Just because a GlobalVariable's initializer is [N x { i32, void ()* }] doesn't
[llvm/stm8.git] / lib / ExecutionEngine / ExecutionEngine.cpp
blob6d767be492b3137e3f03e118a68918c52c26babd
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/DynamicLibrary.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cmath>
33 #include <cstring>
34 using namespace llvm;
36 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
37 STATISTIC(NumGlobals , "Number of global vars initialized");
39 ExecutionEngine *(*ExecutionEngine::JITCtor)(
40 Module *M,
41 std::string *ErrorStr,
42 JITMemoryManager *JMM,
43 CodeGenOpt::Level OptLevel,
44 bool GVsWithCode,
45 CodeModel::Model CMM,
46 StringRef MArch,
47 StringRef MCPU,
48 const SmallVectorImpl<std::string>& MAttrs) = 0;
49 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
50 Module *M,
51 std::string *ErrorStr,
52 JITMemoryManager *JMM,
53 CodeGenOpt::Level OptLevel,
54 bool GVsWithCode,
55 CodeModel::Model CMM,
56 StringRef MArch,
57 StringRef MCPU,
58 const SmallVectorImpl<std::string>& MAttrs) = 0;
59 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
60 std::string *ErrorStr) = 0;
62 ExecutionEngine::ExecutionEngine(Module *M)
63 : EEState(*this),
64 LazyFunctionCreator(0),
65 ExceptionTableRegister(0),
66 ExceptionTableDeregister(0) {
67 CompilingLazily = false;
68 GVCompilationDisabled = false;
69 SymbolSearchingDisabled = false;
70 Modules.push_back(M);
71 assert(M && "Module is null?");
74 ExecutionEngine::~ExecutionEngine() {
75 clearAllGlobalMappings();
76 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
77 delete Modules[i];
80 void ExecutionEngine::DeregisterAllTables() {
81 if (ExceptionTableDeregister) {
82 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
83 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
84 for (; it != ite; ++it)
85 ExceptionTableDeregister(it->second);
86 AllExceptionTables.clear();
90 namespace {
91 /// \brief Helper class which uses a value handler to automatically deletes the
92 /// memory block when the GlobalVariable is destroyed.
93 class GVMemoryBlock : public CallbackVH {
94 GVMemoryBlock(const GlobalVariable *GV)
95 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
97 public:
98 /// \brief Returns the address the GlobalVariable should be written into. The
99 /// GVMemoryBlock object prefixes that.
100 static char *Create(const GlobalVariable *GV, const TargetData& TD) {
101 const Type *ElTy = GV->getType()->getElementType();
102 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
103 void *RawMemory = ::operator new(
104 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
105 TD.getPreferredAlignment(GV))
106 + GVSize);
107 new(RawMemory) GVMemoryBlock(GV);
108 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
111 virtual void deleted() {
112 // We allocated with operator new and with some extra memory hanging off the
113 // end, so don't just delete this. I'm not sure if this is actually
114 // required.
115 this->~GVMemoryBlock();
116 ::operator delete(this);
119 } // anonymous namespace
121 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
122 return GVMemoryBlock::Create(GV, *getTargetData());
125 bool ExecutionEngine::removeModule(Module *M) {
126 for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
127 E = Modules.end(); I != E; ++I) {
128 Module *Found = *I;
129 if (Found == M) {
130 Modules.erase(I);
131 clearGlobalMappingsFromModule(M);
132 return true;
135 return false;
138 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
139 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
140 if (Function *F = Modules[i]->getFunction(FnName))
141 return F;
143 return 0;
147 void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
148 const GlobalValue *ToUnmap) {
149 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
150 void *OldVal;
152 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
153 // GlobalAddressMap.
154 if (I == GlobalAddressMap.end())
155 OldVal = 0;
156 else {
157 OldVal = I->second;
158 GlobalAddressMap.erase(I);
161 GlobalAddressReverseMap.erase(OldVal);
162 return OldVal;
165 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
166 MutexGuard locked(lock);
168 DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
169 << "\' to [" << Addr << "]\n";);
170 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
171 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
172 CurVal = Addr;
174 // If we are using the reverse mapping, add it too.
175 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
176 AssertingVH<const GlobalValue> &V =
177 EEState.getGlobalAddressReverseMap(locked)[Addr];
178 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
179 V = GV;
183 void ExecutionEngine::clearAllGlobalMappings() {
184 MutexGuard locked(lock);
186 EEState.getGlobalAddressMap(locked).clear();
187 EEState.getGlobalAddressReverseMap(locked).clear();
190 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
191 MutexGuard locked(lock);
193 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
194 EEState.RemoveMapping(locked, FI);
195 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
196 GI != GE; ++GI)
197 EEState.RemoveMapping(locked, GI);
200 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
201 MutexGuard locked(lock);
203 ExecutionEngineState::GlobalAddressMapTy &Map =
204 EEState.getGlobalAddressMap(locked);
206 // Deleting from the mapping?
207 if (Addr == 0)
208 return EEState.RemoveMapping(locked, GV);
210 void *&CurVal = Map[GV];
211 void *OldVal = CurVal;
213 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
214 EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
215 CurVal = Addr;
217 // If we are using the reverse mapping, add it too.
218 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
219 AssertingVH<const GlobalValue> &V =
220 EEState.getGlobalAddressReverseMap(locked)[Addr];
221 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
222 V = GV;
224 return OldVal;
227 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
228 MutexGuard locked(lock);
230 ExecutionEngineState::GlobalAddressMapTy::iterator I =
231 EEState.getGlobalAddressMap(locked).find(GV);
232 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
235 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
236 MutexGuard locked(lock);
238 // If we haven't computed the reverse mapping yet, do so first.
239 if (EEState.getGlobalAddressReverseMap(locked).empty()) {
240 for (ExecutionEngineState::GlobalAddressMapTy::iterator
241 I = EEState.getGlobalAddressMap(locked).begin(),
242 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
243 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
244 I->second, I->first));
247 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
248 EEState.getGlobalAddressReverseMap(locked).find(Addr);
249 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
252 namespace {
253 class ArgvArray {
254 char *Array;
255 std::vector<char*> Values;
256 public:
257 ArgvArray() : Array(NULL) {}
258 ~ArgvArray() { clear(); }
259 void clear() {
260 delete[] Array;
261 Array = NULL;
262 for (size_t I = 0, E = Values.size(); I != E; ++I) {
263 delete[] Values[I];
265 Values.clear();
267 /// Turn a vector of strings into a nice argv style array of pointers to null
268 /// terminated strings.
269 void *reset(LLVMContext &C, ExecutionEngine *EE,
270 const std::vector<std::string> &InputArgv);
272 } // anonymous namespace
273 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
274 const std::vector<std::string> &InputArgv) {
275 clear(); // Free the old contents.
276 unsigned PtrSize = EE->getTargetData()->getPointerSize();
277 Array = new char[(InputArgv.size()+1)*PtrSize];
279 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
280 const Type *SBytePtr = Type::getInt8PtrTy(C);
282 for (unsigned i = 0; i != InputArgv.size(); ++i) {
283 unsigned Size = InputArgv[i].size()+1;
284 char *Dest = new char[Size];
285 Values.push_back(Dest);
286 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
288 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
289 Dest[Size-1] = 0;
291 // Endian safe: Array[i] = (PointerTy)Dest;
292 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
293 SBytePtr);
296 // Null terminate it
297 EE->StoreValueToMemory(PTOGV(0),
298 (GenericValue*)(Array+InputArgv.size()*PtrSize),
299 SBytePtr);
300 return Array;
303 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
304 bool isDtors) {
305 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
306 GlobalVariable *GV = module->getNamedGlobal(Name);
308 // If this global has internal linkage, or if it has a use, then it must be
309 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
310 // this is the case, don't execute any of the global ctors, __main will do
311 // it.
312 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
314 // Should be an array of '{ i32, void ()* }' structs. The first value is
315 // the init priority, which we ignore.
316 if (isa<ConstantAggregateZero>(GV->getInitializer()))
317 return;
318 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
319 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
320 if (isa<ConstantAggregateZero>(InitList->getOperand(i)))
321 continue;
322 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i));
324 Constant *FP = CS->getOperand(1);
325 if (FP->isNullValue())
326 continue; // Found a sentinal value, ignore.
328 // Strip off constant expression casts.
329 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
330 if (CE->isCast())
331 FP = CE->getOperand(0);
333 // Execute the ctor/dtor function!
334 if (Function *F = dyn_cast<Function>(FP))
335 runFunction(F, std::vector<GenericValue>());
337 // FIXME: It is marginally lame that we just do nothing here if we see an
338 // entry we don't recognize. It might not be unreasonable for the verifier
339 // to not even allow this and just assert here.
343 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
344 // Execute global ctors/dtors for each module in the program.
345 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
346 runStaticConstructorsDestructors(Modules[i], isDtors);
349 #ifndef NDEBUG
350 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
351 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
352 unsigned PtrSize = EE->getTargetData()->getPointerSize();
353 for (unsigned i = 0; i < PtrSize; ++i)
354 if (*(i + (uint8_t*)Loc))
355 return false;
356 return true;
358 #endif
360 int ExecutionEngine::runFunctionAsMain(Function *Fn,
361 const std::vector<std::string> &argv,
362 const char * const * envp) {
363 std::vector<GenericValue> GVArgs;
364 GenericValue GVArgc;
365 GVArgc.IntVal = APInt(32, argv.size());
367 // Check main() type
368 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
369 const FunctionType *FTy = Fn->getFunctionType();
370 const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
372 // Check the argument types.
373 if (NumArgs > 3)
374 report_fatal_error("Invalid number of arguments of main() supplied");
375 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
376 report_fatal_error("Invalid type for third argument of main() supplied");
377 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
378 report_fatal_error("Invalid type for second argument of main() supplied");
379 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
380 report_fatal_error("Invalid type for first argument of main() supplied");
381 if (!FTy->getReturnType()->isIntegerTy() &&
382 !FTy->getReturnType()->isVoidTy())
383 report_fatal_error("Invalid return type of main() supplied");
385 ArgvArray CArgv;
386 ArgvArray CEnv;
387 if (NumArgs) {
388 GVArgs.push_back(GVArgc); // Arg #0 = argc.
389 if (NumArgs > 1) {
390 // Arg #1 = argv.
391 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
392 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
393 "argv[0] was null after CreateArgv");
394 if (NumArgs > 2) {
395 std::vector<std::string> EnvVars;
396 for (unsigned i = 0; envp[i]; ++i)
397 EnvVars.push_back(envp[i]);
398 // Arg #2 = envp.
399 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
404 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
407 ExecutionEngine *ExecutionEngine::create(Module *M,
408 bool ForceInterpreter,
409 std::string *ErrorStr,
410 CodeGenOpt::Level OptLevel,
411 bool GVsWithCode) {
412 return EngineBuilder(M)
413 .setEngineKind(ForceInterpreter
414 ? EngineKind::Interpreter
415 : EngineKind::JIT)
416 .setErrorStr(ErrorStr)
417 .setOptLevel(OptLevel)
418 .setAllocateGVsWithCode(GVsWithCode)
419 .create();
422 ExecutionEngine *EngineBuilder::create() {
423 // Make sure we can resolve symbols in the program as well. The zero arg
424 // to the function tells DynamicLibrary to load the program, not a library.
425 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
426 return 0;
428 // If the user specified a memory manager but didn't specify which engine to
429 // create, we assume they only want the JIT, and we fail if they only want
430 // the interpreter.
431 if (JMM) {
432 if (WhichEngine & EngineKind::JIT)
433 WhichEngine = EngineKind::JIT;
434 else {
435 if (ErrorStr)
436 *ErrorStr = "Cannot create an interpreter with a memory manager.";
437 return 0;
441 // Unless the interpreter was explicitly selected or the JIT is not linked,
442 // try making a JIT.
443 if (WhichEngine & EngineKind::JIT) {
444 if (UseMCJIT && ExecutionEngine::MCJITCtor) {
445 ExecutionEngine *EE =
446 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
447 AllocateGVsWithCode, CMModel,
448 MArch, MCPU, MAttrs);
449 if (EE) return EE;
450 } else if (ExecutionEngine::JITCtor) {
451 ExecutionEngine *EE =
452 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
453 AllocateGVsWithCode, CMModel,
454 MArch, MCPU, MAttrs);
455 if (EE) return EE;
459 // If we can't make a JIT and we didn't request one specifically, try making
460 // an interpreter instead.
461 if (WhichEngine & EngineKind::Interpreter) {
462 if (ExecutionEngine::InterpCtor)
463 return ExecutionEngine::InterpCtor(M, ErrorStr);
464 if (ErrorStr)
465 *ErrorStr = "Interpreter has not been linked in.";
466 return 0;
469 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
470 if (ErrorStr)
471 *ErrorStr = "JIT has not been linked in.";
474 return 0;
477 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
478 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
479 return getPointerToFunction(F);
481 MutexGuard locked(lock);
482 if (void *P = EEState.getGlobalAddressMap(locked)[GV])
483 return P;
485 // Global variable might have been added since interpreter started.
486 if (GlobalVariable *GVar =
487 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
488 EmitGlobalVariable(GVar);
489 else
490 llvm_unreachable("Global hasn't had an address allocated yet!");
492 return EEState.getGlobalAddressMap(locked)[GV];
495 /// \brief Converts a Constant* into a GenericValue, including handling of
496 /// ConstantExpr values.
497 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
498 // If its undefined, return the garbage.
499 if (isa<UndefValue>(C)) {
500 GenericValue Result;
501 switch (C->getType()->getTypeID()) {
502 case Type::IntegerTyID:
503 case Type::X86_FP80TyID:
504 case Type::FP128TyID:
505 case Type::PPC_FP128TyID:
506 // Although the value is undefined, we still have to construct an APInt
507 // with the correct bit width.
508 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
509 break;
510 default:
511 break;
513 return Result;
516 // Otherwise, if the value is a ConstantExpr...
517 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
518 Constant *Op0 = CE->getOperand(0);
519 switch (CE->getOpcode()) {
520 case Instruction::GetElementPtr: {
521 // Compute the index
522 GenericValue Result = getConstantValue(Op0);
523 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
524 uint64_t Offset =
525 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
527 char* tmp = (char*) Result.PointerVal;
528 Result = PTOGV(tmp + Offset);
529 return Result;
531 case Instruction::Trunc: {
532 GenericValue GV = getConstantValue(Op0);
533 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
534 GV.IntVal = GV.IntVal.trunc(BitWidth);
535 return GV;
537 case Instruction::ZExt: {
538 GenericValue GV = getConstantValue(Op0);
539 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
540 GV.IntVal = GV.IntVal.zext(BitWidth);
541 return GV;
543 case Instruction::SExt: {
544 GenericValue GV = getConstantValue(Op0);
545 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
546 GV.IntVal = GV.IntVal.sext(BitWidth);
547 return GV;
549 case Instruction::FPTrunc: {
550 // FIXME long double
551 GenericValue GV = getConstantValue(Op0);
552 GV.FloatVal = float(GV.DoubleVal);
553 return GV;
555 case Instruction::FPExt:{
556 // FIXME long double
557 GenericValue GV = getConstantValue(Op0);
558 GV.DoubleVal = double(GV.FloatVal);
559 return GV;
561 case Instruction::UIToFP: {
562 GenericValue GV = getConstantValue(Op0);
563 if (CE->getType()->isFloatTy())
564 GV.FloatVal = float(GV.IntVal.roundToDouble());
565 else if (CE->getType()->isDoubleTy())
566 GV.DoubleVal = GV.IntVal.roundToDouble();
567 else if (CE->getType()->isX86_FP80Ty()) {
568 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
569 (void)apf.convertFromAPInt(GV.IntVal,
570 false,
571 APFloat::rmNearestTiesToEven);
572 GV.IntVal = apf.bitcastToAPInt();
574 return GV;
576 case Instruction::SIToFP: {
577 GenericValue GV = getConstantValue(Op0);
578 if (CE->getType()->isFloatTy())
579 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
580 else if (CE->getType()->isDoubleTy())
581 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
582 else if (CE->getType()->isX86_FP80Ty()) {
583 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
584 (void)apf.convertFromAPInt(GV.IntVal,
585 true,
586 APFloat::rmNearestTiesToEven);
587 GV.IntVal = apf.bitcastToAPInt();
589 return GV;
591 case Instruction::FPToUI: // double->APInt conversion handles sign
592 case Instruction::FPToSI: {
593 GenericValue GV = getConstantValue(Op0);
594 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
595 if (Op0->getType()->isFloatTy())
596 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
597 else if (Op0->getType()->isDoubleTy())
598 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
599 else if (Op0->getType()->isX86_FP80Ty()) {
600 APFloat apf = APFloat(GV.IntVal);
601 uint64_t v;
602 bool ignored;
603 (void)apf.convertToInteger(&v, BitWidth,
604 CE->getOpcode()==Instruction::FPToSI,
605 APFloat::rmTowardZero, &ignored);
606 GV.IntVal = v; // endian?
608 return GV;
610 case Instruction::PtrToInt: {
611 GenericValue GV = getConstantValue(Op0);
612 uint32_t PtrWidth = TD->getPointerSizeInBits();
613 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
614 return GV;
616 case Instruction::IntToPtr: {
617 GenericValue GV = getConstantValue(Op0);
618 uint32_t PtrWidth = TD->getPointerSizeInBits();
619 if (PtrWidth != GV.IntVal.getBitWidth())
620 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
621 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
622 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
623 return GV;
625 case Instruction::BitCast: {
626 GenericValue GV = getConstantValue(Op0);
627 const Type* DestTy = CE->getType();
628 switch (Op0->getType()->getTypeID()) {
629 default: llvm_unreachable("Invalid bitcast operand");
630 case Type::IntegerTyID:
631 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
632 if (DestTy->isFloatTy())
633 GV.FloatVal = GV.IntVal.bitsToFloat();
634 else if (DestTy->isDoubleTy())
635 GV.DoubleVal = GV.IntVal.bitsToDouble();
636 break;
637 case Type::FloatTyID:
638 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
639 GV.IntVal = APInt::floatToBits(GV.FloatVal);
640 break;
641 case Type::DoubleTyID:
642 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
643 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
644 break;
645 case Type::PointerTyID:
646 assert(DestTy->isPointerTy() && "Invalid bitcast");
647 break; // getConstantValue(Op0) above already converted it
649 return GV;
651 case Instruction::Add:
652 case Instruction::FAdd:
653 case Instruction::Sub:
654 case Instruction::FSub:
655 case Instruction::Mul:
656 case Instruction::FMul:
657 case Instruction::UDiv:
658 case Instruction::SDiv:
659 case Instruction::URem:
660 case Instruction::SRem:
661 case Instruction::And:
662 case Instruction::Or:
663 case Instruction::Xor: {
664 GenericValue LHS = getConstantValue(Op0);
665 GenericValue RHS = getConstantValue(CE->getOperand(1));
666 GenericValue GV;
667 switch (CE->getOperand(0)->getType()->getTypeID()) {
668 default: llvm_unreachable("Bad add type!");
669 case Type::IntegerTyID:
670 switch (CE->getOpcode()) {
671 default: llvm_unreachable("Invalid integer opcode");
672 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
673 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
674 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
675 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
676 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
677 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
678 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
679 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
680 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
681 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
683 break;
684 case Type::FloatTyID:
685 switch (CE->getOpcode()) {
686 default: llvm_unreachable("Invalid float opcode");
687 case Instruction::FAdd:
688 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
689 case Instruction::FSub:
690 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
691 case Instruction::FMul:
692 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
693 case Instruction::FDiv:
694 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
695 case Instruction::FRem:
696 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
698 break;
699 case Type::DoubleTyID:
700 switch (CE->getOpcode()) {
701 default: llvm_unreachable("Invalid double opcode");
702 case Instruction::FAdd:
703 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
704 case Instruction::FSub:
705 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
706 case Instruction::FMul:
707 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
708 case Instruction::FDiv:
709 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
710 case Instruction::FRem:
711 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
713 break;
714 case Type::X86_FP80TyID:
715 case Type::PPC_FP128TyID:
716 case Type::FP128TyID: {
717 APFloat apfLHS = APFloat(LHS.IntVal);
718 switch (CE->getOpcode()) {
719 default: llvm_unreachable("Invalid long double opcode");
720 case Instruction::FAdd:
721 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
722 GV.IntVal = apfLHS.bitcastToAPInt();
723 break;
724 case Instruction::FSub:
725 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
726 GV.IntVal = apfLHS.bitcastToAPInt();
727 break;
728 case Instruction::FMul:
729 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
730 GV.IntVal = apfLHS.bitcastToAPInt();
731 break;
732 case Instruction::FDiv:
733 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
734 GV.IntVal = apfLHS.bitcastToAPInt();
735 break;
736 case Instruction::FRem:
737 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
738 GV.IntVal = apfLHS.bitcastToAPInt();
739 break;
742 break;
744 return GV;
746 default:
747 break;
750 SmallString<256> Msg;
751 raw_svector_ostream OS(Msg);
752 OS << "ConstantExpr not handled: " << *CE;
753 report_fatal_error(OS.str());
756 // Otherwise, we have a simple constant.
757 GenericValue Result;
758 switch (C->getType()->getTypeID()) {
759 case Type::FloatTyID:
760 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
761 break;
762 case Type::DoubleTyID:
763 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
764 break;
765 case Type::X86_FP80TyID:
766 case Type::FP128TyID:
767 case Type::PPC_FP128TyID:
768 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
769 break;
770 case Type::IntegerTyID:
771 Result.IntVal = cast<ConstantInt>(C)->getValue();
772 break;
773 case Type::PointerTyID:
774 if (isa<ConstantPointerNull>(C))
775 Result.PointerVal = 0;
776 else if (const Function *F = dyn_cast<Function>(C))
777 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
778 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
779 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
780 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
781 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
782 BA->getBasicBlock())));
783 else
784 llvm_unreachable("Unknown constant pointer type!");
785 break;
786 default:
787 SmallString<256> Msg;
788 raw_svector_ostream OS(Msg);
789 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
790 report_fatal_error(OS.str());
793 return Result;
796 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
797 /// with the integer held in IntVal.
798 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
799 unsigned StoreBytes) {
800 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
801 uint8_t *Src = (uint8_t *)IntVal.getRawData();
803 if (sys::isLittleEndianHost()) {
804 // Little-endian host - the source is ordered from LSB to MSB. Order the
805 // destination from LSB to MSB: Do a straight copy.
806 memcpy(Dst, Src, StoreBytes);
807 } else {
808 // Big-endian host - the source is an array of 64 bit words ordered from
809 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
810 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
811 while (StoreBytes > sizeof(uint64_t)) {
812 StoreBytes -= sizeof(uint64_t);
813 // May not be aligned so use memcpy.
814 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
815 Src += sizeof(uint64_t);
818 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
822 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
823 GenericValue *Ptr, const Type *Ty) {
824 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
826 switch (Ty->getTypeID()) {
827 case Type::IntegerTyID:
828 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
829 break;
830 case Type::FloatTyID:
831 *((float*)Ptr) = Val.FloatVal;
832 break;
833 case Type::DoubleTyID:
834 *((double*)Ptr) = Val.DoubleVal;
835 break;
836 case Type::X86_FP80TyID:
837 memcpy(Ptr, Val.IntVal.getRawData(), 10);
838 break;
839 case Type::PointerTyID:
840 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
841 if (StoreBytes != sizeof(PointerTy))
842 memset(Ptr, 0, StoreBytes);
844 *((PointerTy*)Ptr) = Val.PointerVal;
845 break;
846 default:
847 dbgs() << "Cannot store value of type " << *Ty << "!\n";
850 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
851 // Host and target are different endian - reverse the stored bytes.
852 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
855 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
856 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
857 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
858 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
859 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
861 if (sys::isLittleEndianHost())
862 // Little-endian host - the destination must be ordered from LSB to MSB.
863 // The source is ordered from LSB to MSB: Do a straight copy.
864 memcpy(Dst, Src, LoadBytes);
865 else {
866 // Big-endian - the destination is an array of 64 bit words ordered from
867 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
868 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
869 // a word.
870 while (LoadBytes > sizeof(uint64_t)) {
871 LoadBytes -= sizeof(uint64_t);
872 // May not be aligned so use memcpy.
873 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
874 Dst += sizeof(uint64_t);
877 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
881 /// FIXME: document
883 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
884 GenericValue *Ptr,
885 const Type *Ty) {
886 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
888 switch (Ty->getTypeID()) {
889 case Type::IntegerTyID:
890 // An APInt with all words initially zero.
891 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
892 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
893 break;
894 case Type::FloatTyID:
895 Result.FloatVal = *((float*)Ptr);
896 break;
897 case Type::DoubleTyID:
898 Result.DoubleVal = *((double*)Ptr);
899 break;
900 case Type::PointerTyID:
901 Result.PointerVal = *((PointerTy*)Ptr);
902 break;
903 case Type::X86_FP80TyID: {
904 // This is endian dependent, but it will only work on x86 anyway.
905 // FIXME: Will not trap if loading a signaling NaN.
906 uint64_t y[2];
907 memcpy(y, Ptr, 10);
908 Result.IntVal = APInt(80, 2, y);
909 break;
911 default:
912 SmallString<256> Msg;
913 raw_svector_ostream OS(Msg);
914 OS << "Cannot load value of type " << *Ty << "!";
915 report_fatal_error(OS.str());
919 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
920 DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
921 DEBUG(Init->dump());
922 if (isa<UndefValue>(Init)) {
923 return;
924 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
925 unsigned ElementSize =
926 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
927 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
928 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
929 return;
930 } else if (isa<ConstantAggregateZero>(Init)) {
931 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
932 return;
933 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
934 unsigned ElementSize =
935 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
936 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
937 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
938 return;
939 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
940 const StructLayout *SL =
941 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
942 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
943 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
944 return;
945 } else if (Init->getType()->isFirstClassType()) {
946 GenericValue Val = getConstantValue(Init);
947 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
948 return;
951 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
952 llvm_unreachable("Unknown constant type to initialize memory with!");
955 /// EmitGlobals - Emit all of the global variables to memory, storing their
956 /// addresses into GlobalAddress. This must make sure to copy the contents of
957 /// their initializers into the memory.
958 void ExecutionEngine::emitGlobals() {
959 // Loop over all of the global variables in the program, allocating the memory
960 // to hold them. If there is more than one module, do a prepass over globals
961 // to figure out how the different modules should link together.
962 std::map<std::pair<std::string, const Type*>,
963 const GlobalValue*> LinkedGlobalsMap;
965 if (Modules.size() != 1) {
966 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
967 Module &M = *Modules[m];
968 for (Module::const_global_iterator I = M.global_begin(),
969 E = M.global_end(); I != E; ++I) {
970 const GlobalValue *GV = I;
971 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
972 GV->hasAppendingLinkage() || !GV->hasName())
973 continue;// Ignore external globals and globals with internal linkage.
975 const GlobalValue *&GVEntry =
976 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
978 // If this is the first time we've seen this global, it is the canonical
979 // version.
980 if (!GVEntry) {
981 GVEntry = GV;
982 continue;
985 // If the existing global is strong, never replace it.
986 if (GVEntry->hasExternalLinkage() ||
987 GVEntry->hasDLLImportLinkage() ||
988 GVEntry->hasDLLExportLinkage())
989 continue;
991 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
992 // symbol. FIXME is this right for common?
993 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
994 GVEntry = GV;
999 std::vector<const GlobalValue*> NonCanonicalGlobals;
1000 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1001 Module &M = *Modules[m];
1002 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1003 I != E; ++I) {
1004 // In the multi-module case, see what this global maps to.
1005 if (!LinkedGlobalsMap.empty()) {
1006 if (const GlobalValue *GVEntry =
1007 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1008 // If something else is the canonical global, ignore this one.
1009 if (GVEntry != &*I) {
1010 NonCanonicalGlobals.push_back(I);
1011 continue;
1016 if (!I->isDeclaration()) {
1017 addGlobalMapping(I, getMemoryForGV(I));
1018 } else {
1019 // External variable reference. Try to use the dynamic loader to
1020 // get a pointer to it.
1021 if (void *SymAddr =
1022 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1023 addGlobalMapping(I, SymAddr);
1024 else {
1025 report_fatal_error("Could not resolve external global address: "
1026 +I->getName());
1031 // If there are multiple modules, map the non-canonical globals to their
1032 // canonical location.
1033 if (!NonCanonicalGlobals.empty()) {
1034 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1035 const GlobalValue *GV = NonCanonicalGlobals[i];
1036 const GlobalValue *CGV =
1037 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1038 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1039 assert(Ptr && "Canonical global wasn't codegen'd!");
1040 addGlobalMapping(GV, Ptr);
1044 // Now that all of the globals are set up in memory, loop through them all
1045 // and initialize their contents.
1046 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1047 I != E; ++I) {
1048 if (!I->isDeclaration()) {
1049 if (!LinkedGlobalsMap.empty()) {
1050 if (const GlobalValue *GVEntry =
1051 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1052 if (GVEntry != &*I) // Not the canonical variable.
1053 continue;
1055 EmitGlobalVariable(I);
1061 // EmitGlobalVariable - This method emits the specified global variable to the
1062 // address specified in GlobalAddresses, or allocates new memory if it's not
1063 // already in the map.
1064 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1065 void *GA = getPointerToGlobalIfAvailable(GV);
1067 if (GA == 0) {
1068 // If it's not already specified, allocate memory for the global.
1069 GA = getMemoryForGV(GV);
1070 addGlobalMapping(GV, GA);
1073 // Don't initialize if it's thread local, let the client do it.
1074 if (!GV->isThreadLocal())
1075 InitializeMemory(GV->getInitializer(), GA);
1077 const Type *ElTy = GV->getType()->getElementType();
1078 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1079 NumInitBytes += (unsigned)GVSize;
1080 ++NumGlobals;
1083 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1084 : EE(EE), GlobalAddressMap(this) {
1087 sys::Mutex *
1088 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1089 return &EES->EE.lock;
1092 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1093 const GlobalValue *Old) {
1094 void *OldVal = EES->GlobalAddressMap.lookup(Old);
1095 EES->GlobalAddressReverseMap.erase(OldVal);
1098 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1099 const GlobalValue *,
1100 const GlobalValue *) {
1101 assert(false && "The ExecutionEngine doesn't know how to handle a"
1102 " RAUW on a value it has a global mapping for.");