No functionality change, just adjust some whitespace for coding style compliance.
[llvm/stm8.git] / lib / Transforms / IPO / MergeFunctions.cpp
bloba38d2c20bcd70c11419101c1766b0e545889eaf6
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
24 //===----------------------------------------------------------------------===//
26 // Future work:
28 // * virtual functions.
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
37 // * be smarter about bitcasts.
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
44 //===----------------------------------------------------------------------===//
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/Constants.h"
54 #include "llvm/InlineAsm.h"
55 #include "llvm/Instructions.h"
56 #include "llvm/LLVMContext.h"
57 #include "llvm/Module.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/CallSite.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/IRBuilder.h"
63 #include "llvm/Support/ValueHandle.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetData.h"
66 #include <vector>
67 using namespace llvm;
69 STATISTIC(NumFunctionsMerged, "Number of functions merged");
70 STATISTIC(NumThunksWritten, "Number of thunks generated");
71 STATISTIC(NumAliasesWritten, "Number of aliases generated");
72 STATISTIC(NumDoubleWeak, "Number of new functions created");
74 /// Creates a hash-code for the function which is the same for any two
75 /// functions that will compare equal, without looking at the instructions
76 /// inside the function.
77 static unsigned profileFunction(const Function *F) {
78 const FunctionType *FTy = F->getFunctionType();
80 FoldingSetNodeID ID;
81 ID.AddInteger(F->size());
82 ID.AddInteger(F->getCallingConv());
83 ID.AddBoolean(F->hasGC());
84 ID.AddBoolean(FTy->isVarArg());
85 ID.AddInteger(FTy->getReturnType()->getTypeID());
86 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
87 ID.AddInteger(FTy->getParamType(i)->getTypeID());
88 return ID.ComputeHash();
91 namespace {
93 /// ComparableFunction - A struct that pairs together functions with a
94 /// TargetData so that we can keep them together as elements in the DenseSet.
95 class ComparableFunction {
96 public:
97 static const ComparableFunction EmptyKey;
98 static const ComparableFunction TombstoneKey;
99 static TargetData * const LookupOnly;
101 ComparableFunction(Function *Func, TargetData *TD)
102 : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
104 Function *getFunc() const { return Func; }
105 unsigned getHash() const { return Hash; }
106 TargetData *getTD() const { return TD; }
108 // Drops AssertingVH reference to the function. Outside of debug mode, this
109 // does nothing.
110 void release() {
111 assert(Func &&
112 "Attempted to release function twice, or release empty/tombstone!");
113 Func = NULL;
116 private:
117 explicit ComparableFunction(unsigned Hash)
118 : Func(NULL), Hash(Hash), TD(NULL) {}
120 AssertingVH<Function> Func;
121 unsigned Hash;
122 TargetData *TD;
125 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
126 const ComparableFunction ComparableFunction::TombstoneKey =
127 ComparableFunction(1);
128 TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
132 namespace llvm {
133 template <>
134 struct DenseMapInfo<ComparableFunction> {
135 static ComparableFunction getEmptyKey() {
136 return ComparableFunction::EmptyKey;
138 static ComparableFunction getTombstoneKey() {
139 return ComparableFunction::TombstoneKey;
141 static unsigned getHashValue(const ComparableFunction &CF) {
142 return CF.getHash();
144 static bool isEqual(const ComparableFunction &LHS,
145 const ComparableFunction &RHS);
149 namespace {
151 /// FunctionComparator - Compares two functions to determine whether or not
152 /// they will generate machine code with the same behaviour. TargetData is
153 /// used if available. The comparator always fails conservatively (erring on the
154 /// side of claiming that two functions are different).
155 class FunctionComparator {
156 public:
157 FunctionComparator(const TargetData *TD, const Function *F1,
158 const Function *F2)
159 : F1(F1), F2(F2), TD(TD) {}
161 /// Test whether the two functions have equivalent behaviour.
162 bool compare();
164 private:
165 /// Test whether two basic blocks have equivalent behaviour.
166 bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
168 /// Assign or look up previously assigned numbers for the two values, and
169 /// return whether the numbers are equal. Numbers are assigned in the order
170 /// visited.
171 bool enumerate(const Value *V1, const Value *V2);
173 /// Compare two Instructions for equivalence, similar to
174 /// Instruction::isSameOperationAs but with modifications to the type
175 /// comparison.
176 bool isEquivalentOperation(const Instruction *I1,
177 const Instruction *I2) const;
179 /// Compare two GEPs for equivalent pointer arithmetic.
180 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
181 bool isEquivalentGEP(const GetElementPtrInst *GEP1,
182 const GetElementPtrInst *GEP2) {
183 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
186 /// Compare two Types, treating all pointer types as equal.
187 bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
189 // The two functions undergoing comparison.
190 const Function *F1, *F2;
192 const TargetData *TD;
194 DenseMap<const Value *, const Value *> id_map;
195 DenseSet<const Value *> seen_values;
200 // Any two pointers in the same address space are equivalent, intptr_t and
201 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
202 bool FunctionComparator::isEquivalentType(const Type *Ty1,
203 const Type *Ty2) const {
204 if (Ty1 == Ty2)
205 return true;
206 if (Ty1->getTypeID() != Ty2->getTypeID()) {
207 if (TD) {
208 LLVMContext &Ctx = Ty1->getContext();
209 if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
210 if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
212 return false;
215 switch (Ty1->getTypeID()) {
216 default:
217 llvm_unreachable("Unknown type!");
218 // Fall through in Release mode.
219 case Type::IntegerTyID:
220 case Type::OpaqueTyID:
221 case Type::VectorTyID:
222 // Ty1 == Ty2 would have returned true earlier.
223 return false;
225 case Type::VoidTyID:
226 case Type::FloatTyID:
227 case Type::DoubleTyID:
228 case Type::X86_FP80TyID:
229 case Type::FP128TyID:
230 case Type::PPC_FP128TyID:
231 case Type::LabelTyID:
232 case Type::MetadataTyID:
233 return true;
235 case Type::PointerTyID: {
236 const PointerType *PTy1 = cast<PointerType>(Ty1);
237 const PointerType *PTy2 = cast<PointerType>(Ty2);
238 return PTy1->getAddressSpace() == PTy2->getAddressSpace();
241 case Type::StructTyID: {
242 const StructType *STy1 = cast<StructType>(Ty1);
243 const StructType *STy2 = cast<StructType>(Ty2);
244 if (STy1->getNumElements() != STy2->getNumElements())
245 return false;
247 if (STy1->isPacked() != STy2->isPacked())
248 return false;
250 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
251 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
252 return false;
254 return true;
257 case Type::FunctionTyID: {
258 const FunctionType *FTy1 = cast<FunctionType>(Ty1);
259 const FunctionType *FTy2 = cast<FunctionType>(Ty2);
260 if (FTy1->getNumParams() != FTy2->getNumParams() ||
261 FTy1->isVarArg() != FTy2->isVarArg())
262 return false;
264 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
265 return false;
267 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
268 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
269 return false;
271 return true;
274 case Type::ArrayTyID: {
275 const ArrayType *ATy1 = cast<ArrayType>(Ty1);
276 const ArrayType *ATy2 = cast<ArrayType>(Ty2);
277 return ATy1->getNumElements() == ATy2->getNumElements() &&
278 isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
283 // Determine whether the two operations are the same except that pointer-to-A
284 // and pointer-to-B are equivalent. This should be kept in sync with
285 // Instruction::isSameOperationAs.
286 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
287 const Instruction *I2) const {
288 // Differences from Instruction::isSameOperationAs:
289 // * replace type comparison with calls to isEquivalentType.
290 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
291 // * because of the above, we don't test for the tail bit on calls later on
292 if (I1->getOpcode() != I2->getOpcode() ||
293 I1->getNumOperands() != I2->getNumOperands() ||
294 !isEquivalentType(I1->getType(), I2->getType()) ||
295 !I1->hasSameSubclassOptionalData(I2))
296 return false;
298 // We have two instructions of identical opcode and #operands. Check to see
299 // if all operands are the same type
300 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
301 if (!isEquivalentType(I1->getOperand(i)->getType(),
302 I2->getOperand(i)->getType()))
303 return false;
305 // Check special state that is a part of some instructions.
306 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
307 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
308 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
309 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
310 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
311 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
312 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
313 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
314 if (const CallInst *CI = dyn_cast<CallInst>(I1))
315 return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
316 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
317 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
318 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
319 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
320 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
321 if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
322 return false;
323 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
324 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
325 return false;
326 return true;
328 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
329 if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
330 return false;
331 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
332 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
333 return false;
334 return true;
337 return true;
340 // Determine whether two GEP operations perform the same underlying arithmetic.
341 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
342 const GEPOperator *GEP2) {
343 // When we have target data, we can reduce the GEP down to the value in bytes
344 // added to the address.
345 if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
346 SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
347 SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
348 uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
349 Indices1.data(), Indices1.size());
350 uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
351 Indices2.data(), Indices2.size());
352 return Offset1 == Offset2;
355 if (GEP1->getPointerOperand()->getType() !=
356 GEP2->getPointerOperand()->getType())
357 return false;
359 if (GEP1->getNumOperands() != GEP2->getNumOperands())
360 return false;
362 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
363 if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
364 return false;
367 return true;
370 // Compare two values used by the two functions under pair-wise comparison. If
371 // this is the first time the values are seen, they're added to the mapping so
372 // that we will detect mismatches on next use.
373 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
374 // Check for function @f1 referring to itself and function @f2 referring to
375 // itself, or referring to each other, or both referring to either of them.
376 // They're all equivalent if the two functions are otherwise equivalent.
377 if (V1 == F1 && V2 == F2)
378 return true;
379 if (V1 == F2 && V2 == F1)
380 return true;
382 if (const Constant *C1 = dyn_cast<Constant>(V1)) {
383 if (V1 == V2) return true;
384 const Constant *C2 = dyn_cast<Constant>(V2);
385 if (!C2) return false;
386 // TODO: constant expressions with GEP or references to F1 or F2.
387 if (C1->isNullValue() && C2->isNullValue() &&
388 isEquivalentType(C1->getType(), C2->getType()))
389 return true;
390 // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
391 // then they must have equal bit patterns.
392 return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
393 C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
396 if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
397 return V1 == V2;
399 // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
400 // check whether it's equal to V2. When there is no mapping then we need to
401 // ensure that V2 isn't already equivalent to something else. For this
402 // purpose, we track the V2 values in a set.
404 const Value *&map_elem = id_map[V1];
405 if (map_elem)
406 return map_elem == V2;
407 if (!seen_values.insert(V2).second)
408 return false;
409 map_elem = V2;
410 return true;
413 // Test whether two basic blocks have equivalent behaviour.
414 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
415 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
416 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
418 do {
419 if (!enumerate(F1I, F2I))
420 return false;
422 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
423 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
424 if (!GEP2)
425 return false;
427 if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
428 return false;
430 if (!isEquivalentGEP(GEP1, GEP2))
431 return false;
432 } else {
433 if (!isEquivalentOperation(F1I, F2I))
434 return false;
436 assert(F1I->getNumOperands() == F2I->getNumOperands());
437 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
438 Value *OpF1 = F1I->getOperand(i);
439 Value *OpF2 = F2I->getOperand(i);
441 if (!enumerate(OpF1, OpF2))
442 return false;
444 if (OpF1->getValueID() != OpF2->getValueID() ||
445 !isEquivalentType(OpF1->getType(), OpF2->getType()))
446 return false;
450 ++F1I, ++F2I;
451 } while (F1I != F1E && F2I != F2E);
453 return F1I == F1E && F2I == F2E;
456 // Test whether the two functions have equivalent behaviour.
457 bool FunctionComparator::compare() {
458 // We need to recheck everything, but check the things that weren't included
459 // in the hash first.
461 if (F1->getAttributes() != F2->getAttributes())
462 return false;
464 if (F1->hasGC() != F2->hasGC())
465 return false;
467 if (F1->hasGC() && F1->getGC() != F2->getGC())
468 return false;
470 if (F1->hasSection() != F2->hasSection())
471 return false;
473 if (F1->hasSection() && F1->getSection() != F2->getSection())
474 return false;
476 if (F1->isVarArg() != F2->isVarArg())
477 return false;
479 // TODO: if it's internal and only used in direct calls, we could handle this
480 // case too.
481 if (F1->getCallingConv() != F2->getCallingConv())
482 return false;
484 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
485 return false;
487 assert(F1->arg_size() == F2->arg_size() &&
488 "Identically typed functions have different numbers of args!");
490 // Visit the arguments so that they get enumerated in the order they're
491 // passed in.
492 for (Function::const_arg_iterator f1i = F1->arg_begin(),
493 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
494 if (!enumerate(f1i, f2i))
495 llvm_unreachable("Arguments repeat!");
498 // We do a CFG-ordered walk since the actual ordering of the blocks in the
499 // linked list is immaterial. Our walk starts at the entry block for both
500 // functions, then takes each block from each terminator in order. As an
501 // artifact, this also means that unreachable blocks are ignored.
502 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
503 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
505 F1BBs.push_back(&F1->getEntryBlock());
506 F2BBs.push_back(&F2->getEntryBlock());
508 VisitedBBs.insert(F1BBs[0]);
509 while (!F1BBs.empty()) {
510 const BasicBlock *F1BB = F1BBs.pop_back_val();
511 const BasicBlock *F2BB = F2BBs.pop_back_val();
513 if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
514 return false;
516 const TerminatorInst *F1TI = F1BB->getTerminator();
517 const TerminatorInst *F2TI = F2BB->getTerminator();
519 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
520 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
521 if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
522 continue;
524 F1BBs.push_back(F1TI->getSuccessor(i));
525 F2BBs.push_back(F2TI->getSuccessor(i));
528 return true;
531 namespace {
533 /// MergeFunctions finds functions which will generate identical machine code,
534 /// by considering all pointer types to be equivalent. Once identified,
535 /// MergeFunctions will fold them by replacing a call to one to a call to a
536 /// bitcast of the other.
538 class MergeFunctions : public ModulePass {
539 public:
540 static char ID;
541 MergeFunctions()
542 : ModulePass(ID), HasGlobalAliases(false) {
543 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
546 bool runOnModule(Module &M);
548 private:
549 typedef DenseSet<ComparableFunction> FnSetType;
551 /// A work queue of functions that may have been modified and should be
552 /// analyzed again.
553 std::vector<WeakVH> Deferred;
555 /// Insert a ComparableFunction into the FnSet, or merge it away if it's
556 /// equal to one that's already present.
557 bool insert(ComparableFunction &NewF);
559 /// Remove a Function from the FnSet and queue it up for a second sweep of
560 /// analysis.
561 void remove(Function *F);
563 /// Find the functions that use this Value and remove them from FnSet and
564 /// queue the functions.
565 void removeUsers(Value *V);
567 /// Replace all direct calls of Old with calls of New. Will bitcast New if
568 /// necessary to make types match.
569 void replaceDirectCallers(Function *Old, Function *New);
571 /// Merge two equivalent functions. Upon completion, G may be deleted, or may
572 /// be converted into a thunk. In either case, it should never be visited
573 /// again.
574 void mergeTwoFunctions(Function *F, Function *G);
576 /// Replace G with a thunk or an alias to F. Deletes G.
577 void writeThunkOrAlias(Function *F, Function *G);
579 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
580 /// of G with bitcast(F). Deletes G.
581 void writeThunk(Function *F, Function *G);
583 /// Replace G with an alias to F. Deletes G.
584 void writeAlias(Function *F, Function *G);
586 /// The set of all distinct functions. Use the insert() and remove() methods
587 /// to modify it.
588 FnSetType FnSet;
590 /// TargetData for more accurate GEP comparisons. May be NULL.
591 TargetData *TD;
593 /// Whether or not the target supports global aliases.
594 bool HasGlobalAliases;
597 } // end anonymous namespace
599 char MergeFunctions::ID = 0;
600 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
602 ModulePass *llvm::createMergeFunctionsPass() {
603 return new MergeFunctions();
606 bool MergeFunctions::runOnModule(Module &M) {
607 bool Changed = false;
608 TD = getAnalysisIfAvailable<TargetData>();
610 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
611 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
612 Deferred.push_back(WeakVH(I));
614 FnSet.resize(Deferred.size());
616 do {
617 std::vector<WeakVH> Worklist;
618 Deferred.swap(Worklist);
620 DEBUG(dbgs() << "size of module: " << M.size() << '\n');
621 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
623 // Insert only strong functions and merge them. Strong function merging
624 // always deletes one of them.
625 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
626 E = Worklist.end(); I != E; ++I) {
627 if (!*I) continue;
628 Function *F = cast<Function>(*I);
629 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
630 !F->mayBeOverridden()) {
631 ComparableFunction CF = ComparableFunction(F, TD);
632 Changed |= insert(CF);
636 // Insert only weak functions and merge them. By doing these second we
637 // create thunks to the strong function when possible. When two weak
638 // functions are identical, we create a new strong function with two weak
639 // weak thunks to it which are identical but not mergable.
640 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
641 E = Worklist.end(); I != E; ++I) {
642 if (!*I) continue;
643 Function *F = cast<Function>(*I);
644 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
645 F->mayBeOverridden()) {
646 ComparableFunction CF = ComparableFunction(F, TD);
647 Changed |= insert(CF);
650 DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
651 } while (!Deferred.empty());
653 FnSet.clear();
655 return Changed;
658 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
659 const ComparableFunction &RHS) {
660 if (LHS.getFunc() == RHS.getFunc() &&
661 LHS.getHash() == RHS.getHash())
662 return true;
663 if (!LHS.getFunc() || !RHS.getFunc())
664 return false;
666 // One of these is a special "underlying pointer comparison only" object.
667 if (LHS.getTD() == ComparableFunction::LookupOnly ||
668 RHS.getTD() == ComparableFunction::LookupOnly)
669 return false;
671 assert(LHS.getTD() == RHS.getTD() &&
672 "Comparing functions for different targets");
674 return FunctionComparator(LHS.getTD(), LHS.getFunc(),
675 RHS.getFunc()).compare();
678 // Replace direct callers of Old with New.
679 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
680 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
681 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
682 UI != UE;) {
683 Value::use_iterator TheIter = UI;
684 ++UI;
685 CallSite CS(*TheIter);
686 if (CS && CS.isCallee(TheIter)) {
687 remove(CS.getInstruction()->getParent()->getParent());
688 TheIter.getUse().set(BitcastNew);
693 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
694 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
695 if (HasGlobalAliases && G->hasUnnamedAddr()) {
696 if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
697 G->hasWeakLinkage()) {
698 writeAlias(F, G);
699 return;
703 writeThunk(F, G);
706 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
707 // of G with bitcast(F). Deletes G.
708 void MergeFunctions::writeThunk(Function *F, Function *G) {
709 if (!G->mayBeOverridden()) {
710 // Redirect direct callers of G to F.
711 replaceDirectCallers(G, F);
714 // If G was internal then we may have replaced all uses of G with F. If so,
715 // stop here and delete G. There's no need for a thunk.
716 if (G->hasLocalLinkage() && G->use_empty()) {
717 G->eraseFromParent();
718 return;
721 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
722 G->getParent());
723 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
724 IRBuilder<false> Builder(BB);
726 SmallVector<Value *, 16> Args;
727 unsigned i = 0;
728 const FunctionType *FFTy = F->getFunctionType();
729 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
730 AI != AE; ++AI) {
731 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
732 ++i;
735 CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
736 CI->setTailCall();
737 CI->setCallingConv(F->getCallingConv());
738 if (NewG->getReturnType()->isVoidTy()) {
739 Builder.CreateRetVoid();
740 } else {
741 Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
744 NewG->copyAttributesFrom(G);
745 NewG->takeName(G);
746 removeUsers(G);
747 G->replaceAllUsesWith(NewG);
748 G->eraseFromParent();
750 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
751 ++NumThunksWritten;
754 // Replace G with an alias to F and delete G.
755 void MergeFunctions::writeAlias(Function *F, Function *G) {
756 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
757 GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
758 BitcastF, G->getParent());
759 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
760 GA->takeName(G);
761 GA->setVisibility(G->getVisibility());
762 removeUsers(G);
763 G->replaceAllUsesWith(GA);
764 G->eraseFromParent();
766 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
767 ++NumAliasesWritten;
770 // Merge two equivalent functions. Upon completion, Function G is deleted.
771 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
772 if (F->mayBeOverridden()) {
773 assert(G->mayBeOverridden());
775 if (HasGlobalAliases) {
776 // Make them both thunks to the same internal function.
777 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
778 F->getParent());
779 H->copyAttributesFrom(F);
780 H->takeName(F);
781 removeUsers(F);
782 F->replaceAllUsesWith(H);
784 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
786 writeAlias(F, G);
787 writeAlias(F, H);
789 F->setAlignment(MaxAlignment);
790 F->setLinkage(GlobalValue::PrivateLinkage);
791 } else {
792 // We can't merge them. Instead, pick one and update all direct callers
793 // to call it and hope that we improve the instruction cache hit rate.
794 replaceDirectCallers(G, F);
797 ++NumDoubleWeak;
798 } else {
799 writeThunkOrAlias(F, G);
802 ++NumFunctionsMerged;
805 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
806 // that was already inserted.
807 bool MergeFunctions::insert(ComparableFunction &NewF) {
808 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
809 if (Result.second) {
810 DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
811 return false;
814 const ComparableFunction &OldF = *Result.first;
816 // Never thunk a strong function to a weak function.
817 assert(!OldF.getFunc()->mayBeOverridden() ||
818 NewF.getFunc()->mayBeOverridden());
820 DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
821 << NewF.getFunc()->getName() << '\n');
823 Function *DeleteF = NewF.getFunc();
824 NewF.release();
825 mergeTwoFunctions(OldF.getFunc(), DeleteF);
826 return true;
829 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
830 // so that we'll look at it in the next round.
831 void MergeFunctions::remove(Function *F) {
832 // We need to make sure we remove F, not a function "equal" to F per the
833 // function equality comparator.
835 // The special "lookup only" ComparableFunction bypasses the expensive
836 // function comparison in favour of a pointer comparison on the underlying
837 // Function*'s.
838 ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
839 if (FnSet.erase(CF)) {
840 DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
841 Deferred.push_back(F);
845 // For each instruction used by the value, remove() the function that contains
846 // the instruction. This should happen right before a call to RAUW.
847 void MergeFunctions::removeUsers(Value *V) {
848 std::vector<Value *> Worklist;
849 Worklist.push_back(V);
850 while (!Worklist.empty()) {
851 Value *V = Worklist.back();
852 Worklist.pop_back();
854 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
855 UI != UE; ++UI) {
856 Use &U = UI.getUse();
857 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
858 remove(I->getParent()->getParent());
859 } else if (isa<GlobalValue>(U.getUser())) {
860 // do nothing
861 } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
862 for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
863 CUI != CUE; ++CUI)
864 Worklist.push_back(*CUI);