
1133 BasicBlock *DestBB;
1134 if (Val == 0) // Undef.
1135 DestBB = 0;
1136 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1137 DestBB = BI->getSuccessor(Val->isZero());
1138 else {
1139 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
1140 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
1143 // If we have exactly one destination, remember it for efficiency below.
1144 if (i == 0)
1145 OnlyDest = DestBB;
1146 else if (OnlyDest != DestBB)
1147 OnlyDest = MultipleDestSentinel;
1149 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1152 // If all edges were unthreadable, we fail.
1153 if (PredToDestList.empty())
1154 return false;
1156 // Determine which is the most common successor. If we have many inputs and
1157 // this block is a switch, we want to start by threading the batch that goes
1158 // to the most popular destination first. If we only know about one
1159 // threadable destination (the common case) we can avoid this.
1160 BasicBlock *MostPopularDest = OnlyDest;
1162 if (MostPopularDest == MultipleDestSentinel)
1163 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1165 // Now that we know what the most popular destination is, factor all
1166 // predecessors that will jump to it into a single predecessor.
1167 SmallVector<BasicBlock*, 16> PredsToFactor;
1168 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1169 if (PredToDestList[i].second == MostPopularDest) {
1170 BasicBlock *Pred = PredToDestList[i].first;
1172 // This predecessor may be a switch or something else that has multiple
1173 // edges to the block. Factor each of these edges by listing them
1174 // according to # occurrences in PredsToFactor.
1175 TerminatorInst *PredTI = Pred->getTerminator();
1176 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1177 if (PredTI->getSuccessor(i) == BB)
1178 PredsToFactor.push_back(Pred);
1181 // If the threadable edges are branching on an undefined value, we get to pick
1182 // the destination that these predecessors should get to.
1183 if (MostPopularDest == 0)
1184 MostPopularDest = BB->getTerminator()->
1185 getSuccessor(GetBestDestForJumpOnUndef(BB));
1187 // Ok, try to thread it!
1188 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1191 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1192 /// a PHI node in the current block. See if there are any simplifications we
1193 /// can do based on inputs to the phi node.
1195 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1196 BasicBlock *BB = PN->getParent();
1198 // TODO: We could make use of this to do it once for blocks with common PHI
1199 // values.
1200 SmallVector<BasicBlock*, 1> PredBBs;
1201 PredBBs.resize(1);
1203 // If any of the predecessor blocks end in an unconditional branch, we can
1204 // *duplicate* the conditional branch into that block in order to further
1205 // encourage jump threading and to eliminate cases where we have branch on a
1206 // phi of an icmp (branch on icmp is much better).
1207 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1208 BasicBlock *PredBB = PN->getIncomingBlock(i);
1209 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1210 if (PredBr->isUnconditional()) {
1211 PredBBs[0] = PredBB;
1212 // Try to duplicate BB into PredBB.
1213 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1214 return true;
1218 return false;
1221 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1222 /// a xor instruction in the current block. See if there are any
1223 /// simplifications we can do based on inputs to the xor.
1225 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1226 BasicBlock *BB = BO->getParent();
1228 // If either the LHS or RHS of the xor is a constant, don't do this
1229 // optimization.
1230 if (isa<ConstantInt>(BO->getOperand(0)) ||
1231 isa<ConstantInt>(BO->getOperand(1)))
1232 return false;
1234 // If the first instruction in BB isn't a phi, we won't be able to infer
1235 // anything special about any particular predecessor.
1236 if (!isa<PHINode>(BB->front()))
1237 return false;
1239 // If we have a xor as the branch input to this block, and we know that the
1240 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1241 // the condition into the predecessor and fix that value to true, saving some
1242 // logical ops on that path and encouraging other paths to simplify.
1244 // This copies something like this:
1246 // BB:
1247 // %X = phi i1 [1], [%X']
1248 // %Y = icmp eq i32 %A, %B
1249 // %Z = xor i1 %X, %Y
1250 // br i1 %Z, ...
1252 // Into:
1253 // BB':
1254 // %Y = icmp ne i32 %A, %B
1255 // br i1 %Z, ...
1257 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
1258 bool isLHS = true;
1259 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
1260 assert(XorOpValues.empty());
1261 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
1262 return false;
1263 isLHS = false;
1266 assert(!XorOpValues.empty() &&
1267 "ComputeValueKnownInPredecessors returned true with no values");
1269 // Scan the information to see which is most popular: true or false. The
1270 // predecessors can be of the set true, false, or undef.
1271 unsigned NumTrue = 0, NumFalse = 0;
1272 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1273 if (!XorOpValues[i].first) continue; // Ignore undefs for the count.
1274 if (XorOpValues[i].first->isZero())
1275 ++NumFalse;
1276 else
1277 ++NumTrue;
1280 // Determine which value to split on, true, false, or undef if neither.
1281 ConstantInt *SplitVal = 0;
1282 if (NumTrue > NumFalse)
1283 SplitVal = ConstantInt::getTrue(BB->getContext());
1284 else if (NumTrue != 0 || NumFalse != 0)
1285 SplitVal = ConstantInt::getFalse(BB->getContext());
1287 // Collect all of the blocks that this can be folded into so that we can
1288 // factor this once and clone it once.
1289 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1290 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1291 if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
1293 BlocksToFoldInto.push_back(XorOpValues[i].second);
1296 // If we inferred a value for all of the predecessors, then duplication won't
1297 // help us. However, we can just replace the LHS or RHS with the constant.
1298 if (BlocksToFoldInto.size() ==
1299 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1300 if (SplitVal == 0) {
1301 // If all preds provide undef, just nuke the xor, because it is undef too.
1302 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1303 BO->eraseFromParent();
1304 } else if (SplitVal->isZero()) {
1305 // If all preds provide 0, replace the xor with the other input.
1306 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1307 BO->eraseFromParent();
1308 } else {
1309 // If all preds provide 1, set the computed value to 1.
1310 BO->setOperand(!isLHS, SplitVal);
1313 return true;
1316 // Try to duplicate BB into PredBB.
1317 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1321 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1322 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1323 /// NewPred using the entries from OldPred (suitably mapped).
1324 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1325 BasicBlock *OldPred,
1326 BasicBlock *NewPred,
1327 DenseMap<Instruction*, Value*> &ValueMap) {
1328 for (BasicBlock::iterator PNI = PHIBB->begin();
1329 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1330 // Ok, we have a PHI node. Figure out what the incoming value was for the
1331 // DestBlock.
1332 Value *IV = PN->getIncomingValueForBlock(OldPred);
1334 // Remap the value if necessary.
1335 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1336 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1337 if (I != ValueMap.end())
1338 IV = I->second;
1341 PN->addIncoming(IV, NewPred);
1345 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1346 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1347 /// across BB. Transform the IR to reflect this change.
1348 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1349 const SmallVectorImpl<BasicBlock*> &PredBBs,
1350 BasicBlock *SuccBB) {
1351 // If threading to the same block as we come from, we would infinite loop.
1352 if (SuccBB == BB) {
1353 DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1354 << "' - would thread to self!\n");
1355 return false;
1358 // If threading this would thread across a loop header, don't thread the edge.
1359 // See the comments above FindLoopHeaders for justifications and caveats.
1360 if (LoopHeaders.count(BB)) {
1361 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName()
1362 << "' to dest BB '" << SuccBB->getName()
1363 << "' - it might create an irreducible loop!\n");
1364 return false;
1367 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1368 if (JumpThreadCost > Threshold) {
1369 DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1370 << "' - Cost is too high: " << JumpThreadCost << "\n");
1371 return false;
1374 // And finally, do it! Start by factoring the predecessors is needed.
1375 BasicBlock *PredBB;
1376 if (PredBBs.size() == 1)
1377 PredBB = PredBBs[0];
1378 else {
1379 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1380 << " common predecessors.\n");
1381 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1382 ".thr_comm", this);
1385 // And finally, do it!
1386 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '"
1387 << SuccBB->getName() << "' with cost: " << JumpThreadCost
1388 << ", across block:\n "
1389 << *BB << "\n");
1391 LVI->threadEdge(PredBB, BB, SuccBB);
1393 // We are going to have to map operands from the original BB block to the new
1394 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1395 // account for entry from PredBB.
1396 DenseMap<Instruction*, Value*> ValueMapping;
1398 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1399 BB->getName()+".thread",
1400 BB->getParent(), BB);
1401 NewBB->moveAfter(PredBB);
1403 BasicBlock::iterator BI = BB->begin();
1404 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1405 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1407 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1408 // mapping and using it to remap operands in the cloned instructions.
1409 for (; !isa<TerminatorInst>(BI); ++BI) {
1410 Instruction *New = BI->clone();
1411 New->setName(BI->getName());
1412 NewBB->getInstList().push_back(New);
1413 ValueMapping[BI] = New;
1415 // Remap operands to patch up intra-block references.
1416 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1417 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1418 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1419 if (I != ValueMapping.end())
1420 New->setOperand(i, I->second);
1424 // We didn't copy the terminator from BB over to NewBB, because there is now
1425 // an unconditional jump to SuccBB. Insert the unconditional jump.
1426 BranchInst::Create(SuccBB, NewBB);
1428 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1429 // PHI nodes for NewBB now.
1430 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1432 // If there were values defined in BB that are used outside the block, then we
1433 // now have to update all uses of the value to use either the original value,
1434 // the cloned value, or some PHI derived value. This can require arbitrary
1435 // PHI insertion, of which we are prepared to do, clean these up now.
1436 SSAUpdater SSAUpdate;
1437 SmallVector<Use*, 16> UsesToRename;
1438 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1439 // Scan all uses of this instruction to see if it is used outside of its
1440 // block, and if so, record them in UsesToRename.
1441 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1442 ++UI) {
1443 Instruction *User = cast<Instruction>(*UI);
1444 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1445 if (UserPN->getIncomingBlock(UI) == BB)
1446 continue;
1447 } else if (User->getParent() == BB)
1448 continue;
1450 UsesToRename.push_back(&UI.getUse());
1453 // If there are no uses outside the block, we're done with this instruction.
1454 if (UsesToRename.empty())
1455 continue;
1457 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1459 // We found a use of I outside of BB. Rename all uses of I that are outside
1460 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1461 // with the two values we know.
1462 SSAUpdate.Initialize(I->getType(), I->getName());
1463 SSAUpdate.AddAvailableValue(BB, I);
1464 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1466 while (!UsesToRename.empty())
1467 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1468 DEBUG(dbgs() << "\n");
1472 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
1473 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1474 // us to simplify any PHI nodes in BB.
1475 TerminatorInst *PredTerm = PredBB->getTerminator();
1476 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1477 if (PredTerm->getSuccessor(i) == BB) {
1478 BB->removePredecessor(PredBB, true);
1479 PredTerm->setSuccessor(i, NewBB);
1482 // At this point, the IR is fully up to date and consistent. Do a quick scan
1483 // over the new instructions and zap any that are constants or dead. This
1484 // frequently happens because of phi translation.
1485 SimplifyInstructionsInBlock(NewBB, TD);
1487 // Threaded an edge!
1488 ++NumThreads;
1489 return true;
1492 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1493 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1494 /// If we can duplicate the contents of BB up into PredBB do so now, this
1495 /// improves the odds that the branch will be on an analyzable instruction like
1496 /// a compare.
1497 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1498 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1499 assert(!PredBBs.empty() && "Can't handle an empty set");
1501 // If BB is a loop header, then duplicating this block outside the loop would
1502 // cause us to transform this into an irreducible loop, don't do this.
1503 // See the comments above FindLoopHeaders for justifications and caveats.
1504 if (LoopHeaders.count(BB)) {
1505 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
1506 << "' into predecessor block '" << PredBBs[0]->getName()
1507 << "' - it might create an irreducible loop!\n");
1508 return false;
1511 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1512 if (DuplicationCost > Threshold) {
1513 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
1514 << "' - Cost is too high: " << DuplicationCost << "\n");
1515 return false;
1518 // And finally, do it! Start by factoring the predecessors is needed.
1519 BasicBlock *PredBB;
1520 if (PredBBs.size() == 1)
1521 PredBB = PredBBs[0];
1522 else {
1523 DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1524 << " common predecessors.\n");
1525 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1526 ".thr_comm", this);
1529 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1530 // of PredBB.
1531 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '"
1532 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1533 << DuplicationCost << " block is:" << *BB << "\n");
1535 // Unless PredBB ends with an unconditional branch, split the edge so that we
1536 // can just clone the bits from BB into the end of the new PredBB.
1537 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1539 if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1540 PredBB = SplitEdge(PredBB, BB, this);
1541 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1544 // We are going to have to map operands from the original BB block into the
1545 // PredBB block. Evaluate PHI nodes in BB.
1546 DenseMap<Instruction*, Value*> ValueMapping;
1548 BasicBlock::iterator BI = BB->begin();
1549 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1550 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1552 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1553 // mapping and using it to remap operands in the cloned instructions.
1554 for (; BI != BB->end(); ++BI) {
1555 Instruction *New = BI->clone();
1557 // Remap operands to patch up intra-block references.
1558 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1559 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1560 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1561 if (I != ValueMapping.end())
1562 New->setOperand(i, I->second);
1565 // If this instruction can be simplified after the operands are updated,
1566 // just use the simplified value instead. This frequently happens due to
1567 // phi translation.
1568 if (Value *IV = SimplifyInstruction(New, TD)) {
1569 delete New;
1570 ValueMapping[BI] = IV;
1571 } else {
1572 // Otherwise, insert the new instruction into the block.
1573 New->setName(BI->getName());
1574 PredBB->getInstList().insert(OldPredBranch, New);
1575 ValueMapping[BI] = New;
1579 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1580 // add entries to the PHI nodes for branch from PredBB now.
1581 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1582 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1583 ValueMapping);
1584 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1585 ValueMapping);
1587 // If there were values defined in BB that are used outside the block, then we
1588 // now have to update all uses of the value to use either the original value,
1589 // the cloned value, or some PHI derived value. This can require arbitrary
1590 // PHI insertion, of which we are prepared to do, clean these up now.
1591 SSAUpdater SSAUpdate;
1592 SmallVector<Use*, 16> UsesToRename;
1593 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1594 // Scan all uses of this instruction to see if it is used outside of its
1595 // block, and if so, record them in UsesToRename.
1596 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1597 ++UI) {
1598 Instruction *User = cast<Instruction>(*UI);
1599 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1600 if (UserPN->getIncomingBlock(UI) == BB)
1601 continue;
1602 } else if (User->getParent() == BB)
1603 continue;
1605 UsesToRename.push_back(&UI.getUse());
1608 // If there are no uses outside the block, we're done with this instruction.
1609 if (UsesToRename.empty())
1610 continue;
1612 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1614 // We found a use of I outside of BB. Rename all uses of I that are outside
1615 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1616 // with the two values we know.
1617 SSAUpdate.Initialize(I->getType(), I->getName());
1618 SSAUpdate.AddAvailableValue(BB, I);
1619 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1621 while (!UsesToRename.empty())
1622 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1623 DEBUG(dbgs() << "\n");
1626 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1627 // that we nuked.
1628 BB->removePredecessor(PredBB, true);
1630 // Remove the unconditional branch at the end of the PredBB block.
1631 OldPredBranch->eraseFromParent();
1633 ++NumDupes;
1634 return true;