1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Support/Debug.h"
24 //===----------------------------------------------------------------------===//
25 // EEVT::TypeSet Implementation
26 //===----------------------------------------------------------------------===//
28 static inline bool isInteger(MVT::SimpleValueType VT
) {
29 return EVT(VT
).isInteger();
31 static inline bool isFloatingPoint(MVT::SimpleValueType VT
) {
32 return EVT(VT
).isFloatingPoint();
34 static inline bool isVector(MVT::SimpleValueType VT
) {
35 return EVT(VT
).isVector();
37 static inline bool isScalar(MVT::SimpleValueType VT
) {
38 return !EVT(VT
).isVector();
41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT
, TreePattern
&TP
) {
44 else if (VT
== MVT::fAny
)
45 EnforceFloatingPoint(TP
);
46 else if (VT
== MVT::vAny
)
49 assert((VT
< MVT::LAST_VALUETYPE
|| VT
== MVT::iPTR
||
50 VT
== MVT::iPTRAny
) && "Not a concrete type!");
51 TypeVec
.push_back(VT
);
56 EEVT::TypeSet::TypeSet(const std::vector
<MVT::SimpleValueType
> &VTList
) {
57 assert(!VTList
.empty() && "empty list?");
58 TypeVec
.append(VTList
.begin(), VTList
.end());
61 assert(VTList
[0] != MVT::iAny
&& VTList
[0] != MVT::vAny
&&
62 VTList
[0] != MVT::fAny
);
64 // Verify no duplicates.
65 array_pod_sort(TypeVec
.begin(), TypeVec
.end());
66 assert(std::unique(TypeVec
.begin(), TypeVec
.end()) == TypeVec
.end());
69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
70 /// on completely unknown type sets.
71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern
&TP
,
72 bool (*Pred
)(MVT::SimpleValueType
),
73 const char *PredicateName
) {
74 assert(isCompletelyUnknown());
75 const std::vector
<MVT::SimpleValueType
> &LegalTypes
=
76 TP
.getDAGPatterns().getTargetInfo().getLegalValueTypes();
78 for (unsigned i
= 0, e
= LegalTypes
.size(); i
!= e
; ++i
)
79 if (Pred
== 0 || Pred(LegalTypes
[i
]))
80 TypeVec
.push_back(LegalTypes
[i
]);
82 // If we have nothing that matches the predicate, bail out.
84 TP
.error("Type inference contradiction found, no " +
85 std::string(PredicateName
) + " types found");
86 // No need to sort with one element.
87 if (TypeVec
.size() == 1) return true;
90 array_pod_sort(TypeVec
.begin(), TypeVec
.end());
91 TypeVec
.erase(std::unique(TypeVec
.begin(), TypeVec
.end()), TypeVec
.end());
96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
97 /// integer value type.
98 bool EEVT::TypeSet::hasIntegerTypes() const {
99 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
100 if (isInteger(TypeVec
[i
]))
105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
106 /// a floating point value type.
107 bool EEVT::TypeSet::hasFloatingPointTypes() const {
108 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
109 if (isFloatingPoint(TypeVec
[i
]))
114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
116 bool EEVT::TypeSet::hasVectorTypes() const {
117 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
118 if (isVector(TypeVec
[i
]))
124 std::string
EEVT::TypeSet::getName() const {
125 if (TypeVec
.empty()) return "<empty>";
129 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
) {
130 std::string VTName
= llvm::getEnumName(TypeVec
[i
]);
131 // Strip off MVT:: prefix if present.
132 if (VTName
.substr(0,5) == "MVT::")
133 VTName
= VTName
.substr(5);
134 if (i
) Result
+= ':';
138 if (TypeVec
.size() == 1)
140 return "{" + Result
+ "}";
143 /// MergeInTypeInfo - This merges in type information from the specified
144 /// argument. If 'this' changes, it returns true. If the two types are
145 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet
&InVT
, TreePattern
&TP
){
147 if (InVT
.isCompletelyUnknown() || *this == InVT
)
150 if (isCompletelyUnknown()) {
155 assert(TypeVec
.size() >= 1 && InVT
.TypeVec
.size() >= 1 && "No unknowns");
157 // Handle the abstract cases, seeing if we can resolve them better.
158 switch (TypeVec
[0]) {
162 if (InVT
.hasIntegerTypes()) {
163 EEVT::TypeSet
InCopy(InVT
);
164 InCopy
.EnforceInteger(TP
);
165 InCopy
.EnforceScalar(TP
);
167 if (InCopy
.isConcrete()) {
168 // If the RHS has one integer type, upgrade iPTR to i32.
169 TypeVec
[0] = InVT
.TypeVec
[0];
173 // If the input has multiple scalar integers, this doesn't add any info.
174 if (!InCopy
.isCompletelyUnknown())
180 // If the input constraint is iAny/iPTR and this is an integer type list,
181 // remove non-integer types from the list.
182 if ((InVT
.TypeVec
[0] == MVT::iPTR
|| InVT
.TypeVec
[0] == MVT::iPTRAny
) &&
184 bool MadeChange
= EnforceInteger(TP
);
186 // If we're merging in iPTR/iPTRAny and the node currently has a list of
187 // multiple different integer types, replace them with a single iPTR.
188 if ((InVT
.TypeVec
[0] == MVT::iPTR
|| InVT
.TypeVec
[0] == MVT::iPTRAny
) &&
189 TypeVec
.size() != 1) {
191 TypeVec
[0] = InVT
.TypeVec
[0];
198 // If this is a type list and the RHS is a typelist as well, eliminate entries
199 // from this list that aren't in the other one.
200 bool MadeChange
= false;
201 TypeSet
InputSet(*this);
203 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
) {
205 for (unsigned j
= 0, e
= InVT
.TypeVec
.size(); j
!= e
; ++j
)
206 if (TypeVec
[i
] == InVT
.TypeVec
[j
]) {
211 if (InInVT
) continue;
212 TypeVec
.erase(TypeVec
.begin()+i
--);
216 // If we removed all of our types, we have a type contradiction.
217 if (!TypeVec
.empty())
220 // FIXME: Really want an SMLoc here!
221 TP
.error("Type inference contradiction found, merging '" +
222 InVT
.getName() + "' into '" + InputSet
.getName() + "'");
223 return true; // unreachable
226 /// EnforceInteger - Remove all non-integer types from this set.
227 bool EEVT::TypeSet::EnforceInteger(TreePattern
&TP
) {
228 // If we know nothing, then get the full set.
230 return FillWithPossibleTypes(TP
, isInteger
, "integer");
231 if (!hasFloatingPointTypes())
234 TypeSet
InputSet(*this);
236 // Filter out all the fp types.
237 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
238 if (!isInteger(TypeVec
[i
]))
239 TypeVec
.erase(TypeVec
.begin()+i
--);
242 TP
.error("Type inference contradiction found, '" +
243 InputSet
.getName() + "' needs to be integer");
247 /// EnforceFloatingPoint - Remove all integer types from this set.
248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern
&TP
) {
249 // If we know nothing, then get the full set.
251 return FillWithPossibleTypes(TP
, isFloatingPoint
, "floating point");
253 if (!hasIntegerTypes())
256 TypeSet
InputSet(*this);
258 // Filter out all the fp types.
259 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
260 if (!isFloatingPoint(TypeVec
[i
]))
261 TypeVec
.erase(TypeVec
.begin()+i
--);
264 TP
.error("Type inference contradiction found, '" +
265 InputSet
.getName() + "' needs to be floating point");
269 /// EnforceScalar - Remove all vector types from this.
270 bool EEVT::TypeSet::EnforceScalar(TreePattern
&TP
) {
271 // If we know nothing, then get the full set.
273 return FillWithPossibleTypes(TP
, isScalar
, "scalar");
275 if (!hasVectorTypes())
278 TypeSet
InputSet(*this);
280 // Filter out all the vector types.
281 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
282 if (!isScalar(TypeVec
[i
]))
283 TypeVec
.erase(TypeVec
.begin()+i
--);
286 TP
.error("Type inference contradiction found, '" +
287 InputSet
.getName() + "' needs to be scalar");
291 /// EnforceVector - Remove all vector types from this.
292 bool EEVT::TypeSet::EnforceVector(TreePattern
&TP
) {
293 // If we know nothing, then get the full set.
295 return FillWithPossibleTypes(TP
, isVector
, "vector");
297 TypeSet
InputSet(*this);
298 bool MadeChange
= false;
300 // Filter out all the scalar types.
301 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
302 if (!isVector(TypeVec
[i
])) {
303 TypeVec
.erase(TypeVec
.begin()+i
--);
308 TP
.error("Type inference contradiction found, '" +
309 InputSet
.getName() + "' needs to be a vector");
315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
316 /// this an other based on this information.
317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet
&Other
, TreePattern
&TP
) {
318 // Both operands must be integer or FP, but we don't care which.
319 bool MadeChange
= false;
321 if (isCompletelyUnknown())
322 MadeChange
= FillWithPossibleTypes(TP
);
324 if (Other
.isCompletelyUnknown())
325 MadeChange
= Other
.FillWithPossibleTypes(TP
);
327 // If one side is known to be integer or known to be FP but the other side has
328 // no information, get at least the type integrality info in there.
329 if (!hasFloatingPointTypes())
330 MadeChange
|= Other
.EnforceInteger(TP
);
331 else if (!hasIntegerTypes())
332 MadeChange
|= Other
.EnforceFloatingPoint(TP
);
333 if (!Other
.hasFloatingPointTypes())
334 MadeChange
|= EnforceInteger(TP
);
335 else if (!Other
.hasIntegerTypes())
336 MadeChange
|= EnforceFloatingPoint(TP
);
338 assert(!isCompletelyUnknown() && !Other
.isCompletelyUnknown() &&
339 "Should have a type list now");
341 // If one contains vectors but the other doesn't pull vectors out.
342 if (!hasVectorTypes())
343 MadeChange
|= Other
.EnforceScalar(TP
);
344 if (!hasVectorTypes())
345 MadeChange
|= EnforceScalar(TP
);
347 if (TypeVec
.size() == 1 && Other
.TypeVec
.size() == 1) {
348 // If we are down to concrete types, this code does not currently
349 // handle nodes which have multiple types, where some types are
350 // integer, and some are fp. Assert that this is not the case.
351 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
352 !(Other
.hasIntegerTypes() && Other
.hasFloatingPointTypes()) &&
353 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
355 // Otherwise, if these are both vector types, either this vector
356 // must have a larger bitsize than the other, or this element type
357 // must be larger than the other.
358 EVT
Type(TypeVec
[0]);
359 EVT
OtherType(Other
.TypeVec
[0]);
361 if (hasVectorTypes() && Other
.hasVectorTypes()) {
362 if (Type
.getSizeInBits() >= OtherType
.getSizeInBits())
363 if (Type
.getVectorElementType().getSizeInBits()
364 >= OtherType
.getVectorElementType().getSizeInBits())
365 TP
.error("Type inference contradiction found, '" +
366 getName() + "' element type not smaller than '" +
367 Other
.getName() +"'!");
370 // For scalar types, the bitsize of this type must be larger
371 // than that of the other.
372 if (Type
.getSizeInBits() >= OtherType
.getSizeInBits())
373 TP
.error("Type inference contradiction found, '" +
374 getName() + "' is not smaller than '" +
375 Other
.getName() +"'!");
380 // Handle int and fp as disjoint sets. This won't work for patterns
381 // that have mixed fp/int types but those are likely rare and would
382 // not have been accepted by this code previously.
384 // Okay, find the smallest type from the current set and remove it from the
386 MVT::SimpleValueType SmallestInt
= MVT::LAST_VALUETYPE
;
387 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
388 if (isInteger(TypeVec
[i
])) {
389 SmallestInt
= TypeVec
[i
];
392 for (unsigned i
= 1, e
= TypeVec
.size(); i
!= e
; ++i
)
393 if (isInteger(TypeVec
[i
]) && TypeVec
[i
] < SmallestInt
)
394 SmallestInt
= TypeVec
[i
];
396 MVT::SimpleValueType SmallestFP
= MVT::LAST_VALUETYPE
;
397 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
398 if (isFloatingPoint(TypeVec
[i
])) {
399 SmallestFP
= TypeVec
[i
];
402 for (unsigned i
= 1, e
= TypeVec
.size(); i
!= e
; ++i
)
403 if (isFloatingPoint(TypeVec
[i
]) && TypeVec
[i
] < SmallestFP
)
404 SmallestFP
= TypeVec
[i
];
406 int OtherIntSize
= 0;
408 for (SmallVector
<MVT::SimpleValueType
, 2>::iterator TVI
=
409 Other
.TypeVec
.begin();
410 TVI
!= Other
.TypeVec
.end();
412 if (isInteger(*TVI
)) {
414 if (*TVI
== SmallestInt
) {
415 TVI
= Other
.TypeVec
.erase(TVI
);
421 else if (isFloatingPoint(*TVI
)) {
423 if (*TVI
== SmallestFP
) {
424 TVI
= Other
.TypeVec
.erase(TVI
);
433 // If this is the only type in the large set, the constraint can never be
435 if ((Other
.hasIntegerTypes() && OtherIntSize
== 0)
436 || (Other
.hasFloatingPointTypes() && OtherFPSize
== 0))
437 TP
.error("Type inference contradiction found, '" +
438 Other
.getName() + "' has nothing larger than '" + getName() +"'!");
440 // Okay, find the largest type in the Other set and remove it from the
442 MVT::SimpleValueType LargestInt
= MVT::Other
;
443 for (unsigned i
= 0, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
444 if (isInteger(Other
.TypeVec
[i
])) {
445 LargestInt
= Other
.TypeVec
[i
];
448 for (unsigned i
= 1, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
449 if (isInteger(Other
.TypeVec
[i
]) && Other
.TypeVec
[i
] > LargestInt
)
450 LargestInt
= Other
.TypeVec
[i
];
452 MVT::SimpleValueType LargestFP
= MVT::Other
;
453 for (unsigned i
= 0, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
454 if (isFloatingPoint(Other
.TypeVec
[i
])) {
455 LargestFP
= Other
.TypeVec
[i
];
458 for (unsigned i
= 1, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
459 if (isFloatingPoint(Other
.TypeVec
[i
]) && Other
.TypeVec
[i
] > LargestFP
)
460 LargestFP
= Other
.TypeVec
[i
];
464 for (SmallVector
<MVT::SimpleValueType
, 2>::iterator TVI
=
466 TVI
!= TypeVec
.end();
468 if (isInteger(*TVI
)) {
470 if (*TVI
== LargestInt
) {
471 TVI
= TypeVec
.erase(TVI
);
477 else if (isFloatingPoint(*TVI
)) {
479 if (*TVI
== LargestFP
) {
480 TVI
= TypeVec
.erase(TVI
);
489 // If this is the only type in the small set, the constraint can never be
491 if ((hasIntegerTypes() && IntSize
== 0)
492 || (hasFloatingPointTypes() && FPSize
== 0))
493 TP
.error("Type inference contradiction found, '" +
494 getName() + "' has nothing smaller than '" + Other
.getName()+"'!");
499 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
500 /// whose element is specified by VTOperand.
501 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet
&VTOperand
,
503 // "This" must be a vector and "VTOperand" must be a scalar.
504 bool MadeChange
= false;
505 MadeChange
|= EnforceVector(TP
);
506 MadeChange
|= VTOperand
.EnforceScalar(TP
);
508 // If we know the vector type, it forces the scalar to agree.
510 EVT IVT
= getConcrete();
511 IVT
= IVT
.getVectorElementType();
513 VTOperand
.MergeInTypeInfo(IVT
.getSimpleVT().SimpleTy
, TP
);
516 // If the scalar type is known, filter out vector types whose element types
518 if (!VTOperand
.isConcrete())
521 MVT::SimpleValueType VT
= VTOperand
.getConcrete();
523 TypeSet
InputSet(*this);
525 // Filter out all the types which don't have the right element type.
526 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
) {
527 assert(isVector(TypeVec
[i
]) && "EnforceVector didn't work");
528 if (EVT(TypeVec
[i
]).getVectorElementType().getSimpleVT().SimpleTy
!= VT
) {
529 TypeVec
.erase(TypeVec
.begin()+i
--);
534 if (TypeVec
.empty()) // FIXME: Really want an SMLoc here!
535 TP
.error("Type inference contradiction found, forcing '" +
536 InputSet
.getName() + "' to have a vector element");
540 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
541 /// vector type specified by VTOperand.
542 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet
&VTOperand
,
544 // "This" must be a vector and "VTOperand" must be a vector.
545 bool MadeChange
= false;
546 MadeChange
|= EnforceVector(TP
);
547 MadeChange
|= VTOperand
.EnforceVector(TP
);
549 // "This" must be larger than "VTOperand."
550 MadeChange
|= VTOperand
.EnforceSmallerThan(*this, TP
);
552 // If we know the vector type, it forces the scalar types to agree.
554 EVT IVT
= getConcrete();
555 IVT
= IVT
.getVectorElementType();
557 EEVT::TypeSet
EltTypeSet(IVT
.getSimpleVT().SimpleTy
, TP
);
558 MadeChange
|= VTOperand
.EnforceVectorEltTypeIs(EltTypeSet
, TP
);
559 } else if (VTOperand
.isConcrete()) {
560 EVT IVT
= VTOperand
.getConcrete();
561 IVT
= IVT
.getVectorElementType();
563 EEVT::TypeSet
EltTypeSet(IVT
.getSimpleVT().SimpleTy
, TP
);
564 MadeChange
|= EnforceVectorEltTypeIs(EltTypeSet
, TP
);
570 //===----------------------------------------------------------------------===//
571 // Helpers for working with extended types.
573 bool RecordPtrCmp::operator()(const Record
*LHS
, const Record
*RHS
) const {
574 return LHS
->getID() < RHS
->getID();
577 /// Dependent variable map for CodeGenDAGPattern variant generation
578 typedef std::map
<std::string
, int> DepVarMap
;
580 /// Const iterator shorthand for DepVarMap
581 typedef DepVarMap::const_iterator DepVarMap_citer
;
584 void FindDepVarsOf(TreePatternNode
*N
, DepVarMap
&DepMap
) {
586 if (dynamic_cast<DefInit
*>(N
->getLeafValue()) != NULL
) {
587 DepMap
[N
->getName()]++;
590 for (size_t i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
591 FindDepVarsOf(N
->getChild(i
), DepMap
);
595 //! Find dependent variables within child patterns
598 void FindDepVars(TreePatternNode
*N
, MultipleUseVarSet
&DepVars
) {
600 FindDepVarsOf(N
, depcounts
);
601 for (DepVarMap_citer i
= depcounts
.begin(); i
!= depcounts
.end(); ++i
) {
602 if (i
->second
> 1) { // std::pair<std::string, int>
603 DepVars
.insert(i
->first
);
608 //! Dump the dependent variable set:
610 void DumpDepVars(MultipleUseVarSet
&DepVars
) {
611 if (DepVars
.empty()) {
612 DEBUG(errs() << "<empty set>");
614 DEBUG(errs() << "[ ");
615 for (MultipleUseVarSet::const_iterator i
= DepVars
.begin(),
616 e
= DepVars
.end(); i
!= e
; ++i
) {
617 DEBUG(errs() << (*i
) << " ");
619 DEBUG(errs() << "]");
626 //===----------------------------------------------------------------------===//
627 // PatternToMatch implementation
631 /// getPatternSize - Return the 'size' of this pattern. We want to match large
632 /// patterns before small ones. This is used to determine the size of a
634 static unsigned getPatternSize(const TreePatternNode
*P
,
635 const CodeGenDAGPatterns
&CGP
) {
636 unsigned Size
= 3; // The node itself.
637 // If the root node is a ConstantSDNode, increases its size.
638 // e.g. (set R32:$dst, 0).
639 if (P
->isLeaf() && dynamic_cast<IntInit
*>(P
->getLeafValue()))
642 // FIXME: This is a hack to statically increase the priority of patterns
643 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
644 // Later we can allow complexity / cost for each pattern to be (optionally)
645 // specified. To get best possible pattern match we'll need to dynamically
646 // calculate the complexity of all patterns a dag can potentially map to.
647 const ComplexPattern
*AM
= P
->getComplexPatternInfo(CGP
);
649 Size
+= AM
->getNumOperands() * 3;
651 // If this node has some predicate function that must match, it adds to the
652 // complexity of this node.
653 if (!P
->getPredicateFns().empty())
656 // Count children in the count if they are also nodes.
657 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
) {
658 TreePatternNode
*Child
= P
->getChild(i
);
659 if (!Child
->isLeaf() && Child
->getNumTypes() &&
660 Child
->getType(0) != MVT::Other
)
661 Size
+= getPatternSize(Child
, CGP
);
662 else if (Child
->isLeaf()) {
663 if (dynamic_cast<IntInit
*>(Child
->getLeafValue()))
664 Size
+= 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
665 else if (Child
->getComplexPatternInfo(CGP
))
666 Size
+= getPatternSize(Child
, CGP
);
667 else if (!Child
->getPredicateFns().empty())
675 /// Compute the complexity metric for the input pattern. This roughly
676 /// corresponds to the number of nodes that are covered.
677 unsigned PatternToMatch::
678 getPatternComplexity(const CodeGenDAGPatterns
&CGP
) const {
679 return getPatternSize(getSrcPattern(), CGP
) + getAddedComplexity();
683 /// getPredicateCheck - Return a single string containing all of this
684 /// pattern's predicates concatenated with "&&" operators.
686 std::string
PatternToMatch::getPredicateCheck() const {
687 std::string PredicateCheck
;
688 for (unsigned i
= 0, e
= Predicates
->getSize(); i
!= e
; ++i
) {
689 if (DefInit
*Pred
= dynamic_cast<DefInit
*>(Predicates
->getElement(i
))) {
690 Record
*Def
= Pred
->getDef();
691 if (!Def
->isSubClassOf("Predicate")) {
695 assert(0 && "Unknown predicate type!");
697 if (!PredicateCheck
.empty())
698 PredicateCheck
+= " && ";
699 PredicateCheck
+= "(" + Def
->getValueAsString("CondString") + ")";
703 return PredicateCheck
;
706 //===----------------------------------------------------------------------===//
707 // SDTypeConstraint implementation
710 SDTypeConstraint::SDTypeConstraint(Record
*R
) {
711 OperandNo
= R
->getValueAsInt("OperandNum");
713 if (R
->isSubClassOf("SDTCisVT")) {
714 ConstraintType
= SDTCisVT
;
715 x
.SDTCisVT_Info
.VT
= getValueType(R
->getValueAsDef("VT"));
716 if (x
.SDTCisVT_Info
.VT
== MVT::isVoid
)
717 throw TGError(R
->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
719 } else if (R
->isSubClassOf("SDTCisPtrTy")) {
720 ConstraintType
= SDTCisPtrTy
;
721 } else if (R
->isSubClassOf("SDTCisInt")) {
722 ConstraintType
= SDTCisInt
;
723 } else if (R
->isSubClassOf("SDTCisFP")) {
724 ConstraintType
= SDTCisFP
;
725 } else if (R
->isSubClassOf("SDTCisVec")) {
726 ConstraintType
= SDTCisVec
;
727 } else if (R
->isSubClassOf("SDTCisSameAs")) {
728 ConstraintType
= SDTCisSameAs
;
729 x
.SDTCisSameAs_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOperandNum");
730 } else if (R
->isSubClassOf("SDTCisVTSmallerThanOp")) {
731 ConstraintType
= SDTCisVTSmallerThanOp
;
732 x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
=
733 R
->getValueAsInt("OtherOperandNum");
734 } else if (R
->isSubClassOf("SDTCisOpSmallerThanOp")) {
735 ConstraintType
= SDTCisOpSmallerThanOp
;
736 x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
=
737 R
->getValueAsInt("BigOperandNum");
738 } else if (R
->isSubClassOf("SDTCisEltOfVec")) {
739 ConstraintType
= SDTCisEltOfVec
;
740 x
.SDTCisEltOfVec_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOpNum");
741 } else if (R
->isSubClassOf("SDTCisSubVecOfVec")) {
742 ConstraintType
= SDTCisSubVecOfVec
;
743 x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
=
744 R
->getValueAsInt("OtherOpNum");
746 errs() << "Unrecognized SDTypeConstraint '" << R
->getName() << "'!\n";
751 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
752 /// N, and the result number in ResNo.
753 static TreePatternNode
*getOperandNum(unsigned OpNo
, TreePatternNode
*N
,
754 const SDNodeInfo
&NodeInfo
,
756 unsigned NumResults
= NodeInfo
.getNumResults();
757 if (OpNo
< NumResults
) {
764 if (OpNo
>= N
->getNumChildren()) {
765 errs() << "Invalid operand number in type constraint "
766 << (OpNo
+NumResults
) << " ";
772 return N
->getChild(OpNo
);
775 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
776 /// constraint to the nodes operands. This returns true if it makes a
777 /// change, false otherwise. If a type contradiction is found, throw an
779 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode
*N
,
780 const SDNodeInfo
&NodeInfo
,
781 TreePattern
&TP
) const {
782 unsigned ResNo
= 0; // The result number being referenced.
783 TreePatternNode
*NodeToApply
= getOperandNum(OperandNo
, N
, NodeInfo
, ResNo
);
785 switch (ConstraintType
) {
786 default: assert(0 && "Unknown constraint type!");
788 // Operand must be a particular type.
789 return NodeToApply
->UpdateNodeType(ResNo
, x
.SDTCisVT_Info
.VT
, TP
);
791 // Operand must be same as target pointer type.
792 return NodeToApply
->UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
794 // Require it to be one of the legal integer VTs.
795 return NodeToApply
->getExtType(ResNo
).EnforceInteger(TP
);
797 // Require it to be one of the legal fp VTs.
798 return NodeToApply
->getExtType(ResNo
).EnforceFloatingPoint(TP
);
800 // Require it to be one of the legal vector VTs.
801 return NodeToApply
->getExtType(ResNo
).EnforceVector(TP
);
804 TreePatternNode
*OtherNode
=
805 getOperandNum(x
.SDTCisSameAs_Info
.OtherOperandNum
, N
, NodeInfo
, OResNo
);
806 return NodeToApply
->UpdateNodeType(OResNo
, OtherNode
->getExtType(ResNo
),TP
)|
807 OtherNode
->UpdateNodeType(ResNo
,NodeToApply
->getExtType(OResNo
),TP
);
809 case SDTCisVTSmallerThanOp
: {
810 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
811 // have an integer type that is smaller than the VT.
812 if (!NodeToApply
->isLeaf() ||
813 !dynamic_cast<DefInit
*>(NodeToApply
->getLeafValue()) ||
814 !static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef()
815 ->isSubClassOf("ValueType"))
816 TP
.error(N
->getOperator()->getName() + " expects a VT operand!");
817 MVT::SimpleValueType VT
=
818 getValueType(static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef());
820 EEVT::TypeSet
TypeListTmp(VT
, TP
);
823 TreePatternNode
*OtherNode
=
824 getOperandNum(x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
, N
, NodeInfo
,
827 return TypeListTmp
.EnforceSmallerThan(OtherNode
->getExtType(OResNo
), TP
);
829 case SDTCisOpSmallerThanOp
: {
831 TreePatternNode
*BigOperand
=
832 getOperandNum(x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
, N
, NodeInfo
,
834 return NodeToApply
->getExtType(ResNo
).
835 EnforceSmallerThan(BigOperand
->getExtType(BResNo
), TP
);
837 case SDTCisEltOfVec
: {
839 TreePatternNode
*VecOperand
=
840 getOperandNum(x
.SDTCisEltOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
843 // Filter vector types out of VecOperand that don't have the right element
845 return VecOperand
->getExtType(VResNo
).
846 EnforceVectorEltTypeIs(NodeToApply
->getExtType(ResNo
), TP
);
848 case SDTCisSubVecOfVec
: {
850 TreePatternNode
*BigVecOperand
=
851 getOperandNum(x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
854 // Filter vector types out of BigVecOperand that don't have the
855 // right subvector type.
856 return BigVecOperand
->getExtType(VResNo
).
857 EnforceVectorSubVectorTypeIs(NodeToApply
->getExtType(ResNo
), TP
);
863 //===----------------------------------------------------------------------===//
864 // SDNodeInfo implementation
866 SDNodeInfo::SDNodeInfo(Record
*R
) : Def(R
) {
867 EnumName
= R
->getValueAsString("Opcode");
868 SDClassName
= R
->getValueAsString("SDClass");
869 Record
*TypeProfile
= R
->getValueAsDef("TypeProfile");
870 NumResults
= TypeProfile
->getValueAsInt("NumResults");
871 NumOperands
= TypeProfile
->getValueAsInt("NumOperands");
873 // Parse the properties.
875 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
876 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
) {
877 if (PropList
[i
]->getName() == "SDNPCommutative") {
878 Properties
|= 1 << SDNPCommutative
;
879 } else if (PropList
[i
]->getName() == "SDNPAssociative") {
880 Properties
|= 1 << SDNPAssociative
;
881 } else if (PropList
[i
]->getName() == "SDNPHasChain") {
882 Properties
|= 1 << SDNPHasChain
;
883 } else if (PropList
[i
]->getName() == "SDNPOutGlue") {
884 Properties
|= 1 << SDNPOutGlue
;
885 } else if (PropList
[i
]->getName() == "SDNPInGlue") {
886 Properties
|= 1 << SDNPInGlue
;
887 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
888 Properties
|= 1 << SDNPOptInGlue
;
889 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
890 Properties
|= 1 << SDNPMayStore
;
891 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
892 Properties
|= 1 << SDNPMayLoad
;
893 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
894 Properties
|= 1 << SDNPSideEffect
;
895 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
896 Properties
|= 1 << SDNPMemOperand
;
897 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
898 Properties
|= 1 << SDNPVariadic
;
900 errs() << "Unknown SD Node property '" << PropList
[i
]->getName()
901 << "' on node '" << R
->getName() << "'!\n";
907 // Parse the type constraints.
908 std::vector
<Record
*> ConstraintList
=
909 TypeProfile
->getValueAsListOfDefs("Constraints");
910 TypeConstraints
.assign(ConstraintList
.begin(), ConstraintList
.end());
913 /// getKnownType - If the type constraints on this node imply a fixed type
914 /// (e.g. all stores return void, etc), then return it as an
915 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
916 MVT::SimpleValueType
SDNodeInfo::getKnownType(unsigned ResNo
) const {
917 unsigned NumResults
= getNumResults();
918 assert(NumResults
<= 1 &&
919 "We only work with nodes with zero or one result so far!");
920 assert(ResNo
== 0 && "Only handles single result nodes so far");
922 for (unsigned i
= 0, e
= TypeConstraints
.size(); i
!= e
; ++i
) {
923 // Make sure that this applies to the correct node result.
924 if (TypeConstraints
[i
].OperandNo
>= NumResults
) // FIXME: need value #
927 switch (TypeConstraints
[i
].ConstraintType
) {
929 case SDTypeConstraint::SDTCisVT
:
930 return TypeConstraints
[i
].x
.SDTCisVT_Info
.VT
;
931 case SDTypeConstraint::SDTCisPtrTy
:
938 //===----------------------------------------------------------------------===//
939 // TreePatternNode implementation
942 TreePatternNode::~TreePatternNode() {
943 #if 0 // FIXME: implement refcounted tree nodes!
944 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
949 static unsigned GetNumNodeResults(Record
*Operator
, CodeGenDAGPatterns
&CDP
) {
950 if (Operator
->getName() == "set" ||
951 Operator
->getName() == "implicit")
952 return 0; // All return nothing.
954 if (Operator
->isSubClassOf("Intrinsic"))
955 return CDP
.getIntrinsic(Operator
).IS
.RetVTs
.size();
957 if (Operator
->isSubClassOf("SDNode"))
958 return CDP
.getSDNodeInfo(Operator
).getNumResults();
960 if (Operator
->isSubClassOf("PatFrag")) {
961 // If we've already parsed this pattern fragment, get it. Otherwise, handle
962 // the forward reference case where one pattern fragment references another
963 // before it is processed.
964 if (TreePattern
*PFRec
= CDP
.getPatternFragmentIfRead(Operator
))
965 return PFRec
->getOnlyTree()->getNumTypes();
967 // Get the result tree.
968 DagInit
*Tree
= Operator
->getValueAsDag("Fragment");
970 if (Tree
&& dynamic_cast<DefInit
*>(Tree
->getOperator()))
971 Op
= dynamic_cast<DefInit
*>(Tree
->getOperator())->getDef();
972 assert(Op
&& "Invalid Fragment");
973 return GetNumNodeResults(Op
, CDP
);
976 if (Operator
->isSubClassOf("Instruction")) {
977 CodeGenInstruction
&InstInfo
= CDP
.getTargetInfo().getInstruction(Operator
);
979 // FIXME: Should allow access to all the results here.
980 unsigned NumDefsToAdd
= InstInfo
.Operands
.NumDefs
? 1 : 0;
982 // Add on one implicit def if it has a resolvable type.
983 if (InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo()) !=MVT::Other
)
988 if (Operator
->isSubClassOf("SDNodeXForm"))
989 return 1; // FIXME: Generalize SDNodeXForm
992 errs() << "Unhandled node in GetNumNodeResults\n";
996 void TreePatternNode::print(raw_ostream
&OS
) const {
998 OS
<< *getLeafValue();
1000 OS
<< '(' << getOperator()->getName();
1002 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1003 OS
<< ':' << getExtType(i
).getName();
1006 if (getNumChildren() != 0) {
1008 getChild(0)->print(OS
);
1009 for (unsigned i
= 1, e
= getNumChildren(); i
!= e
; ++i
) {
1011 getChild(i
)->print(OS
);
1017 for (unsigned i
= 0, e
= PredicateFns
.size(); i
!= e
; ++i
)
1018 OS
<< "<<P:" << PredicateFns
[i
] << ">>";
1020 OS
<< "<<X:" << TransformFn
->getName() << ">>";
1021 if (!getName().empty())
1022 OS
<< ":$" << getName();
1025 void TreePatternNode::dump() const {
1029 /// isIsomorphicTo - Return true if this node is recursively
1030 /// isomorphic to the specified node. For this comparison, the node's
1031 /// entire state is considered. The assigned name is ignored, since
1032 /// nodes with differing names are considered isomorphic. However, if
1033 /// the assigned name is present in the dependent variable set, then
1034 /// the assigned name is considered significant and the node is
1035 /// isomorphic if the names match.
1036 bool TreePatternNode::isIsomorphicTo(const TreePatternNode
*N
,
1037 const MultipleUseVarSet
&DepVars
) const {
1038 if (N
== this) return true;
1039 if (N
->isLeaf() != isLeaf() || getExtTypes() != N
->getExtTypes() ||
1040 getPredicateFns() != N
->getPredicateFns() ||
1041 getTransformFn() != N
->getTransformFn())
1045 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
1046 if (DefInit
*NDI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
1047 return ((DI
->getDef() == NDI
->getDef())
1048 && (DepVars
.find(getName()) == DepVars
.end()
1049 || getName() == N
->getName()));
1052 return getLeafValue() == N
->getLeafValue();
1055 if (N
->getOperator() != getOperator() ||
1056 N
->getNumChildren() != getNumChildren()) return false;
1057 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1058 if (!getChild(i
)->isIsomorphicTo(N
->getChild(i
), DepVars
))
1063 /// clone - Make a copy of this tree and all of its children.
1065 TreePatternNode
*TreePatternNode::clone() const {
1066 TreePatternNode
*New
;
1068 New
= new TreePatternNode(getLeafValue(), getNumTypes());
1070 std::vector
<TreePatternNode
*> CChildren
;
1071 CChildren
.reserve(Children
.size());
1072 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1073 CChildren
.push_back(getChild(i
)->clone());
1074 New
= new TreePatternNode(getOperator(), CChildren
, getNumTypes());
1076 New
->setName(getName());
1078 New
->setPredicateFns(getPredicateFns());
1079 New
->setTransformFn(getTransformFn());
1083 /// RemoveAllTypes - Recursively strip all the types of this tree.
1084 void TreePatternNode::RemoveAllTypes() {
1085 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1086 Types
[i
] = EEVT::TypeSet(); // Reset to unknown type.
1087 if (isLeaf()) return;
1088 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1089 getChild(i
)->RemoveAllTypes();
1093 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1094 /// with actual values specified by ArgMap.
1095 void TreePatternNode::
1096 SubstituteFormalArguments(std::map
<std::string
, TreePatternNode
*> &ArgMap
) {
1097 if (isLeaf()) return;
1099 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1100 TreePatternNode
*Child
= getChild(i
);
1101 if (Child
->isLeaf()) {
1102 Init
*Val
= Child
->getLeafValue();
1103 if (dynamic_cast<DefInit
*>(Val
) &&
1104 static_cast<DefInit
*>(Val
)->getDef()->getName() == "node") {
1105 // We found a use of a formal argument, replace it with its value.
1106 TreePatternNode
*NewChild
= ArgMap
[Child
->getName()];
1107 assert(NewChild
&& "Couldn't find formal argument!");
1108 assert((Child
->getPredicateFns().empty() ||
1109 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
1110 "Non-empty child predicate clobbered!");
1111 setChild(i
, NewChild
);
1114 getChild(i
)->SubstituteFormalArguments(ArgMap
);
1120 /// InlinePatternFragments - If this pattern refers to any pattern
1121 /// fragments, inline them into place, giving us a pattern without any
1122 /// PatFrag references.
1123 TreePatternNode
*TreePatternNode::InlinePatternFragments(TreePattern
&TP
) {
1124 if (isLeaf()) return this; // nothing to do.
1125 Record
*Op
= getOperator();
1127 if (!Op
->isSubClassOf("PatFrag")) {
1128 // Just recursively inline children nodes.
1129 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1130 TreePatternNode
*Child
= getChild(i
);
1131 TreePatternNode
*NewChild
= Child
->InlinePatternFragments(TP
);
1133 assert((Child
->getPredicateFns().empty() ||
1134 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
1135 "Non-empty child predicate clobbered!");
1137 setChild(i
, NewChild
);
1142 // Otherwise, we found a reference to a fragment. First, look up its
1143 // TreePattern record.
1144 TreePattern
*Frag
= TP
.getDAGPatterns().getPatternFragment(Op
);
1146 // Verify that we are passing the right number of operands.
1147 if (Frag
->getNumArgs() != Children
.size())
1148 TP
.error("'" + Op
->getName() + "' fragment requires " +
1149 utostr(Frag
->getNumArgs()) + " operands!");
1151 TreePatternNode
*FragTree
= Frag
->getOnlyTree()->clone();
1153 std::string Code
= Op
->getValueAsCode("Predicate");
1155 FragTree
->addPredicateFn("Predicate_"+Op
->getName());
1157 // Resolve formal arguments to their actual value.
1158 if (Frag
->getNumArgs()) {
1159 // Compute the map of formal to actual arguments.
1160 std::map
<std::string
, TreePatternNode
*> ArgMap
;
1161 for (unsigned i
= 0, e
= Frag
->getNumArgs(); i
!= e
; ++i
)
1162 ArgMap
[Frag
->getArgName(i
)] = getChild(i
)->InlinePatternFragments(TP
);
1164 FragTree
->SubstituteFormalArguments(ArgMap
);
1167 FragTree
->setName(getName());
1168 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1169 FragTree
->UpdateNodeType(i
, getExtType(i
), TP
);
1171 // Transfer in the old predicates.
1172 for (unsigned i
= 0, e
= getPredicateFns().size(); i
!= e
; ++i
)
1173 FragTree
->addPredicateFn(getPredicateFns()[i
]);
1175 // Get a new copy of this fragment to stitch into here.
1176 //delete this; // FIXME: implement refcounting!
1178 // The fragment we inlined could have recursive inlining that is needed. See
1179 // if there are any pattern fragments in it and inline them as needed.
1180 return FragTree
->InlinePatternFragments(TP
);
1183 /// getImplicitType - Check to see if the specified record has an implicit
1184 /// type which should be applied to it. This will infer the type of register
1185 /// references from the register file information, for example.
1187 static EEVT::TypeSet
getImplicitType(Record
*R
, unsigned ResNo
,
1188 bool NotRegisters
, TreePattern
&TP
) {
1189 // Check to see if this is a register or a register class.
1190 if (R
->isSubClassOf("RegisterClass")) {
1191 assert(ResNo
== 0 && "Regclass ref only has one result!");
1193 return EEVT::TypeSet(); // Unknown.
1194 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1195 return EEVT::TypeSet(T
.getRegisterClass(R
).getValueTypes());
1198 if (R
->isSubClassOf("PatFrag")) {
1199 assert(ResNo
== 0 && "FIXME: PatFrag with multiple results?");
1200 // Pattern fragment types will be resolved when they are inlined.
1201 return EEVT::TypeSet(); // Unknown.
1204 if (R
->isSubClassOf("Register")) {
1205 assert(ResNo
== 0 && "Registers only produce one result!");
1207 return EEVT::TypeSet(); // Unknown.
1208 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1209 return EEVT::TypeSet(T
.getRegisterVTs(R
));
1212 if (R
->isSubClassOf("SubRegIndex")) {
1213 assert(ResNo
== 0 && "SubRegisterIndices only produce one result!");
1214 return EEVT::TypeSet();
1217 if (R
->isSubClassOf("ValueType") || R
->isSubClassOf("CondCode")) {
1218 assert(ResNo
== 0 && "This node only has one result!");
1219 // Using a VTSDNode or CondCodeSDNode.
1220 return EEVT::TypeSet(MVT::Other
, TP
);
1223 if (R
->isSubClassOf("ComplexPattern")) {
1224 assert(ResNo
== 0 && "FIXME: ComplexPattern with multiple results?");
1226 return EEVT::TypeSet(); // Unknown.
1227 return EEVT::TypeSet(TP
.getDAGPatterns().getComplexPattern(R
).getValueType(),
1230 if (R
->isSubClassOf("PointerLikeRegClass")) {
1231 assert(ResNo
== 0 && "Regclass can only have one result!");
1232 return EEVT::TypeSet(MVT::iPTR
, TP
);
1235 if (R
->getName() == "node" || R
->getName() == "srcvalue" ||
1236 R
->getName() == "zero_reg") {
1238 return EEVT::TypeSet(); // Unknown.
1241 TP
.error("Unknown node flavor used in pattern: " + R
->getName());
1242 return EEVT::TypeSet(MVT::Other
, TP
);
1246 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1247 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1248 const CodeGenIntrinsic
*TreePatternNode::
1249 getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const {
1250 if (getOperator() != CDP
.get_intrinsic_void_sdnode() &&
1251 getOperator() != CDP
.get_intrinsic_w_chain_sdnode() &&
1252 getOperator() != CDP
.get_intrinsic_wo_chain_sdnode())
1256 dynamic_cast<IntInit
*>(getChild(0)->getLeafValue())->getValue();
1257 return &CDP
.getIntrinsicInfo(IID
);
1260 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1261 /// return the ComplexPattern information, otherwise return null.
1262 const ComplexPattern
*
1263 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns
&CGP
) const {
1264 if (!isLeaf()) return 0;
1266 DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue());
1267 if (DI
&& DI
->getDef()->isSubClassOf("ComplexPattern"))
1268 return &CGP
.getComplexPattern(DI
->getDef());
1272 /// NodeHasProperty - Return true if this node has the specified property.
1273 bool TreePatternNode::NodeHasProperty(SDNP Property
,
1274 const CodeGenDAGPatterns
&CGP
) const {
1276 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
1277 return CP
->hasProperty(Property
);
1281 Record
*Operator
= getOperator();
1282 if (!Operator
->isSubClassOf("SDNode")) return false;
1284 return CGP
.getSDNodeInfo(Operator
).hasProperty(Property
);
1290 /// TreeHasProperty - Return true if any node in this tree has the specified
1292 bool TreePatternNode::TreeHasProperty(SDNP Property
,
1293 const CodeGenDAGPatterns
&CGP
) const {
1294 if (NodeHasProperty(Property
, CGP
))
1296 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1297 if (getChild(i
)->TreeHasProperty(Property
, CGP
))
1302 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1303 /// commutative intrinsic.
1305 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const {
1306 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
))
1307 return Int
->isCommutative
;
1312 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1313 /// this node and its children in the tree. This returns true if it makes a
1314 /// change, false otherwise. If a type contradiction is found, throw an
1316 bool TreePatternNode::ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
) {
1317 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
1319 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
1320 // If it's a regclass or something else known, include the type.
1321 bool MadeChange
= false;
1322 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1323 MadeChange
|= UpdateNodeType(i
, getImplicitType(DI
->getDef(), i
,
1324 NotRegisters
, TP
), TP
);
1328 if (IntInit
*II
= dynamic_cast<IntInit
*>(getLeafValue())) {
1329 assert(Types
.size() == 1 && "Invalid IntInit");
1331 // Int inits are always integers. :)
1332 bool MadeChange
= Types
[0].EnforceInteger(TP
);
1334 if (!Types
[0].isConcrete())
1337 MVT::SimpleValueType VT
= getType(0);
1338 if (VT
== MVT::iPTR
|| VT
== MVT::iPTRAny
)
1341 unsigned Size
= EVT(VT
).getSizeInBits();
1342 // Make sure that the value is representable for this type.
1343 if (Size
>= 32) return MadeChange
;
1345 int Val
= (II
->getValue() << (32-Size
)) >> (32-Size
);
1346 if (Val
== II
->getValue()) return MadeChange
;
1348 // If sign-extended doesn't fit, does it fit as unsigned?
1350 unsigned UnsignedVal
;
1351 ValueMask
= unsigned(~uint32_t(0UL) >> (32-Size
));
1352 UnsignedVal
= unsigned(II
->getValue());
1354 if ((ValueMask
& UnsignedVal
) == UnsignedVal
)
1357 TP
.error("Integer value '" + itostr(II
->getValue())+
1358 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1364 // special handling for set, which isn't really an SDNode.
1365 if (getOperator()->getName() == "set") {
1366 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1367 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1368 unsigned NC
= getNumChildren();
1370 TreePatternNode
*SetVal
= getChild(NC
-1);
1371 bool MadeChange
= SetVal
->ApplyTypeConstraints(TP
, NotRegisters
);
1373 for (unsigned i
= 0; i
< NC
-1; ++i
) {
1374 TreePatternNode
*Child
= getChild(i
);
1375 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1377 // Types of operands must match.
1378 MadeChange
|= Child
->UpdateNodeType(0, SetVal
->getExtType(i
), TP
);
1379 MadeChange
|= SetVal
->UpdateNodeType(i
, Child
->getExtType(0), TP
);
1384 if (getOperator()->getName() == "implicit") {
1385 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1387 bool MadeChange
= false;
1388 for (unsigned i
= 0; i
< getNumChildren(); ++i
)
1389 MadeChange
= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
1393 if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1394 bool MadeChange
= false;
1395 MadeChange
|= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
1396 MadeChange
|= getChild(1)->ApplyTypeConstraints(TP
, NotRegisters
);
1398 assert(getChild(0)->getNumTypes() == 1 &&
1399 getChild(1)->getNumTypes() == 1 && "Unhandled case");
1401 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
1402 // what type it gets, so if it didn't get a concrete type just give it the
1403 // first viable type from the reg class.
1404 if (!getChild(1)->hasTypeSet(0) &&
1405 !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1406 MVT::SimpleValueType RCVT
= getChild(1)->getExtType(0).getTypeList()[0];
1407 MadeChange
|= getChild(1)->UpdateNodeType(0, RCVT
, TP
);
1412 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
)) {
1413 bool MadeChange
= false;
1415 // Apply the result type to the node.
1416 unsigned NumRetVTs
= Int
->IS
.RetVTs
.size();
1417 unsigned NumParamVTs
= Int
->IS
.ParamVTs
.size();
1419 for (unsigned i
= 0, e
= NumRetVTs
; i
!= e
; ++i
)
1420 MadeChange
|= UpdateNodeType(i
, Int
->IS
.RetVTs
[i
], TP
);
1422 if (getNumChildren() != NumParamVTs
+ 1)
1423 TP
.error("Intrinsic '" + Int
->Name
+ "' expects " +
1424 utostr(NumParamVTs
) + " operands, not " +
1425 utostr(getNumChildren() - 1) + " operands!");
1427 // Apply type info to the intrinsic ID.
1428 MadeChange
|= getChild(0)->UpdateNodeType(0, MVT::iPTR
, TP
);
1430 for (unsigned i
= 0, e
= getNumChildren()-1; i
!= e
; ++i
) {
1431 MadeChange
|= getChild(i
+1)->ApplyTypeConstraints(TP
, NotRegisters
);
1433 MVT::SimpleValueType OpVT
= Int
->IS
.ParamVTs
[i
];
1434 assert(getChild(i
+1)->getNumTypes() == 1 && "Unhandled case");
1435 MadeChange
|= getChild(i
+1)->UpdateNodeType(0, OpVT
, TP
);
1440 if (getOperator()->isSubClassOf("SDNode")) {
1441 const SDNodeInfo
&NI
= CDP
.getSDNodeInfo(getOperator());
1443 // Check that the number of operands is sane. Negative operands -> varargs.
1444 if (NI
.getNumOperands() >= 0 &&
1445 getNumChildren() != (unsigned)NI
.getNumOperands())
1446 TP
.error(getOperator()->getName() + " node requires exactly " +
1447 itostr(NI
.getNumOperands()) + " operands!");
1449 bool MadeChange
= NI
.ApplyTypeConstraints(this, TP
);
1450 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1451 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
1455 if (getOperator()->isSubClassOf("Instruction")) {
1456 const DAGInstruction
&Inst
= CDP
.getInstruction(getOperator());
1457 CodeGenInstruction
&InstInfo
=
1458 CDP
.getTargetInfo().getInstruction(getOperator());
1460 bool MadeChange
= false;
1462 // Apply the result types to the node, these come from the things in the
1463 // (outs) list of the instruction.
1464 // FIXME: Cap at one result so far.
1465 unsigned NumResultsToAdd
= InstInfo
.Operands
.NumDefs
? 1 : 0;
1466 for (unsigned ResNo
= 0; ResNo
!= NumResultsToAdd
; ++ResNo
) {
1467 Record
*ResultNode
= Inst
.getResult(ResNo
);
1469 if (ResultNode
->isSubClassOf("PointerLikeRegClass")) {
1470 MadeChange
|= UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1471 } else if (ResultNode
->getName() == "unknown") {
1474 assert(ResultNode
->isSubClassOf("RegisterClass") &&
1475 "Operands should be register classes!");
1476 const CodeGenRegisterClass
&RC
=
1477 CDP
.getTargetInfo().getRegisterClass(ResultNode
);
1478 MadeChange
|= UpdateNodeType(ResNo
, RC
.getValueTypes(), TP
);
1482 // If the instruction has implicit defs, we apply the first one as a result.
1483 // FIXME: This sucks, it should apply all implicit defs.
1484 if (!InstInfo
.ImplicitDefs
.empty()) {
1485 unsigned ResNo
= NumResultsToAdd
;
1487 // FIXME: Generalize to multiple possible types and multiple possible
1489 MVT::SimpleValueType VT
=
1490 InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo());
1492 if (VT
!= MVT::Other
)
1493 MadeChange
|= UpdateNodeType(ResNo
, VT
, TP
);
1496 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1498 if (getOperator()->getName() == "INSERT_SUBREG") {
1499 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1500 MadeChange
|= UpdateNodeType(0, getChild(0)->getExtType(0), TP
);
1501 MadeChange
|= getChild(0)->UpdateNodeType(0, getExtType(0), TP
);
1504 unsigned ChildNo
= 0;
1505 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
) {
1506 Record
*OperandNode
= Inst
.getOperand(i
);
1508 // If the instruction expects a predicate or optional def operand, we
1509 // codegen this by setting the operand to it's default value if it has a
1510 // non-empty DefaultOps field.
1511 if ((OperandNode
->isSubClassOf("PredicateOperand") ||
1512 OperandNode
->isSubClassOf("OptionalDefOperand")) &&
1513 !CDP
.getDefaultOperand(OperandNode
).DefaultOps
.empty())
1516 // Verify that we didn't run out of provided operands.
1517 if (ChildNo
>= getNumChildren())
1518 TP
.error("Instruction '" + getOperator()->getName() +
1519 "' expects more operands than were provided.");
1521 MVT::SimpleValueType VT
;
1522 TreePatternNode
*Child
= getChild(ChildNo
++);
1523 unsigned ChildResNo
= 0; // Instructions always use res #0 of their op.
1525 if (OperandNode
->isSubClassOf("RegisterClass")) {
1526 const CodeGenRegisterClass
&RC
=
1527 CDP
.getTargetInfo().getRegisterClass(OperandNode
);
1528 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, RC
.getValueTypes(), TP
);
1529 } else if (OperandNode
->isSubClassOf("Operand")) {
1530 VT
= getValueType(OperandNode
->getValueAsDef("Type"));
1531 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, VT
, TP
);
1532 } else if (OperandNode
->isSubClassOf("PointerLikeRegClass")) {
1533 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, MVT::iPTR
, TP
);
1534 } else if (OperandNode
->getName() == "unknown") {
1537 assert(0 && "Unknown operand type!");
1540 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1543 if (ChildNo
!= getNumChildren())
1544 TP
.error("Instruction '" + getOperator()->getName() +
1545 "' was provided too many operands!");
1550 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1552 // Node transforms always take one operand.
1553 if (getNumChildren() != 1)
1554 TP
.error("Node transform '" + getOperator()->getName() +
1555 "' requires one operand!");
1557 bool MadeChange
= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
1560 // If either the output or input of the xform does not have exact
1561 // type info. We assume they must be the same. Otherwise, it is perfectly
1562 // legal to transform from one type to a completely different type.
1564 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1565 bool MadeChange
= UpdateNodeType(getChild(0)->getExtType(), TP
);
1566 MadeChange
|= getChild(0)->UpdateNodeType(getExtType(), TP
);
1573 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1574 /// RHS of a commutative operation, not the on LHS.
1575 static bool OnlyOnRHSOfCommutative(TreePatternNode
*N
) {
1576 if (!N
->isLeaf() && N
->getOperator()->getName() == "imm")
1578 if (N
->isLeaf() && dynamic_cast<IntInit
*>(N
->getLeafValue()))
1584 /// canPatternMatch - If it is impossible for this pattern to match on this
1585 /// target, fill in Reason and return false. Otherwise, return true. This is
1586 /// used as a sanity check for .td files (to prevent people from writing stuff
1587 /// that can never possibly work), and to prevent the pattern permuter from
1588 /// generating stuff that is useless.
1589 bool TreePatternNode::canPatternMatch(std::string
&Reason
,
1590 const CodeGenDAGPatterns
&CDP
) {
1591 if (isLeaf()) return true;
1593 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1594 if (!getChild(i
)->canPatternMatch(Reason
, CDP
))
1597 // If this is an intrinsic, handle cases that would make it not match. For
1598 // example, if an operand is required to be an immediate.
1599 if (getOperator()->isSubClassOf("Intrinsic")) {
1604 // If this node is a commutative operator, check that the LHS isn't an
1606 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(getOperator());
1607 bool isCommIntrinsic
= isCommutativeIntrinsic(CDP
);
1608 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
1609 // Scan all of the operands of the node and make sure that only the last one
1610 // is a constant node, unless the RHS also is.
1611 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1612 bool Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
1613 for (unsigned i
= Skip
, e
= getNumChildren()-1; i
!= e
; ++i
)
1614 if (OnlyOnRHSOfCommutative(getChild(i
))) {
1615 Reason
="Immediate value must be on the RHS of commutative operators!";
1624 //===----------------------------------------------------------------------===//
1625 // TreePattern implementation
1628 TreePattern::TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
1629 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1630 isInputPattern
= isInput
;
1631 for (unsigned i
= 0, e
= RawPat
->getSize(); i
!= e
; ++i
)
1632 Trees
.push_back(ParseTreePattern(RawPat
->getElement(i
), ""));
1635 TreePattern::TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
1636 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1637 isInputPattern
= isInput
;
1638 Trees
.push_back(ParseTreePattern(Pat
, ""));
1641 TreePattern::TreePattern(Record
*TheRec
, TreePatternNode
*Pat
, bool isInput
,
1642 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1643 isInputPattern
= isInput
;
1644 Trees
.push_back(Pat
);
1647 void TreePattern::error(const std::string
&Msg
) const {
1649 throw TGError(TheRecord
->getLoc(), "In " + TheRecord
->getName() + ": " + Msg
);
1652 void TreePattern::ComputeNamedNodes() {
1653 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1654 ComputeNamedNodes(Trees
[i
]);
1657 void TreePattern::ComputeNamedNodes(TreePatternNode
*N
) {
1658 if (!N
->getName().empty())
1659 NamedNodes
[N
->getName()].push_back(N
);
1661 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
1662 ComputeNamedNodes(N
->getChild(i
));
1666 TreePatternNode
*TreePattern::ParseTreePattern(Init
*TheInit
, StringRef OpName
){
1667 if (DefInit
*DI
= dynamic_cast<DefInit
*>(TheInit
)) {
1668 Record
*R
= DI
->getDef();
1670 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1671 // TreePatternNode if its own. For example:
1672 /// (foo GPR, imm) -> (foo GPR, (imm))
1673 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrag"))
1674 return ParseTreePattern(new DagInit(DI
, "",
1675 std::vector
<std::pair
<Init
*, std::string
> >()),
1679 TreePatternNode
*Res
= new TreePatternNode(DI
, 1);
1680 if (R
->getName() == "node" && !OpName
.empty()) {
1682 error("'node' argument requires a name to match with operand list");
1683 Args
.push_back(OpName
);
1686 Res
->setName(OpName
);
1690 if (IntInit
*II
= dynamic_cast<IntInit
*>(TheInit
)) {
1691 if (!OpName
.empty())
1692 error("Constant int argument should not have a name!");
1693 return new TreePatternNode(II
, 1);
1696 if (BitsInit
*BI
= dynamic_cast<BitsInit
*>(TheInit
)) {
1697 // Turn this into an IntInit.
1698 Init
*II
= BI
->convertInitializerTo(new IntRecTy());
1699 if (II
== 0 || !dynamic_cast<IntInit
*>(II
))
1700 error("Bits value must be constants!");
1701 return ParseTreePattern(II
, OpName
);
1704 DagInit
*Dag
= dynamic_cast<DagInit
*>(TheInit
);
1707 error("Pattern has unexpected init kind!");
1709 DefInit
*OpDef
= dynamic_cast<DefInit
*>(Dag
->getOperator());
1710 if (!OpDef
) error("Pattern has unexpected operator type!");
1711 Record
*Operator
= OpDef
->getDef();
1713 if (Operator
->isSubClassOf("ValueType")) {
1714 // If the operator is a ValueType, then this must be "type cast" of a leaf
1716 if (Dag
->getNumArgs() != 1)
1717 error("Type cast only takes one operand!");
1719 TreePatternNode
*New
= ParseTreePattern(Dag
->getArg(0), Dag
->getArgName(0));
1721 // Apply the type cast.
1722 assert(New
->getNumTypes() == 1 && "FIXME: Unhandled");
1723 New
->UpdateNodeType(0, getValueType(Operator
), *this);
1725 if (!OpName
.empty())
1726 error("ValueType cast should not have a name!");
1730 // Verify that this is something that makes sense for an operator.
1731 if (!Operator
->isSubClassOf("PatFrag") &&
1732 !Operator
->isSubClassOf("SDNode") &&
1733 !Operator
->isSubClassOf("Instruction") &&
1734 !Operator
->isSubClassOf("SDNodeXForm") &&
1735 !Operator
->isSubClassOf("Intrinsic") &&
1736 Operator
->getName() != "set" &&
1737 Operator
->getName() != "implicit")
1738 error("Unrecognized node '" + Operator
->getName() + "'!");
1740 // Check to see if this is something that is illegal in an input pattern.
1741 if (isInputPattern
) {
1742 if (Operator
->isSubClassOf("Instruction") ||
1743 Operator
->isSubClassOf("SDNodeXForm"))
1744 error("Cannot use '" + Operator
->getName() + "' in an input pattern!");
1746 if (Operator
->isSubClassOf("Intrinsic"))
1747 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
1749 if (Operator
->isSubClassOf("SDNode") &&
1750 Operator
->getName() != "imm" &&
1751 Operator
->getName() != "fpimm" &&
1752 Operator
->getName() != "tglobaltlsaddr" &&
1753 Operator
->getName() != "tconstpool" &&
1754 Operator
->getName() != "tjumptable" &&
1755 Operator
->getName() != "tframeindex" &&
1756 Operator
->getName() != "texternalsym" &&
1757 Operator
->getName() != "tblockaddress" &&
1758 Operator
->getName() != "tglobaladdr" &&
1759 Operator
->getName() != "bb" &&
1760 Operator
->getName() != "vt")
1761 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
1764 std::vector
<TreePatternNode
*> Children
;
1766 // Parse all the operands.
1767 for (unsigned i
= 0, e
= Dag
->getNumArgs(); i
!= e
; ++i
)
1768 Children
.push_back(ParseTreePattern(Dag
->getArg(i
), Dag
->getArgName(i
)));
1770 // If the operator is an intrinsic, then this is just syntactic sugar for for
1771 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1772 // convert the intrinsic name to a number.
1773 if (Operator
->isSubClassOf("Intrinsic")) {
1774 const CodeGenIntrinsic
&Int
= getDAGPatterns().getIntrinsic(Operator
);
1775 unsigned IID
= getDAGPatterns().getIntrinsicID(Operator
)+1;
1777 // If this intrinsic returns void, it must have side-effects and thus a
1779 if (Int
.IS
.RetVTs
.empty())
1780 Operator
= getDAGPatterns().get_intrinsic_void_sdnode();
1781 else if (Int
.ModRef
!= CodeGenIntrinsic::NoMem
)
1782 // Has side-effects, requires chain.
1783 Operator
= getDAGPatterns().get_intrinsic_w_chain_sdnode();
1784 else // Otherwise, no chain.
1785 Operator
= getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1787 TreePatternNode
*IIDNode
= new TreePatternNode(new IntInit(IID
), 1);
1788 Children
.insert(Children
.begin(), IIDNode
);
1791 unsigned NumResults
= GetNumNodeResults(Operator
, CDP
);
1792 TreePatternNode
*Result
= new TreePatternNode(Operator
, Children
, NumResults
);
1793 Result
->setName(OpName
);
1795 if (!Dag
->getName().empty()) {
1796 assert(Result
->getName().empty());
1797 Result
->setName(Dag
->getName());
1802 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1803 /// will never match in favor of something obvious that will. This is here
1804 /// strictly as a convenience to target authors because it allows them to write
1805 /// more type generic things and have useless type casts fold away.
1807 /// This returns true if any change is made.
1808 static bool SimplifyTree(TreePatternNode
*&N
) {
1812 // If we have a bitconvert with a resolved type and if the source and
1813 // destination types are the same, then the bitconvert is useless, remove it.
1814 if (N
->getOperator()->getName() == "bitconvert" &&
1815 N
->getExtType(0).isConcrete() &&
1816 N
->getExtType(0) == N
->getChild(0)->getExtType(0) &&
1817 N
->getName().empty()) {
1823 // Walk all children.
1824 bool MadeChange
= false;
1825 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
1826 TreePatternNode
*Child
= N
->getChild(i
);
1827 MadeChange
|= SimplifyTree(Child
);
1828 N
->setChild(i
, Child
);
1835 /// InferAllTypes - Infer/propagate as many types throughout the expression
1836 /// patterns as possible. Return true if all types are inferred, false
1837 /// otherwise. Throw an exception if a type contradiction is found.
1839 InferAllTypes(const StringMap
<SmallVector
<TreePatternNode
*,1> > *InNamedTypes
) {
1840 if (NamedNodes
.empty())
1841 ComputeNamedNodes();
1843 bool MadeChange
= true;
1844 while (MadeChange
) {
1846 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1847 MadeChange
|= Trees
[i
]->ApplyTypeConstraints(*this, false);
1848 MadeChange
|= SimplifyTree(Trees
[i
]);
1851 // If there are constraints on our named nodes, apply them.
1852 for (StringMap
<SmallVector
<TreePatternNode
*,1> >::iterator
1853 I
= NamedNodes
.begin(), E
= NamedNodes
.end(); I
!= E
; ++I
) {
1854 SmallVectorImpl
<TreePatternNode
*> &Nodes
= I
->second
;
1856 // If we have input named node types, propagate their types to the named
1859 // FIXME: Should be error?
1860 assert(InNamedTypes
->count(I
->getKey()) &&
1861 "Named node in output pattern but not input pattern?");
1863 const SmallVectorImpl
<TreePatternNode
*> &InNodes
=
1864 InNamedTypes
->find(I
->getKey())->second
;
1866 // The input types should be fully resolved by now.
1867 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
1868 // If this node is a register class, and it is the root of the pattern
1869 // then we're mapping something onto an input register. We allow
1870 // changing the type of the input register in this case. This allows
1871 // us to match things like:
1872 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1873 if (Nodes
[i
] == Trees
[0] && Nodes
[i
]->isLeaf()) {
1874 DefInit
*DI
= dynamic_cast<DefInit
*>(Nodes
[i
]->getLeafValue());
1875 if (DI
&& DI
->getDef()->isSubClassOf("RegisterClass"))
1879 assert(Nodes
[i
]->getNumTypes() == 1 &&
1880 InNodes
[0]->getNumTypes() == 1 &&
1881 "FIXME: cannot name multiple result nodes yet");
1882 MadeChange
|= Nodes
[i
]->UpdateNodeType(0, InNodes
[0]->getExtType(0),
1887 // If there are multiple nodes with the same name, they must all have the
1889 if (I
->second
.size() > 1) {
1890 for (unsigned i
= 0, e
= Nodes
.size()-1; i
!= e
; ++i
) {
1891 TreePatternNode
*N1
= Nodes
[i
], *N2
= Nodes
[i
+1];
1892 assert(N1
->getNumTypes() == 1 && N2
->getNumTypes() == 1 &&
1893 "FIXME: cannot name multiple result nodes yet");
1895 MadeChange
|= N1
->UpdateNodeType(0, N2
->getExtType(0), *this);
1896 MadeChange
|= N2
->UpdateNodeType(0, N1
->getExtType(0), *this);
1902 bool HasUnresolvedTypes
= false;
1903 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1904 HasUnresolvedTypes
|= Trees
[i
]->ContainsUnresolvedType();
1905 return !HasUnresolvedTypes
;
1908 void TreePattern::print(raw_ostream
&OS
) const {
1909 OS
<< getRecord()->getName();
1910 if (!Args
.empty()) {
1911 OS
<< "(" << Args
[0];
1912 for (unsigned i
= 1, e
= Args
.size(); i
!= e
; ++i
)
1913 OS
<< ", " << Args
[i
];
1918 if (Trees
.size() > 1)
1920 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1922 Trees
[i
]->print(OS
);
1926 if (Trees
.size() > 1)
1930 void TreePattern::dump() const { print(errs()); }
1932 //===----------------------------------------------------------------------===//
1933 // CodeGenDAGPatterns implementation
1936 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper
&R
) :
1937 Records(R
), Target(R
) {
1939 Intrinsics
= LoadIntrinsics(Records
, false);
1940 TgtIntrinsics
= LoadIntrinsics(Records
, true);
1942 ParseNodeTransforms();
1943 ParseComplexPatterns();
1944 ParsePatternFragments();
1945 ParseDefaultOperands();
1946 ParseInstructions();
1949 // Generate variants. For example, commutative patterns can match
1950 // multiple ways. Add them to PatternsToMatch as well.
1953 // Infer instruction flags. For example, we can detect loads,
1954 // stores, and side effects in many cases by examining an
1955 // instruction's pattern.
1956 InferInstructionFlags();
1959 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
1960 for (pf_iterator I
= PatternFragments
.begin(),
1961 E
= PatternFragments
.end(); I
!= E
; ++I
)
1966 Record
*CodeGenDAGPatterns::getSDNodeNamed(const std::string
&Name
) const {
1967 Record
*N
= Records
.getDef(Name
);
1968 if (!N
|| !N
->isSubClassOf("SDNode")) {
1969 errs() << "Error getting SDNode '" << Name
<< "'!\n";
1975 // Parse all of the SDNode definitions for the target, populating SDNodes.
1976 void CodeGenDAGPatterns::ParseNodeInfo() {
1977 std::vector
<Record
*> Nodes
= Records
.getAllDerivedDefinitions("SDNode");
1978 while (!Nodes
.empty()) {
1979 SDNodes
.insert(std::make_pair(Nodes
.back(), Nodes
.back()));
1983 // Get the builtin intrinsic nodes.
1984 intrinsic_void_sdnode
= getSDNodeNamed("intrinsic_void");
1985 intrinsic_w_chain_sdnode
= getSDNodeNamed("intrinsic_w_chain");
1986 intrinsic_wo_chain_sdnode
= getSDNodeNamed("intrinsic_wo_chain");
1989 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
1990 /// map, and emit them to the file as functions.
1991 void CodeGenDAGPatterns::ParseNodeTransforms() {
1992 std::vector
<Record
*> Xforms
= Records
.getAllDerivedDefinitions("SDNodeXForm");
1993 while (!Xforms
.empty()) {
1994 Record
*XFormNode
= Xforms
.back();
1995 Record
*SDNode
= XFormNode
->getValueAsDef("Opcode");
1996 std::string Code
= XFormNode
->getValueAsCode("XFormFunction");
1997 SDNodeXForms
.insert(std::make_pair(XFormNode
, NodeXForm(SDNode
, Code
)));
2003 void CodeGenDAGPatterns::ParseComplexPatterns() {
2004 std::vector
<Record
*> AMs
= Records
.getAllDerivedDefinitions("ComplexPattern");
2005 while (!AMs
.empty()) {
2006 ComplexPatterns
.insert(std::make_pair(AMs
.back(), AMs
.back()));
2012 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2013 /// file, building up the PatternFragments map. After we've collected them all,
2014 /// inline fragments together as necessary, so that there are no references left
2015 /// inside a pattern fragment to a pattern fragment.
2017 void CodeGenDAGPatterns::ParsePatternFragments() {
2018 std::vector
<Record
*> Fragments
= Records
.getAllDerivedDefinitions("PatFrag");
2020 // First step, parse all of the fragments.
2021 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
2022 DagInit
*Tree
= Fragments
[i
]->getValueAsDag("Fragment");
2023 TreePattern
*P
= new TreePattern(Fragments
[i
], Tree
, true, *this);
2024 PatternFragments
[Fragments
[i
]] = P
;
2026 // Validate the argument list, converting it to set, to discard duplicates.
2027 std::vector
<std::string
> &Args
= P
->getArgList();
2028 std::set
<std::string
> OperandsSet(Args
.begin(), Args
.end());
2030 if (OperandsSet
.count(""))
2031 P
->error("Cannot have unnamed 'node' values in pattern fragment!");
2033 // Parse the operands list.
2034 DagInit
*OpsList
= Fragments
[i
]->getValueAsDag("Operands");
2035 DefInit
*OpsOp
= dynamic_cast<DefInit
*>(OpsList
->getOperator());
2036 // Special cases: ops == outs == ins. Different names are used to
2037 // improve readability.
2039 (OpsOp
->getDef()->getName() != "ops" &&
2040 OpsOp
->getDef()->getName() != "outs" &&
2041 OpsOp
->getDef()->getName() != "ins"))
2042 P
->error("Operands list should start with '(ops ... '!");
2044 // Copy over the arguments.
2046 for (unsigned j
= 0, e
= OpsList
->getNumArgs(); j
!= e
; ++j
) {
2047 if (!dynamic_cast<DefInit
*>(OpsList
->getArg(j
)) ||
2048 static_cast<DefInit
*>(OpsList
->getArg(j
))->
2049 getDef()->getName() != "node")
2050 P
->error("Operands list should all be 'node' values.");
2051 if (OpsList
->getArgName(j
).empty())
2052 P
->error("Operands list should have names for each operand!");
2053 if (!OperandsSet
.count(OpsList
->getArgName(j
)))
2054 P
->error("'" + OpsList
->getArgName(j
) +
2055 "' does not occur in pattern or was multiply specified!");
2056 OperandsSet
.erase(OpsList
->getArgName(j
));
2057 Args
.push_back(OpsList
->getArgName(j
));
2060 if (!OperandsSet
.empty())
2061 P
->error("Operands list does not contain an entry for operand '" +
2062 *OperandsSet
.begin() + "'!");
2064 // If there is a code init for this fragment, keep track of the fact that
2065 // this fragment uses it.
2066 std::string Code
= Fragments
[i
]->getValueAsCode("Predicate");
2068 P
->getOnlyTree()->addPredicateFn("Predicate_"+Fragments
[i
]->getName());
2070 // If there is a node transformation corresponding to this, keep track of
2072 Record
*Transform
= Fragments
[i
]->getValueAsDef("OperandTransform");
2073 if (!getSDNodeTransform(Transform
).second
.empty()) // not noop xform?
2074 P
->getOnlyTree()->setTransformFn(Transform
);
2077 // Now that we've parsed all of the tree fragments, do a closure on them so
2078 // that there are not references to PatFrags left inside of them.
2079 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
2080 TreePattern
*ThePat
= PatternFragments
[Fragments
[i
]];
2081 ThePat
->InlinePatternFragments();
2083 // Infer as many types as possible. Don't worry about it if we don't infer
2084 // all of them, some may depend on the inputs of the pattern.
2086 ThePat
->InferAllTypes();
2088 // If this pattern fragment is not supported by this target (no types can
2089 // satisfy its constraints), just ignore it. If the bogus pattern is
2090 // actually used by instructions, the type consistency error will be
2094 // If debugging, print out the pattern fragment result.
2095 DEBUG(ThePat
->dump());
2099 void CodeGenDAGPatterns::ParseDefaultOperands() {
2100 std::vector
<Record
*> DefaultOps
[2];
2101 DefaultOps
[0] = Records
.getAllDerivedDefinitions("PredicateOperand");
2102 DefaultOps
[1] = Records
.getAllDerivedDefinitions("OptionalDefOperand");
2104 // Find some SDNode.
2105 assert(!SDNodes
.empty() && "No SDNodes parsed?");
2106 Init
*SomeSDNode
= new DefInit(SDNodes
.begin()->first
);
2108 for (unsigned iter
= 0; iter
!= 2; ++iter
) {
2109 for (unsigned i
= 0, e
= DefaultOps
[iter
].size(); i
!= e
; ++i
) {
2110 DagInit
*DefaultInfo
= DefaultOps
[iter
][i
]->getValueAsDag("DefaultOps");
2112 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2113 // SomeSDnode so that we can parse this.
2114 std::vector
<std::pair
<Init
*, std::string
> > Ops
;
2115 for (unsigned op
= 0, e
= DefaultInfo
->getNumArgs(); op
!= e
; ++op
)
2116 Ops
.push_back(std::make_pair(DefaultInfo
->getArg(op
),
2117 DefaultInfo
->getArgName(op
)));
2118 DagInit
*DI
= new DagInit(SomeSDNode
, "", Ops
);
2120 // Create a TreePattern to parse this.
2121 TreePattern
P(DefaultOps
[iter
][i
], DI
, false, *this);
2122 assert(P
.getNumTrees() == 1 && "This ctor can only produce one tree!");
2124 // Copy the operands over into a DAGDefaultOperand.
2125 DAGDefaultOperand DefaultOpInfo
;
2127 TreePatternNode
*T
= P
.getTree(0);
2128 for (unsigned op
= 0, e
= T
->getNumChildren(); op
!= e
; ++op
) {
2129 TreePatternNode
*TPN
= T
->getChild(op
);
2130 while (TPN
->ApplyTypeConstraints(P
, false))
2131 /* Resolve all types */;
2133 if (TPN
->ContainsUnresolvedType()) {
2135 throw "Value #" + utostr(i
) + " of PredicateOperand '" +
2136 DefaultOps
[iter
][i
]->getName() +"' doesn't have a concrete type!";
2138 throw "Value #" + utostr(i
) + " of OptionalDefOperand '" +
2139 DefaultOps
[iter
][i
]->getName() +"' doesn't have a concrete type!";
2141 DefaultOpInfo
.DefaultOps
.push_back(TPN
);
2144 // Insert it into the DefaultOperands map so we can find it later.
2145 DefaultOperands
[DefaultOps
[iter
][i
]] = DefaultOpInfo
;
2150 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2151 /// instruction input. Return true if this is a real use.
2152 static bool HandleUse(TreePattern
*I
, TreePatternNode
*Pat
,
2153 std::map
<std::string
, TreePatternNode
*> &InstInputs
) {
2154 // No name -> not interesting.
2155 if (Pat
->getName().empty()) {
2156 if (Pat
->isLeaf()) {
2157 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
2158 if (DI
&& DI
->getDef()->isSubClassOf("RegisterClass"))
2159 I
->error("Input " + DI
->getDef()->getName() + " must be named!");
2165 if (Pat
->isLeaf()) {
2166 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
2167 if (!DI
) I
->error("Input $" + Pat
->getName() + " must be an identifier!");
2170 Rec
= Pat
->getOperator();
2173 // SRCVALUE nodes are ignored.
2174 if (Rec
->getName() == "srcvalue")
2177 TreePatternNode
*&Slot
= InstInputs
[Pat
->getName()];
2183 if (Slot
->isLeaf()) {
2184 SlotRec
= dynamic_cast<DefInit
*>(Slot
->getLeafValue())->getDef();
2186 assert(Slot
->getNumChildren() == 0 && "can't be a use with children!");
2187 SlotRec
= Slot
->getOperator();
2190 // Ensure that the inputs agree if we've already seen this input.
2192 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
2193 if (Slot
->getExtTypes() != Pat
->getExtTypes())
2194 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
2198 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2199 /// part of "I", the instruction), computing the set of inputs and outputs of
2200 /// the pattern. Report errors if we see anything naughty.
2201 void CodeGenDAGPatterns::
2202 FindPatternInputsAndOutputs(TreePattern
*I
, TreePatternNode
*Pat
,
2203 std::map
<std::string
, TreePatternNode
*> &InstInputs
,
2204 std::map
<std::string
, TreePatternNode
*>&InstResults
,
2205 std::vector
<Record
*> &InstImpResults
) {
2206 if (Pat
->isLeaf()) {
2207 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
2208 if (!isUse
&& Pat
->getTransformFn())
2209 I
->error("Cannot specify a transform function for a non-input value!");
2213 if (Pat
->getOperator()->getName() == "implicit") {
2214 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
2215 TreePatternNode
*Dest
= Pat
->getChild(i
);
2216 if (!Dest
->isLeaf())
2217 I
->error("implicitly defined value should be a register!");
2219 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
2220 if (!Val
|| !Val
->getDef()->isSubClassOf("Register"))
2221 I
->error("implicitly defined value should be a register!");
2222 InstImpResults
.push_back(Val
->getDef());
2227 if (Pat
->getOperator()->getName() != "set") {
2228 // If this is not a set, verify that the children nodes are not void typed,
2230 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
2231 if (Pat
->getChild(i
)->getNumTypes() == 0)
2232 I
->error("Cannot have void nodes inside of patterns!");
2233 FindPatternInputsAndOutputs(I
, Pat
->getChild(i
), InstInputs
, InstResults
,
2237 // If this is a non-leaf node with no children, treat it basically as if
2238 // it were a leaf. This handles nodes like (imm).
2239 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
2241 if (!isUse
&& Pat
->getTransformFn())
2242 I
->error("Cannot specify a transform function for a non-input value!");
2246 // Otherwise, this is a set, validate and collect instruction results.
2247 if (Pat
->getNumChildren() == 0)
2248 I
->error("set requires operands!");
2250 if (Pat
->getTransformFn())
2251 I
->error("Cannot specify a transform function on a set node!");
2253 // Check the set destinations.
2254 unsigned NumDests
= Pat
->getNumChildren()-1;
2255 for (unsigned i
= 0; i
!= NumDests
; ++i
) {
2256 TreePatternNode
*Dest
= Pat
->getChild(i
);
2257 if (!Dest
->isLeaf())
2258 I
->error("set destination should be a register!");
2260 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
2262 I
->error("set destination should be a register!");
2264 if (Val
->getDef()->isSubClassOf("RegisterClass") ||
2265 Val
->getDef()->isSubClassOf("PointerLikeRegClass")) {
2266 if (Dest
->getName().empty())
2267 I
->error("set destination must have a name!");
2268 if (InstResults
.count(Dest
->getName()))
2269 I
->error("cannot set '" + Dest
->getName() +"' multiple times");
2270 InstResults
[Dest
->getName()] = Dest
;
2271 } else if (Val
->getDef()->isSubClassOf("Register")) {
2272 InstImpResults
.push_back(Val
->getDef());
2274 I
->error("set destination should be a register!");
2278 // Verify and collect info from the computation.
2279 FindPatternInputsAndOutputs(I
, Pat
->getChild(NumDests
),
2280 InstInputs
, InstResults
, InstImpResults
);
2283 //===----------------------------------------------------------------------===//
2284 // Instruction Analysis
2285 //===----------------------------------------------------------------------===//
2287 class InstAnalyzer
{
2288 const CodeGenDAGPatterns
&CDP
;
2291 bool &HasSideEffects
;
2294 InstAnalyzer(const CodeGenDAGPatterns
&cdp
,
2295 bool &maystore
, bool &mayload
, bool &hse
, bool &isv
)
2296 : CDP(cdp
), mayStore(maystore
), mayLoad(mayload
), HasSideEffects(hse
),
2300 /// Analyze - Analyze the specified instruction, returning true if the
2301 /// instruction had a pattern.
2302 bool Analyze(Record
*InstRecord
) {
2303 const TreePattern
*Pattern
= CDP
.getInstruction(InstRecord
).getPattern();
2306 return false; // No pattern.
2309 // FIXME: Assume only the first tree is the pattern. The others are clobber
2311 AnalyzeNode(Pattern
->getTree(0));
2316 void AnalyzeNode(const TreePatternNode
*N
) {
2318 if (DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
2319 Record
*LeafRec
= DI
->getDef();
2320 // Handle ComplexPattern leaves.
2321 if (LeafRec
->isSubClassOf("ComplexPattern")) {
2322 const ComplexPattern
&CP
= CDP
.getComplexPattern(LeafRec
);
2323 if (CP
.hasProperty(SDNPMayStore
)) mayStore
= true;
2324 if (CP
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
2325 if (CP
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
2331 // Analyze children.
2332 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2333 AnalyzeNode(N
->getChild(i
));
2335 // Ignore set nodes, which are not SDNodes.
2336 if (N
->getOperator()->getName() == "set")
2339 // Get information about the SDNode for the operator.
2340 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N
->getOperator());
2342 // Notice properties of the node.
2343 if (OpInfo
.hasProperty(SDNPMayStore
)) mayStore
= true;
2344 if (OpInfo
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
2345 if (OpInfo
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
2346 if (OpInfo
.hasProperty(SDNPVariadic
)) IsVariadic
= true;
2348 if (const CodeGenIntrinsic
*IntInfo
= N
->getIntrinsicInfo(CDP
)) {
2349 // If this is an intrinsic, analyze it.
2350 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadArgMem
)
2351 mayLoad
= true;// These may load memory.
2353 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteArgMem
)
2354 mayStore
= true;// Intrinsics that can write to memory are 'mayStore'.
2356 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteMem
)
2357 // WriteMem intrinsics can have other strange effects.
2358 HasSideEffects
= true;
2364 static void InferFromPattern(const CodeGenInstruction
&Inst
,
2365 bool &MayStore
, bool &MayLoad
,
2366 bool &HasSideEffects
, bool &IsVariadic
,
2367 const CodeGenDAGPatterns
&CDP
) {
2368 MayStore
= MayLoad
= HasSideEffects
= IsVariadic
= false;
2371 InstAnalyzer(CDP
, MayStore
, MayLoad
, HasSideEffects
, IsVariadic
)
2372 .Analyze(Inst
.TheDef
);
2374 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
2375 if (Inst
.mayStore
) { // If the .td file explicitly sets mayStore, use it.
2376 // If we decided that this is a store from the pattern, then the .td file
2377 // entry is redundant.
2380 "Warning: mayStore flag explicitly set on instruction '%s'"
2381 " but flag already inferred from pattern.\n",
2382 Inst
.TheDef
->getName().c_str());
2386 if (Inst
.mayLoad
) { // If the .td file explicitly sets mayLoad, use it.
2387 // If we decided that this is a load from the pattern, then the .td file
2388 // entry is redundant.
2391 "Warning: mayLoad flag explicitly set on instruction '%s'"
2392 " but flag already inferred from pattern.\n",
2393 Inst
.TheDef
->getName().c_str());
2397 if (Inst
.neverHasSideEffects
) {
2399 fprintf(stderr
, "Warning: neverHasSideEffects set on instruction '%s' "
2400 "which already has a pattern\n", Inst
.TheDef
->getName().c_str());
2401 HasSideEffects
= false;
2404 if (Inst
.hasSideEffects
) {
2406 fprintf(stderr
, "Warning: hasSideEffects set on instruction '%s' "
2407 "which already inferred this.\n", Inst
.TheDef
->getName().c_str());
2408 HasSideEffects
= true;
2411 if (Inst
.Operands
.isVariadic
)
2412 IsVariadic
= true; // Can warn if we want.
2415 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2416 /// any fragments involved. This populates the Instructions list with fully
2417 /// resolved instructions.
2418 void CodeGenDAGPatterns::ParseInstructions() {
2419 std::vector
<Record
*> Instrs
= Records
.getAllDerivedDefinitions("Instruction");
2421 for (unsigned i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
2424 if (dynamic_cast<ListInit
*>(Instrs
[i
]->getValueInit("Pattern")))
2425 LI
= Instrs
[i
]->getValueAsListInit("Pattern");
2427 // If there is no pattern, only collect minimal information about the
2428 // instruction for its operand list. We have to assume that there is one
2429 // result, as we have no detailed info.
2430 if (!LI
|| LI
->getSize() == 0) {
2431 std::vector
<Record
*> Results
;
2432 std::vector
<Record
*> Operands
;
2434 CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instrs
[i
]);
2436 if (InstInfo
.Operands
.size() != 0) {
2437 if (InstInfo
.Operands
.NumDefs
== 0) {
2438 // These produce no results
2439 for (unsigned j
= 0, e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
2440 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
2442 // Assume the first operand is the result.
2443 Results
.push_back(InstInfo
.Operands
[0].Rec
);
2445 // The rest are inputs.
2446 for (unsigned j
= 1, e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
2447 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
2451 // Create and insert the instruction.
2452 std::vector
<Record
*> ImpResults
;
2453 Instructions
.insert(std::make_pair(Instrs
[i
],
2454 DAGInstruction(0, Results
, Operands
, ImpResults
)));
2455 continue; // no pattern.
2458 // Parse the instruction.
2459 TreePattern
*I
= new TreePattern(Instrs
[i
], LI
, true, *this);
2460 // Inline pattern fragments into it.
2461 I
->InlinePatternFragments();
2463 // Infer as many types as possible. If we cannot infer all of them, we can
2464 // never do anything with this instruction pattern: report it to the user.
2465 if (!I
->InferAllTypes())
2466 I
->error("Could not infer all types in pattern!");
2468 // InstInputs - Keep track of all of the inputs of the instruction, along
2469 // with the record they are declared as.
2470 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2472 // InstResults - Keep track of all the virtual registers that are 'set'
2473 // in the instruction, including what reg class they are.
2474 std::map
<std::string
, TreePatternNode
*> InstResults
;
2476 std::vector
<Record
*> InstImpResults
;
2478 // Verify that the top-level forms in the instruction are of void type, and
2479 // fill in the InstResults map.
2480 for (unsigned j
= 0, e
= I
->getNumTrees(); j
!= e
; ++j
) {
2481 TreePatternNode
*Pat
= I
->getTree(j
);
2482 if (Pat
->getNumTypes() != 0)
2483 I
->error("Top-level forms in instruction pattern should have"
2486 // Find inputs and outputs, and verify the structure of the uses/defs.
2487 FindPatternInputsAndOutputs(I
, Pat
, InstInputs
, InstResults
,
2491 // Now that we have inputs and outputs of the pattern, inspect the operands
2492 // list for the instruction. This determines the order that operands are
2493 // added to the machine instruction the node corresponds to.
2494 unsigned NumResults
= InstResults
.size();
2496 // Parse the operands list from the (ops) list, validating it.
2497 assert(I
->getArgList().empty() && "Args list should still be empty here!");
2498 CodeGenInstruction
&CGI
= Target
.getInstruction(Instrs
[i
]);
2500 // Check that all of the results occur first in the list.
2501 std::vector
<Record
*> Results
;
2502 TreePatternNode
*Res0Node
= 0;
2503 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
2504 if (i
== CGI
.Operands
.size())
2505 I
->error("'" + InstResults
.begin()->first
+
2506 "' set but does not appear in operand list!");
2507 const std::string
&OpName
= CGI
.Operands
[i
].Name
;
2509 // Check that it exists in InstResults.
2510 TreePatternNode
*RNode
= InstResults
[OpName
];
2512 I
->error("Operand $" + OpName
+ " does not exist in operand list!");
2516 Record
*R
= dynamic_cast<DefInit
*>(RNode
->getLeafValue())->getDef();
2518 I
->error("Operand $" + OpName
+ " should be a set destination: all "
2519 "outputs must occur before inputs in operand list!");
2521 if (CGI
.Operands
[i
].Rec
!= R
)
2522 I
->error("Operand $" + OpName
+ " class mismatch!");
2524 // Remember the return type.
2525 Results
.push_back(CGI
.Operands
[i
].Rec
);
2527 // Okay, this one checks out.
2528 InstResults
.erase(OpName
);
2531 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2532 // the copy while we're checking the inputs.
2533 std::map
<std::string
, TreePatternNode
*> InstInputsCheck(InstInputs
);
2535 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2536 std::vector
<Record
*> Operands
;
2537 for (unsigned i
= NumResults
, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
2538 CGIOperandList::OperandInfo
&Op
= CGI
.Operands
[i
];
2539 const std::string
&OpName
= Op
.Name
;
2541 I
->error("Operand #" + utostr(i
) + " in operands list has no name!");
2543 if (!InstInputsCheck
.count(OpName
)) {
2544 // If this is an predicate operand or optional def operand with an
2545 // DefaultOps set filled in, we can ignore this. When we codegen it,
2546 // we will do so as always executed.
2547 if (Op
.Rec
->isSubClassOf("PredicateOperand") ||
2548 Op
.Rec
->isSubClassOf("OptionalDefOperand")) {
2549 // Does it have a non-empty DefaultOps field? If so, ignore this
2551 if (!getDefaultOperand(Op
.Rec
).DefaultOps
.empty())
2554 I
->error("Operand $" + OpName
+
2555 " does not appear in the instruction pattern");
2557 TreePatternNode
*InVal
= InstInputsCheck
[OpName
];
2558 InstInputsCheck
.erase(OpName
); // It occurred, remove from map.
2560 if (InVal
->isLeaf() &&
2561 dynamic_cast<DefInit
*>(InVal
->getLeafValue())) {
2562 Record
*InRec
= static_cast<DefInit
*>(InVal
->getLeafValue())->getDef();
2563 if (Op
.Rec
!= InRec
&& !InRec
->isSubClassOf("ComplexPattern"))
2564 I
->error("Operand $" + OpName
+ "'s register class disagrees"
2565 " between the operand and pattern");
2567 Operands
.push_back(Op
.Rec
);
2569 // Construct the result for the dest-pattern operand list.
2570 TreePatternNode
*OpNode
= InVal
->clone();
2572 // No predicate is useful on the result.
2573 OpNode
->clearPredicateFns();
2575 // Promote the xform function to be an explicit node if set.
2576 if (Record
*Xform
= OpNode
->getTransformFn()) {
2577 OpNode
->setTransformFn(0);
2578 std::vector
<TreePatternNode
*> Children
;
2579 Children
.push_back(OpNode
);
2580 OpNode
= new TreePatternNode(Xform
, Children
, OpNode
->getNumTypes());
2583 ResultNodeOperands
.push_back(OpNode
);
2586 if (!InstInputsCheck
.empty())
2587 I
->error("Input operand $" + InstInputsCheck
.begin()->first
+
2588 " occurs in pattern but not in operands list!");
2590 TreePatternNode
*ResultPattern
=
2591 new TreePatternNode(I
->getRecord(), ResultNodeOperands
,
2592 GetNumNodeResults(I
->getRecord(), *this));
2593 // Copy fully inferred output node type to instruction result pattern.
2594 for (unsigned i
= 0; i
!= NumResults
; ++i
)
2595 ResultPattern
->setType(i
, Res0Node
->getExtType(i
));
2597 // Create and insert the instruction.
2598 // FIXME: InstImpResults should not be part of DAGInstruction.
2599 DAGInstruction
TheInst(I
, Results
, Operands
, InstImpResults
);
2600 Instructions
.insert(std::make_pair(I
->getRecord(), TheInst
));
2602 // Use a temporary tree pattern to infer all types and make sure that the
2603 // constructed result is correct. This depends on the instruction already
2604 // being inserted into the Instructions map.
2605 TreePattern
Temp(I
->getRecord(), ResultPattern
, false, *this);
2606 Temp
.InferAllTypes(&I
->getNamedNodesMap());
2608 DAGInstruction
&TheInsertedInst
= Instructions
.find(I
->getRecord())->second
;
2609 TheInsertedInst
.setResultPattern(Temp
.getOnlyTree());
2614 // If we can, convert the instructions to be patterns that are matched!
2615 for (std::map
<Record
*, DAGInstruction
, RecordPtrCmp
>::iterator II
=
2616 Instructions
.begin(),
2617 E
= Instructions
.end(); II
!= E
; ++II
) {
2618 DAGInstruction
&TheInst
= II
->second
;
2619 const TreePattern
*I
= TheInst
.getPattern();
2620 if (I
== 0) continue; // No pattern.
2622 // FIXME: Assume only the first tree is the pattern. The others are clobber
2624 TreePatternNode
*Pattern
= I
->getTree(0);
2625 TreePatternNode
*SrcPattern
;
2626 if (Pattern
->getOperator()->getName() == "set") {
2627 SrcPattern
= Pattern
->getChild(Pattern
->getNumChildren()-1)->clone();
2629 // Not a set (store or something?)
2630 SrcPattern
= Pattern
;
2633 Record
*Instr
= II
->first
;
2634 AddPatternToMatch(I
,
2635 PatternToMatch(Instr
,
2636 Instr
->getValueAsListInit("Predicates"),
2638 TheInst
.getResultPattern(),
2639 TheInst
.getImpResults(),
2640 Instr
->getValueAsInt("AddedComplexity"),
2646 typedef std::pair
<const TreePatternNode
*, unsigned> NameRecord
;
2648 static void FindNames(const TreePatternNode
*P
,
2649 std::map
<std::string
, NameRecord
> &Names
,
2650 const TreePattern
*PatternTop
) {
2651 if (!P
->getName().empty()) {
2652 NameRecord
&Rec
= Names
[P
->getName()];
2653 // If this is the first instance of the name, remember the node.
2654 if (Rec
.second
++ == 0)
2656 else if (Rec
.first
->getExtTypes() != P
->getExtTypes())
2657 PatternTop
->error("repetition of value: $" + P
->getName() +
2658 " where different uses have different types!");
2662 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
)
2663 FindNames(P
->getChild(i
), Names
, PatternTop
);
2667 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern
*Pattern
,
2668 const PatternToMatch
&PTM
) {
2669 // Do some sanity checking on the pattern we're about to match.
2671 if (!PTM
.getSrcPattern()->canPatternMatch(Reason
, *this))
2672 Pattern
->error("Pattern can never match: " + Reason
);
2674 // If the source pattern's root is a complex pattern, that complex pattern
2675 // must specify the nodes it can potentially match.
2676 if (const ComplexPattern
*CP
=
2677 PTM
.getSrcPattern()->getComplexPatternInfo(*this))
2678 if (CP
->getRootNodes().empty())
2679 Pattern
->error("ComplexPattern at root must specify list of opcodes it"
2683 // Find all of the named values in the input and output, ensure they have the
2685 std::map
<std::string
, NameRecord
> SrcNames
, DstNames
;
2686 FindNames(PTM
.getSrcPattern(), SrcNames
, Pattern
);
2687 FindNames(PTM
.getDstPattern(), DstNames
, Pattern
);
2689 // Scan all of the named values in the destination pattern, rejecting them if
2690 // they don't exist in the input pattern.
2691 for (std::map
<std::string
, NameRecord
>::iterator
2692 I
= DstNames
.begin(), E
= DstNames
.end(); I
!= E
; ++I
) {
2693 if (SrcNames
[I
->first
].first
== 0)
2694 Pattern
->error("Pattern has input without matching name in output: $" +
2698 // Scan all of the named values in the source pattern, rejecting them if the
2699 // name isn't used in the dest, and isn't used to tie two values together.
2700 for (std::map
<std::string
, NameRecord
>::iterator
2701 I
= SrcNames
.begin(), E
= SrcNames
.end(); I
!= E
; ++I
)
2702 if (DstNames
[I
->first
].first
== 0 && SrcNames
[I
->first
].second
== 1)
2703 Pattern
->error("Pattern has dead named input: $" + I
->first
);
2705 PatternsToMatch
.push_back(PTM
);
2710 void CodeGenDAGPatterns::InferInstructionFlags() {
2711 const std::vector
<const CodeGenInstruction
*> &Instructions
=
2712 Target
.getInstructionsByEnumValue();
2713 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
2714 CodeGenInstruction
&InstInfo
=
2715 const_cast<CodeGenInstruction
&>(*Instructions
[i
]);
2716 // Determine properties of the instruction from its pattern.
2717 bool MayStore
, MayLoad
, HasSideEffects
, IsVariadic
;
2718 InferFromPattern(InstInfo
, MayStore
, MayLoad
, HasSideEffects
, IsVariadic
,
2720 InstInfo
.mayStore
= MayStore
;
2721 InstInfo
.mayLoad
= MayLoad
;
2722 InstInfo
.hasSideEffects
= HasSideEffects
;
2723 InstInfo
.Operands
.isVariadic
= IsVariadic
;
2727 /// Given a pattern result with an unresolved type, see if we can find one
2728 /// instruction with an unresolved result type. Force this result type to an
2729 /// arbitrary element if it's possible types to converge results.
2730 static bool ForceArbitraryInstResultType(TreePatternNode
*N
, TreePattern
&TP
) {
2734 // Analyze children.
2735 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2736 if (ForceArbitraryInstResultType(N
->getChild(i
), TP
))
2739 if (!N
->getOperator()->isSubClassOf("Instruction"))
2742 // If this type is already concrete or completely unknown we can't do
2744 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
) {
2745 if (N
->getExtType(i
).isCompletelyUnknown() || N
->getExtType(i
).isConcrete())
2748 // Otherwise, force its type to the first possibility (an arbitrary choice).
2749 if (N
->getExtType(i
).MergeInTypeInfo(N
->getExtType(i
).getTypeList()[0], TP
))
2756 void CodeGenDAGPatterns::ParsePatterns() {
2757 std::vector
<Record
*> Patterns
= Records
.getAllDerivedDefinitions("Pattern");
2759 for (unsigned i
= 0, e
= Patterns
.size(); i
!= e
; ++i
) {
2760 Record
*CurPattern
= Patterns
[i
];
2761 DagInit
*Tree
= CurPattern
->getValueAsDag("PatternToMatch");
2762 TreePattern
*Pattern
= new TreePattern(CurPattern
, Tree
, true, *this);
2764 // Inline pattern fragments into it.
2765 Pattern
->InlinePatternFragments();
2767 ListInit
*LI
= CurPattern
->getValueAsListInit("ResultInstrs");
2768 if (LI
->getSize() == 0) continue; // no pattern.
2770 // Parse the instruction.
2771 TreePattern
*Result
= new TreePattern(CurPattern
, LI
, false, *this);
2773 // Inline pattern fragments into it.
2774 Result
->InlinePatternFragments();
2776 if (Result
->getNumTrees() != 1)
2777 Result
->error("Cannot handle instructions producing instructions "
2778 "with temporaries yet!");
2780 bool IterateInference
;
2781 bool InferredAllPatternTypes
, InferredAllResultTypes
;
2783 // Infer as many types as possible. If we cannot infer all of them, we
2784 // can never do anything with this pattern: report it to the user.
2785 InferredAllPatternTypes
=
2786 Pattern
->InferAllTypes(&Pattern
->getNamedNodesMap());
2788 // Infer as many types as possible. If we cannot infer all of them, we
2789 // can never do anything with this pattern: report it to the user.
2790 InferredAllResultTypes
=
2791 Result
->InferAllTypes(&Pattern
->getNamedNodesMap());
2793 IterateInference
= false;
2795 // Apply the type of the result to the source pattern. This helps us
2796 // resolve cases where the input type is known to be a pointer type (which
2797 // is considered resolved), but the result knows it needs to be 32- or
2798 // 64-bits. Infer the other way for good measure.
2799 for (unsigned i
= 0, e
= std::min(Result
->getTree(0)->getNumTypes(),
2800 Pattern
->getTree(0)->getNumTypes());
2802 IterateInference
= Pattern
->getTree(0)->
2803 UpdateNodeType(i
, Result
->getTree(0)->getExtType(i
), *Result
);
2804 IterateInference
|= Result
->getTree(0)->
2805 UpdateNodeType(i
, Pattern
->getTree(0)->getExtType(i
), *Result
);
2808 // If our iteration has converged and the input pattern's types are fully
2809 // resolved but the result pattern is not fully resolved, we may have a
2810 // situation where we have two instructions in the result pattern and
2811 // the instructions require a common register class, but don't care about
2812 // what actual MVT is used. This is actually a bug in our modelling:
2813 // output patterns should have register classes, not MVTs.
2815 // In any case, to handle this, we just go through and disambiguate some
2816 // arbitrary types to the result pattern's nodes.
2817 if (!IterateInference
&& InferredAllPatternTypes
&&
2818 !InferredAllResultTypes
)
2819 IterateInference
= ForceArbitraryInstResultType(Result
->getTree(0),
2821 } while (IterateInference
);
2823 // Verify that we inferred enough types that we can do something with the
2824 // pattern and result. If these fire the user has to add type casts.
2825 if (!InferredAllPatternTypes
)
2826 Pattern
->error("Could not infer all types in pattern!");
2827 if (!InferredAllResultTypes
) {
2829 Result
->error("Could not infer all types in pattern result!");
2832 // Validate that the input pattern is correct.
2833 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2834 std::map
<std::string
, TreePatternNode
*> InstResults
;
2835 std::vector
<Record
*> InstImpResults
;
2836 for (unsigned j
= 0, ee
= Pattern
->getNumTrees(); j
!= ee
; ++j
)
2837 FindPatternInputsAndOutputs(Pattern
, Pattern
->getTree(j
),
2838 InstInputs
, InstResults
,
2841 // Promote the xform function to be an explicit node if set.
2842 TreePatternNode
*DstPattern
= Result
->getOnlyTree();
2843 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2844 for (unsigned ii
= 0, ee
= DstPattern
->getNumChildren(); ii
!= ee
; ++ii
) {
2845 TreePatternNode
*OpNode
= DstPattern
->getChild(ii
);
2846 if (Record
*Xform
= OpNode
->getTransformFn()) {
2847 OpNode
->setTransformFn(0);
2848 std::vector
<TreePatternNode
*> Children
;
2849 Children
.push_back(OpNode
);
2850 OpNode
= new TreePatternNode(Xform
, Children
, OpNode
->getNumTypes());
2852 ResultNodeOperands
.push_back(OpNode
);
2854 DstPattern
= Result
->getOnlyTree();
2855 if (!DstPattern
->isLeaf())
2856 DstPattern
= new TreePatternNode(DstPattern
->getOperator(),
2858 DstPattern
->getNumTypes());
2860 for (unsigned i
= 0, e
= Result
->getOnlyTree()->getNumTypes(); i
!= e
; ++i
)
2861 DstPattern
->setType(i
, Result
->getOnlyTree()->getExtType(i
));
2863 TreePattern
Temp(Result
->getRecord(), DstPattern
, false, *this);
2864 Temp
.InferAllTypes();
2867 AddPatternToMatch(Pattern
,
2868 PatternToMatch(CurPattern
,
2869 CurPattern
->getValueAsListInit("Predicates"),
2870 Pattern
->getTree(0),
2871 Temp
.getOnlyTree(), InstImpResults
,
2872 CurPattern
->getValueAsInt("AddedComplexity"),
2873 CurPattern
->getID()));
2877 /// CombineChildVariants - Given a bunch of permutations of each child of the
2878 /// 'operator' node, put them together in all possible ways.
2879 static void CombineChildVariants(TreePatternNode
*Orig
,
2880 const std::vector
<std::vector
<TreePatternNode
*> > &ChildVariants
,
2881 std::vector
<TreePatternNode
*> &OutVariants
,
2882 CodeGenDAGPatterns
&CDP
,
2883 const MultipleUseVarSet
&DepVars
) {
2884 // Make sure that each operand has at least one variant to choose from.
2885 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2886 if (ChildVariants
[i
].empty())
2889 // The end result is an all-pairs construction of the resultant pattern.
2890 std::vector
<unsigned> Idxs
;
2891 Idxs
.resize(ChildVariants
.size());
2895 DEBUG(if (!Idxs
.empty()) {
2896 errs() << Orig
->getOperator()->getName() << ": Idxs = [ ";
2897 for (unsigned i
= 0; i
< Idxs
.size(); ++i
) {
2898 errs() << Idxs
[i
] << " ";
2903 // Create the variant and add it to the output list.
2904 std::vector
<TreePatternNode
*> NewChildren
;
2905 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2906 NewChildren
.push_back(ChildVariants
[i
][Idxs
[i
]]);
2907 TreePatternNode
*R
= new TreePatternNode(Orig
->getOperator(), NewChildren
,
2908 Orig
->getNumTypes());
2910 // Copy over properties.
2911 R
->setName(Orig
->getName());
2912 R
->setPredicateFns(Orig
->getPredicateFns());
2913 R
->setTransformFn(Orig
->getTransformFn());
2914 for (unsigned i
= 0, e
= Orig
->getNumTypes(); i
!= e
; ++i
)
2915 R
->setType(i
, Orig
->getExtType(i
));
2917 // If this pattern cannot match, do not include it as a variant.
2918 std::string ErrString
;
2919 if (!R
->canPatternMatch(ErrString
, CDP
)) {
2922 bool AlreadyExists
= false;
2924 // Scan to see if this pattern has already been emitted. We can get
2925 // duplication due to things like commuting:
2926 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
2927 // which are the same pattern. Ignore the dups.
2928 for (unsigned i
= 0, e
= OutVariants
.size(); i
!= e
; ++i
)
2929 if (R
->isIsomorphicTo(OutVariants
[i
], DepVars
)) {
2930 AlreadyExists
= true;
2937 OutVariants
.push_back(R
);
2940 // Increment indices to the next permutation by incrementing the
2941 // indicies from last index backward, e.g., generate the sequence
2942 // [0, 0], [0, 1], [1, 0], [1, 1].
2944 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
2945 if (++Idxs
[IdxsIdx
] == ChildVariants
[IdxsIdx
].size())
2950 NotDone
= (IdxsIdx
>= 0);
2954 /// CombineChildVariants - A helper function for binary operators.
2956 static void CombineChildVariants(TreePatternNode
*Orig
,
2957 const std::vector
<TreePatternNode
*> &LHS
,
2958 const std::vector
<TreePatternNode
*> &RHS
,
2959 std::vector
<TreePatternNode
*> &OutVariants
,
2960 CodeGenDAGPatterns
&CDP
,
2961 const MultipleUseVarSet
&DepVars
) {
2962 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
2963 ChildVariants
.push_back(LHS
);
2964 ChildVariants
.push_back(RHS
);
2965 CombineChildVariants(Orig
, ChildVariants
, OutVariants
, CDP
, DepVars
);
2969 static void GatherChildrenOfAssociativeOpcode(TreePatternNode
*N
,
2970 std::vector
<TreePatternNode
*> &Children
) {
2971 assert(N
->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
2972 Record
*Operator
= N
->getOperator();
2974 // Only permit raw nodes.
2975 if (!N
->getName().empty() || !N
->getPredicateFns().empty() ||
2976 N
->getTransformFn()) {
2977 Children
.push_back(N
);
2981 if (N
->getChild(0)->isLeaf() || N
->getChild(0)->getOperator() != Operator
)
2982 Children
.push_back(N
->getChild(0));
2984 GatherChildrenOfAssociativeOpcode(N
->getChild(0), Children
);
2986 if (N
->getChild(1)->isLeaf() || N
->getChild(1)->getOperator() != Operator
)
2987 Children
.push_back(N
->getChild(1));
2989 GatherChildrenOfAssociativeOpcode(N
->getChild(1), Children
);
2992 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
2993 /// the (potentially recursive) pattern by using algebraic laws.
2995 static void GenerateVariantsOf(TreePatternNode
*N
,
2996 std::vector
<TreePatternNode
*> &OutVariants
,
2997 CodeGenDAGPatterns
&CDP
,
2998 const MultipleUseVarSet
&DepVars
) {
2999 // We cannot permute leaves.
3001 OutVariants
.push_back(N
);
3005 // Look up interesting info about the node.
3006 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(N
->getOperator());
3008 // If this node is associative, re-associate.
3009 if (NodeInfo
.hasProperty(SDNPAssociative
)) {
3010 // Re-associate by pulling together all of the linked operators
3011 std::vector
<TreePatternNode
*> MaximalChildren
;
3012 GatherChildrenOfAssociativeOpcode(N
, MaximalChildren
);
3014 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3016 if (MaximalChildren
.size() == 3) {
3017 // Find the variants of all of our maximal children.
3018 std::vector
<TreePatternNode
*> AVariants
, BVariants
, CVariants
;
3019 GenerateVariantsOf(MaximalChildren
[0], AVariants
, CDP
, DepVars
);
3020 GenerateVariantsOf(MaximalChildren
[1], BVariants
, CDP
, DepVars
);
3021 GenerateVariantsOf(MaximalChildren
[2], CVariants
, CDP
, DepVars
);
3023 // There are only two ways we can permute the tree:
3024 // (A op B) op C and A op (B op C)
3025 // Within these forms, we can also permute A/B/C.
3027 // Generate legal pair permutations of A/B/C.
3028 std::vector
<TreePatternNode
*> ABVariants
;
3029 std::vector
<TreePatternNode
*> BAVariants
;
3030 std::vector
<TreePatternNode
*> ACVariants
;
3031 std::vector
<TreePatternNode
*> CAVariants
;
3032 std::vector
<TreePatternNode
*> BCVariants
;
3033 std::vector
<TreePatternNode
*> CBVariants
;
3034 CombineChildVariants(N
, AVariants
, BVariants
, ABVariants
, CDP
, DepVars
);
3035 CombineChildVariants(N
, BVariants
, AVariants
, BAVariants
, CDP
, DepVars
);
3036 CombineChildVariants(N
, AVariants
, CVariants
, ACVariants
, CDP
, DepVars
);
3037 CombineChildVariants(N
, CVariants
, AVariants
, CAVariants
, CDP
, DepVars
);
3038 CombineChildVariants(N
, BVariants
, CVariants
, BCVariants
, CDP
, DepVars
);
3039 CombineChildVariants(N
, CVariants
, BVariants
, CBVariants
, CDP
, DepVars
);
3041 // Combine those into the result: (x op x) op x
3042 CombineChildVariants(N
, ABVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
3043 CombineChildVariants(N
, BAVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
3044 CombineChildVariants(N
, ACVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
3045 CombineChildVariants(N
, CAVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
3046 CombineChildVariants(N
, BCVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
3047 CombineChildVariants(N
, CBVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
3049 // Combine those into the result: x op (x op x)
3050 CombineChildVariants(N
, CVariants
, ABVariants
, OutVariants
, CDP
, DepVars
);
3051 CombineChildVariants(N
, CVariants
, BAVariants
, OutVariants
, CDP
, DepVars
);
3052 CombineChildVariants(N
, BVariants
, ACVariants
, OutVariants
, CDP
, DepVars
);
3053 CombineChildVariants(N
, BVariants
, CAVariants
, OutVariants
, CDP
, DepVars
);
3054 CombineChildVariants(N
, AVariants
, BCVariants
, OutVariants
, CDP
, DepVars
);
3055 CombineChildVariants(N
, AVariants
, CBVariants
, OutVariants
, CDP
, DepVars
);
3060 // Compute permutations of all children.
3061 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
3062 ChildVariants
.resize(N
->getNumChildren());
3063 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
3064 GenerateVariantsOf(N
->getChild(i
), ChildVariants
[i
], CDP
, DepVars
);
3066 // Build all permutations based on how the children were formed.
3067 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
3069 // If this node is commutative, consider the commuted order.
3070 bool isCommIntrinsic
= N
->isCommutativeIntrinsic(CDP
);
3071 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
3072 assert((N
->getNumChildren()==2 || isCommIntrinsic
) &&
3073 "Commutative but doesn't have 2 children!");
3074 // Don't count children which are actually register references.
3076 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
3077 TreePatternNode
*Child
= N
->getChild(i
);
3078 if (Child
->isLeaf())
3079 if (DefInit
*DI
= dynamic_cast<DefInit
*>(Child
->getLeafValue())) {
3080 Record
*RR
= DI
->getDef();
3081 if (RR
->isSubClassOf("Register"))
3086 // Consider the commuted order.
3087 if (isCommIntrinsic
) {
3088 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3089 // operands are the commutative operands, and there might be more operands
3092 "Commutative intrinsic should have at least 3 childrean!");
3093 std::vector
<std::vector
<TreePatternNode
*> > Variants
;
3094 Variants
.push_back(ChildVariants
[0]); // Intrinsic id.
3095 Variants
.push_back(ChildVariants
[2]);
3096 Variants
.push_back(ChildVariants
[1]);
3097 for (unsigned i
= 3; i
!= NC
; ++i
)
3098 Variants
.push_back(ChildVariants
[i
]);
3099 CombineChildVariants(N
, Variants
, OutVariants
, CDP
, DepVars
);
3101 CombineChildVariants(N
, ChildVariants
[1], ChildVariants
[0],
3102 OutVariants
, CDP
, DepVars
);
3107 // GenerateVariants - Generate variants. For example, commutative patterns can
3108 // match multiple ways. Add them to PatternsToMatch as well.
3109 void CodeGenDAGPatterns::GenerateVariants() {
3110 DEBUG(errs() << "Generating instruction variants.\n");
3112 // Loop over all of the patterns we've collected, checking to see if we can
3113 // generate variants of the instruction, through the exploitation of
3114 // identities. This permits the target to provide aggressive matching without
3115 // the .td file having to contain tons of variants of instructions.
3117 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3118 // intentionally do not reconsider these. Any variants of added patterns have
3119 // already been added.
3121 for (unsigned i
= 0, e
= PatternsToMatch
.size(); i
!= e
; ++i
) {
3122 MultipleUseVarSet DepVars
;
3123 std::vector
<TreePatternNode
*> Variants
;
3124 FindDepVars(PatternsToMatch
[i
].getSrcPattern(), DepVars
);
3125 DEBUG(errs() << "Dependent/multiply used variables: ");
3126 DEBUG(DumpDepVars(DepVars
));
3127 DEBUG(errs() << "\n");
3128 GenerateVariantsOf(PatternsToMatch
[i
].getSrcPattern(), Variants
, *this,
3131 assert(!Variants
.empty() && "Must create at least original variant!");
3132 Variants
.erase(Variants
.begin()); // Remove the original pattern.
3134 if (Variants
.empty()) // No variants for this pattern.
3137 DEBUG(errs() << "FOUND VARIANTS OF: ";
3138 PatternsToMatch
[i
].getSrcPattern()->dump();
3141 for (unsigned v
= 0, e
= Variants
.size(); v
!= e
; ++v
) {
3142 TreePatternNode
*Variant
= Variants
[v
];
3144 DEBUG(errs() << " VAR#" << v
<< ": ";
3148 // Scan to see if an instruction or explicit pattern already matches this.
3149 bool AlreadyExists
= false;
3150 for (unsigned p
= 0, e
= PatternsToMatch
.size(); p
!= e
; ++p
) {
3151 // Skip if the top level predicates do not match.
3152 if (PatternsToMatch
[i
].getPredicates() !=
3153 PatternsToMatch
[p
].getPredicates())
3155 // Check to see if this variant already exists.
3156 if (Variant
->isIsomorphicTo(PatternsToMatch
[p
].getSrcPattern(),
3158 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3159 AlreadyExists
= true;
3163 // If we already have it, ignore the variant.
3164 if (AlreadyExists
) continue;
3166 // Otherwise, add it to the list of patterns we have.
3168 push_back(PatternToMatch(PatternsToMatch
[i
].getSrcRecord(),
3169 PatternsToMatch
[i
].getPredicates(),
3170 Variant
, PatternsToMatch
[i
].getDstPattern(),
3171 PatternsToMatch
[i
].getDstRegs(),
3172 PatternsToMatch
[i
].getAddedComplexity(),
3173 Record::getNewUID()));
3176 DEBUG(errs() << "\n");