Simplify away redundant test, and document what's going on.
[llvm/stm8.git] / lib / VMCore / Value.cpp
blob29f6a8094f0bb258888e060b455c5e8ecc2e2538
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include <algorithm>
32 using namespace llvm;
34 //===----------------------------------------------------------------------===//
35 // Value Class
36 //===----------------------------------------------------------------------===//
38 static inline const Type *checkType(const Type *Ty) {
39 assert(Ty && "Value defined with a null type: Error!");
40 return Ty;
43 Value::Value(const Type *ty, unsigned scid)
44 : SubclassID(scid), HasValueHandle(0),
45 SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty)),
46 UseList(0), Name(0) {
47 if (isa<CallInst>(this) || isa<InvokeInst>(this))
48 assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
49 ty->isOpaqueTy() || VTy->isStructTy()) &&
50 "invalid CallInst type!");
51 else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
52 assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
53 ty->isOpaqueTy()) &&
54 "Cannot create non-first-class values except for constants!");
57 Value::~Value() {
58 // Notify all ValueHandles (if present) that this value is going away.
59 if (HasValueHandle)
60 ValueHandleBase::ValueIsDeleted(this);
62 #ifndef NDEBUG // Only in -g mode...
63 // Check to make sure that there are no uses of this value that are still
64 // around when the value is destroyed. If there are, then we have a dangling
65 // reference and something is wrong. This code is here to print out what is
66 // still being referenced. The value in question should be printed as
67 // a <badref>
69 if (!use_empty()) {
70 dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
71 for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
72 dbgs() << "Use still stuck around after Def is destroyed:"
73 << **I << "\n";
75 #endif
76 assert(use_empty() && "Uses remain when a value is destroyed!");
78 // If this value is named, destroy the name. This should not be in a symtab
79 // at this point.
80 if (Name)
81 Name->Destroy();
83 // There should be no uses of this object anymore, remove it.
84 LeakDetector::removeGarbageObject(this);
87 /// hasNUses - Return true if this Value has exactly N users.
88 ///
89 bool Value::hasNUses(unsigned N) const {
90 const_use_iterator UI = use_begin(), E = use_end();
92 for (; N; --N, ++UI)
93 if (UI == E) return false; // Too few.
94 return UI == E;
97 /// hasNUsesOrMore - Return true if this value has N users or more. This is
98 /// logically equivalent to getNumUses() >= N.
99 ///
100 bool Value::hasNUsesOrMore(unsigned N) const {
101 const_use_iterator UI = use_begin(), E = use_end();
103 for (; N; --N, ++UI)
104 if (UI == E) return false; // Too few.
106 return true;
109 /// isUsedInBasicBlock - Return true if this value is used in the specified
110 /// basic block.
111 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
112 for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
113 const Instruction *User = dyn_cast<Instruction>(*I);
114 if (User && User->getParent() == BB)
115 return true;
117 return false;
121 /// getNumUses - This method computes the number of uses of this Value. This
122 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
123 /// values.
124 unsigned Value::getNumUses() const {
125 return (unsigned)std::distance(use_begin(), use_end());
128 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
129 ST = 0;
130 if (Instruction *I = dyn_cast<Instruction>(V)) {
131 if (BasicBlock *P = I->getParent())
132 if (Function *PP = P->getParent())
133 ST = &PP->getValueSymbolTable();
134 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
135 if (Function *P = BB->getParent())
136 ST = &P->getValueSymbolTable();
137 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
138 if (Module *P = GV->getParent())
139 ST = &P->getValueSymbolTable();
140 } else if (Argument *A = dyn_cast<Argument>(V)) {
141 if (Function *P = A->getParent())
142 ST = &P->getValueSymbolTable();
143 } else if (isa<MDString>(V))
144 return true;
145 else {
146 assert(isa<Constant>(V) && "Unknown value type!");
147 return true; // no name is setable for this.
149 return false;
152 StringRef Value::getName() const {
153 // Make sure the empty string is still a C string. For historical reasons,
154 // some clients want to call .data() on the result and expect it to be null
155 // terminated.
156 if (!Name) return StringRef("", 0);
157 return Name->getKey();
160 std::string Value::getNameStr() const {
161 return getName().str();
164 void Value::setName(const Twine &NewName) {
165 // Fast path for common IRBuilder case of setName("") when there is no name.
166 if (NewName.isTriviallyEmpty() && !hasName())
167 return;
169 SmallString<256> NameData;
170 StringRef NameRef = NewName.toStringRef(NameData);
172 // Name isn't changing?
173 if (getName() == NameRef)
174 return;
176 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
178 // Get the symbol table to update for this object.
179 ValueSymbolTable *ST;
180 if (getSymTab(this, ST))
181 return; // Cannot set a name on this value (e.g. constant).
183 if (!ST) { // No symbol table to update? Just do the change.
184 if (NameRef.empty()) {
185 // Free the name for this value.
186 Name->Destroy();
187 Name = 0;
188 return;
191 if (Name)
192 Name->Destroy();
194 // NOTE: Could optimize for the case the name is shrinking to not deallocate
195 // then reallocated.
197 // Create the new name.
198 Name = ValueName::Create(NameRef.begin(), NameRef.end());
199 Name->setValue(this);
200 return;
203 // NOTE: Could optimize for the case the name is shrinking to not deallocate
204 // then reallocated.
205 if (hasName()) {
206 // Remove old name.
207 ST->removeValueName(Name);
208 Name->Destroy();
209 Name = 0;
211 if (NameRef.empty())
212 return;
215 // Name is changing to something new.
216 Name = ST->createValueName(NameRef, this);
220 /// takeName - transfer the name from V to this value, setting V's name to
221 /// empty. It is an error to call V->takeName(V).
222 void Value::takeName(Value *V) {
223 ValueSymbolTable *ST = 0;
224 // If this value has a name, drop it.
225 if (hasName()) {
226 // Get the symtab this is in.
227 if (getSymTab(this, ST)) {
228 // We can't set a name on this value, but we need to clear V's name if
229 // it has one.
230 if (V->hasName()) V->setName("");
231 return; // Cannot set a name on this value (e.g. constant).
234 // Remove old name.
235 if (ST)
236 ST->removeValueName(Name);
237 Name->Destroy();
238 Name = 0;
241 // Now we know that this has no name.
243 // If V has no name either, we're done.
244 if (!V->hasName()) return;
246 // Get this's symtab if we didn't before.
247 if (!ST) {
248 if (getSymTab(this, ST)) {
249 // Clear V's name.
250 V->setName("");
251 return; // Cannot set a name on this value (e.g. constant).
255 // Get V's ST, this should always succed, because V has a name.
256 ValueSymbolTable *VST;
257 bool Failure = getSymTab(V, VST);
258 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
260 // If these values are both in the same symtab, we can do this very fast.
261 // This works even if both values have no symtab yet.
262 if (ST == VST) {
263 // Take the name!
264 Name = V->Name;
265 V->Name = 0;
266 Name->setValue(this);
267 return;
270 // Otherwise, things are slightly more complex. Remove V's name from VST and
271 // then reinsert it into ST.
273 if (VST)
274 VST->removeValueName(V->Name);
275 Name = V->Name;
276 V->Name = 0;
277 Name->setValue(this);
279 if (ST)
280 ST->reinsertValue(this);
284 // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
285 // except that it doesn't have all of the asserts. The asserts fail because we
286 // are half-way done resolving types, which causes some types to exist as two
287 // different Type*'s at the same time. This is a sledgehammer to work around
288 // this problem.
290 void Value::uncheckedReplaceAllUsesWith(Value *New) {
291 // Notify all ValueHandles (if present) that this value is going away.
292 if (HasValueHandle)
293 ValueHandleBase::ValueIsRAUWd(this, New);
295 while (!use_empty()) {
296 Use &U = *UseList;
297 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
298 // constant because they are uniqued.
299 if (Constant *C = dyn_cast<Constant>(U.getUser())) {
300 if (!isa<GlobalValue>(C)) {
301 C->replaceUsesOfWithOnConstant(this, New, &U);
302 continue;
306 U.set(New);
310 void Value::replaceAllUsesWith(Value *New) {
311 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
312 assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
313 assert(New->getType() == getType() &&
314 "replaceAllUses of value with new value of different type!");
316 uncheckedReplaceAllUsesWith(New);
319 Value *Value::stripPointerCasts() {
320 if (!getType()->isPointerTy())
321 return this;
323 // Even though we don't look through PHI nodes, we could be called on an
324 // instruction in an unreachable block, which may be on a cycle.
325 SmallPtrSet<Value *, 4> Visited;
327 Value *V = this;
328 Visited.insert(V);
329 do {
330 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
331 if (!GEP->hasAllZeroIndices())
332 return V;
333 V = GEP->getPointerOperand();
334 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
335 V = cast<Operator>(V)->getOperand(0);
336 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
337 if (GA->mayBeOverridden())
338 return V;
339 V = GA->getAliasee();
340 } else {
341 return V;
343 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
344 } while (Visited.insert(V));
346 return V;
349 /// isDereferenceablePointer - Test if this value is always a pointer to
350 /// allocated and suitably aligned memory for a simple load or store.
351 bool Value::isDereferenceablePointer() const {
352 // Note that it is not safe to speculate into a malloc'd region because
353 // malloc may return null.
354 // It's also not always safe to follow a bitcast, for example:
355 // bitcast i8* (alloca i8) to i32*
356 // would result in a 4-byte load from a 1-byte alloca. Some cases could
357 // be handled using TargetData to check sizes and alignments though.
359 // These are obviously ok.
360 if (isa<AllocaInst>(this)) return true;
362 // Global variables which can't collapse to null are ok.
363 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this))
364 return !GV->hasExternalWeakLinkage();
366 // byval arguments are ok.
367 if (const Argument *A = dyn_cast<Argument>(this))
368 return A->hasByValAttr();
370 // For GEPs, determine if the indexing lands within the allocated object.
371 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(this)) {
372 // Conservatively require that the base pointer be fully dereferenceable.
373 if (!GEP->getOperand(0)->isDereferenceablePointer())
374 return false;
375 // Check the indices.
376 gep_type_iterator GTI = gep_type_begin(GEP);
377 for (User::const_op_iterator I = GEP->op_begin()+1,
378 E = GEP->op_end(); I != E; ++I) {
379 Value *Index = *I;
380 const Type *Ty = *GTI++;
381 // Struct indices can't be out of bounds.
382 if (isa<StructType>(Ty))
383 continue;
384 ConstantInt *CI = dyn_cast<ConstantInt>(Index);
385 if (!CI)
386 return false;
387 // Zero is always ok.
388 if (CI->isZero())
389 continue;
390 // Check to see that it's within the bounds of an array.
391 const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
392 if (!ATy)
393 return false;
394 if (CI->getValue().getActiveBits() > 64)
395 return false;
396 if (CI->getZExtValue() >= ATy->getNumElements())
397 return false;
399 // Indices check out; this is dereferenceable.
400 return true;
403 // If we don't know, assume the worst.
404 return false;
407 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
408 /// return the value in the PHI node corresponding to PredBB. If not, return
409 /// ourself. This is useful if you want to know the value something has in a
410 /// predecessor block.
411 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
412 const BasicBlock *PredBB) {
413 PHINode *PN = dyn_cast<PHINode>(this);
414 if (PN && PN->getParent() == CurBB)
415 return PN->getIncomingValueForBlock(PredBB);
416 return this;
419 LLVMContext &Value::getContext() const { return VTy->getContext(); }
421 //===----------------------------------------------------------------------===//
422 // ValueHandleBase Class
423 //===----------------------------------------------------------------------===//
425 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
426 /// List is known to point into the existing use list.
427 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
428 assert(List && "Handle list is null?");
430 // Splice ourselves into the list.
431 Next = *List;
432 *List = this;
433 setPrevPtr(List);
434 if (Next) {
435 Next->setPrevPtr(&Next);
436 assert(VP == Next->VP && "Added to wrong list?");
440 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
441 assert(List && "Must insert after existing node");
443 Next = List->Next;
444 setPrevPtr(&List->Next);
445 List->Next = this;
446 if (Next)
447 Next->setPrevPtr(&Next);
450 /// AddToUseList - Add this ValueHandle to the use list for VP.
451 void ValueHandleBase::AddToUseList() {
452 assert(VP && "Null pointer doesn't have a use list!");
454 LLVMContextImpl *pImpl = VP->getContext().pImpl;
456 if (VP->HasValueHandle) {
457 // If this value already has a ValueHandle, then it must be in the
458 // ValueHandles map already.
459 ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
460 assert(Entry != 0 && "Value doesn't have any handles?");
461 AddToExistingUseList(&Entry);
462 return;
465 // Ok, it doesn't have any handles yet, so we must insert it into the
466 // DenseMap. However, doing this insertion could cause the DenseMap to
467 // reallocate itself, which would invalidate all of the PrevP pointers that
468 // point into the old table. Handle this by checking for reallocation and
469 // updating the stale pointers only if needed.
470 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
471 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
473 ValueHandleBase *&Entry = Handles[VP];
474 assert(Entry == 0 && "Value really did already have handles?");
475 AddToExistingUseList(&Entry);
476 VP->HasValueHandle = true;
478 // If reallocation didn't happen or if this was the first insertion, don't
479 // walk the table.
480 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
481 Handles.size() == 1) {
482 return;
485 // Okay, reallocation did happen. Fix the Prev Pointers.
486 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
487 E = Handles.end(); I != E; ++I) {
488 assert(I->second && I->first == I->second->VP && "List invariant broken!");
489 I->second->setPrevPtr(&I->second);
493 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
494 void ValueHandleBase::RemoveFromUseList() {
495 assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
497 // Unlink this from its use list.
498 ValueHandleBase **PrevPtr = getPrevPtr();
499 assert(*PrevPtr == this && "List invariant broken");
501 *PrevPtr = Next;
502 if (Next) {
503 assert(Next->getPrevPtr() == &Next && "List invariant broken");
504 Next->setPrevPtr(PrevPtr);
505 return;
508 // If the Next pointer was null, then it is possible that this was the last
509 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
510 // map.
511 LLVMContextImpl *pImpl = VP->getContext().pImpl;
512 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
513 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
514 Handles.erase(VP);
515 VP->HasValueHandle = false;
520 void ValueHandleBase::ValueIsDeleted(Value *V) {
521 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
523 // Get the linked list base, which is guaranteed to exist since the
524 // HasValueHandle flag is set.
525 LLVMContextImpl *pImpl = V->getContext().pImpl;
526 ValueHandleBase *Entry = pImpl->ValueHandles[V];
527 assert(Entry && "Value bit set but no entries exist");
529 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
530 // and remove themselves from the list without breaking our iteration. This
531 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
532 // Note that we deliberately do not the support the case when dropping a value
533 // handle results in a new value handle being permanently added to the list
534 // (as might occur in theory for CallbackVH's): the new value handle will not
535 // be processed and the checking code will mete out righteous punishment if
536 // the handle is still present once we have finished processing all the other
537 // value handles (it is fine to momentarily add then remove a value handle).
538 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
539 Iterator.RemoveFromUseList();
540 Iterator.AddToExistingUseListAfter(Entry);
541 assert(Entry->Next == &Iterator && "Loop invariant broken.");
543 switch (Entry->getKind()) {
544 case Assert:
545 break;
546 case Tracking:
547 // Mark that this value has been deleted by setting it to an invalid Value
548 // pointer.
549 Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
550 break;
551 case Weak:
552 // Weak just goes to null, which will unlink it from the list.
553 Entry->operator=(0);
554 break;
555 case Callback:
556 // Forward to the subclass's implementation.
557 static_cast<CallbackVH*>(Entry)->deleted();
558 break;
562 // All callbacks, weak references, and assertingVHs should be dropped by now.
563 if (V->HasValueHandle) {
564 #ifndef NDEBUG // Only in +Asserts mode...
565 dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
566 << "\n";
567 if (pImpl->ValueHandles[V]->getKind() == Assert)
568 llvm_unreachable("An asserting value handle still pointed to this"
569 " value!");
571 #endif
572 llvm_unreachable("All references to V were not removed?");
577 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
578 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
579 assert(Old != New && "Changing value into itself!");
581 // Get the linked list base, which is guaranteed to exist since the
582 // HasValueHandle flag is set.
583 LLVMContextImpl *pImpl = Old->getContext().pImpl;
584 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
586 assert(Entry && "Value bit set but no entries exist");
588 // We use a local ValueHandleBase as an iterator so that
589 // ValueHandles can add and remove themselves from the list without
590 // breaking our iteration. This is not really an AssertingVH; we
591 // just have to give ValueHandleBase some kind.
592 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
593 Iterator.RemoveFromUseList();
594 Iterator.AddToExistingUseListAfter(Entry);
595 assert(Entry->Next == &Iterator && "Loop invariant broken.");
597 switch (Entry->getKind()) {
598 case Assert:
599 // Asserting handle does not follow RAUW implicitly.
600 break;
601 case Tracking:
602 // Tracking goes to new value like a WeakVH. Note that this may make it
603 // something incompatible with its templated type. We don't want to have a
604 // virtual (or inline) interface to handle this though, so instead we make
605 // the TrackingVH accessors guarantee that a client never sees this value.
607 // FALLTHROUGH
608 case Weak:
609 // Weak goes to the new value, which will unlink it from Old's list.
610 Entry->operator=(New);
611 break;
612 case Callback:
613 // Forward to the subclass's implementation.
614 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
615 break;
619 #ifndef NDEBUG
620 // If any new tracking or weak value handles were added while processing the
621 // list, then complain about it now.
622 if (Old->HasValueHandle)
623 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
624 switch (Entry->getKind()) {
625 case Tracking:
626 case Weak:
627 dbgs() << "After RAUW from " << *Old->getType() << " %"
628 << Old->getNameStr() << " to " << *New->getType() << " %"
629 << New->getNameStr() << "\n";
630 llvm_unreachable("A tracking or weak value handle still pointed to the"
631 " old value!\n");
632 default:
633 break;
635 #endif
638 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
639 /// more than once.
640 CallbackVH::~CallbackVH() {}