1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
6 <title>Source Level Debugging with LLVM
</title>
7 <link rel=
"stylesheet" href=
"llvm.css" type=
"text/css">
11 <div class=
"doc_title">Source Level Debugging with LLVM
</div>
13 <table class=
"layout" style=
"width:100%">
17 <li><a href=
"#introduction">Introduction
</a>
19 <li><a href=
"#phil">Philosophy behind LLVM debugging information
</a></li>
20 <li><a href=
"#consumers">Debug information consumers
</a></li>
21 <li><a href=
"#debugopt">Debugging optimized code
</a></li>
23 <li><a href=
"#format">Debugging information format
</a>
25 <li><a href=
"#debug_info_descriptors">Debug information descriptors
</a>
27 <li><a href=
"#format_compile_units">Compile unit descriptors
</a></li>
28 <li><a href=
"#format_files">File descriptors
</a></li>
29 <li><a href=
"#format_global_variables">Global variable descriptors
</a></li>
30 <li><a href=
"#format_subprograms">Subprogram descriptors
</a></li>
31 <li><a href=
"#format_blocks">Block descriptors
</a></li>
32 <li><a href=
"#format_basic_type">Basic type descriptors
</a></li>
33 <li><a href=
"#format_derived_type">Derived type descriptors
</a></li>
34 <li><a href=
"#format_composite_type">Composite type descriptors
</a></li>
35 <li><a href=
"#format_subrange">Subrange descriptors
</a></li>
36 <li><a href=
"#format_enumeration">Enumerator descriptors
</a></li>
37 <li><a href=
"#format_variables">Local variables
</a></li>
39 <li><a href=
"#format_common_intrinsics">Debugger intrinsic functions
</a>
41 <li><a href=
"#format_common_declare">llvm.dbg.declare
</a></li>
42 <li><a href=
"#format_common_value">llvm.dbg.value
</a></li>
45 <li><a href=
"#format_common_lifetime">Object lifetimes and scoping
</a></li>
46 <li><a href=
"#ccxx_frontend">C/C++ front-end specific debug information
</a>
48 <li><a href=
"#ccxx_compile_units">C/C++ source file information
</a></li>
49 <li><a href=
"#ccxx_global_variable">C/C++ global variable information
</a></li>
50 <li><a href=
"#ccxx_subprogram">C/C++ function information
</a></li>
51 <li><a href=
"#ccxx_basic_types">C/C++ basic types
</a></li>
52 <li><a href=
"#ccxx_derived_types">C/C++ derived types
</a></li>
53 <li><a href=
"#ccxx_composite_types">C/C++ struct/union types
</a></li>
54 <li><a href=
"#ccxx_enumeration_types">C/C++ enumeration types
</a></li>
59 <img src=
"img/venusflytrap.jpg" alt=
"A leafy and green bug eater" width=
"247"
64 <div class=
"doc_author">
65 <p>Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
66 and
<a href=
"mailto:jlaskey@mac.com">Jim Laskey
</a></p>
70 <!-- *********************************************************************** -->
71 <div class=
"doc_section"><a name=
"introduction">Introduction
</a></div>
72 <!-- *********************************************************************** -->
74 <div class=
"doc_text">
76 <p>This document is the central repository for all information pertaining to
77 debug information in LLVM. It describes the
<a href=
"#format">actual format
78 that the LLVM debug information
</a> takes, which is useful for those
79 interested in creating front-ends or dealing directly with the information.
80 Further, this document provides specific examples of what debug information
81 for C/C++ looks like.
</p>
85 <!-- ======================================================================= -->
86 <div class=
"doc_subsection">
87 <a name=
"phil">Philosophy behind LLVM debugging information
</a>
90 <div class=
"doc_text">
92 <p>The idea of the LLVM debugging information is to capture how the important
93 pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
94 Several design aspects have shaped the solution that appears here. The
95 important ones are:
</p>
98 <li>Debugging information should have very little impact on the rest of the
99 compiler. No transformations, analyses, or code generators should need to
100 be modified because of debugging information.
</li>
102 <li>LLVM optimizations should interact in
<a href=
"#debugopt">well-defined and
103 easily described ways
</a> with the debugging information.
</li>
105 <li>Because LLVM is designed to support arbitrary programming languages,
106 LLVM-to-LLVM tools should not need to know anything about the semantics of
107 the source-level-language.
</li>
109 <li>Source-level languages are often
<b>widely
</b> different from one another.
110 LLVM should not put any restrictions of the flavor of the source-language,
111 and the debugging information should work with any language.
</li>
113 <li>With code generator support, it should be possible to use an LLVM compiler
114 to compile a program to native machine code and standard debugging
115 formats. This allows compatibility with traditional machine-code level
116 debuggers, like GDB or DBX.
</li>
119 <p>The approach used by the LLVM implementation is to use a small set
120 of
<a href=
"#format_common_intrinsics">intrinsic functions
</a> to define a
121 mapping between LLVM program objects and the source-level objects. The
122 description of the source-level program is maintained in LLVM metadata
123 in an
<a href=
"#ccxx_frontend">implementation-defined format
</a>
124 (the C/C++ front-end currently uses working draft
7 of
125 the
<a href=
"http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF
3
128 <p>When a program is being debugged, a debugger interacts with the user and
129 turns the stored debug information into source-language specific information.
130 As such, a debugger must be aware of the source-language, and is thus tied to
131 a specific language or family of languages.
</p>
135 <!-- ======================================================================= -->
136 <div class=
"doc_subsection">
137 <a name=
"consumers">Debug information consumers
</a>
140 <div class=
"doc_text">
142 <p>The role of debug information is to provide meta information normally
143 stripped away during the compilation process. This meta information provides
144 an LLVM user a relationship between generated code and the original program
147 <p>Currently, debug information is consumed by DwarfDebug to produce dwarf
148 information used by the gdb debugger. Other targets could use the same
149 information to produce stabs or other debug forms.
</p>
151 <p>It would also be reasonable to use debug information to feed profiling tools
152 for analysis of generated code, or, tools for reconstructing the original
153 source from generated code.
</p>
155 <p>TODO - expound a bit more.
</p>
159 <!-- ======================================================================= -->
160 <div class=
"doc_subsection">
161 <a name=
"debugopt">Debugging optimized code
</a>
164 <div class=
"doc_text">
166 <p>An extremely high priority of LLVM debugging information is to make it
167 interact well with optimizations and analysis. In particular, the LLVM debug
168 information provides the following guarantees:
</p>
171 <li>LLVM debug information
<b>always provides information to accurately read
172 the source-level state of the program
</b>, regardless of which LLVM
173 optimizations have been run, and without any modification to the
174 optimizations themselves. However, some optimizations may impact the
175 ability to modify the current state of the program with a debugger, such
176 as setting program variables, or calling functions that have been
179 <li>LLVM optimizations gracefully interact with debugging information. If
180 they are not aware of debug information, they are automatically disabled
181 as necessary in the cases that would invalidate the debug info. This
182 retains the LLVM features, making it easy to write new
183 transformations.
</li>
185 <li>As desired, LLVM optimizations can be upgraded to be aware of the LLVM
186 debugging information, allowing them to update the debugging information
187 as they perform aggressive optimizations. This means that, with effort,
188 the LLVM optimizers could optimize debug code just as well as non-debug
191 <li>LLVM debug information does not prevent many important optimizations from
192 happening (for example inlining, basic block reordering/merging/cleanup,
193 tail duplication, etc), further reducing the amount of the compiler that
194 eventually is
"aware" of debugging information.
</li>
196 <li>LLVM debug information is automatically optimized along with the rest of
197 the program, using existing facilities. For example, duplicate
198 information is automatically merged by the linker, and unused information
199 is automatically removed.
</li>
202 <p>Basically, the debug information allows you to compile a program with
203 "<tt>-O0 -g</tt>" and get full debug information, allowing you to arbitrarily
204 modify the program as it executes from a debugger. Compiling a program with
205 "<tt>-O3 -g</tt>" gives you full debug information that is always available
206 and accurate for reading (e.g., you get accurate stack traces despite tail
207 call elimination and inlining), but you might lose the ability to modify the
208 program and call functions where were optimized out of the program, or
209 inlined away completely.
</p>
211 <p><a href=
"TestingGuide.html#quicktestsuite">LLVM test suite
</a> provides a
212 framework to test optimizer's handling of debugging information. It can be
215 <div class=
"doc_code">
217 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
222 <p>This will test impact of debugging information on optimization passes. If
223 debugging information influences optimization passes then it will be reported
224 as a failure. See
<a href=
"TestingGuide.html">TestingGuide
</a> for more
225 information on LLVM test infrastructure and how to run various tests.
</p>
229 <!-- *********************************************************************** -->
230 <div class=
"doc_section">
231 <a name=
"format">Debugging information format
</a>
233 <!-- *********************************************************************** -->
235 <div class=
"doc_text">
237 <p>LLVM debugging information has been carefully designed to make it possible
238 for the optimizer to optimize the program and debugging information without
239 necessarily having to know anything about debugging information. In
240 particular, the use of metadata avoids duplicated debugging information from
241 the beginning, and the global dead code elimination pass automatically
242 deletes debugging information for a function if it decides to delete the
245 <p>To do this, most of the debugging information (descriptors for types,
246 variables, functions, source files, etc) is inserted by the language
247 front-end in the form of LLVM metadata.
</p>
249 <p>Debug information is designed to be agnostic about the target debugger and
250 debugging information representation (e.g. DWARF/Stabs/etc). It uses a
251 generic pass to decode the information that represents variables, types,
252 functions, namespaces, etc: this allows for arbitrary source-language
253 semantics and type-systems to be used, as long as there is a module
254 written for the target debugger to interpret the information.
</p>
256 <p>To provide basic functionality, the LLVM debugger does have to make some
257 assumptions about the source-level language being debugged, though it keeps
258 these to a minimum. The only common features that the LLVM debugger assumes
259 exist are
<a href=
"#format_files">source files
</a>,
260 and
<a href=
"#format_global_variables">program objects
</a>. These abstract
261 objects are used by a debugger to form stack traces, show information about
262 local variables, etc.
</p>
264 <p>This section of the documentation first describes the representation aspects
265 common to any source-language. The
<a href=
"#ccxx_frontend">next section
</a>
266 describes the data layout conventions used by the C and C++ front-ends.
</p>
270 <!-- ======================================================================= -->
271 <div class=
"doc_subsection">
272 <a name=
"debug_info_descriptors">Debug information descriptors
</a>
275 <div class=
"doc_text">
277 <p>In consideration of the complexity and volume of debug information, LLVM
278 provides a specification for well formed debug descriptors.
</p>
280 <p>Consumers of LLVM debug information expect the descriptors for program
281 objects to start in a canonical format, but the descriptors can include
282 additional information appended at the end that is source-language
283 specific. All LLVM debugging information is versioned, allowing backwards
284 compatibility in the case that the core structures need to change in some
285 way. Also, all debugging information objects start with a tag to indicate
286 what type of object it is. The source-language is allowed to define its own
287 objects, by using unreserved tag numbers. We recommend using with tags in
288 the range
0x1000 through
0x2000 (there is a defined enum DW_TAG_user_base =
291 <p>The fields of debug descriptors used internally by LLVM
292 are restricted to only the simple data types
<tt>i32
</tt>,
<tt>i1
</tt>,
293 <tt>float
</tt>,
<tt>double
</tt>,
<tt>mdstring
</tt> and
<tt>mdnode
</tt>.
</p>
295 <div class=
"doc_code">
304 <p><a name=
"LLVMDebugVersion">The first field of a descriptor is always an
305 <tt>i32
</tt> containing a tag value identifying the content of the
306 descriptor. The remaining fields are specific to the descriptor. The values
307 of tags are loosely bound to the tag values of DWARF information entries.
308 However, that does not restrict the use of the information supplied to DWARF
309 targets. To facilitate versioning of debug information, the tag is augmented
310 with the current debug version (LLVMDebugVersion =
8 << 16 or
0x80000 or
313 <p>The details of the various descriptors follow.
</p>
317 <!-- ======================================================================= -->
318 <div class=
"doc_subsubsection">
319 <a name=
"format_compile_units">Compile unit descriptors
</a>
322 <div class=
"doc_text">
324 <div class=
"doc_code">
327 i32, ;; Tag =
17 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a>
328 ;; (DW_TAG_compile_unit)
329 i32, ;; Unused field.
330 i32, ;; DWARF language identifier (ex. DW_LANG_C89)
331 metadata, ;; Source file name
332 metadata, ;; Source file directory (includes trailing slash)
333 metadata ;; Producer (ex.
"4.0.1 LLVM (LLVM research group)")
334 i1, ;; True if this is a main compile unit.
335 i1, ;; True if this is optimized.
337 i32 ;; Runtime version
342 <p>These descriptors contain a source language ID for the file (we use the DWARF
343 3.0 ID numbers, such as
<tt>DW_LANG_C89
</tt>,
<tt>DW_LANG_C_plus_plus
</tt>,
344 <tt>DW_LANG_Cobol74
</tt>, etc), three strings describing the filename,
345 working directory of the compiler, and an identifier string for the compiler
346 that produced it.
</p>
348 <p>Compile unit descriptors provide the root context for objects declared in a
349 specific compilation unit. File descriptors are defined using this context.
</p>
353 <!-- ======================================================================= -->
354 <div class=
"doc_subsubsection">
355 <a name=
"format_files">File descriptors
</a>
358 <div class=
"doc_text">
360 <div class=
"doc_code">
363 i32, ;; Tag =
41 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a>
364 ;; (DW_TAG_file_type)
365 metadata, ;; Source file name
366 metadata, ;; Source file directory (includes trailing slash)
367 metadata ;; Reference to compile unit where defined
372 <p>These descriptors contain information for a file. Global variables and top
373 level functions would be defined using this context.k File descriptors also
374 provide context for source line correspondence.
</p>
376 <p>Each input file is encoded as a separate file descriptor in LLVM debugging
377 information output. Each file descriptor would be defined using a
382 <!-- ======================================================================= -->
383 <div class=
"doc_subsubsection">
384 <a name=
"format_global_variables">Global variable descriptors
</a>
387 <div class=
"doc_text">
389 <div class=
"doc_code">
392 i32, ;; Tag =
52 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a>
394 i32, ;; Unused field.
395 metadata, ;; Reference to context descriptor
397 metadata, ;; Display name (fully qualified C++ name)
398 metadata, ;; MIPS linkage name (for C++)
399 metadata, ;; Reference to file where defined
400 i32, ;; Line number where defined
401 metadata, ;; Reference to type descriptor
402 i1, ;; True if the global is local to compile unit (static)
403 i1, ;; True if the global is defined in the compile unit (not extern)
404 {}* ;; Reference to the global variable
409 <p>These descriptors provide debug information about globals variables. The
410 provide details such as name, type and where the variable is defined. All
411 global variables are collected by named metadata
<tt>!llvm.dbg.gv
</tt>.
</p>
415 <!-- ======================================================================= -->
416 <div class=
"doc_subsubsection">
417 <a name=
"format_subprograms">Subprogram descriptors
</a>
420 <div class=
"doc_text">
422 <div class=
"doc_code">
425 i32, ;; Tag =
46 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a>
426 ;; (DW_TAG_subprogram)
427 i32, ;; Unused field.
428 metadata, ;; Reference to context descriptor
430 metadata, ;; Display name (fully qualified C++ name)
431 metadata, ;; MIPS linkage name (for C++)
432 metadata, ;; Reference to file where defined
433 i32, ;; Line number where defined
434 metadata, ;; Reference to type descriptor
435 i1, ;; True if the global is local to compile unit (static)
436 i1 ;; True if the global is defined in the compile unit (not extern)
437 i32 ;; Virtuality, e.g. dwarf::DW_VIRTUALITY__virtual
438 i32 ;; Index into a virtual function
439 metadata, ;; indicates which base type contains the vtable pointer for the
443 Function *;; Pointer to LLVM function
448 <p>These descriptors provide debug information about functions, methods and
449 subprograms. They provide details such as name, return types and the source
450 location where the subprogram is defined.
451 All subprogram descriptors are collected by a named metadata
452 <tt>!llvm.dbg.sp
</tt>.
457 <!-- ======================================================================= -->
458 <div class=
"doc_subsubsection">
459 <a name=
"format_blocks">Block descriptors
</a>
462 <div class=
"doc_text">
464 <div class=
"doc_code">
467 i32, ;; Tag =
11 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a> (DW_TAG_lexical_block)
468 metadata,;; Reference to context descriptor
470 i32, ;; Column number
471 metadata,;; Reference to source file
472 i32 ;; Unique ID to identify blocks from a template function
477 <p>These descriptors provide debug information about nested blocks within a
478 subprogram. The line number and column numbers are used to dinstinguish
479 two lexical blocks at same depth.
</p>
483 <!-- ======================================================================= -->
484 <div class=
"doc_subsubsection">
485 <a name=
"format_basic_type">Basic type descriptors
</a>
488 <div class=
"doc_text">
490 <div class=
"doc_code">
493 i32, ;; Tag =
36 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a>
494 ;; (DW_TAG_base_type)
495 metadata, ;; Reference to context (typically a compile unit)
496 metadata, ;; Name (may be
"" for anonymous types)
497 metadata, ;; Reference to file where defined (may be NULL)
498 i32, ;; Line number where defined (may be
0)
500 i64, ;; Alignment in bits
501 i64, ;; Offset in bits
503 i32 ;; DWARF type encoding
508 <p>These descriptors define primitive types used in the code. Example int, bool
509 and float. The context provides the scope of the type, which is usually the
510 top level. Since basic types are not usually user defined the compile unit
511 and line number can be left as NULL and
0. The size, alignment and offset
512 are expressed in bits and can be
64 bit values. The alignment is used to
513 round the offset when embedded in a
514 <a href=
"#format_composite_type">composite type
</a> (example to keep float
515 doubles on
64 bit boundaries.) The offset is the bit offset if embedded in
516 a
<a href=
"#format_composite_type">composite type
</a>.
</p>
518 <p>The type encoding provides the details of the type. The values are typically
519 one of the following:
</p>
521 <div class=
"doc_code">
527 DW_ATE_signed_char =
6
529 DW_ATE_unsigned_char =
8
535 <!-- ======================================================================= -->
536 <div class=
"doc_subsubsection">
537 <a name=
"format_derived_type">Derived type descriptors
</a>
540 <div class=
"doc_text">
542 <div class=
"doc_code">
545 i32, ;; Tag (see below)
546 metadata, ;; Reference to context
547 metadata, ;; Name (may be
"" for anonymous types)
548 metadata, ;; Reference to file where defined (may be NULL)
549 i32, ;; Line number where defined (may be
0)
551 i64, ;; Alignment in bits
552 i64, ;; Offset in bits
553 metadata ;; Reference to type derived from
558 <p>These descriptors are used to define types derived from other types. The
559 value of the tag varies depending on the meaning. The following are possible
562 <div class=
"doc_code">
564 DW_TAG_formal_parameter =
5
566 DW_TAG_pointer_type =
15
567 DW_TAG_reference_type =
16
569 DW_TAG_const_type =
38
570 DW_TAG_volatile_type =
53
571 DW_TAG_restrict_type =
55
575 <p><tt>DW_TAG_member
</tt> is used to define a member of
576 a
<a href=
"#format_composite_type">composite type
</a>
577 or
<a href=
"#format_subprograms">subprogram
</a>. The type of the member is
578 the
<a href=
"#format_derived_type">derived
579 type
</a>.
<tt>DW_TAG_formal_parameter
</tt> is used to define a member which
580 is a formal argument of a subprogram.
</p>
582 <p><tt>DW_TAG_typedef
</tt> is used to provide a name for the derived type.
</p>
584 <p><tt>DW_TAG_pointer_type
</tt>,
<tt>DW_TAG_reference_type
</tt>,
585 <tt>DW_TAG_const_type
</tt>,
<tt>DW_TAG_volatile_type
</tt>
586 and
<tt>DW_TAG_restrict_type
</tt> are used to qualify
587 the
<a href=
"#format_derived_type">derived type
</a>.
</p>
589 <p><a href=
"#format_derived_type">Derived type
</a> location can be determined
590 from the compile unit and line number. The size, alignment and offset are
591 expressed in bits and can be
64 bit values. The alignment is used to round
592 the offset when embedded in a
<a href=
"#format_composite_type">composite
593 type
</a> (example to keep float doubles on
64 bit boundaries.) The offset is
594 the bit offset if embedded in a
<a href=
"#format_composite_type">composite
597 <p>Note that the
<tt>void *
</tt> type is expressed as a type derived from NULL.
602 <!-- ======================================================================= -->
603 <div class=
"doc_subsubsection">
604 <a name=
"format_composite_type">Composite type descriptors
</a>
607 <div class=
"doc_text">
609 <div class=
"doc_code">
612 i32, ;; Tag (see below)
613 metadata, ;; Reference to context
614 metadata, ;; Name (may be
"" for anonymous types)
615 metadata, ;; Reference to file where defined (may be NULL)
616 i32, ;; Line number where defined (may be
0)
618 i64, ;; Alignment in bits
619 i64, ;; Offset in bits
621 metadata, ;; Reference to type derived from
622 metadata, ;; Reference to array of member descriptors
623 i32 ;; Runtime languages
628 <p>These descriptors are used to define types that are composed of
0 or more
629 elements. The value of the tag varies depending on the meaning. The following
630 are possible tag values:
</p>
632 <div class=
"doc_code">
634 DW_TAG_array_type =
1
635 DW_TAG_enumeration_type =
4
636 DW_TAG_structure_type =
19
637 DW_TAG_union_type =
23
638 DW_TAG_vector_type =
259
639 DW_TAG_subroutine_type =
21
640 DW_TAG_inheritance =
28
644 <p>The vector flag indicates that an array type is a native packed vector.
</p>
646 <p>The members of array types (tag =
<tt>DW_TAG_array_type
</tt>) or vector types
647 (tag =
<tt>DW_TAG_vector_type
</tt>) are
<a href=
"#format_subrange">subrange
648 descriptors
</a>, each representing the range of subscripts at that level of
651 <p>The members of enumeration types (tag =
<tt>DW_TAG_enumeration_type
</tt>) are
652 <a href=
"#format_enumeration">enumerator descriptors
</a>, each representing
653 the definition of enumeration value for the set. All enumeration type
654 descriptors are collected by named metadata
<tt>!llvm.dbg.enum
</tt>.
</p>
656 <p>The members of structure (tag =
<tt>DW_TAG_structure_type
</tt>) or union (tag
657 =
<tt>DW_TAG_union_type
</tt>) types are any one of
658 the
<a href=
"#format_basic_type">basic
</a>,
659 <a href=
"#format_derived_type">derived
</a>
660 or
<a href=
"#format_composite_type">composite
</a> type descriptors, each
661 representing a field member of the structure or union.
</p>
663 <p>For C++ classes (tag =
<tt>DW_TAG_structure_type
</tt>), member descriptors
664 provide information about base classes, static members and member
665 functions. If a member is a
<a href=
"#format_derived_type">derived type
666 descriptor
</a> and has a tag of
<tt>DW_TAG_inheritance
</tt>, then the type
667 represents a base class. If the member of is
668 a
<a href=
"#format_global_variables">global variable descriptor
</a> then it
669 represents a static member. And, if the member is
670 a
<a href=
"#format_subprograms">subprogram descriptor
</a> then it represents
671 a member function. For static members and member
672 functions,
<tt>getName()
</tt> returns the members link or the C++ mangled
673 name.
<tt>getDisplayName()
</tt> the simplied version of the name.
</p>
675 <p>The first member of subroutine (tag =
<tt>DW_TAG_subroutine_type
</tt>) type
676 elements is the return type for the subroutine. The remaining elements are
677 the formal arguments to the subroutine.
</p>
679 <p><a href=
"#format_composite_type">Composite type
</a> location can be
680 determined from the compile unit and line number. The size, alignment and
681 offset are expressed in bits and can be
64 bit values. The alignment is used
682 to round the offset when embedded in
683 a
<a href=
"#format_composite_type">composite type
</a> (as an example, to keep
684 float doubles on
64 bit boundaries.) The offset is the bit offset if embedded
685 in a
<a href=
"#format_composite_type">composite type
</a>.
</p>
689 <!-- ======================================================================= -->
690 <div class=
"doc_subsubsection">
691 <a name=
"format_subrange">Subrange descriptors
</a>
694 <div class=
"doc_text">
696 <div class=
"doc_code">
699 i32, ;; Tag =
33 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a> (DW_TAG_subrange_type)
706 <p>These descriptors are used to define ranges of array subscripts for an array
707 <a href=
"#format_composite_type">composite type
</a>. The low value defines
708 the lower bounds typically zero for C/C++. The high value is the upper
709 bounds. Values are
64 bit. High - low +
1 is the size of the array. If low
710 == high the array will be unbounded.
</p>
714 <!-- ======================================================================= -->
715 <div class=
"doc_subsubsection">
716 <a name=
"format_enumeration">Enumerator descriptors
</a>
719 <div class=
"doc_text">
721 <div class=
"doc_code">
724 i32, ;; Tag =
40 +
<a href=
"#LLVMDebugVersion">LLVMDebugVersion
</a>
725 ;; (DW_TAG_enumerator)
732 <p>These descriptors are used to define members of an
733 enumeration
<a href=
"#format_composite_type">composite type
</a>, it
734 associates the name to the value.
</p>
738 <!-- ======================================================================= -->
739 <div class=
"doc_subsubsection">
740 <a name=
"format_variables">Local variables
</a>
743 <div class=
"doc_text">
745 <div class=
"doc_code">
748 i32, ;; Tag (see below)
751 metadata, ;; Reference to file where defined
752 i32, ;;
24 bit - Line number where defined
753 ;;
8 bit - Argument number.
1 indicates
1st argument.
754 metadata ;; Type descriptor
759 <p>These descriptors are used to define variables local to a sub program. The
760 value of the tag depends on the usage of the variable:
</p>
762 <div class=
"doc_code">
764 DW_TAG_auto_variable =
256
765 DW_TAG_arg_variable =
257
766 DW_TAG_return_variable =
258
770 <p>An auto variable is any variable declared in the body of the function. An
771 argument variable is any variable that appears as a formal argument to the
772 function. A return variable is used to track the result of a function and
773 has no source correspondent.
</p>
775 <p>The context is either the subprogram or block where the variable is defined.
776 Name the source variable name. Compile unit and line indicate where the
777 variable was defined. Type descriptor defines the declared type of the
782 <!-- ======================================================================= -->
783 <div class=
"doc_subsection">
784 <a name=
"format_common_intrinsics">Debugger intrinsic functions
</a>
787 <div class=
"doc_text">
789 <p>LLVM uses several intrinsic functions (name prefixed with
"llvm.dbg") to
790 provide debug information at various points in generated code.
</p>
794 <!-- ======================================================================= -->
795 <div class=
"doc_subsubsection">
796 <a name=
"format_common_declare">llvm.dbg.declare
</a>
799 <div class=
"doc_text">
801 void %
<a href=
"#format_common_declare">llvm.dbg.declare
</a>(metadata, metadata)
804 <p>This intrinsic provides information about a local element (ex. variable.) The
805 first argument is metadata holding alloca for the variable.
</tt>. The
806 second argument is metadata containing description of the variable.
</p>
809 <!-- ======================================================================= -->
810 <div class=
"doc_subsubsection">
811 <a name=
"format_common_value">llvm.dbg.value
</a>
814 <div class=
"doc_text">
816 void %
<a href=
"#format_common_value">llvm.dbg.value
</a>(metadata, i64, metadata)
819 <p>This intrinsic provides information when a user source variable is set to a
820 new value. The first argument is the new value (wrapped as metadata). The
821 second argument is the offset in the user source variable where the new value
822 is written. The third argument is metadata containing description of the
823 user source variable.
</p>
826 <!-- ======================================================================= -->
827 <div class=
"doc_subsection">
828 <a name=
"format_common_lifetime">Object lifetimes and scoping
</a>
831 <div class=
"doc_text">
832 <p>In many languages, the local variables in functions can have their lifetimes
833 or scopes limited to a subset of a function. In the C family of languages,
834 for example, variables are only live (readable and writable) within the
835 source block that they are defined in. In functional languages, values are
836 only readable after they have been defined. Though this is a very obvious
837 concept, it is non-trivial to model in LLVM, because it has no notion of
838 scoping in this sense, and does not want to be tied to a language's scoping
841 <p>In order to handle this, the LLVM debug format uses the metadata attached to
842 llvm instructions to encode line number and scoping information. Consider
843 the following C fragment, for example:
</p>
845 <div class=
"doc_code">
859 <p>Compiled to LLVM, this function would be represented like this:
</p>
861 <div class=
"doc_code">
863 define void @foo() nounwind ssp {
865 %X = alloca i32, align
4 ;
<i32*
> [#uses=
4]
866 %Y = alloca i32, align
4 ;
<i32*
> [#uses=
4]
867 %Z = alloca i32, align
4 ;
<i32*
> [#uses=
3]
868 %
0 = bitcast i32* %X to {}* ;
<{}*
> [#uses=
1]
869 call void @llvm.dbg.declare(metadata !{i32 * %X}, metadata !
0), !dbg !
7
870 store i32
21, i32* %X, !dbg !
8
871 %
1 = bitcast i32* %Y to {}* ;
<{}*
> [#uses=
1]
872 call void @llvm.dbg.declare(metadata !{i32 * %Y}, metadata !
9), !dbg !
10
873 store i32
22, i32* %Y, !dbg !
11
874 %
2 = bitcast i32* %Z to {}* ;
<{}*
> [#uses=
1]
875 call void @llvm.dbg.declare(metadata !{i32 * %Z}, metadata !
12), !dbg !
14
876 store i32
23, i32* %Z, !dbg !
15
877 %tmp = load i32* %X, !dbg !
16 ;
<i32
> [#uses=
1]
878 %tmp1 = load i32* %Y, !dbg !
16 ;
<i32
> [#uses=
1]
879 %add = add nsw i32 %tmp, %tmp1, !dbg !
16 ;
<i32
> [#uses=
1]
880 store i32 %add, i32* %Z, !dbg !
16
881 %tmp2 = load i32* %Y, !dbg !
17 ;
<i32
> [#uses=
1]
882 store i32 %tmp2, i32* %X, !dbg !
17
886 declare void @llvm.dbg.declare(metadata, metadata) nounwind readnone
888 !
0 = metadata !{i32
459008, metadata !
1, metadata !
"X",
889 metadata !
3, i32
2, metadata !
6}; [ DW_TAG_auto_variable ]
890 !
1 = metadata !{i32
458763, metadata !
2}; [DW_TAG_lexical_block ]
891 !
2 = metadata !{i32
458798, i32
0, metadata !
3, metadata !
"foo", metadata !
"foo",
892 metadata !
"foo", metadata !
3, i32
1, metadata !
4,
893 i1 false, i1 true}; [DW_TAG_subprogram ]
894 !
3 = metadata !{i32
458769, i32
0, i32
12, metadata !
"foo.c",
895 metadata !
"/private/tmp", metadata !
"clang 1.1", i1 true,
896 i1 false, metadata !
"", i32
0}; [DW_TAG_compile_unit ]
897 !
4 = metadata !{i32
458773, metadata !
3, metadata !
"", null, i32
0, i64
0, i64
0,
898 i64
0, i32
0, null, metadata !
5, i32
0}; [DW_TAG_subroutine_type ]
899 !
5 = metadata !{null}
900 !
6 = metadata !{i32
458788, metadata !
3, metadata !
"int", metadata !
3, i32
0,
901 i64
32, i64
32, i64
0, i32
0, i32
5}; [DW_TAG_base_type ]
902 !
7 = metadata !{i32
2, i32
7, metadata !
1, null}
903 !
8 = metadata !{i32
2, i32
3, metadata !
1, null}
904 !
9 = metadata !{i32
459008, metadata !
1, metadata !
"Y", metadata !
3, i32
3,
905 metadata !
6}; [ DW_TAG_auto_variable ]
906 !
10 = metadata !{i32
3, i32
7, metadata !
1, null}
907 !
11 = metadata !{i32
3, i32
3, metadata !
1, null}
908 !
12 = metadata !{i32
459008, metadata !
13, metadata !
"Z", metadata !
3, i32
5,
909 metadata !
6}; [ DW_TAG_auto_variable ]
910 !
13 = metadata !{i32
458763, metadata !
1}; [DW_TAG_lexical_block ]
911 !
14 = metadata !{i32
5, i32
9, metadata !
13, null}
912 !
15 = metadata !{i32
5, i32
5, metadata !
13, null}
913 !
16 = metadata !{i32
6, i32
5, metadata !
13, null}
914 !
17 = metadata !{i32
8, i32
3, metadata !
1, null}
915 !
18 = metadata !{i32
9, i32
1, metadata !
2, null}
919 <p>This example illustrates a few important details about LLVM debugging
920 information. In particular, it shows how the
<tt>llvm.dbg.declare
</tt>
921 intrinsic and location information, which are attached to an instruction,
922 are applied together to allow a debugger to analyze the relationship between
923 statements, variable definitions, and the code used to implement the
926 <div class=
"doc_code">
928 call void @llvm.dbg.declare(metadata, metadata !
0), !dbg !
7
932 <p>The first intrinsic
933 <tt>%
<a href=
"#format_common_declare">llvm.dbg.declare
</a></tt>
934 encodes debugging information for the variable
<tt>X
</tt>. The metadata
935 <tt>!dbg !
7</tt> attached to the intrinsic provides scope information for the
936 variable
<tt>X
</tt>.
</p>
938 <div class=
"doc_code">
940 !
7 = metadata !{i32
2, i32
7, metadata !
1, null}
941 !
1 = metadata !{i32
458763, metadata !
2}; [DW_TAG_lexical_block ]
942 !
2 = metadata !{i32
458798, i32
0, metadata !
3, metadata !
"foo",
943 metadata !
"foo", metadata !
"foo", metadata !
3, i32
1,
944 metadata !
4, i1 false, i1 true}; [DW_TAG_subprogram ]
948 <p>Here
<tt>!
7</tt> is metadata providing location information. It has four
949 fields: line number, column number, scope, and original scope. The original
950 scope represents inline location if this instruction is inlined inside a
951 caller, and is null otherwise. In this example, scope is encoded by
952 <tt>!
1</tt>.
<tt>!
1</tt> represents a lexical block inside the scope
953 <tt>!
2</tt>, where
<tt>!
2</tt> is a
954 <a href=
"#format_subprograms">subprogram descriptor
</a>. This way the
955 location information attached to the intrinsics indicates that the
956 variable
<tt>X
</tt> is declared at line number
2 at a function level scope in
957 function
<tt>foo
</tt>.
</p>
959 <p>Now lets take another example.
</p>
961 <div class=
"doc_code">
963 call void @llvm.dbg.declare(metadata, metadata !
12), !dbg !
14
967 <p>The second intrinsic
968 <tt>%
<a href=
"#format_common_declare">llvm.dbg.declare
</a></tt>
969 encodes debugging information for variable
<tt>Z
</tt>. The metadata
970 <tt>!dbg !
14</tt> attached to the intrinsic provides scope information for
971 the variable
<tt>Z
</tt>.
</p>
973 <div class=
"doc_code">
975 !
13 = metadata !{i32
458763, metadata !
1}; [DW_TAG_lexical_block ]
976 !
14 = metadata !{i32
5, i32
9, metadata !
13, null}
980 <p>Here
<tt>!
14</tt> indicates that
<tt>Z
</tt> is declared at line number
5 and
981 column number
9 inside of lexical scope
<tt>!
13</tt>. The lexical scope
982 itself resides inside of lexical scope
<tt>!
1</tt> described above.
</p>
984 <p>The scope information attached with each instruction provides a
985 straightforward way to find instructions covered by a scope.
</p>
989 <!-- *********************************************************************** -->
990 <div class=
"doc_section">
991 <a name=
"ccxx_frontend">C/C++ front-end specific debug information
</a>
993 <!-- *********************************************************************** -->
995 <div class=
"doc_text">
997 <p>The C and C++ front-ends represent information about the program in a format
998 that is effectively identical
999 to
<a href=
"http://www.eagercon.com/dwarf/dwarf3std.htm">DWARF
3.0</a> in
1000 terms of information content. This allows code generators to trivially
1001 support native debuggers by generating standard dwarf information, and
1002 contains enough information for non-dwarf targets to translate it as
1005 <p>This section describes the forms used to represent C and C++ programs. Other
1006 languages could pattern themselves after this (which itself is tuned to
1007 representing programs in the same way that DWARF
3 does), or they could
1008 choose to provide completely different forms if they don't fit into the DWARF
1009 model. As support for debugging information gets added to the various LLVM
1010 source-language front-ends, the information used should be documented
1013 <p>The following sections provide examples of various C/C++ constructs and the
1014 debug information that would best describe those constructs.
</p>
1018 <!-- ======================================================================= -->
1019 <div class=
"doc_subsection">
1020 <a name=
"ccxx_compile_units">C/C++ source file information
</a>
1023 <div class=
"doc_text">
1025 <p>Given the source files
<tt>MySource.cpp
</tt> and
<tt>MyHeader.h
</tt> located
1026 in the directory
<tt>/Users/mine/sources
</tt>, the following code:
</p>
1028 <div class=
"doc_code">
1030 #include
"MyHeader.h"
1032 int main(int argc, char *argv[]) {
1038 <p>a C/C++ front-end would generate the following descriptors:
</p>
1040 <div class=
"doc_code">
1044 ;; Define the compile unit for the main source file
"/Users/mine/sources/MySource.cpp".
1049 i32
4, ;; Language Id
1050 metadata !
"MySource.cpp",
1051 metadata !
"/Users/mine/sources",
1052 metadata !
"4.2.1 (Based on Apple Inc. build 5649) (LLVM build 00)",
1053 i1 true, ;; Main Compile Unit
1054 i1 false, ;; Optimized compile unit
1055 metadata !
"", ;; Compiler flags
1056 i32
0} ;; Runtime version
1059 ;; Define the file for the file
"/Users/mine/sources/MySource.cpp".
1063 metadata !
"MySource.cpp",
1064 metadata !
"/Users/mine/sources",
1065 metadata !
2 ;; Compile unit
1069 ;; Define the file for the file
"/Users/mine/sources/Myheader.h"
1073 metadata !
"Myheader.h"
1074 metadata !
"/Users/mine/sources",
1075 metadata !
2 ;; Compile unit
1082 <p>llvm::Instruction provides easy access to metadata attached with an
1083 instruction. One can extract line number information encoded in LLVM IR
1084 using
<tt>Instruction::getMetadata()
</tt> and
1085 <tt>DILocation::getLineNumber()
</tt>.
1087 if (MDNode *N = I-
>getMetadata(
"dbg")) { // Here I is an LLVM instruction
1088 DILocation Loc(N); // DILocation is in DebugInfo.h
1089 unsigned Line = Loc.getLineNumber();
1090 StringRef File = Loc.getFilename();
1091 StringRef Dir = Loc.getDirectory();
1096 <!-- ======================================================================= -->
1097 <div class=
"doc_subsection">
1098 <a name=
"ccxx_global_variable">C/C++ global variable information
</a>
1101 <div class=
"doc_text">
1103 <p>Given an integer global variable declared as follows:
</p>
1105 <div class=
"doc_code">
1111 <p>a C/C++ front-end would generate the following descriptors:
</p>
1113 <div class=
"doc_code">
1116 ;; Define the global itself.
1118 %MyGlobal = global int
100
1121 ;; List of debug info of globals
1123 !llvm.dbg.gv = !{!
0}
1126 ;; Define the global variable descriptor. Note the reference to the global
1127 ;; variable anchor and the global variable itself.
1132 metadata !
1, ;; Context
1133 metadata !
"MyGlobal", ;; Name
1134 metadata !
"MyGlobal", ;; Display Name
1135 metadata !
"MyGlobal", ;; Linkage Name
1136 metadata !
3, ;; Compile Unit
1137 i32
1, ;; Line Number
1138 metadata !
4, ;; Type
1139 i1 false, ;; Is a local variable
1140 i1 true, ;; Is this a definition
1141 i32* @MyGlobal ;; The global variable
1145 ;; Define the basic type of
32 bit signed integer. Note that since int is an
1146 ;; intrinsic type the source file is NULL and line
0.
1150 metadata !
1, ;; Context
1151 metadata !
"int", ;; Name
1152 metadata !
1, ;; File
1153 i32
0, ;; Line number
1154 i64
32, ;; Size in Bits
1155 i64
32, ;; Align in Bits
1156 i64
0, ;; Offset in Bits
1166 <!-- ======================================================================= -->
1167 <div class=
"doc_subsection">
1168 <a name=
"ccxx_subprogram">C/C++ function information
</a>
1171 <div class=
"doc_text">
1173 <p>Given a function declared as follows:
</p>
1175 <div class=
"doc_code">
1177 int main(int argc, char *argv[]) {
1183 <p>a C/C++ front-end would generate the following descriptors:
</p>
1185 <div class=
"doc_code">
1188 ;; Define the anchor for subprograms. Note that the second field of the
1189 ;; anchor is
46, which is the same as the tag for subprograms
1190 ;; (
46 = DW_TAG_subprogram.)
1195 metadata !
1, ;; Context
1196 metadata !
"main", ;; Name
1197 metadata !
"main", ;; Display name
1198 metadata !
"main", ;; Linkage name
1199 metadata !
1, ;; File
1200 i32
1, ;; Line number
1201 metadata !
4, ;; Type
1202 i1 false, ;; Is local
1203 i1 true ;; Is definition
1206 ;; Define the subprogram itself.
1208 define i32 @main(i32 %argc, i8** %argv) {
1216 <!-- ======================================================================= -->
1217 <div class=
"doc_subsection">
1218 <a name=
"ccxx_basic_types">C/C++ basic types
</a>
1221 <div class=
"doc_text">
1223 <p>The following are the basic type descriptors for C/C++ core types:
</p>
1227 <!-- ======================================================================= -->
1228 <div class=
"doc_subsubsection">
1229 <a name=
"ccxx_basic_type_bool">bool
</a>
1232 <div class=
"doc_text">
1234 <div class=
"doc_code">
1238 metadata !
1, ;; Context
1239 metadata !
"bool", ;; Name
1240 metadata !
1, ;; File
1241 i32
0, ;; Line number
1242 i64
8, ;; Size in Bits
1243 i64
8, ;; Align in Bits
1244 i64
0, ;; Offset in Bits
1253 <!-- ======================================================================= -->
1254 <div class=
"doc_subsubsection">
1255 <a name=
"ccxx_basic_char">char
</a>
1258 <div class=
"doc_text">
1260 <div class=
"doc_code">
1264 metadata !
1, ;; Context
1265 metadata !
"char", ;; Name
1266 metadata !
1, ;; File
1267 i32
0, ;; Line number
1268 i64
8, ;; Size in Bits
1269 i64
8, ;; Align in Bits
1270 i64
0, ;; Offset in Bits
1279 <!-- ======================================================================= -->
1280 <div class=
"doc_subsubsection">
1281 <a name=
"ccxx_basic_unsigned_char">unsigned char
</a>
1284 <div class=
"doc_text">
1286 <div class=
"doc_code">
1290 metadata !
1, ;; Context
1291 metadata !
"unsigned char",
1292 metadata !
1, ;; File
1293 i32
0, ;; Line number
1294 i64
8, ;; Size in Bits
1295 i64
8, ;; Align in Bits
1296 i64
0, ;; Offset in Bits
1305 <!-- ======================================================================= -->
1306 <div class=
"doc_subsubsection">
1307 <a name=
"ccxx_basic_short">short
</a>
1310 <div class=
"doc_text">
1312 <div class=
"doc_code">
1316 metadata !
1, ;; Context
1317 metadata !
"short int",
1318 metadata !
1, ;; File
1319 i32
0, ;; Line number
1320 i64
16, ;; Size in Bits
1321 i64
16, ;; Align in Bits
1322 i64
0, ;; Offset in Bits
1331 <!-- ======================================================================= -->
1332 <div class=
"doc_subsubsection">
1333 <a name=
"ccxx_basic_unsigned_short">unsigned short
</a>
1336 <div class=
"doc_text">
1338 <div class=
"doc_code">
1342 metadata !
1, ;; Context
1343 metadata !
"short unsigned int",
1344 metadata !
1, ;; File
1345 i32
0, ;; Line number
1346 i64
16, ;; Size in Bits
1347 i64
16, ;; Align in Bits
1348 i64
0, ;; Offset in Bits
1357 <!-- ======================================================================= -->
1358 <div class=
"doc_subsubsection">
1359 <a name=
"ccxx_basic_int">int
</a>
1362 <div class=
"doc_text">
1364 <div class=
"doc_code">
1368 metadata !
1, ;; Context
1369 metadata !
"int", ;; Name
1370 metadata !
1, ;; File
1371 i32
0, ;; Line number
1372 i64
32, ;; Size in Bits
1373 i64
32, ;; Align in Bits
1374 i64
0, ;; Offset in Bits
1382 <!-- ======================================================================= -->
1383 <div class=
"doc_subsubsection">
1384 <a name=
"ccxx_basic_unsigned_int">unsigned int
</a>
1387 <div class=
"doc_text">
1389 <div class=
"doc_code">
1393 metadata !
1, ;; Context
1394 metadata !
"unsigned int",
1395 metadata !
1, ;; File
1396 i32
0, ;; Line number
1397 i64
32, ;; Size in Bits
1398 i64
32, ;; Align in Bits
1399 i64
0, ;; Offset in Bits
1408 <!-- ======================================================================= -->
1409 <div class=
"doc_subsubsection">
1410 <a name=
"ccxx_basic_long_long">long long
</a>
1413 <div class=
"doc_text">
1415 <div class=
"doc_code">
1419 metadata !
1, ;; Context
1420 metadata !
"long long int",
1421 metadata !
1, ;; File
1422 i32
0, ;; Line number
1423 i64
64, ;; Size in Bits
1424 i64
64, ;; Align in Bits
1425 i64
0, ;; Offset in Bits
1434 <!-- ======================================================================= -->
1435 <div class=
"doc_subsubsection">
1436 <a name=
"ccxx_basic_unsigned_long_long">unsigned long long
</a>
1439 <div class=
"doc_text">
1441 <div class=
"doc_code">
1445 metadata !
1, ;; Context
1446 metadata !
"long long unsigned int",
1447 metadata !
1, ;; File
1448 i32
0, ;; Line number
1449 i64
64, ;; Size in Bits
1450 i64
64, ;; Align in Bits
1451 i64
0, ;; Offset in Bits
1460 <!-- ======================================================================= -->
1461 <div class=
"doc_subsubsection">
1462 <a name=
"ccxx_basic_float">float
</a>
1465 <div class=
"doc_text">
1467 <div class=
"doc_code">
1471 metadata !
1, ;; Context
1473 metadata !
1, ;; File
1474 i32
0, ;; Line number
1475 i64
32, ;; Size in Bits
1476 i64
32, ;; Align in Bits
1477 i64
0, ;; Offset in Bits
1486 <!-- ======================================================================= -->
1487 <div class=
"doc_subsubsection">
1488 <a name=
"ccxx_basic_double">double
</a>
1491 <div class=
"doc_text">
1493 <div class=
"doc_code">
1497 metadata !
1, ;; Context
1498 metadata !
"double",;; Name
1499 metadata !
1, ;; File
1500 i32
0, ;; Line number
1501 i64
64, ;; Size in Bits
1502 i64
64, ;; Align in Bits
1503 i64
0, ;; Offset in Bits
1512 <!-- ======================================================================= -->
1513 <div class=
"doc_subsection">
1514 <a name=
"ccxx_derived_types">C/C++ derived types
</a>
1517 <div class=
"doc_text">
1519 <p>Given the following as an example of C/C++ derived type:
</p>
1521 <div class=
"doc_code">
1523 typedef const int *IntPtr;
1527 <p>a C/C++ front-end would generate the following descriptors:
</p>
1529 <div class=
"doc_code">
1532 ;; Define the typedef
"IntPtr".
1536 metadata !
1, ;; Context
1537 metadata !
"IntPtr", ;; Name
1538 metadata !
3, ;; File
1539 i32
0, ;; Line number
1540 i64
0, ;; Size in bits
1541 i64
0, ;; Align in bits
1542 i64
0, ;; Offset in bits
1544 metadata !
4 ;; Derived From type
1548 ;; Define the pointer type.
1552 metadata !
1, ;; Context
1553 metadata !
"", ;; Name
1554 metadata !
1, ;; File
1555 i32
0, ;; Line number
1556 i64
64, ;; Size in bits
1557 i64
64, ;; Align in bits
1558 i64
0, ;; Offset in bits
1560 metadata !
5 ;; Derived From type
1563 ;; Define the const type.
1567 metadata !
1, ;; Context
1568 metadata !
"", ;; Name
1569 metadata !
1, ;; File
1570 i32
0, ;; Line number
1571 i64
32, ;; Size in bits
1572 i64
32, ;; Align in bits
1573 i64
0, ;; Offset in bits
1575 metadata !
6 ;; Derived From type
1578 ;; Define the int type.
1582 metadata !
1, ;; Context
1583 metadata !
"int", ;; Name
1584 metadata !
1, ;; File
1585 i32
0, ;; Line number
1586 i64
32, ;; Size in bits
1587 i64
32, ;; Align in bits
1588 i64
0, ;; Offset in bits
1597 <!-- ======================================================================= -->
1598 <div class=
"doc_subsection">
1599 <a name=
"ccxx_composite_types">C/C++ struct/union types
</a>
1602 <div class=
"doc_text">
1604 <p>Given the following as an example of C/C++ struct type:
</p>
1606 <div class=
"doc_code">
1616 <p>a C/C++ front-end would generate the following descriptors:
</p>
1618 <div class=
"doc_code">
1621 ;; Define basic type for unsigned int.
1625 metadata !
1, ;; Context
1626 metadata !
"unsigned int",
1627 metadata !
1, ;; File
1628 i32
0, ;; Line number
1629 i64
32, ;; Size in Bits
1630 i64
32, ;; Align in Bits
1631 i64
0, ;; Offset in Bits
1636 ;; Define composite type for struct Color.
1640 metadata !
1, ;; Context
1641 metadata !
"Color", ;; Name
1642 metadata !
1, ;; Compile unit
1643 i32
1, ;; Line number
1644 i64
96, ;; Size in bits
1645 i64
32, ;; Align in bits
1646 i64
0, ;; Offset in bits
1648 null, ;; Derived From
1649 metadata !
3, ;; Elements
1650 i32
0 ;; Runtime Language
1654 ;; Define the Red field.
1658 metadata !
1, ;; Context
1659 metadata !
"Red", ;; Name
1660 metadata !
1, ;; File
1661 i32
2, ;; Line number
1662 i64
32, ;; Size in bits
1663 i64
32, ;; Align in bits
1664 i64
0, ;; Offset in bits
1666 metadata !
5 ;; Derived From type
1670 ;; Define the Green field.
1674 metadata !
1, ;; Context
1675 metadata !
"Green", ;; Name
1676 metadata !
1, ;; File
1677 i32
3, ;; Line number
1678 i64
32, ;; Size in bits
1679 i64
32, ;; Align in bits
1680 i64
32, ;; Offset in bits
1682 metadata !
5 ;; Derived From type
1686 ;; Define the Blue field.
1690 metadata !
1, ;; Context
1691 metadata !
"Blue", ;; Name
1692 metadata !
1, ;; File
1693 i32
4, ;; Line number
1694 i64
32, ;; Size in bits
1695 i64
32, ;; Align in bits
1696 i64
64, ;; Offset in bits
1698 metadata !
5 ;; Derived From type
1702 ;; Define the array of fields used by the composite type Color.
1704 !
3 = metadata !{metadata !
4, metadata !
6, metadata !
7}
1710 <!-- ======================================================================= -->
1711 <div class=
"doc_subsection">
1712 <a name=
"ccxx_enumeration_types">C/C++ enumeration types
</a>
1715 <div class=
"doc_text">
1717 <p>Given the following as an example of C/C++ enumeration type:
</p>
1719 <div class=
"doc_code">
1729 <p>a C/C++ front-end would generate the following descriptors:
</p>
1731 <div class=
"doc_code">
1734 ;; Define composite type for enum Trees
1738 metadata !
1, ;; Context
1739 metadata !
"Trees", ;; Name
1740 metadata !
1, ;; File
1741 i32
1, ;; Line number
1742 i64
32, ;; Size in bits
1743 i64
32, ;; Align in bits
1744 i64
0, ;; Offset in bits
1746 null, ;; Derived From type
1747 metadata !
3, ;; Elements
1748 i32
0 ;; Runtime language
1752 ;; Define the array of enumerators used by composite type Trees.
1754 !
3 = metadata !{metadata !
4, metadata !
5, metadata !
6}
1757 ;; Define Spruce enumerator.
1759 !
4 = metadata !{i32
524328, metadata !
"Spruce", i64
100}
1762 ;; Define Oak enumerator.
1764 !
5 = metadata !{i32
524328, metadata !
"Oak", i64
200}
1767 ;; Define Maple enumerator.
1769 !
6 = metadata !{i32
524328, metadata !
"Maple", i64
300}
1776 <!-- *********************************************************************** -->
1780 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
1781 src=
"http://jigsaw.w3.org/css-validator/images/vcss-blue" alt=
"Valid CSS"></a>
1782 <a href=
"http://validator.w3.org/check/referer"><img
1783 src=
"http://www.w3.org/Icons/valid-html401-blue" alt=
"Valid HTML 4.01"></a>
1785 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
1786 <a href=
"http://llvm.org">LLVM Compiler Infrastructure
</a><br>
1787 Last modified: $Date$