Fold assert-only-used variable into the assert.
[llvm/stm8.git] / docs / WritingAnLLVMBackend.html
blob39ac34b3d7790fd7f69e39de8ae14c9922be06a9
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>Writing an LLVM Compiler Backend</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
10 <body>
12 <h1>
13 Writing an LLVM Compiler Backend
14 </h1>
16 <ol>
17 <li><a href="#intro">Introduction</a>
18 <ul>
19 <li><a href="#Audience">Audience</a></li>
20 <li><a href="#Prerequisite">Prerequisite Reading</a></li>
21 <li><a href="#Basic">Basic Steps</a></li>
22 <li><a href="#Preliminaries">Preliminaries</a></li>
23 </ul>
24 <li><a href="#TargetMachine">Target Machine</a></li>
25 <li><a href="#TargetRegistration">Target Registration</a></li>
26 <li><a href="#RegisterSet">Register Set and Register Classes</a>
27 <ul>
28 <li><a href="#RegisterDef">Defining a Register</a></li>
29 <li><a href="#RegisterClassDef">Defining a Register Class</a></li>
30 <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li>
31 </ul></li>
32 <li><a href="#InstructionSet">Instruction Set</a>
33 <ul>
34 <li><a href="#operandMapping">Instruction Operand Mapping</a></li>
35 <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li>
36 <li><a href="#branchFolding">Branch Folding and If Conversion</a></li>
37 </ul></li>
38 <li><a href="#InstructionSelector">Instruction Selector</a>
39 <ul>
40 <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a>
41 <ul>
42 <li><a href="#promote">Promote</a></li>
43 <li><a href="#expand">Expand</a></li>
44 <li><a href="#custom">Custom</a></li>
45 <li><a href="#legal">Legal</a></li>
46 </ul></li>
47 <li><a href="#callingConventions">Calling Conventions</a></li>
48 </ul></li>
49 <li><a href="#assemblyPrinter">Assembly Printer</a></li>
50 <li><a href="#subtargetSupport">Subtarget Support</a></li>
51 <li><a href="#jitSupport">JIT Support</a>
52 <ul>
53 <li><a href="#mce">Machine Code Emitter</a></li>
54 <li><a href="#targetJITInfo">Target JIT Info</a></li>
55 </ul></li>
56 </ol>
58 <div class="doc_author">
59 <p>Written by <a href="http://www.woo.com">Mason Woo</a> and
60 <a href="http://misha.brukman.net">Misha Brukman</a></p>
61 </div>
63 <!-- *********************************************************************** -->
64 <h2>
65 <a name="intro">Introduction</a>
66 </h2>
67 <!-- *********************************************************************** -->
69 <div>
71 <p>
72 This document describes techniques for writing compiler backends that convert
73 the LLVM Intermediate Representation (IR) to code for a specified machine or
74 other languages. Code intended for a specific machine can take the form of
75 either assembly code or binary code (usable for a JIT compiler).
76 </p>
78 <p>
79 The backend of LLVM features a target-independent code generator that may create
80 output for several types of target CPUs &mdash; including X86, PowerPC, Alpha,
81 and SPARC. The backend may also be used to generate code targeted at SPUs of the
82 Cell processor or GPUs to support the execution of compute kernels.
83 </p>
85 <p>
86 The document focuses on existing examples found in subdirectories
87 of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this
88 document focuses on the example of creating a static compiler (one that emits
89 text assembly) for a SPARC target, because SPARC has fairly standard
90 characteristics, such as a RISC instruction set and straightforward calling
91 conventions.
92 </p>
94 <h3>
95 <a name="Audience">Audience</a>
96 </h3>
98 <div>
101 The audience for this document is anyone who needs to write an LLVM backend to
102 generate code for a specific hardware or software target.
103 </p>
105 </div>
107 <h3>
108 <a name="Prerequisite">Prerequisite Reading</a>
109 </h3>
111 <div>
114 These essential documents must be read before reading this document:
115 </p>
117 <ul>
118 <li><i><a href="LangRef.html">LLVM Language Reference
119 Manual</a></i> &mdash; a reference manual for the LLVM assembly language.</li>
121 <li><i><a href="CodeGenerator.html">The LLVM
122 Target-Independent Code Generator</a></i> &mdash; a guide to the components
123 (classes and code generation algorithms) for translating the LLVM internal
124 representation into machine code for a specified target. Pay particular
125 attention to the descriptions of code generation stages: Instruction
126 Selection, Scheduling and Formation, SSA-based Optimization, Register
127 Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
128 and Code Emission.</li>
130 <li><i><a href="TableGenFundamentals.html">TableGen
131 Fundamentals</a></i> &mdash;a document that describes the TableGen
132 (<tt>tblgen</tt>) application that manages domain-specific information to
133 support LLVM code generation. TableGen processes input from a target
134 description file (<tt>.td</tt> suffix) and generates C++ code that can be
135 used for code generation.</li>
137 <li><i><a href="WritingAnLLVMPass.html">Writing an LLVM
138 Pass</a></i> &mdash; The assembly printer is a <tt>FunctionPass</tt>, as are
139 several SelectionDAG processing steps.</li>
140 </ul>
143 To follow the SPARC examples in this document, have a copy of
144 <i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
145 Manual, Version 8</a></i> for reference. For details about the ARM instruction
146 set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture
147 Reference Manual</a></i>. For more about the GNU Assembler format
148 (<tt>GAS</tt>), see
149 <i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>,
150 especially for the assembly printer. <i>Using As</i> contains a list of target
151 machine dependent features.
152 </p>
154 </div>
156 <h3>
157 <a name="Basic">Basic Steps</a>
158 </h3>
160 <div>
163 To write a compiler backend for LLVM that converts the LLVM IR to code for a
164 specified target (machine or other language), follow these steps:
165 </p>
167 <ul>
168 <li>Create a subclass of the TargetMachine class that describes characteristics
169 of your target machine. Copy existing examples of specific TargetMachine
170 class and header files; for example, start with
171 <tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but
172 change the file names for your target. Similarly, change code that
173 references "Sparc" to reference your target. </li>
175 <li>Describe the register set of the target. Use TableGen to generate code for
176 register definition, register aliases, and register classes from a
177 target-specific <tt>RegisterInfo.td</tt> input file. You should also write
178 additional code for a subclass of the TargetRegisterInfo class that
179 represents the class register file data used for register allocation and
180 also describes the interactions between registers.</li>
182 <li>Describe the instruction set of the target. Use TableGen to generate code
183 for target-specific instructions from target-specific versions of
184 <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should
185 write additional code for a subclass of the TargetInstrInfo class to
186 represent machine instructions supported by the target machine. </li>
188 <li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
189 Graph (DAG) representation of instructions to native target-specific
190 instructions. Use TableGen to generate code that matches patterns and
191 selects instructions based on additional information in a target-specific
192 version of <tt>TargetInstrInfo.td</tt>. Write code
193 for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target,
194 to perform pattern matching and DAG-to-DAG instruction selection. Also write
195 code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and
196 data types that are not supported natively in a SelectionDAG. </li>
198 <li>Write code for an assembly printer that converts LLVM IR to a GAS format for
199 your target machine. You should add assembly strings to the instructions
200 defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You
201 should also write code for a subclass of AsmPrinter that performs the
202 LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li>
204 <li>Optionally, add support for subtargets (i.e., variants with different
205 capabilities). You should also write code for a subclass of the
206 TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt>
207 and <tt>-mattr=</tt> command-line options.</li>
209 <li>Optionally, add JIT support and create a machine code emitter (subclass of
210 TargetJITInfo) that is used to emit binary code directly into memory. </li>
211 </ul>
214 In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and
215 then implement them later. Initially, you may not know which private members
216 that the class will need and which components will need to be subclassed.
217 </p>
219 </div>
221 <h3>
222 <a name="Preliminaries">Preliminaries</a>
223 </h3>
225 <div>
228 To actually create your compiler backend, you need to create and modify a few
229 files. The absolute minimum is discussed here. But to actually use the LLVM
230 target-independent code generator, you must perform the steps described in
231 the <a href="CodeGenerator.html">LLVM
232 Target-Independent Code Generator</a> document.
233 </p>
236 First, you should create a subdirectory under <tt>lib/Target</tt> to hold all
237 the files related to your target. If your target is called "Dummy," create the
238 directory <tt>lib/Target/Dummy</tt>.
239 </p>
242 In this new
243 directory, create a <tt>Makefile</tt>. It is easiest to copy a
244 <tt>Makefile</tt> of another target and modify it. It should at least contain
245 the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then
246 include <tt>$(LEVEL)/Makefile.common</tt>. The library can be
247 named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you
248 can split the library into <tt>LLVMDummyCodeGen</tt>
249 and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a
250 subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC
251 target).
252 </p>
255 Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>.
256 Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a
257 lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>.
258 </p>
261 To make your target actually do something, you need to implement a subclass of
262 <tt>TargetMachine</tt>. This implementation should typically be in the file
263 <tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in
264 the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's
265 target independent code generator, you should do what all current machine
266 backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a
267 target from scratch, create a subclass of <tt>TargetMachine</tt>.)
268 </p>
271 To get LLVM to actually build and link your target, you need to add it to
272 the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure
273 script to know about your target when parsing the <tt>--enable-targets</tt>
274 option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your
275 target to the lists there (some creativity required), and then
276 reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and
277 regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>.
278 </p>
280 </div>
282 </div>
284 <!-- *********************************************************************** -->
285 <h2>
286 <a name="TargetMachine">Target Machine</a>
287 </h2>
288 <!-- *********************************************************************** -->
290 <div>
293 <tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented
294 with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt>
295 class should be specialized by a concrete target class that implements the
296 various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of
297 <tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The
298 <tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also
299 processes numerous command-line options.
300 </p>
303 To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>,
304 start by copying an existing <tt>TargetMachine</tt> class and header. You
305 should name the files that you create to reflect your specific target. For
306 instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and
307 <tt>SparcTargetMachine.cpp</tt>.
308 </p>
311 For a target machine <tt>XXX</tt>, the implementation of
312 <tt>XXXTargetMachine</tt> must have access methods to obtain objects that
313 represent target components. These methods are named <tt>get*Info</tt>, and are
314 intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set
315 (<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and
316 similar information. <tt>XXXTargetMachine</tt> must also implement the
317 <tt>getTargetData</tt> method to access an object with target-specific data
318 characteristics, such as data type size and alignment requirements.
319 </p>
322 For instance, for the SPARC target, the header file
323 <tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt>
324 and <tt>getTargetData</tt> methods that simply return a class member.
325 </p>
327 <div class="doc_code">
328 <pre>
329 namespace llvm {
331 class Module;
333 class SparcTargetMachine : public LLVMTargetMachine {
334 const TargetData DataLayout; // Calculates type size &amp; alignment
335 SparcSubtarget Subtarget;
336 SparcInstrInfo InstrInfo;
337 TargetFrameInfo FrameInfo;
339 protected:
340 virtual const TargetAsmInfo *createTargetAsmInfo() const;
342 public:
343 SparcTargetMachine(const Module &amp;M, const std::string &amp;FS);
345 virtual const SparcInstrInfo *getInstrInfo() const {return &amp;InstrInfo; }
346 virtual const TargetFrameInfo *getFrameInfo() const {return &amp;FrameInfo; }
347 virtual const TargetSubtarget *getSubtargetImpl() const{return &amp;Subtarget; }
348 virtual const TargetRegisterInfo *getRegisterInfo() const {
349 return &amp;InstrInfo.getRegisterInfo();
351 virtual const TargetData *getTargetData() const { return &amp;DataLayout; }
352 static unsigned getModuleMatchQuality(const Module &amp;M);
354 // Pass Pipeline Configuration
355 virtual bool addInstSelector(PassManagerBase &amp;PM, bool Fast);
356 virtual bool addPreEmitPass(PassManagerBase &amp;PM, bool Fast);
359 } // end namespace llvm
360 </pre>
361 </div>
363 <ul>
364 <li><tt>getInstrInfo()</tt></li>
365 <li><tt>getRegisterInfo()</tt></li>
366 <li><tt>getFrameInfo()</tt></li>
367 <li><tt>getTargetData()</tt></li>
368 <li><tt>getSubtargetImpl()</tt></li>
369 </ul>
371 <p>For some targets, you also need to support the following methods:</p>
373 <ul>
374 <li><tt>getTargetLowering()</tt></li>
375 <li><tt>getJITInfo()</tt></li>
376 </ul>
379 In addition, the <tt>XXXTargetMachine</tt> constructor should specify a
380 <tt>TargetDescription</tt> string that determines the data layout for the target
381 machine, including characteristics such as pointer size, alignment, and
382 endianness. For example, the constructor for SparcTargetMachine contains the
383 following:
384 </p>
386 <div class="doc_code">
387 <pre>
388 SparcTargetMachine::SparcTargetMachine(const Module &amp;M, const std::string &amp;FS)
389 : DataLayout("E-p:32:32-f128:128:128"),
390 Subtarget(M, FS), InstrInfo(Subtarget),
391 FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
393 </pre>
394 </div>
396 <p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p>
398 <ul>
399 <li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data
400 model. a lower-case "<tt>e</tt>" indicates little-endian.</li>
402 <li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
403 preferred alignment. If only two figures follow "<tt>p:</tt>", then the
404 first value is pointer size, and the second value is both ABI and preferred
405 alignment.</li>
407 <li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>",
408 "<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point,
409 vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are
410 followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed
411 by three values: the first indicates the size of a long double, then ABI
412 alignment, and then ABI preferred alignment.</li>
413 </ul>
415 </div>
417 <!-- *********************************************************************** -->
418 <h2>
419 <a name="TargetRegistration">Target Registration</a>
420 </h2>
421 <!-- *********************************************************************** -->
423 <div>
426 You must also register your target with the <tt>TargetRegistry</tt>, which is
427 what other LLVM tools use to be able to lookup and use your target at
428 runtime. The <tt>TargetRegistry</tt> can be used directly, but for most targets
429 there are helper templates which should take care of the work for you.</p>
432 All targets should declare a global <tt>Target</tt> object which is used to
433 represent the target during registration. Then, in the target's TargetInfo
434 library, the target should define that object and use
435 the <tt>RegisterTarget</tt> template to register the target. For example, the Sparc registration code looks like this:
436 </p>
438 <div class="doc_code">
439 <pre>
440 Target llvm::TheSparcTarget;
442 extern "C" void LLVMInitializeSparcTargetInfo() {
443 RegisterTarget&lt;Triple::sparc, /*HasJIT=*/false&gt;
444 X(TheSparcTarget, "sparc", "Sparc");
446 </pre>
447 </div>
450 This allows the <tt>TargetRegistry</tt> to look up the target by name or by
451 target triple. In addition, most targets will also register additional features
452 which are available in separate libraries. These registration steps are
453 separate, because some clients may wish to only link in some parts of the target
454 -- the JIT code generator does not require the use of the assembler printer, for
455 example. Here is an example of registering the Sparc assembly printer:
456 </p>
458 <div class="doc_code">
459 <pre>
460 extern "C" void LLVMInitializeSparcAsmPrinter() {
461 RegisterAsmPrinter&lt;SparcAsmPrinter&gt; X(TheSparcTarget);
463 </pre>
464 </div>
467 For more information, see
468 "<a href="/doxygen/TargetRegistry_8h-source.html">llvm/Target/TargetRegistry.h</a>".
469 </p>
471 </div>
473 <!-- *********************************************************************** -->
474 <h2>
475 <a name="RegisterSet">Register Set and Register Classes</a>
476 </h2>
477 <!-- *********************************************************************** -->
479 <div>
482 You should describe a concrete target-specific class that represents the
483 register file of a target machine. This class is called <tt>XXXRegisterInfo</tt>
484 (where <tt>XXX</tt> identifies the target) and represents the class register
485 file data that is used for register allocation. It also describes the
486 interactions between registers.
487 </p>
490 You also need to define register classes to categorize related registers. A
491 register class should be added for groups of registers that are all treated the
492 same way for some instruction. Typical examples are register classes for
493 integer, floating-point, or vector registers. A register allocator allows an
494 instruction to use any register in a specified register class to perform the
495 instruction in a similar manner. Register classes allocate virtual registers to
496 instructions from these sets, and register classes let the target-independent
497 register allocator automatically choose the actual registers.
498 </p>
501 Much of the code for registers, including register definition, register aliases,
502 and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt>
503 input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and
504 <tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the
505 implementation of <tt>XXXRegisterInfo</tt> requires hand-coding.
506 </p>
508 <!-- ======================================================================= -->
509 <h3>
510 <a name="RegisterDef">Defining a Register</a>
511 </h3>
513 <div>
516 The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions
517 for a target machine. The <tt>Register</tt> class (specified
518 in <tt>Target.td</tt>) is used to define an object for each register. The
519 specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The
520 basic <tt>Register</tt> object does not have any subregisters and does not
521 specify any aliases.
522 </p>
524 <div class="doc_code">
525 <pre>
526 class Register&lt;string n&gt; {
527 string Namespace = "";
528 string AsmName = n;
529 string Name = n;
530 int SpillSize = 0;
531 int SpillAlignment = 0;
532 list&lt;Register&gt; Aliases = [];
533 list&lt;Register&gt; SubRegs = [];
534 list&lt;int&gt; DwarfNumbers = [];
536 </pre>
537 </div>
540 For example, in the <tt>X86RegisterInfo.td</tt> file, there are register
541 definitions that utilize the Register class, such as:
542 </p>
544 <div class="doc_code">
545 <pre>
546 def AL : Register&lt;"AL"&gt;, DwarfRegNum&lt;[0, 0, 0]&gt;;
547 </pre>
548 </div>
551 This defines the register <tt>AL</tt> and assigns it values (with
552 <tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug
553 information writer to identify a register. For register
554 <tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3
555 different modes: the first element is for X86-64, the second for exception
556 handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number
557 that indicates the gcc number is undefined, and -2 indicates the register number
558 is invalid for this mode.
559 </p>
562 From the previously described line in the <tt>X86RegisterInfo.td</tt> file,
563 TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:
564 </p>
566 <div class="doc_code">
567 <pre>
568 static const unsigned GR8[] = { X86::AL, ... };
570 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
572 const TargetRegisterDesc RegisterDescriptors[] = {
574 { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
575 </pre>
576 </div>
579 From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt>
580 object for each register. <tt>TargetRegisterDesc</tt> is defined in
581 <tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:
582 </p>
584 <div class="doc_code">
585 <pre>
586 struct TargetRegisterDesc {
587 const char *AsmName; // Assembly language name for the register
588 const char *Name; // Printable name for the reg (for debugging)
589 const unsigned *AliasSet; // Register Alias Set
590 const unsigned *SubRegs; // Sub-register set
591 const unsigned *ImmSubRegs; // Immediate sub-register set
592 const unsigned *SuperRegs; // Super-register set
593 };</pre>
594 </div>
597 TableGen uses the entire target description file (<tt>.td</tt>) to determine
598 text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of
599 <tt>TargetRegisterDesc</tt>) and the relationships of other registers to the
600 defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this
601 example, other definitions establish the registers "<tt>AX</tt>",
602 "<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen
603 generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias
604 set.
605 </p>
608 The <tt>Register</tt> class is commonly used as a base class for more complex
609 classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the
610 <tt>RegisterWithSubRegs</tt> class that is used to define registers that need to
611 specify subregisters in the <tt>SubRegs</tt> list, as shown here:
612 </p>
614 <div class="doc_code">
615 <pre>
616 class RegisterWithSubRegs&lt;string n,
617 list&lt;Register&gt; subregs&gt; : Register&lt;n&gt; {
618 let SubRegs = subregs;
620 </pre>
621 </div>
624 In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for
625 SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>,
626 <tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID
627 numbers, which is a feature common to these subclasses. Note the use of
628 '<tt>let</tt>' expressions to override values that are initially defined in a
629 superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class).
630 </p>
632 <div class="doc_code">
633 <pre>
634 class SparcReg&lt;string n&gt; : Register&lt;n&gt; {
635 field bits&lt;5&gt; Num;
636 let Namespace = "SP";
638 // Ri - 32-bit integer registers
639 class Ri&lt;bits&lt;5&gt; num, string n&gt; :
640 SparcReg&lt;n&gt; {
641 let Num = num;
643 // Rf - 32-bit floating-point registers
644 class Rf&lt;bits&lt;5&gt; num, string n&gt; :
645 SparcReg&lt;n&gt; {
646 let Num = num;
648 // Rd - Slots in the FP register file for 64-bit
649 floating-point values.
650 class Rd&lt;bits&lt;5&gt; num, string n,
651 list&lt;Register&gt; subregs&gt; : SparcReg&lt;n&gt; {
652 let Num = num;
653 let SubRegs = subregs;
655 </pre>
656 </div>
659 In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that
660 utilize these subclasses of <tt>Register</tt>, such as:
661 </p>
663 <div class="doc_code">
664 <pre>
665 def G0 : Ri&lt; 0, "G0"&gt;,
666 DwarfRegNum&lt;[0]&gt;;
667 def G1 : Ri&lt; 1, "G1"&gt;, DwarfRegNum&lt;[1]&gt;;
669 def F0 : Rf&lt; 0, "F0"&gt;,
670 DwarfRegNum&lt;[32]&gt;;
671 def F1 : Rf&lt; 1, "F1"&gt;,
672 DwarfRegNum&lt;[33]&gt;;
674 def D0 : Rd&lt; 0, "F0", [F0, F1]&gt;,
675 DwarfRegNum&lt;[32]&gt;;
676 def D1 : Rd&lt; 2, "F2", [F2, F3]&gt;,
677 DwarfRegNum&lt;[34]&gt;;
678 </pre>
679 </div>
682 The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are
683 double-precision floating-point registers that are aliases for pairs of
684 single-precision floating-point sub-registers. In addition to aliases, the
685 sub-register and super-register relationships of the defined register are in
686 fields of a register's TargetRegisterDesc.
687 </p>
689 </div>
691 <!-- ======================================================================= -->
692 <h3>
693 <a name="RegisterClassDef">Defining a Register Class</a>
694 </h3>
696 <div>
699 The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to
700 define an object that represents a group of related registers and also defines
701 the default allocation order of the registers. A target description file
702 <tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register
703 classes using the following class:
704 </p>
706 <div class="doc_code">
707 <pre>
708 class RegisterClass&lt;string namespace,
709 list&lt;ValueType&gt; regTypes, int alignment,
710 list&lt;Register&gt; regList&gt; {
711 string Namespace = namespace;
712 list&lt;ValueType&gt; RegTypes = regTypes;
713 int Size = 0; // spill size, in bits; zero lets tblgen pick the size
714 int Alignment = alignment;
716 // CopyCost is the cost of copying a value between two registers
717 // default value 1 means a single instruction
718 // A negative value means copying is extremely expensive or impossible
719 int CopyCost = 1;
720 list&lt;Register&gt; MemberList = regList;
722 // for register classes that are subregisters of this class
723 list&lt;RegisterClass&gt; SubRegClassList = [];
725 code MethodProtos = [{}]; // to insert arbitrary code
726 code MethodBodies = [{}];
728 </pre>
729 </div>
731 <p>To define a RegisterClass, use the following 4 arguments:</p>
733 <ul>
734 <li>The first argument of the definition is the name of the namespace.</li>
736 <li>The second argument is a list of <tt>ValueType</tt> register type values
737 that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined
738 values include integer types (such as <tt>i16</tt>, <tt>i32</tt>,
739 and <tt>i1</tt> for Boolean), floating-point types
740 (<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt>
741 for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt>
742 must have the same <tt>ValueType</tt>, but some registers may store vector
743 data in different configurations. For example a register that can process a
744 128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit
745 integers, 4 32-bit integers, and so on. </li>
747 <li>The third argument of the <tt>RegisterClass</tt> definition specifies the
748 alignment required of the registers when they are stored or loaded to
749 memory.</li>
751 <li>The final argument, <tt>regList</tt>, specifies which registers are in this
752 class. If an <tt>allocation_order_*</tt> method is not specified,
753 then <tt>regList</tt> also defines the order of allocation used by the
754 register allocator.</li>
755 </ul>
758 In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined:
759 <tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register
760 classes, the first argument defines the namespace with the string
761 '<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision
762 floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines
763 a group of 16 double-precision registers
764 (<tt>D0-D15</tt>). For <tt>IntRegs</tt>, the <tt>MethodProtos</tt>
765 and <tt>MethodBodies</tt> methods are used by TableGen to insert the specified
766 code into generated output.
767 </p>
769 <div class="doc_code">
770 <pre>
771 def FPRegs : RegisterClass&lt;"SP", [f32], 32,
772 [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15,
773 F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]&gt;;
775 def DFPRegs : RegisterClass&lt;"SP", [f64], 64,
776 [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]&gt;;
777 &nbsp;
778 def IntRegs : RegisterClass&lt;"SP", [i32], 32,
779 [L0, L1, L2, L3, L4, L5, L6, L7,
780 I0, I1, I2, I3, I4, I5,
781 O0, O1, O2, O3, O4, O5, O7,
783 // Non-allocatable regs:
784 G2, G3, G4,
785 O6, // stack ptr
786 I6, // frame ptr
787 I7, // return address
788 G0, // constant zero
789 G5, G6, G7 // reserved for kernel
790 ]&gt; {
791 let MethodProtos = [{
792 iterator allocation_order_end(const MachineFunction &amp;MF) const;
794 let MethodBodies = [{
795 IntRegsClass::iterator
796 IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
797 return end() - 10 // Don't allocate special registers
802 </pre>
803 </div>
806 Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files
807 that are intended for inclusion in other source code that you write.
808 <tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>,
809 which should be included in the header file for the implementation of the SPARC
810 register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In
811 <tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called
812 <tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its
813 base. It also specifies types, based upon the defined register
814 classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>.
815 </p>
818 <tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>,
819 which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC
820 register implementation. The code below shows only the generated integer
821 registers and associated register classes. The order of registers
822 in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in
823 the target description file. Take special note of the use
824 of <tt>MethodBodies</tt> in <tt>SparcRegisterInfo.td</tt> to create code in
825 <tt>SparcGenRegisterInfo.inc</tt>. <tt>MethodProtos</tt> generates similar code
826 in <tt>SparcGenRegisterInfo.h.inc</tt>.
827 </p>
829 <div class="doc_code">
830 <pre> // IntRegs Register Class...
831 static const unsigned IntRegs[] = {
832 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
833 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
834 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
835 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
836 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
837 SP::G6, SP::G7,
840 // IntRegsVTs Register Class Value Types...
841 static const MVT::ValueType IntRegsVTs[] = {
842 MVT::i32, MVT::Other
845 namespace SP { // Register class instances
846 DFPRegsClass&nbsp;&nbsp;&nbsp; DFPRegsRegClass;
847 FPRegsClass&nbsp;&nbsp;&nbsp;&nbsp; FPRegsRegClass;
848 IntRegsClass&nbsp;&nbsp;&nbsp; IntRegsRegClass;
850 // IntRegs Sub-register Classess...
851 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
852 NULL
855 // IntRegs Super-register Classess...
856 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
857 NULL
860 // IntRegs Register Class sub-classes...
861 static const TargetRegisterClass* const IntRegsSubclasses [] = {
862 NULL
865 // IntRegs Register Class super-classes...
866 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
867 NULL
870 IntRegsClass::iterator
871 IntRegsClass::allocation_order_end(const MachineFunction &amp;MF) const {
872 return end()-10 // Don't allocate special registers
876 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
877 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
878 IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
880 </pre>
881 </div>
883 </div>
885 <!-- ======================================================================= -->
886 <h3>
887 <a name="implementRegister">Implement a subclass of</a>
888 <a href="CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a>
889 </h3>
891 <div>
894 The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which
895 implements the interface described in <tt>TargetRegisterInfo.h</tt>. These
896 functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless
897 overridden. Here is a list of functions that are overridden for the SPARC
898 implementation in <tt>SparcRegisterInfo.cpp</tt>:
899 </p>
901 <ul>
902 <li><tt>getCalleeSavedRegs</tt> &mdash; Returns a list of callee-saved registers
903 in the order of the desired callee-save stack frame offset.</li>
905 <li><tt>getReservedRegs</tt> &mdash; Returns a bitset indexed by physical
906 register numbers, indicating if a particular register is unavailable.</li>
908 <li><tt>hasFP</tt> &mdash; Return a Boolean indicating if a function should have
909 a dedicated frame pointer register.</li>
911 <li><tt>eliminateCallFramePseudoInstr</tt> &mdash; If call frame setup or
912 destroy pseudo instructions are used, this can be called to eliminate
913 them.</li>
915 <li><tt>eliminateFrameIndex</tt> &mdash; Eliminate abstract frame indices from
916 instructions that may use them.</li>
918 <li><tt>emitPrologue</tt> &mdash; Insert prologue code into the function.</li>
920 <li><tt>emitEpilogue</tt> &mdash; Insert epilogue code into the function.</li>
921 </ul>
923 </div>
925 </div>
927 <!-- *********************************************************************** -->
928 <h2>
929 <a name="InstructionSet">Instruction Set</a>
930 </h2>
932 <!-- *********************************************************************** -->
933 <div>
936 During the early stages of code generation, the LLVM IR code is converted to a
937 <tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class
938 containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type
939 requirements, and operation properties. For example, is an operation
940 commutative, does an operation load from memory. The various operation node
941 types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
942 file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace).
943 </p>
946 TableGen uses the following target description (<tt>.td</tt>) input files to
947 generate much of the code for instruction definition:
948 </p>
950 <ul>
951 <li><tt>Target.td</tt> &mdash; Where the <tt>Instruction</tt>, <tt>Operand</tt>,
952 <tt>InstrInfo</tt>, and other fundamental classes are defined.</li>
954 <li><tt>TargetSelectionDAG.td</tt>&mdash; Used by <tt>SelectionDAG</tt>
955 instruction selection generators, contains <tt>SDTC*</tt> classes (selection
956 DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as
957 <tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>,
958 <tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>,
959 <tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li>
961 <li><tt>XXXInstrFormats.td</tt> &mdash; Patterns for definitions of
962 target-specific instructions.</li>
964 <li><tt>XXXInstrInfo.td</tt> &mdash; Target-specific definitions of instruction
965 templates, condition codes, and instructions of an instruction set. For
966 architecture modifications, a different file name may be used. For example,
967 for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and
968 for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li>
969 </ul>
972 There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the
973 name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt>
974 input files, but its contents are only directly important for subtargets.
975 </p>
978 You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that
979 represents machine instructions supported by a target machine.
980 <tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects,
981 each of which describes one instruction. An instruction descriptor defines:</p>
983 <ul>
984 <li>Opcode mnemonic</li>
986 <li>Number of operands</li>
988 <li>List of implicit register definitions and uses</li>
990 <li>Target-independent properties (such as memory access, is commutable)</li>
992 <li>Target-specific flags </li>
993 </ul>
996 The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base
997 for more complex instruction classes.
998 </p>
1000 <div class="doc_code">
1001 <pre>class Instruction {
1002 string Namespace = "";
1003 dag OutOperandList; // An dag containing the MI def operand list.
1004 dag InOperandList; // An dag containing the MI use operand list.
1005 string AsmString = ""; // The .s format to print the instruction with.
1006 list&lt;dag&gt; Pattern; // Set to the DAG pattern for this instruction
1007 list&lt;Register&gt; Uses = [];
1008 list&lt;Register&gt; Defs = [];
1009 list&lt;Predicate&gt; Predicates = []; // predicates turned into isel match code
1010 ... remainder not shown for space ...
1012 </pre>
1013 </div>
1016 A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object
1017 representing a target-specific instruction that is defined
1018 in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent
1019 instructions from the architecture manual of the target machine (such as the
1020 SPARC Architecture Manual for the SPARC target).
1021 </p>
1024 A single instruction from the architecture manual is often modeled as multiple
1025 target instructions, depending upon its operands. For example, a manual might
1026 describe an add instruction that takes a register or an immediate operand. An
1027 LLVM target could model this with two instructions named <tt>ADDri</tt> and
1028 <tt>ADDrr</tt>.
1029 </p>
1032 You should define a class for each instruction category and define each opcode
1033 as a subclass of the category with appropriate parameters such as the fixed
1034 binary encoding of opcodes and extended opcodes. You should map the register
1035 bits to the bits of the instruction in which they are encoded (for the
1036 JIT). Also you should specify how the instruction should be printed when the
1037 automatic assembly printer is used.
1038 </p>
1041 As is described in the SPARC Architecture Manual, Version 8, there are three
1042 major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt>
1043 instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set
1044 high bits of a register) instructions. Format 3 is for other instructions.
1045 </p>
1048 Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>.
1049 <tt>InstSP</tt> is a base class for other instruction classes. Additional base
1050 classes are specified for more precise formats: for example
1051 in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>,
1052 and <tt>F2_2</tt> is for branches. There are three other base
1053 classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for
1054 register/immediate operations, and <tt>F3_3</tt> for floating-point
1055 operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for
1056 synthetic SPARC instructions.
1057 </p>
1060 <tt>SparcInstrInfo.td</tt> largely consists of operand and instruction
1061 definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following
1062 target description file entry, <tt>LDrr</tt>, defines the Load Integer
1063 instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a
1064 register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the
1065 operation value for this category of operation. The second parameter
1066 (<tt>000000<sub>2</sub></tt>) is the specific operation value
1067 for <tt>LD</tt>/Load Word. The third parameter is the output destination, which
1068 is a register operand and defined in the <tt>Register</tt> target description
1069 file (<tt>IntRegs</tt>).
1070 </p>
1072 <div class="doc_code">
1073 <pre>def LDrr : F3_1 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
1074 "ld [$addr], $dst",
1075 [(set IntRegs:$dst, (load ADDRrr:$addr))]&gt;;
1076 </pre>
1077 </div>
1080 The fourth parameter is the input source, which uses the address
1081 operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>:
1082 </p>
1084 <div class="doc_code">
1085 <pre>def MEMrr : Operand&lt;i32&gt; {
1086 let PrintMethod = "printMemOperand";
1087 let MIOperandInfo = (ops IntRegs, IntRegs);
1089 </pre>
1090 </div>
1093 The fifth parameter is a string that is used by the assembly printer and can be
1094 left as an empty string until the assembly printer interface is implemented. The
1095 sixth and final parameter is the pattern used to match the instruction during
1096 the SelectionDAG Select Phase described in
1097 (<a href="CodeGenerator.html">The LLVM
1098 Target-Independent Code Generator</a>). This parameter is detailed in the next
1099 section, <a href="#InstructionSelector">Instruction Selector</a>.
1100 </p>
1103 Instruction class definitions are not overloaded for different operand types, so
1104 separate versions of instructions are needed for register, memory, or immediate
1105 value operands. For example, to perform a Load Integer instruction for a Word
1106 from an immediate operand to a register, the following instruction class is
1107 defined:
1108 </p>
1110 <div class="doc_code">
1111 <pre>def LDri : F3_2 &lt;3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
1112 "ld [$addr], $dst",
1113 [(set IntRegs:$dst, (load ADDRri:$addr))]&gt;;
1114 </pre>
1115 </div>
1118 Writing these definitions for so many similar instructions can involve a lot of
1119 cut and paste. In td files, the <tt>multiclass</tt> directive enables the
1120 creation of templates to define several instruction classes at once (using
1121 the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the
1122 <tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction
1123 classes each time <tt>F3_12</tt> is invoked:
1124 </p>
1126 <div class="doc_code">
1127 <pre>multiclass F3_12 &lt;string OpcStr, bits&lt;6&gt; Op3Val, SDNode OpNode&gt; {
1128 def rr : F3_1 &lt;2, Op3Val,
1129 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1130 !strconcat(OpcStr, " $b, $c, $dst"),
1131 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]&gt;;
1132 def ri : F3_2 &lt;2, Op3Val,
1133 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
1134 !strconcat(OpcStr, " $b, $c, $dst"),
1135 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]&gt;;
1137 </pre>
1138 </div>
1141 So when the <tt>defm</tt> directive is used for the <tt>XOR</tt>
1142 and <tt>ADD</tt> instructions, as seen below, it creates four instruction
1143 objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>.
1144 </p>
1146 <div class="doc_code">
1147 <pre>
1148 defm XOR : F3_12&lt;"xor", 0b000011, xor&gt;;
1149 defm ADD : F3_12&lt;"add", 0b000000, add&gt;;
1150 </pre>
1151 </div>
1154 <tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that
1155 are referenced by branch instructions. The following definitions
1156 in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition
1157 code. For example, the 10<sup>th</sup> bit represents the 'greater than'
1158 condition for integers, and the 22<sup>nd</sup> bit represents the 'greater
1159 than' condition for floats.
1160 </p>
1162 <div class="doc_code">
1163 <pre>
1164 def ICC_NE : ICC_VAL&lt; 9&gt;; // Not Equal
1165 def ICC_E : ICC_VAL&lt; 1&gt;; // Equal
1166 def ICC_G : ICC_VAL&lt;10&gt;; // Greater
1168 def FCC_U : FCC_VAL&lt;23&gt;; // Unordered
1169 def FCC_G : FCC_VAL&lt;22&gt;; // Greater
1170 def FCC_UG : FCC_VAL&lt;21&gt;; // Unordered or Greater
1172 </pre>
1173 </div>
1176 (Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC
1177 condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt>
1178 correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e.,
1179 <tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)
1180 </p>
1182 <!-- ======================================================================= -->
1183 <h3>
1184 <a name="operandMapping">Instruction Operand Mapping</a>
1185 </h3>
1187 <div>
1190 The code generator backend maps instruction operands to fields in the
1191 instruction. Operands are assigned to unbound fields in the instruction in the
1192 order they are defined. Fields are bound when they are assigned a value. For
1193 example, the Sparc target defines the <tt>XNORrr</tt> instruction as
1194 a <tt>F3_1</tt> format instruction having three operands.
1195 </p>
1197 <div class="doc_code">
1198 <pre>
1199 def XNORrr : F3_1&lt;2, 0b000111,
1200 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1201 "xnor $b, $c, $dst",
1202 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]&gt;;
1203 </pre>
1204 </div>
1207 The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class
1208 for <tt>F3_1</tt> is <tt>InstSP</tt>.
1209 </p>
1211 <div class="doc_code">
1212 <pre>
1213 class InstSP&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt; : Instruction {
1214 field bits&lt;32&gt; Inst;
1215 let Namespace = "SP";
1216 bits&lt;2&gt; op;
1217 let Inst{31-30} = op;
1218 dag OutOperandList = outs;
1219 dag InOperandList = ins;
1220 let AsmString = asmstr;
1221 let Pattern = pattern;
1223 </pre>
1224 </div>
1226 <p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p>
1228 <div class="doc_code">
1229 <pre>
1230 class F3&lt;dag outs, dag ins, string asmstr, list&lt;dag&gt; pattern&gt;
1231 : InstSP&lt;outs, ins, asmstr, pattern&gt; {
1232 bits&lt;5&gt; rd;
1233 bits&lt;6&gt; op3;
1234 bits&lt;5&gt; rs1;
1235 let op{1} = 1; // Op = 2 or 3
1236 let Inst{29-25} = rd;
1237 let Inst{24-19} = op3;
1238 let Inst{18-14} = rs1;
1240 </pre>
1241 </div>
1244 <tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>,
1245 <tt>op3</tt>, and <tt>rs1</tt> fields. <tt>F3</tt> format instructions will
1246 bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields.
1247 </p>
1249 <div class="doc_code">
1250 <pre>
1251 class F3_1&lt;bits&lt;2&gt; opVal, bits&lt;6&gt; op3val, dag outs, dag ins,
1252 string asmstr, list&lt;dag&gt; pattern&gt; : F3&lt;outs, ins, asmstr, pattern&gt; {
1253 bits&lt;8&gt; asi = 0; // asi not currently used
1254 bits&lt;5&gt; rs2;
1255 let op = opVal;
1256 let op3 = op3val;
1257 let Inst{13} = 0; // i field = 0
1258 let Inst{12-5} = asi; // address space identifier
1259 let Inst{4-0} = rs2;
1261 </pre>
1262 </div>
1265 <tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt>
1266 fields. <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>,
1267 <tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt>
1268 instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to
1269 the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively.
1270 </p>
1272 </div>
1274 <!-- ======================================================================= -->
1275 <h3>
1276 <a name="implementInstr">Implement a subclass of </a>
1277 <a href="CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a>
1278 </h3>
1280 <div>
1283 The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which
1284 implements the interface described in <tt>TargetInstrInfo.h</tt>. These
1285 functions return <tt>0</tt> or a Boolean or they assert, unless
1286 overridden. Here's a list of functions that are overridden for the SPARC
1287 implementation in <tt>SparcInstrInfo.cpp</tt>:
1288 </p>
1290 <ul>
1291 <li><tt>isLoadFromStackSlot</tt> &mdash; If the specified machine instruction is
1292 a direct load from a stack slot, return the register number of the
1293 destination and the <tt>FrameIndex</tt> of the stack slot.</li>
1295 <li><tt>isStoreToStackSlot</tt> &mdash; If the specified machine instruction is
1296 a direct store to a stack slot, return the register number of the
1297 destination and the <tt>FrameIndex</tt> of the stack slot.</li>
1299 <li><tt>copyPhysReg</tt> &mdash; Copy values between a pair of physical
1300 registers.</li>
1302 <li><tt>storeRegToStackSlot</tt> &mdash; Store a register value to a stack
1303 slot.</li>
1305 <li><tt>loadRegFromStackSlot</tt> &mdash; Load a register value from a stack
1306 slot.</li>
1308 <li><tt>storeRegToAddr</tt> &mdash; Store a register value to memory.</li>
1310 <li><tt>loadRegFromAddr</tt> &mdash; Load a register value from memory.</li>
1312 <li><tt>foldMemoryOperand</tt> &mdash; Attempt to combine instructions of any
1313 load or store instruction for the specified operand(s).</li>
1314 </ul>
1316 </div>
1318 <!-- ======================================================================= -->
1319 <h3>
1320 <a name="branchFolding">Branch Folding and If Conversion</a>
1321 </h3>
1322 <div>
1325 Performance can be improved by combining instructions or by eliminating
1326 instructions that are never reached. The <tt>AnalyzeBranch</tt> method
1327 in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions
1328 and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of
1329 a machine basic block (MBB) for opportunities for improvement, such as branch
1330 folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt>
1331 machine function passes (see the source files <tt>BranchFolding.cpp</tt> and
1332 <tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call
1333 <tt>AnalyzeBranch</tt> to improve the control flow graph that represents the
1334 instructions.
1335 </p>
1338 Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can
1339 be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since
1340 SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target
1341 implementation is shown below.
1342 </p>
1344 <p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p>
1346 <ul>
1347 <li><tt>MachineBasicBlock &amp;MBB</tt> &mdash; The incoming block to be
1348 examined.</li>
1350 <li><tt>MachineBasicBlock *&amp;TBB</tt> &mdash; A destination block that is
1351 returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is
1352 the destination.</li>
1354 <li><tt>MachineBasicBlock *&amp;FBB</tt> &mdash; For a conditional branch that
1355 evaluates to false, <tt>FBB</tt> is returned as the destination.</li>
1357 <li><tt>std::vector&lt;MachineOperand&gt; &amp;Cond</tt> &mdash; List of
1358 operands to evaluate a condition for a conditional branch.</li>
1359 </ul>
1362 In the simplest case, if a block ends without a branch, then it falls through to
1363 the successor block. No destination blocks are specified for either <tt>TBB</tt>
1364 or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of
1365 the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the
1366 function parameters and the code for the simplest case.
1367 </p>
1369 <div class="doc_code">
1370 <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &amp;MBB,
1371 MachineBasicBlock *&amp;TBB, MachineBasicBlock *&amp;FBB,
1372 std::vector&lt;MachineOperand&gt; &amp;Cond) const
1374 MachineBasicBlock::iterator I = MBB.end();
1375 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1376 return false;
1377 </pre>
1378 </div>
1381 If a block ends with a single unconditional branch instruction, then
1382 <tt>AnalyzeBranch</tt> (shown below) should return the destination of that
1383 branch in the <tt>TBB</tt> parameter.
1384 </p>
1386 <div class="doc_code">
1387 <pre>
1388 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1389 TBB = LastInst-&gt;getOperand(0).getMBB();
1390 return false;
1392 </pre>
1393 </div>
1396 If a block ends with two unconditional branches, then the second branch is never
1397 reached. In that situation, as shown below, remove the last branch instruction
1398 and return the penultimate branch in the <tt>TBB</tt> parameter.
1399 </p>
1401 <div class="doc_code">
1402 <pre>
1403 if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) &amp;&amp;
1404 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1405 TBB = SecondLastInst-&gt;getOperand(0).getMBB();
1406 I = LastInst;
1407 I-&gt;eraseFromParent();
1408 return false;
1410 </pre>
1411 </div>
1414 A block may end with a single conditional branch instruction that falls through
1415 to successor block if the condition evaluates to false. In that case,
1416 <tt>AnalyzeBranch</tt> (shown below) should return the destination of that
1417 conditional branch in the <tt>TBB</tt> parameter and a list of operands in
1418 the <tt>Cond</tt> parameter to evaluate the condition.
1419 </p>
1421 <div class="doc_code">
1422 <pre>
1423 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1424 // Block ends with fall-through condbranch.
1425 TBB = LastInst-&gt;getOperand(0).getMBB();
1426 Cond.push_back(LastInst-&gt;getOperand(1));
1427 Cond.push_back(LastInst-&gt;getOperand(2));
1428 return false;
1430 </pre>
1431 </div>
1434 If a block ends with both a conditional branch and an ensuing unconditional
1435 branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional
1436 branch destination (assuming it corresponds to a conditional evaluation of
1437 '<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch
1438 destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of
1439 '<tt>false</tt>'). A list of operands to evaluate the condition should be
1440 returned in the <tt>Cond</tt> parameter.
1441 </p>
1443 <div class="doc_code">
1444 <pre>
1445 unsigned SecondLastOpc = SecondLastInst-&gt;getOpcode();
1447 if ((SecondLastOpc == ARM::Bcc &amp;&amp; LastOpc == ARM::B) ||
1448 (SecondLastOpc == ARM::tBcc &amp;&amp; LastOpc == ARM::tB)) {
1449 TBB = SecondLastInst-&gt;getOperand(0).getMBB();
1450 Cond.push_back(SecondLastInst-&gt;getOperand(1));
1451 Cond.push_back(SecondLastInst-&gt;getOperand(2));
1452 FBB = LastInst-&gt;getOperand(0).getMBB();
1453 return false;
1455 </pre>
1456 </div>
1459 For the last two cases (ending with a single conditional branch or ending with
1460 one conditional and one unconditional branch), the operands returned in
1461 the <tt>Cond</tt> parameter can be passed to methods of other instructions to
1462 create new branches or perform other operations. An implementation
1463 of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt>
1464 and <tt>InsertBranch</tt> to manage subsequent operations.
1465 </p>
1468 <tt>AnalyzeBranch</tt> should return false indicating success in most circumstances.
1469 <tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to
1470 do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may
1471 return true if it encounters a terminator it cannot handle, such as an indirect
1472 branch.
1473 </p>
1475 </div>
1477 </div>
1479 <!-- *********************************************************************** -->
1480 <h2>
1481 <a name="InstructionSelector">Instruction Selector</a>
1482 </h2>
1483 <!-- *********************************************************************** -->
1485 <div>
1488 LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes
1489 of the <tt>SelectionDAG</tt> ideally represent native target
1490 instructions. During code generation, instruction selection passes are performed
1491 to convert non-native DAG instructions into native target-specific
1492 instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to
1493 match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
1494 may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG
1495 operations for branch instructions. Later, the code in
1496 <tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not
1497 supported natively (legalizes) in a <tt>SelectionDAG</tt>.
1498 </p>
1501 TableGen generates code for instruction selection using the following target
1502 description input files:
1503 </p>
1505 <ul>
1506 <li><tt>XXXInstrInfo.td</tt> &mdash; Contains definitions of instructions in a
1507 target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which
1508 is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li>
1510 <li><tt>XXXCallingConv.td</tt> &mdash; Contains the calling and return value
1511 conventions for the target architecture, and it generates
1512 <tt>XXXGenCallingConv.inc</tt>, which is included in
1513 <tt>XXXISelLowering.cpp</tt>.</li>
1514 </ul>
1517 The implementation of an instruction selection pass must include a header that
1518 declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In
1519 <tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction
1520 selection pass into the queue of passes to run.
1521 </p>
1524 The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the
1525 contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific
1526 processing phases, use the command line options for <tt>llc</tt>, described
1527 at <a href="CodeGenerator.html#selectiondag_process">
1528 SelectionDAG Instruction Selection Process</a>.
1529 </p>
1532 To describe instruction selector behavior, you should add patterns for lowering
1533 LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction
1534 definitions in <tt>XXXInstrInfo.td</tt>. For example, in
1535 <tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and
1536 the last parameter describes a pattern with the store DAG operator.
1537 </p>
1539 <div class="doc_code">
1540 <pre>
1541 def STrr : F3_1&lt; 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1542 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]&gt;;
1543 </pre>
1544 </div>
1547 <tt>ADDRrr</tt> is a memory mode that is also defined in
1548 <tt>SparcInstrInfo.td</tt>:
1549 </p>
1551 <div class="doc_code">
1552 <pre>
1553 def ADDRrr : ComplexPattern&lt;i32, 2, "SelectADDRrr", [], []&gt;;
1554 </pre>
1555 </div>
1558 The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a
1559 function defined in an implementation of the Instructor Selector (such
1560 as <tt>SparcISelDAGToDAG.cpp</tt>).
1561 </p>
1564 In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is
1565 defined below:
1566 </p>
1568 <div class="doc_code">
1569 <pre>
1570 def store : PatFrag&lt;(ops node:$val, node:$ptr),
1571 (st node:$val, node:$ptr), [{
1572 if (StoreSDNode *ST = dyn_cast&lt;StoreSDNode&gt;(N))
1573 return !ST-&gt;isTruncatingStore() &amp;&amp;
1574 ST-&gt;getAddressingMode() == ISD::UNINDEXED;
1575 return false;
1576 }]&gt;;
1577 </pre>
1578 </div>
1581 <tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the
1582 <tt>SelectCode</tt> method that is used to call the appropriate processing
1583 method for an instruction. In this example, <tt>SelectCode</tt>
1584 calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode.
1585 </p>
1587 <div class="doc_code">
1588 <pre>
1589 SDNode *SelectCode(SDValue N) {
1590 ...
1591 MVT::ValueType NVT = N.getNode()-&gt;getValueType(0);
1592 switch (N.getOpcode()) {
1593 case ISD::STORE: {
1594 switch (NVT) {
1595 default:
1596 return Select_ISD_STORE(N);
1597 break;
1599 break;
1602 </pre>
1603 </div>
1606 The pattern for <tt>STrr</tt> is matched, so elsewhere in
1607 <tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for
1608 <tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated
1609 in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this
1610 instruction.
1611 </p>
1613 <div class="doc_code">
1614 <pre>
1615 SDNode *Select_ISD_STORE(const SDValue &amp;N) {
1616 SDValue Chain = N.getOperand(0);
1617 if (Predicate_store(N.getNode())) {
1618 SDValue N1 = N.getOperand(1);
1619 SDValue N2 = N.getOperand(2);
1620 SDValue CPTmp0;
1621 SDValue CPTmp1;
1623 // Pattern: (st:void IntRegs:i32:$src,
1624 // ADDRrr:i32:$addr)&lt;&lt;P:Predicate_store&gt;&gt;
1625 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1626 // Pattern complexity = 13 cost = 1 size = 0
1627 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &amp;&amp;
1628 N1.getNode()-&gt;getValueType(0) == MVT::i32 &amp;&amp;
1629 N2.getNode()-&gt;getValueType(0) == MVT::i32) {
1630 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1633 </pre>
1634 </div>
1636 <!-- ======================================================================= -->
1637 <h3>
1638 <a name="LegalizePhase">The SelectionDAG Legalize Phase</a>
1639 </h3>
1641 <div>
1644 The Legalize phase converts a DAG to use types and operations that are natively
1645 supported by the target. For natively unsupported types and operations, you need
1646 to add code to the target-specific XXXTargetLowering implementation to convert
1647 unsupported types and operations to supported ones.
1648 </p>
1651 In the constructor for the <tt>XXXTargetLowering</tt> class, first use the
1652 <tt>addRegisterClass</tt> method to specify which types are supports and which
1653 register classes are associated with them. The code for the register classes are
1654 generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed
1655 in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the
1656 constructor for the SparcTargetLowering class (in
1657 <tt>SparcISelLowering.cpp</tt>) starts with the following code:
1658 </p>
1660 <div class="doc_code">
1661 <pre>
1662 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1663 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1664 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1665 </pre>
1666 </div>
1669 You should examine the node types in the <tt>ISD</tt> namespace
1670 (<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which
1671 operations the target natively supports. For operations that do <b>not</b> have
1672 native support, add a callback to the constructor for the XXXTargetLowering
1673 class, so the instruction selection process knows what to do. The TargetLowering
1674 class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are:
1675 </p>
1677 <ul>
1678 <li><tt>setOperationAction</tt> &mdash; General operation.</li>
1680 <li><tt>setLoadExtAction</tt> &mdash; Load with extension.</li>
1682 <li><tt>setTruncStoreAction</tt> &mdash; Truncating store.</li>
1684 <li><tt>setIndexedLoadAction</tt> &mdash; Indexed load.</li>
1686 <li><tt>setIndexedStoreAction</tt> &mdash; Indexed store.</li>
1688 <li><tt>setConvertAction</tt> &mdash; Type conversion.</li>
1690 <li><tt>setCondCodeAction</tt> &mdash; Support for a given condition code.</li>
1691 </ul>
1694 Note: on older releases, <tt>setLoadXAction</tt> is used instead
1695 of <tt>setLoadExtAction</tt>. Also, on older releases,
1696 <tt>setCondCodeAction</tt> may not be supported. Examine your release
1697 to see what methods are specifically supported.
1698 </p>
1701 These callbacks are used to determine that an operation does or does not work
1702 with a specified type (or types). And in all cases, the third parameter is
1703 a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>,
1704 <tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt>
1705 contains examples of all four <tt>LegalAction</tt> values.
1706 </p>
1708 <!-- _______________________________________________________________________ -->
1709 <h4>
1710 <a name="promote">Promote</a>
1711 </h4>
1713 <div>
1716 For an operation without native support for a given type, the specified type may
1717 be promoted to a larger type that is supported. For example, SPARC does not
1718 support a sign-extending load for Boolean values (<tt>i1</tt> type), so
1719 in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>,
1720 changes <tt>i1</tt> type values to a large type before loading.
1721 </p>
1723 <div class="doc_code">
1724 <pre>
1725 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1726 </pre>
1727 </div>
1729 </div>
1731 <!-- _______________________________________________________________________ -->
1732 <h4>
1733 <a name="expand">Expand</a>
1734 </h4>
1736 <div>
1739 For a type without native support, a value may need to be broken down further,
1740 rather than promoted. For an operation without native support, a combination of
1741 other operations may be used to similar effect. In SPARC, the floating-point
1742 sine and cosine trig operations are supported by expansion to other operations,
1743 as indicated by the third parameter, <tt>Expand</tt>, to
1744 <tt>setOperationAction</tt>:
1745 </p>
1747 <div class="doc_code">
1748 <pre>
1749 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1750 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1751 </pre>
1752 </div>
1754 </div>
1756 <!-- _______________________________________________________________________ -->
1757 <h4>
1758 <a name="custom">Custom</a>
1759 </h4>
1761 <div>
1764 For some operations, simple type promotion or operation expansion may be
1765 insufficient. In some cases, a special intrinsic function must be implemented.
1766 </p>
1769 For example, a constant value may require special treatment, or an operation may
1770 require spilling and restoring registers in the stack and working with register
1771 allocators.
1772 </p>
1775 As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type
1776 conversion from a floating point value to a signed integer, first the
1777 <tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third
1778 parameter:
1779 </p>
1781 <div class="doc_code">
1782 <pre>
1783 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1784 </pre>
1785 </div>
1788 In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a
1789 case statement should be added to indicate what function to call. In the
1790 following code, an <tt>FP_TO_SINT</tt> opcode will call
1791 the <tt>LowerFP_TO_SINT</tt> method:
1792 </p>
1794 <div class="doc_code">
1795 <pre>
1796 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &amp;DAG) {
1797 switch (Op.getOpcode()) {
1798 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1802 </pre>
1803 </div>
1806 Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP
1807 register to convert the floating-point value to an integer.
1808 </p>
1810 <div class="doc_code">
1811 <pre>
1812 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &amp;DAG) {
1813 assert(Op.getValueType() == MVT::i32);
1814 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
1815 return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
1817 </pre>
1818 </div>
1820 </div>
1822 <!-- _______________________________________________________________________ -->
1823 <h4>
1824 <a name="legal">Legal</a>
1825 </h4>
1827 <div>
1830 The <tt>Legal</tt> LegalizeAction enum value simply indicates that an
1831 operation <b>is</b> natively supported. <tt>Legal</tt> represents the default
1832 condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action
1833 for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is
1834 natively supported only for SPARC v9. The following code enables
1835 the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations.
1836 </p>
1838 <div class="doc_code">
1839 <pre>
1840 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1842 if (TM.getSubtarget&lt;SparcSubtarget&gt;().isV9())
1843 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1844 case ISD::SETULT: return SPCC::ICC_CS;
1845 case ISD::SETULE: return SPCC::ICC_LEU;
1846 case ISD::SETUGT: return SPCC::ICC_GU;
1847 case ISD::SETUGE: return SPCC::ICC_CC;
1850 </pre>
1851 </div>
1853 </div>
1855 </div>
1857 <!-- ======================================================================= -->
1858 <h3>
1859 <a name="callingConventions">Calling Conventions</a>
1860 </h3>
1862 <div>
1865 To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt>
1866 uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
1867 <tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target
1868 descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header
1869 file <tt>XXXGenCallingConv.inc</tt>, which is typically included
1870 in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in
1871 <tt>TargetCallingConv.td</tt> to specify:
1872 </p>
1874 <ul>
1875 <li>The order of parameter allocation.</li>
1877 <li>Where parameters and return values are placed (that is, on the stack or in
1878 registers).</li>
1880 <li>Which registers may be used.</li>
1882 <li>Whether the caller or callee unwinds the stack.</li>
1883 </ul>
1886 The following example demonstrates the use of the <tt>CCIfType</tt> and
1887 <tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true
1888 (that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then
1889 the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns
1890 the argument value to the first available register: either <tt>R0</tt>
1891 or <tt>R1</tt>.
1892 </p>
1894 <div class="doc_code">
1895 <pre>
1896 CCIfType&lt;[f32,f64], CCAssignToReg&lt;[R0, R1]&gt;&gt;
1897 </pre>
1898 </div>
1901 <tt>SparcCallingConv.td</tt> contains definitions for a target-specific
1902 return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling
1903 convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt>
1904 (shown below) indicates which registers are used for specified scalar return
1905 types. A single-precision float is returned to register <tt>F0</tt>, and a
1906 double-precision float goes to register <tt>D0</tt>. A 32-bit integer is
1907 returned in register <tt>I0</tt> or <tt>I1</tt>.
1908 </p>
1910 <div class="doc_code">
1911 <pre>
1912 def RetCC_Sparc32 : CallingConv&lt;[
1913 CCIfType&lt;[i32], CCAssignToReg&lt;[I0, I1]&gt;&gt;,
1914 CCIfType&lt;[f32], CCAssignToReg&lt;[F0]&gt;&gt;,
1915 CCIfType&lt;[f64], CCAssignToReg&lt;[D0]&gt;&gt;
1916 ]&gt;;
1917 </pre>
1918 </div>
1921 The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces
1922 <tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the
1923 specified size and alignment. In the example below, the first parameter, 4,
1924 indicates the size of the slot, and the second parameter, also 4, indicates the
1925 stack alignment along 4-byte units. (Special cases: if size is zero, then the
1926 ABI size is used; if alignment is zero, then the ABI alignment is used.)
1927 </p>
1929 <div class="doc_code">
1930 <pre>
1931 def CC_Sparc32 : CallingConv&lt;[
1932 // All arguments get passed in integer registers if there is space.
1933 CCIfType&lt;[i32, f32, f64], CCAssignToReg&lt;[I0, I1, I2, I3, I4, I5]&gt;&gt;,
1934 CCAssignToStack&lt;4, 4&gt;
1935 ]&gt;;
1936 </pre>
1937 </div>
1940 <tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a
1941 specified sub-calling convention, and, if a match is found, it is invoked. In
1942 the following example (in <tt>X86CallingConv.td</tt>), the definition of
1943 <tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value
1944 is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>,
1945 the <tt>RetCC_X86Common</tt> is invoked.
1946 </p>
1948 <div class="doc_code">
1949 <pre>
1950 def RetCC_X86_32_C : CallingConv&lt;[
1951 CCIfType&lt;[f32], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
1952 CCIfType&lt;[f64], CCAssignToReg&lt;[ST0, ST1]&gt;&gt;,
1953 CCDelegateTo&lt;RetCC_X86Common&gt;
1954 ]&gt;;
1955 </pre>
1956 </div>
1959 <tt>CCIfCC</tt> is an interface that attempts to match the given name to the
1960 current calling convention. If the name identifies the current calling
1961 convention, then a specified action is invoked. In the following example (in
1962 <tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use,
1963 then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling
1964 convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked.
1965 </p>
1967 <div class="doc_code">
1968 <pre>
1969 def RetCC_X86_32 : CallingConv&lt;[
1970 CCIfCC&lt;"CallingConv::Fast", CCDelegateTo&lt;RetCC_X86_32_Fast&gt;&gt;,
1971 CCIfCC&lt;"CallingConv::X86_SSECall", CCDelegateTo&lt;RetCC_X86_32_SSE&gt;&gt;,
1972 CCDelegateTo&lt;RetCC_X86_32_C&gt;
1973 ]&gt;;
1974 </pre>
1975 </div>
1977 <p>Other calling convention interfaces include:</p>
1979 <ul>
1980 <li><tt>CCIf &lt;predicate, action&gt;</tt> &mdash; If the predicate matches,
1981 apply the action.</li>
1983 <li><tt>CCIfInReg &lt;action&gt;</tt> &mdash; If the argument is marked with the
1984 '<tt>inreg</tt>' attribute, then apply the action.</li>
1986 <li><tt>CCIfNest &lt;action&gt;</tt> &mdash; Inf the argument is marked with the
1987 '<tt>nest</tt>' attribute, then apply the action.</li>
1989 <li><tt>CCIfNotVarArg &lt;action&gt;</tt> &mdash; If the current function does
1990 not take a variable number of arguments, apply the action.</li>
1992 <li><tt>CCAssignToRegWithShadow &lt;registerList, shadowList&gt;</tt> &mdash;
1993 similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li>
1995 <li><tt>CCPassByVal &lt;size, align&gt;</tt> &mdash; Assign value to a stack
1996 slot with the minimum specified size and alignment.</li>
1998 <li><tt>CCPromoteToType &lt;type&gt;</tt> &mdash; Promote the current value to
1999 the specified type.</li>
2001 <li><tt>CallingConv &lt;[actions]&gt;</tt> &mdash; Define each calling
2002 convention that is supported.</li>
2003 </ul>
2005 </div>
2007 </div>
2009 <!-- *********************************************************************** -->
2010 <h2>
2011 <a name="assemblyPrinter">Assembly Printer</a>
2012 </h2>
2013 <!-- *********************************************************************** -->
2015 <div>
2018 During the code emission stage, the code generator may utilize an LLVM pass to
2019 produce assembly output. To do this, you want to implement the code for a
2020 printer that converts LLVM IR to a GAS-format assembly language for your target
2021 machine, using the following steps:
2022 </p>
2024 <ul>
2025 <li>Define all the assembly strings for your target, adding them to the
2026 instructions defined in the <tt>XXXInstrInfo.td</tt> file.
2027 (See <a href="#InstructionSet">Instruction Set</a>.) TableGen will produce
2028 an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of
2029 the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li>
2031 <li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration
2032 of the <tt>XXXTargetAsmInfo</tt> class (a subclass
2033 of <tt>TargetAsmInfo</tt>).</li>
2035 <li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values
2036 for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for
2037 methods.</li>
2039 <li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt>
2040 class that performs the LLVM-to-assembly conversion.</li>
2041 </ul>
2044 The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the
2045 <tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>.
2046 Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of
2047 <tt>XXXTargetAsmInfo</tt> replacement values that override the default values
2048 in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>:
2049 </p>
2051 <div class="doc_code">
2052 <pre>
2053 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &amp;TM) {
2054 Data16bitsDirective = "\t.half\t";
2055 Data32bitsDirective = "\t.word\t";
2056 Data64bitsDirective = 0; // .xword is only supported by V9.
2057 ZeroDirective = "\t.skip\t";
2058 CommentString = "!";
2059 ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
2061 </pre>
2062 </div>
2065 The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an
2066 example where the target specific <tt>TargetAsmInfo</tt> class uses an
2067 overridden methods: <tt>ExpandInlineAsm</tt>.
2068 </p>
2071 A target-specific implementation of AsmPrinter is written in
2072 <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that
2073 converts the LLVM to printable assembly. The implementation must include the
2074 following headers that have declarations for the <tt>AsmPrinter</tt> and
2075 <tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a
2076 subclass of <tt>FunctionPass</tt>.
2077 </p>
2079 <div class="doc_code">
2080 <pre>
2081 #include "llvm/CodeGen/AsmPrinter.h"
2082 #include "llvm/CodeGen/MachineFunctionPass.h"
2083 </pre>
2084 </div>
2087 As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first
2088 calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In
2089 <tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process
2090 variable names.
2091 </p>
2094 In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method
2095 (declared in <tt>MachineFunctionPass</tt>) must be implemented
2096 for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>,
2097 the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>.
2098 Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but
2099 generally do the following to process each machine function:
2100 </p>
2102 <ul>
2103 <li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li>
2105 <li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants
2106 which have been spilled to memory.</li>
2108 <li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current
2109 function.</li>
2111 <li>Print out the label for the current function.</li>
2113 <li>Print out the code for the function, including basic block labels and the
2114 assembly for the instruction (using <tt>printInstruction</tt>)</li>
2115 </ul>
2118 The <tt>XXXAsmPrinter</tt> implementation must also include the code generated
2119 by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code
2120 in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the
2121 <tt>printInstruction</tt> method that may call these methods:
2122 </p>
2124 <ul>
2125 <li><tt>printOperand</tt></li>
2127 <li><tt>printMemOperand</tt></li>
2129 <li><tt>printCCOperand (for conditional statements)</tt></li>
2131 <li><tt>printDataDirective</tt></li>
2133 <li><tt>printDeclare</tt></li>
2135 <li><tt>printImplicitDef</tt></li>
2137 <li><tt>printInlineAsm</tt></li>
2138 </ul>
2141 The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>,
2142 <tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are
2143 generally adequate for printing assembly and do not need to be
2144 overridden.
2145 </p>
2148 The <tt>printOperand</tt> method is implemented with a long switch/case
2149 statement for the type of operand: register, immediate, basic block, external
2150 symbol, global address, constant pool index, or jump table index. For an
2151 instruction with a memory address operand, the <tt>printMemOperand</tt> method
2152 should be implemented to generate the proper output. Similarly,
2153 <tt>printCCOperand</tt> should be used to print a conditional operand.
2154 </p>
2156 <p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and
2157 it should be called to shut down the assembly printer. During
2158 <tt>doFinalization</tt>, global variables and constants are printed to
2159 output.
2160 </p>
2162 </div>
2164 <!-- *********************************************************************** -->
2165 <h2>
2166 <a name="subtargetSupport">Subtarget Support</a>
2167 </h2>
2168 <!-- *********************************************************************** -->
2170 <div>
2173 Subtarget support is used to inform the code generation process of instruction
2174 set variations for a given chip set. For example, the LLVM SPARC implementation
2175 provided covers three major versions of the SPARC microprocessor architecture:
2176 Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit
2177 architecture), and the UltraSPARC architecture. V8 has 16 double-precision
2178 floating-point registers that are also usable as either 32 single-precision or 8
2179 quad-precision registers. V8 is also purely big-endian. V9 has 32
2180 double-precision floating-point registers that are also usable as 16
2181 quad-precision registers, but cannot be used as single-precision registers. The
2182 UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
2183 extensions.
2184 </p>
2187 If subtarget support is needed, you should implement a target-specific
2188 XXXSubtarget class for your architecture. This class should process the
2189 command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>.
2190 </p>
2193 TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files
2194 to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown
2195 below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string
2196 parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an
2197 attribute set by the feature, the value of the attribute, and a description of
2198 the feature. (The fifth parameter is a list of features whose presence is
2199 implied, and its default value is an empty array.)
2200 </p>
2202 <div class="doc_code">
2203 <pre>
2204 class SubtargetFeature&lt;string n, string a, string v, string d,
2205 list&lt;SubtargetFeature&gt; i = []&gt; {
2206 string Name = n;
2207 string Attribute = a;
2208 string Value = v;
2209 string Desc = d;
2210 list&lt;SubtargetFeature&gt; Implies = i;
2212 </pre>
2213 </div>
2216 In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the
2217 following features.
2218 </p>
2220 <div class="doc_code">
2221 <pre>
2222 def FeatureV9 : SubtargetFeature&lt;"v9", "IsV9", "true",
2223 "Enable SPARC-V9 instructions"&gt;;
2224 def FeatureV8Deprecated : SubtargetFeature&lt;"deprecated-v8",
2225 "V8DeprecatedInsts", "true",
2226 "Enable deprecated V8 instructions in V9 mode"&gt;;
2227 def FeatureVIS : SubtargetFeature&lt;"vis", "IsVIS", "true",
2228 "Enable UltraSPARC Visual Instruction Set extensions"&gt;;
2229 </pre>
2230 </div>
2233 Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to
2234 define particular SPARC processor subtypes that may have the previously
2235 described features.
2236 </p>
2238 <div class="doc_code">
2239 <pre>
2240 class Proc&lt;string Name, list&lt;SubtargetFeature&gt; Features&gt;
2241 : Processor&lt;Name, NoItineraries, Features&gt;;
2242 &nbsp;
2243 def : Proc&lt;"generic", []&gt;;
2244 def : Proc&lt;"v8", []&gt;;
2245 def : Proc&lt;"supersparc", []&gt;;
2246 def : Proc&lt;"sparclite", []&gt;;
2247 def : Proc&lt;"f934", []&gt;;
2248 def : Proc&lt;"hypersparc", []&gt;;
2249 def : Proc&lt;"sparclite86x", []&gt;;
2250 def : Proc&lt;"sparclet", []&gt;;
2251 def : Proc&lt;"tsc701", []&gt;;
2252 def : Proc&lt;"v9", [FeatureV9]&gt;;
2253 def : Proc&lt;"ultrasparc", [FeatureV9, FeatureV8Deprecated]&gt;;
2254 def : Proc&lt;"ultrasparc3", [FeatureV9, FeatureV8Deprecated]&gt;;
2255 def : Proc&lt;"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]&gt;;
2256 </pre>
2257 </div>
2260 From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting
2261 SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
2262 constants to represent the CPU features and CPU subtypes, and the
2263 ParseSubtargetFeatures method that parses the features string that sets
2264 specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file
2265 should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific
2266 implementation of the XXXSubtarget method should follow this pseudocode:
2267 </p>
2269 <div class="doc_code">
2270 <pre>
2271 XXXSubtarget::XXXSubtarget(const Module &amp;M, const std::string &amp;FS) {
2272 // Set the default features
2273 // Determine default and user specified characteristics of the CPU
2274 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
2275 // Perform any additional operations
2277 </pre>
2278 </div>
2280 </div>
2282 <!-- *********************************************************************** -->
2283 <h2>
2284 <a name="jitSupport">JIT Support</a>
2285 </h2>
2286 <!-- *********************************************************************** -->
2288 <div>
2291 The implementation of a target machine optionally includes a Just-In-Time (JIT)
2292 code generator that emits machine code and auxiliary structures as binary output
2293 that can be written directly to memory. To do this, implement JIT code
2294 generation by performing the following steps:
2295 </p>
2297 <ul>
2298 <li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function
2299 pass that transforms target-machine instructions into relocatable machine
2300 code.</li>
2302 <li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for
2303 target-specific code-generation activities, such as emitting machine code
2304 and stubs.</li>
2306 <li>Modify <tt>XXXTargetMachine</tt> so that it provides a
2307 <tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li>
2308 </ul>
2311 There are several different approaches to writing the JIT support code. For
2312 instance, TableGen and target descriptor files may be used for creating a JIT
2313 code generator, but are not mandatory. For the Alpha and PowerPC target
2314 machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which
2315 contains the binary coding of machine instructions and the
2316 <tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT
2317 implementations do not.
2318 </p>
2321 Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the
2322 <tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the
2323 <tt>MachineCodeEmitter</tt> class containing code for several callback functions
2324 that write data (in bytes, words, strings, etc.) to the output stream.
2325 </p>
2327 <!-- ======================================================================= -->
2328 <h3>
2329 <a name="mce">Machine Code Emitter</a>
2330 </h3>
2332 <div>
2335 In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class
2336 is implemented as a function pass (subclass
2337 of <tt>MachineFunctionPass</tt>). The target-specific implementation
2338 of <tt>runOnMachineFunction</tt> (invoked by
2339 <tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the
2340 <tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each
2341 instruction and emit binary code. <tt>emitInstruction</tt> is largely
2342 implemented with case statements on the instruction types defined in
2343 <tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>,
2344 the <tt>emitInstruction</tt> method is built around the following switch/case
2345 statements:
2346 </p>
2348 <div class="doc_code">
2349 <pre>
2350 switch (Desc-&gt;TSFlags &amp; X86::FormMask) {
2351 case X86II::Pseudo: // for not yet implemented instructions
2352 ... // or pseudo-instructions
2353 break;
2354 case X86II::RawFrm: // for instructions with a fixed opcode value
2356 break;
2357 case X86II::AddRegFrm: // for instructions that have one register operand
2358 ... // added to their opcode
2359 break;
2360 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
2361 ... // to specify a destination (register)
2362 break;
2363 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
2364 ... // to specify a destination (memory)
2365 break;
2366 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
2367 ... // to specify a source (register)
2368 break;
2369 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
2370 ... // to specify a source (memory)
2371 break;
2372 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
2373 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
2374 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
2375 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
2376 ...
2377 break;
2378 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
2379 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
2380 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
2381 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
2382 ...
2383 break;
2384 case X86II::MRMInitReg: // for instructions whose source and
2385 ... // destination are the same register
2386 break;
2388 </pre>
2389 </div>
2392 The implementations of these case statements often first emit the opcode and
2393 then get the operand(s). Then depending upon the operand, helper methods may be
2394 called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>,
2395 for the <tt>X86II::AddRegFrm</tt> case, the first data emitted
2396 (by <tt>emitByte</tt>) is the opcode added to the register operand. Then an
2397 object representing the machine operand, <tt>MO1</tt>, is extracted. The helper
2398 methods such as <tt>isImmediate</tt>,
2399 <tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and
2400 <tt>isJumpTableIndex</tt> determine the operand
2401 type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such
2402 as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>,
2403 <tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>,
2404 and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.)
2405 </p>
2407 <div class="doc_code">
2408 <pre>
2409 case X86II::AddRegFrm:
2410 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
2412 if (CurOp != NumOps) {
2413 const MachineOperand &amp;MO1 = MI.getOperand(CurOp++);
2414 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2415 if (MO1.isImmediate())
2416 emitConstant(MO1.getImm(), Size);
2417 else {
2418 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
2419 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
2420 if (Opcode == X86::MOV64ri)
2421 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
2422 if (MO1.isGlobalAddress()) {
2423 bool NeedStub = isa&lt;Function&gt;(MO1.getGlobal());
2424 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
2425 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
2426 NeedStub, isLazy);
2427 } else if (MO1.isExternalSymbol())
2428 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
2429 else if (MO1.isConstantPoolIndex())
2430 emitConstPoolAddress(MO1.getIndex(), rt);
2431 else if (MO1.isJumpTableIndex())
2432 emitJumpTableAddress(MO1.getIndex(), rt);
2435 break;
2436 </pre>
2437 </div>
2440 In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the
2441 variable <tt>rt</tt>, which is a RelocationType enum that may be used to
2442 relocate addresses (for example, a global address with a PIC base offset). The
2443 <tt>RelocationType</tt> enum for that target is defined in the short
2444 target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by
2445 the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite
2446 addresses for referenced global symbols.
2447 </p>
2450 For example, <tt>X86Relocations.h</tt> specifies the following relocation types
2451 for the X86 addresses. In all four cases, the relocated value is added to the
2452 value already in memory. For <tt>reloc_pcrel_word</tt>
2453 and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment.
2454 </p>
2456 <div class="doc_code">
2457 <pre>
2458 enum RelocationType {
2459 reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc
2460 reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base
2461 reloc_absolute_word = 2, // absolute relocation; no additional adjustment
2462 reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
2464 </pre>
2465 </div>
2467 </div>
2469 <!-- ======================================================================= -->
2470 <h3>
2471 <a name="targetJITInfo">Target JIT Info</a>
2472 </h3>
2474 <div>
2477 <tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific
2478 code-generation activities, such as emitting machine code and stubs. At minimum,
2479 a target-specific version of <tt>XXXJITInfo</tt> implements the following:
2480 </p>
2482 <ul>
2483 <li><tt>getLazyResolverFunction</tt> &mdash; Initializes the JIT, gives the
2484 target a function that is used for compilation.</li>
2486 <li><tt>emitFunctionStub</tt> &mdash; Returns a native function with a specified
2487 address for a callback function.</li>
2489 <li><tt>relocate</tt> &mdash; Changes the addresses of referenced globals, based
2490 on relocation types.</li>
2492 <li>Callback function that are wrappers to a function stub that is used when the
2493 real target is not initially known.</li>
2494 </ul>
2497 <tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the
2498 incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the
2499 callback function that will be used a function wrapper. For the Alpha target
2500 (in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt>
2501 implementation is simply:
2502 </p>
2504 <div class="doc_code">
2505 <pre>
2506 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
2507 JITCompilerFn F) {
2508 JITCompilerFunction = F;
2509 return AlphaCompilationCallback;
2511 </pre>
2512 </div>
2515 For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a
2516 little more complication, because it returns a different callback function for
2517 processors with SSE instructions and XMM registers.
2518 </p>
2521 The callback function initially saves and later restores the callee register
2522 values, incoming arguments, and frame and return address. The callback function
2523 needs low-level access to the registers or stack, so it is typically implemented
2524 with assembler.
2525 </p>
2527 </div>
2529 </div>
2531 <!-- *********************************************************************** -->
2533 <hr>
2534 <address>
2535 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
2536 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
2537 <a href="http://validator.w3.org/check/referer"><img
2538 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
2540 <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br>
2541 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a>
2542 <br>
2543 Last modified: $Date$
2544 </address>
2546 </body>
2547 </html>